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Abstract

Optimization problem is a fundamental research topic which has been receiving in-
creasing interest according to its application potential in almost all real-world systems
including engineering systems, large-scaled complex networks, healthcare management
systems and so on. A large number of heuristic algorithms have been developed with
the purpose of effectively solving the optimization problems during the past few decades.
Served as a powerful family of heuristic algorithms, the particle swarm optimization
(PSO) algorithm has been successfully employed in a variety of practical applications
in dealing with optimization problems. The PSO algorithm has exhibited more com-
petitive performance than many popular evolutionary computation approaches because
of its easy implementation, fast convergence and comprehensive ability of converging
to a satisfactory solution. Nevertheless, there is still much room to improve the PSO
algorithm in terms of both the convergence rate and the population diversity.

To summarize, there are three challenging problems in developing new variant PSO
algorithms with hope to further improve the convergence rate of the PSO algorithm
and maintain the population diversity: 1) how to adjust the control parameters of the
PSO algorithm; 2) how to achieve the balance between the local search and the global
search during the evolution process; and 3) how to guarantee the search ability of the
particles and avoid premature convergence.

In this thesis, we address the above mentioned challenging problems and aim to
design effective variant PSO algorithms with applications in intelligent data analysis.
It should be pointed out that all the developed PSO algorithms in this thesis have
been evaluated by comparing with some currently popular variant PSO algorithms.

• With the aim to improve the convergence rate of the optimizer, an adaptive
weighting PSO algorithm is put forward where a sigmoid-function-based weighting
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strategy is introduced to adjust the acceleration coefficients. With this weighting
strategy, the distances from the particle to the global best position and from the
particle to its personal best position are both taken into consideration, thereby
having the distinguishing feature of enhancing the convergence rate.

• As with other evolutionary computation approaches, the modification of parame-
ters is an efficient method for improving the search ability of the algorithm. We
present a randomised PSO algorithm where Gaussian white noise with adjustable
intensity is utilized to randomly perturb the acceleration coefficients in order to
explore and exploit the problem space thoroughly.

• To further develop a novel PSO algorithm with promising search ability, we
propose a randomly occurring distributedly delayed particle swarm optimization
(RODDPSO) algorithm which demonstrates competitive performance in seeking
the optimal solution. The randomly occurring distributed time delays not only
contribute to a thorough exploration of the search space but also achieve a proper
balance between the local exploitation and the global exploration.

• To fully investigate the application potential of the developed PSO algorithms,
we apply the RODDPSO algorithm to intelligent data analysis (including data
clustering and classification problems). We optimize the initial cluster centroids
of the K-means clustering algorithm and the hyperparameters of the deep neural
network by using the RODDPSO algorithm. The developed PRODDPSO-based
algorithms are successfully employed in patients’ triage categorization and patient
attendance disposal problems with satisfactory performance.
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Chapter 1

Introduction

1.1 Motivation

In recent years, the study of optimization techniques has attracted enormous research
interest from a variety of research communities such as computer science, information
science and communication. It is well known that evolutionary computation (EC)
serves as a powerful family of algorithms that can be effectively used to solve global
optimization problems by using stochastic or metaheuristic searching strategies. Some
important EC approaches, which include evolutionary programming, evolutionary
strategies, genetic algorithms and generic programming, are motivated by biological
evolution and have been successfully applied to various research fields (e.g. artificial
intelligence, signal processing, and telecommunication), see [40, 89]. Among others,
the particle swarm optimization (PSO) algorithm proposed in [46] has been inspired by
simulating social behaviors such as bird flocking and fish schooling. The PSO algorithm
has been recognized as a particularly attractive EC algorithm that has found a wide
range of applications in dealing with optimization problems.

PSO is a population-based heuristic algorithm that starts with random initialization
of a group of individuals in the search space [129, 27, 35, 46]. These individuals are
defined as particles, where each particle represents a candidate solution and a group
of particles is referred to as a swarm. Moreover, the particles are trying to fly to
their own best position as well as the global best position among the whole swarm
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at each step according to the social behaviors in the swarm. The PSO algorithm has
received much research attention owing to its easy implementation and competitiveness
in finding a relatively satisfactory solution with a reasonable convergence rate, see e.g.,
[154, 47, 93, 48, 192, 149, 188, 140].

As with almost all EC algorithms, the PSO algorithms suffer from the problem of
trapping local optima especially in high-dimensional optimization processes. Conse-
quently, it is of practical significance to develop advanced approaches to further improve
the search ability of the PSO algorithms in terms of both the convergence and the
diversity. In the past few years, a variety of improved PSO algorithms have been put
forward to enhance the search ability of the PSO algorithm and reduce the possibility
of getting trapped in the local optima, see e.g., [192, 149, 140, 188]. For example, an
adaptive PSO (APSO) algorithm has been proposed in [192] by developing a systematic
parameter adaptation scheme based on the evolutionary factor to automatically control
the parameters such as the inertia weight and acceleration coefficients. A switching
PSO (SPSO) algorithm has been developed in [149] where the velocity model updates
according to a Markov chain, thereby exploring the search space more thoroughly than
the APSO algorithm. Furthermore, a switching delayed PSO (SDPSO) algorithm has
been introduced in [188] where the delayed information (containing previous personal
best and global best particles) has been used to further enhance the searching capability.
Moreover, a multimodal delayed PSO (MDPSO) algorithm has been proposed in [140]
where the multimodal time-delays (added in the velocity updating model) have helped
reduce the possibility of being trapped in the local optimum and expand the search
space. Nevertheless, there is still much room to further improve the performance of
the aforementioned algorithms especially for high-dimensional optimization problems
with a large number of local optima.

It should also be pointed out that although some popular PSO algorithms have
exhibited competitive performance on searching for the global optimum and increasing
the possibility of avoiding the local optima, the enhancement of the search performance
of PSO algorithms is often at the expense of sacrificing the convergence rate, which is
certainly undesirable [25, 30, 23]. As such, it is of practical significance to develop a
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new PSO algorithm that is capable of finding the globally optimal solution yet with a
satisfactory convergence rate.

Motivated by above discussions, the main challenging problems of improving the
PSO algorithms can be summarized into the following aspects: 1) how to improve the
convergence rate of the PSO algorithms? 2) how to develop new PSO algorithms that
can achieve an adequate balance between the local exploitation and global exploration
during the evolution process? 3) how to enhance the search capability of the optimizer
to avoid premature convergence?

The main purpose of this thesis is to launch a major study on developing a number
of innovative algorithms with hope to overcome the aforementioned difficulties in PSO
algorithms. In Chapter 3, we develop an adaptive weighting PSO (AWPSO) algorithm
in order to improve the convergence rate of the PSO algorithm. In Chapter 4, a
randomised PSO (RPSO) algorithm is put forward to randomly perturb the acceleration
coefficients in order for the problem space to be explored more thoroughly. We endeavor
to propose a randomly occurring distributedly delayed PSO (RODDPSO) in Chapter 5.
The applications of the developed PSO algorithm is further addressed in Chapter 6
where the RODDPSO algorithm is successfully applied to solve the parameter selection
problems in intelligent data analysis (where in this thesis the clustering and classification
problems are addressed) on A&E department.

1.2 Contribution

The main contributions of this thesis are outlined as follows.

• We develop an AWPSO algorithm where a sigmoid-function-based parameter
selection strategy is designed in order to improve the convergence rate of the PSO
algorithm. In the AWPSO algorithm, we endeavor to make full use of the distances
from each particle to its personal best position and the global best position at each
iteration. The sigmoid-function-based parameter selection strategy adaptively
adjusts the acceleration coefficients based on the outputs of a sigmoid function
with the computed distances as the inputs. Comparing with the time-varying
parameter updating strategy in PSO algorithms, the sigmoid-function-based
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parameter updating mechanism not only adaptively controls the acceleration
coefficients, which helps guarantee the population diversity, but also contributes
to a relatively fast exploration of the search space by forcing the particles to
search around the personal best position and the global best position as fast as
necessary. A series of experiments are carried out to comprehensively validate the
effectiveness of the developed AWPSO algorithm via some well-known benchmark
functions. Experiment results show that the AWPSO algorithm outperforms four
currently popular variant PSO algorithms.

• We propose a RPSO algorithm to further improve the population diversity and
alleviate the premature convergence problem. The Gaussian white noise (GWN)
with moderate intensity is applied to randomly perturb the acceleration coeffi-
cients of the RPSO algorithm, which contributes to a more thorough exploration
of the search space. The utilization of the GWNs in the acceleration coefficients
could alter the system dynamics (at each iteration), which leads to a more
thoroughly exploited and explored search space. Additionally, the particles are
entitled to exhibit more complicated dynamical behaviors than the standard PSO
algorithm by utilizing the GWNs, which would enhance the capability of the
particles getting rid of the local optima and improve the population diversity.
The RPSO algorithm is verified on a series of benchmark functions. Experiment
results demonstrate that the RPSO algorithms outperforms some existing PSO
algorithms via some widely used optimization benchmark functions.

• We put forward a RODDPSO algorithm where the randomly occurring distributed
time delays are introduced in the velocity updating model with hope to improve
the search ability of the optimizer in terms of the convergence and the population
diversity. The utilization of the time-delay terms (composed of both personal
and global best particles in the velocity updating model) could not only make
full use of the historical information during the evolution process but also exhibit
a more complicated dynamical behavior, which leads to less possibility of being
trapped in the local optima. Furthermore, the introduced distributed time-delays
occur randomly with reasonably small probability, which plays an adequate
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tradeoff between the convergence and the diversity. Eight well-known benchmark
functions are employed to evaluate the performance of the proposed RODDPSO
algorithm. Experiment results demonstrate the superiority of the RODDPSO
algorithm over several currently popular PSO algorithms.

• We propose a new clustering algorithm to combine the RODDPSO algorithm with
the well-known K-means clustering algorithm. The proposed RODDPSO-based
clustering algorithm is not dependent on the initial states of the cluster centroids,
thereby facilitating a better cluster partition. The developed RODDPSO-based
clustering algorithm is applied to solve the triage categorization problem in
the accident & emergency (A&E) departments. The clustering performance is
evaluated by using the Silhouette coefficient. Experiment results show that the
RODDPSO-based clustering algorithm is superior to the traditional clustering
algorithms on the A&E data. With an appropriate triage category (resulting in
improved patient routing), the patients’ waiting time within A&E departments
could be much decreased and patients with serious injury or illness can then be
treated with specific care. As such, the efficiency of both human and non-human
resource management in A&E departments could be improved.

• We propose a hyperparameter selection mechanism and apply it to the deep
belief network (DBN) where the hyperparameters (e.g., learning rate, momentum,
weight decay) are tuned via the RODDPSO algorithm. Instead of randomly
choosing the hyperparameters or selecting the hyperparameters based on em-
pirical experience, the hyperparameters of the DBN are determined according
to optimization results by employing the RODDPSO algorithm. The hyperpa-
rameters in the pre-training process and the fine-tuning process are optimized,
which results in a better classification performance than that of the standard
DBN. The proposed RODDPSO-based DBN is successfully applied to deal with
patient attendance disposal problem in an A&E department. Experiment results
demonstrates the effectiveness of the developed approach on analyzing A&E data.
With the patient discharge categories (obtained by the output of the network),
the patients could be efficiently assigned to a hospital bed and transferred to
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other clinics. The resource management of the A&E departments could also be
improved.

1.3 Publication

The following papers report the research work resulting from this thesis.

• W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, A survey of deep
neural network architectures and their applications, Neurocomputing, vol. 234,
pp. 11–26, 2017. (Resulting from Chapter 2)

• W. Liu, Z. Wang, Y. Yuan, N. Zeng, and X. Liu, A novel sigmoid-function-based
adaptive weighted particle swarm optimizer, IEEE Transactions on Cybernetics,
2019, in press, DOI: 10.1109/TCYB.2019.2925015. (Resulting from Chapter 3)

• W. Liu, Z. Wang, X. Liu, N. Zeng, and D. Bell, A novel particle swarm
optimization approach for patient clustering from emergency departments, IEEE
Transactions on Evolutionary Computation, vol. 23, no. 4, pp. 632–644, 2019.
(Resulting from Chapters 5, 6)

• W. Liu, Z. Wang, N. Zeng, Y. Yuan, and X. Liu, A novel randomised particle
swarm optimizer, under review (submitted to IEEE Transactions on Cybernetics).
(Resulting from Chapter 4)

• W. Liu, Z. Wang, W. Yue, and D. Bell, A clustering approach to triage categoriza-
tion in A&E departments, In: Proceedings of the 23rd International Conference
on Automation and Computing, Huddersfield, UK, Sept. 2017. (Resulting from
Chapter 6)

• N. Zeng, H. Qiu, Z. Wang, W. Liu, H. Zhang, and Y. Li, A new switching-
delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer’s disease,
Neurocomputing, vol. 320, pp. 195–202, 2018.
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1.4 Thesis Structure

To summarize, this thesis is organised into 7 chapters including the current chapter
(an introduction of this thesis). The contents of the rest chapters are summarized in
the following manner.

In Chapter 2, we provide the necessary background information of the knowledge
related to this thesis. First of all, we briefly introduce the basic knowledge of the
PSO algorithm, and the applications of the PSO algorithm are presented with details.
Then, we review the development of the variant PSO algorithms in the following three
aspects: 1) adjust the control parameters; 2) design new typology structures; and
3) develop hybrid PSO algorithms by combining other search techniques. Next, the
PSO-based clustering algorithms are introduced where traditional clustering algorithms
are also investigated. Finally, the utilization of PSO algorithms in optimising the
hyperparameters in a deep learning architecture is presented.

Motivated by previous work, in Chapter 3, a novel particle swarm optimization
algorithm is put forward where a sigmoid-function-based weighting strategy is devel-
oped to adaptively adjust the acceleration coefficients. The newly proposed adaptive
weighting strategy takes into account both the distances from the particle to the global
best position and from the particle to its personal best position, thereby having the
distinguishing feature of enhancing the convergence rate. Inspired by the activation
function of neural networks, the new strategy is employed to update the acceleration
coefficients by using the sigmoid function. The search capability of the developed AW-
PSO algorithm is comprehensively evaluated via eight well-known benchmark functions
including both the unimodal and multimodal cases. Simulation results demonstrate
that the designed AWPSO algorithm substantially improves the convergence rate of the
particle swarm optimizer and also outperforms some currently popular PSO algorithms.

Chapter 4 discusses a novel RPSO algorithm where the Gaussian white noise with
adjustable intensity is utilized to randomly perturb the acceleration coefficients in
order for the problem space to be explored more thoroughly. With this new strategy,
the RPSO algorithm not only maintains the population diversity but also enhances
the possibility of escaping the local optima trap. Experiment results demonstrate that
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the proposed RPSO algorithm outperforms some existing popular variants of PSO
algorithms on a series of widely used optimization benchmark functions.

In Chapter 5, a novel RODDPSO algorithm is proposed where the evolutionary
state is determined by evaluating the evolutionary factor in each iteration, based on
which the velocity updating model switches from one mode to another. With the
purpose of reducing the possibility of being trapped in the local optima and expanding
the search space, randomly occurring time-delays that reflect the history of previous
personal best and global best particles are introduced in the velocity updating model
in a distributed manner. Eight well-known benchmark functions are employed to
evaluate the proposed RODDPSO algorithm, which is shown via extensive comparisons
to outperform some currently popular PSO algorithms.

In Chapter 6, the applications of the developed RODDPSO algorithm is discussed:
1) the developed RODDPSO algorithm is employed to design an improved clustering
algorithm. The novel RODDPSO-based clustering algorithm combines the RODDPSO
algorithm with the traditional K-means clustering algorithm. The procedure of the
algorithm is described in a flowchart. To further illustrate the application potential,
the developed RODDPSO-based clustering algorithm is successfully exploited in the
patient clustering problem for data analysis with respect to a local A&E department in
West London. Experiment results demonstrate that the RODDPSO-based clustering
method is superior over two other well-known clustering algorithms which are the
K-means clustering algorithm and the fuzzy C-means clustering algorithm. 2) We
apply the RODDPSO algorithm to optimize the hyperparameters of the popular deep
learning technique, the DBN. A novel RODDPSO-based DBN is put forward with hope
to improve the classification performance of the traditional DBN. The basic DBN is
presented where the parameter updating mechanism is given with detailed information.
Then the learning algorithm of the developed RODDPSO-based DBN is illustrated
and the proposed model is employed on analyzing the patient attendance disposal
problem. Experiment results demonstrate the superiority of the proposed model over
the traditional DBN and the penalized DBN (with penalty and momentum).

In Chapter 7, the work of this thesis is concluded and some relevant future research
directions are presented.



Chapter 2

Background

In this chapter, we aim to review the development of the PSO algorithm and its
applications. First, the background of the PSO algorithm is introduced in Section 2.1.
Then, the development of the variant PSO algorithms are further addressed in Sec-
tion 2.2. Due to the rapid growth of the literature, it is impossible for us to review
all recently proposed PSO algorithms that are related to our study. In this case, we
focus on three main types of variant PSO algorithms which include: 1) PSO algorithms
with new parameter updating mechanisms; 2) PSO algorithms with new learning
strategies; and 3) PSO algorithms hybridized with other EC algorithms. Finally, the
practical applications of PSO algorithms in intelligent data analysis (IDA) are further
summarized in Section 2.3.

2.1 Particle Swarm Optimization

Owing to their practical application insights, optimization problems have drawn
considerable research attention from both industrial and academic societies. The past
few years have witnessed a rapid development of optimization techniques developed
by various research communities including computer science, mathematics, control
engineering and signal processing. In particular, as a powerful group of optimization
techniques, the EC approaches have proven to be highly efficient in solving global
optimization problems with great application potentials, and have therefore attracted
tremendous research interest [33, 172]. Motivated by the biological evolution, many
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well-known EC approaches (e.g. the PSO algorithm, EP, and the GA) have been
successfully employed to a variety of real-world applications in the research areas of
artificial intelligence, signal processing and system science [135, 136, 46, 48, 153, 190,
192, 173, 49, 134]. Compared with other popular EC algorithms (such as the GA,
differential evolution, and simulate annealing), the PSO algorithm exhibits competitive
or even superior performance and is thus recognized as an excellent candidate algorithm
due mainly to its technical merits of easy implementation and fast convergence towards
the optimal solution [92, 82].

Motivated by the mimics of the social interactions (e.g. fish schooling or birds
flocking), the PSO algorithm aims to explore the search space by adjusting the velocity
and position of particles according to the swarm intelligence. In fact, the PSO algorithm
is capable of discovering the optimal solution both effectively and efficiently, and has
been regarded as a rather powerful optimization technique [171, 101, 22, 159, 21, 113].
So far, the PSO algorithm has been successfully applied to solve the optimization
problems in a wide range of real-world systems such as power systems [35, 7], genetic
regulatory networks [149], medical systems [188, 190] and path planning systems
[140]. In the execution of a PSO algorithm, by cooperating and competing with other
individual particles, each particle is encouraged to learn from experience of itself and
competitors to seek the globally optimal solution through the entire search space.
During the evolution process at each iteration, each individual particle is guided by its
historical personal best position and the global best position discovered by the entire
yet dynamical swarm.

Inspired by a metaphor of social interaction, the PSO algorithm is developed to
simulate the social behavior of fish schooling or birds flocking, where each particle
represents a candidate solution of the research problem. Note that all the particles
move at a certain speed in a D-dimensional search space. The velocity and position
of the ith particle at the kth iteration are denoted by two vectors, which are the
velocity vector vi(k) = (vi1(k), vi2(k), · · · , viD(k)) and the position vector xi(k) =
(xi1(k), xi2(k), · · · , xiD(k)), respectively. According to the swarm intelligence, the
position of each particle is automatically updated in the direction of the global optimum,
where one is the personal best position found by itself (pbest) denoted by pi =
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(pi1, pi2, · · · , piD), and the other one is the global best position throughout the whole
swarm (gbest) represented by pg = (pg1, pg2, · · · , pgD). The velocity and position of the
ith particle at the (k + 1)th iteration are updated as follows:

vi(k + 1) = wvi(k) + c1r1(pi(k) − xi(k)) + c2r2(pg(k) − xi(k)),

xi(k + 1) = xi(k) + vi(k + 1),
(2.1)

where k is the current iteration number; w is the inertia weight; c1 and c2 are the
acceleration coefficients called as cognitive and social parameters, respectively; and
r1 and r2 are two random numbers which are uniformly distributed over the interval
[0, 1]. The inertia weight as well as acceleration coefficients, which serve as another two
control parameters, are vitally important in the velocity updating model of the PSO
algorithm and have been extensively investigated in recent years for better accuracy
and faster convergence rate [30, 129, 145, 194, 195, 193].

The flowchart of the traditional PSO algorithm is depicted in Fig. 2.1.

2.2 Development of Particle Swarm Optimization

Algorithms

Population-based EC approaches are known to have the problems of easily being
trapped in the local optima especially in the handling of large-scale optimization
problems. The PSO algorithm is not an exception where the individual particle in
executing a PSO algorithm may easily be trapped in the local optima, and this leads
to the so-called premature convergence. Under this circumstance, despite the ongoing
effort, it is still vitally important to further develop advanced algorithms in order to
enhance global search capability of the PSO algorithms [160, 149, 140].

Up to now, a great deal of research attention has been paid to the improvement
of the search capability of the existing PSO algorithms by developing advanced PSO
variants so as to alleviate the phenomenon of premature convergence, see in [135, 136,
23, 25, 192, 97, 31, 188, 181, 197, 111, 19]. To be specific, three types of PSO variants
have been introduced by: 1) putting forward novel strategies to adjust the control
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Fig. 2.1 Flowchart of the traditional PSO algorithm
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parameters; 2) designing new updating topological structures and 3) hybridizing with
other EC algorithms.

Modify Parameters in Particle Swarm Optimization

In the past few decades, the problem of improving traditional PSO algorithms has
been attracting particular research attention. Various modified PSO algorithms have
been proposed to enhance the search ability of the traditional PSO algorithm. It is
well known that, as a control parameter, the balance between global and local searches
throughout the searching process plays a vital role in successfully finding the optimal
solution [98, 145, 181, 71]. Up to now, some PSO variants have been focused on the
modification of the three control parameters in PSO algorithms: the inertia weight,
the cognitive acceleration coefficient, and the social acceleration coefficient.

In a PSO algorithm, the inertia weight is normally utilized to balance the global
search and the local search, where a larger value of the inertia weight contributes
to a better global exploration, and a smaller value encourages a more thorough
local exploitation [136]. In [135, 136], a linear-decreasing-inertia-weight-based PSO
(PSO-LDIW) algorithm has been proposed where the inertia weight is updated in a
time-varying manner. The updating function of the inertia weight in the PSO-LDIW
is expressed as follows:

w = wmax − (wmax − wmin) × iter
maxiter , (2.2)

where wmax and wmin represent the maximum and minimum value of the inertia weight,
respectively; iter denotes the number of current iteration, and maxiter represents
the maximum iteration number. Normally, a larger inertia weight will benefit the
global exploration, and a smaller inertia weight will contribute to the local exploitation
[136]. The PSO-LDIW algorithm has satisfactory performance in many applications.
However, for the PSO-LDIW algorithm, once the inertia weight decreases, the search
ability of the swarm would be affected and may not explore the search space thoroughly
[35].
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For the purpose of efficiently controlling the local and global searches, the time-
varying-acceleration-coefficient-based PSO (PSO-TVAC) algorithm has been introduced
in [129]. The cognitive acceleration coefficient c1 is linearly decreased, and the social
acceleration coefficient c2 is linearly increased, which are shown as follows:

c1 = (c1f − c1i) × maxiter − iter
maxiter + c1i, (2.3)

c2 = (c2f − c2i) × maxiter − iter
maxiter + c2i, (2.4)

where c1i and c2i represent the initial values of the acceleration coefficients. c1f and
c2f denote the final value of the cognitive acceleration coefficient c1 and the social
acceleration coefficient c2, respectively. It should be mentioned that the parameters
c1i = 0.5, c1f = 2.5, c2i = 2.5, and c2f = 0.5 are determined based on experiment
experience. Moreover, the PSO algorithm with the constriction factor (PSO-CK) has
been introduced in [27] to guarantee the convergence rate and the search ability, where
w = 0.729 and c1 = c2 = 1.49.

Design New Learning Strategies

In addition to the adaptation of control parameters, some researchers have focused on
designing different learning strategies with hope to alleviate premature convergence, see
e.g. [91, 160, 192, 149, 44, 140, 188, 93, 199, 144]. With the newly designed topological
structures, the variant PSO algorithms may possess better population diversity or
convergence than the standard PSO algorithm [109, 5, 90, 127]. For example, a
comprehensive learning particle swarm optimizer [93] has been developed to preserve
the population diversity of the particles to avoid trapping in the local optima for
complex multimodal problems. In [192], an adaptive PSO (APSO) algorithm has
been proposed with the introduction of an evolutionary factor to distinguish among
four evolutionary states and, with this learning strategy, the control parameters have
been adaptively adjusted for the PSO algorithm. In [149], a switching PSO (SPSO)
algorithm has been put forward to improve the convergence rate by updating the
acceleration coefficients based on the switching of different evolutionary states.
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Recently, a competitive swarm optimizer has been designed in [25] for large-scaled
optimization problems where a pairwise competition mechanism is designed. With
this pairwise competition mechanism, the particle that loses the competition adjusts
the position according to the winner particle. More recently, time-delay terms have
been taken into account through the velocity updating process due to the utilization of
historical information during the evolution process, which results in a better accuracy
than the standard PSO algorithm, see e.g. [140, 188]. Moreover, the time-delay terms
consist of the historical information of the population evolution and the time-delayed
PSO algorithms are then likely to have better accuracy than the classic PSO algorithm.
It should also be mentioned that an augmented PSO algorithm in combination with
multiple adaptive methods has been put forward in [76] with purpose of improving
the diversity and avoiding the premature convergence problem, where an intelligent
selection mechanism has been put forward to select an appropriate search approach.
Additionally, the PSO algorithm with a dynamical diversity coefficient has been
proposed in [59] where a random velocity controlled by a diversity coefficient has been
taken into consideration to further improve the PSO algorithm by enhancing the search
ability.

Hybridize Particle Swarm Optimization with Other Evolutionary Compu-
tation Algorithms

In the past few years, the traditional PSO algorithms have been improved in combination
with the usage of some popular EC approaches such as the differential evolution (DE)
algorithm [186, 187, 201] and the GA [61, 178]. Motivated by the success of other
EC algorithms, it seems natural to hybridize other heuristic algorithms with the
PSO algorithm. For instance, a switching local evolutionary PSO algorithm has been
proposed in [187] by employing the DE algorithm to improve the search ability of the
particles and increase the possibility of escaping from the local optima. A hybrid PSO-
GA algorithm has been proposed in [54, 57] where the genetic operators (e.g. crossover
and mutation) are exploited to balance the global and local searching through the
entire search space, and therefore ensure the satisfactory search ability of the particles.
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2.3 Applications of Particle Swarm Optimization

in Intelligent Data Analysis

In this section, the applications of PSO algorithms in IDA are reviewed (in terms of
data clustering and deep learning). Data analysis, as an important research forefront
in both academy and industry, is the process of inspecting, transforming, cleaning,
and modelling data with the purpose of discovering useful information, informing
conclusions, and supporting decision-making. Various statistical and machine learning
techniques have been studied for data analysis during the past few decades. In recent
years, the introduction of IDA has attracted an ever-increasing research interest in the
computer science community. The objective of IDA is to reveal and indicate significant
features of a massive amount of data [14, 24, 70]. In this thesis, we aim to review the
applications of PSO algorithms in data clustering and deep learning.

2.3.1 Data Clustering

Recognized as a research front with data analysis, clustering techniques have been
successfully employed in a variety of research areas such as biology, signal processing,
computer vision, market segmentation, and healthcare, see e.g., [146, 141, 52, 152, 39].
Clustering techniques are used to discover the natural groupings of a set of objects
where the objects in the same cluster share similar characteristics.

Different starting points and criteria will lead to different taxonomies of clustering
algorithms. It has been shown in [32, 119] that many popular clustering algorithms
are heavily dependent on the initial state of cluster centroids, and may get trapped
in local optima. As such, it is reasonable to optimize the parameters of clustering
algorithms (e.g. the number of clusters and the initial state of cluster centroids) in
order to improve the clustering performance. In this context, various optimization
algorithms have been applied to optimally set the parameters with examples including
the GA [84, 63], the SA algorithm [133, 128], the PSO algorithm [153, 78], and the
artificial bee colony [195] algorithm.

PSO algorithms have proven to be a strong competitor to other optimization
algorithms [6, 153, 173, 77]. For instance, a PSO-based clustering technique has been
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proposed in [153] where the initial swarm adopts clusters formed by the K-means
clustering algorithm. A novel PSO-based clustering algorithm has been developed
in [173] for gene clustering by employing the self-organizing map algorithm. Later
on, a hybrid fuzzy clustering algorithm based on the conventional PSO algorithm
and fuzzy C-means clustering algorithm has been proposed in [77] with satisfactory
performance on several well-known benchmark data sets. Very recently, a density-based
PSO algorithm has been introduced in [6] for data clustering by combining the kernel
density estimation method with the PSO algorithm.

2.3.2 Deep Learning

Machine learning techniques have been widely applied in a variety of areas such as
pattern recognition, natural language processing (NLP) and computational learning.
With machine learning techniques, computers are endowed with the capability of
acting without being explicitly programmed, constructing algorithms that can learn
from data, and making data-driven decisions or predictions [96, 132, 179, 62, 12, 118].
Nevertheless, when it comes to the human information processing mechanisms (e.g.
speech and vision), the performance of traditional machine learning techniques is far
from satisfactory. Inspired by deep hierarchical structures of human speech perception
and production systems, the concept of deep learning algorithms has been introduced
in the late 20th century. The past few decades have witnessed rapid developments of
deep learning techniques with significant impacts on various research areas, such as
speech recognition, NLP, information retrieval, compute vision, and image analysis
[87, 120, 170, 102, 1]. In fact, due to their strong ability to handle large amounts of
unlabeled data, deep learning techniques have drawn tremendous interest from both
academic and industrial areas. It is also worth mentioning that the deep learning
techniques have attracted the attention of many high-tech enterprises such as Google,
Facebook and Microsoft. For example, in March 2016, a Go Game match was held in
South Korea by Google’s deep learning team (called DeepMind) between its AI player
AlphaGo and one of the world’s strongest players Lee Se-dol [138].

The concept of deep learning originates from the study on artificial neural networks
(ANNs) [74]. ANNs have become an active research area during the past few decades
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[198, 175, 180, 182, 26]. To construct a standard neural network (NN), it is essential
to utilize neurons to produce real-valued activations and, by adjusting the weights, the
NNs behave as expected. However, depending on the problems, the process of training a
NN may take long causal chains of computational stages. Backpropagation is an efficient
gradient descent algorithm which has played an important role in NNs since 1980 [132].
It trains the ANNs with a teacher-based supervised learning approach. Although the
training accuracy is high, the performance of the backpropagation algorithm when
applied to the testing data might not be satisfactory. As the backpropagation algorithm
is based on local gradient information with a random initial point, the algorithm is
often trapped in local optima. Furthermore, if the size of the training data is not
big enough, NNs will face the problem of overfitting. Consequently, other effective
machine learning algorithms such as support vector machine (SVM), boosting and
K-nearest neighbor (KNN) algorithms have been adopted to obtain global optimum
with lower power consumption. In 2006, Hinton [73] proposed a new training method
(called layer-wise-greedy-learning) which marked the birth of deep learning techniques.
The basic idea of the layer-wise-greedy-learning is that unsupervised learning should
be performed for network pre-training before the subsequent layer-by-layer training.
By extracting features from the inputs, the data dimension is reduced and a compact
representation is hence obtained. Then, exporting the features to the next layer, all
of the samples will be labeled and the network will be fine-tuned with the labeled
data. The reason for the popularity of deep learning is twofold: on one hand, the
development of big data analysis techniques indicates that the overfitting problem in
training data can be partially solved; on the other hand, the pre-training procedure
before unsupervised learning will assign non-random initial values to the network.
Therefore, a better local minimum can be reached after the training process and a
faster converge rate can be achieved.

With rapid development of computation techniques, a powerful framework has
been provided by ANNs with deep architectures for supervised learning. Generally
speaking, the deep learning algorithm consists of a hierarchical architecture with many
layers, each of which constitutes a non-linear information processing unit. In this
thesis, we only discuss deep architectures in NNs. Deep neural networks (DNNs), which
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employ deep architectures in NNs, can represent functions with higher complexity if
the numbers of layers and units in a single layer are increased. Given enough labeled
training datasets and suitable models, deep learning approaches can help humans
establish mapping functions for operation convenience.

The DNNs has been widely applied in speech recognition and acoustic modeling for
audio classification [88]. Besides, deep learning approaches also play an important role
in the area of image processing such as handwritten classification [83], high-resolution
remote sensing scene classification [75], single image super-resolution [42], and multi-
category rapid serial visual presentation brain computer interfaces [110]. Moreover,
deep architectures have also been employed in multi-task learning for NLP with an
enhanced inference robustness [29, 86].

Although deep learning techniques have been successfully applied to a variety of
applications, the problem of choosing suitable hyperparameters has become increasingly
significant in deep learning. Note that there are more than hundreds of hyperparameters
in some industrial applications using DNNs such as NLP and video detection, adding
enormous challenges to select appropriate hyperparameters. Generally speaking, it
requires a large amount of experience to choose an appropriate value of numerical
hyperparameters, e.g. the learning rate, the number of hidden units, the momentum,
and the weight decay [123, 126, 13, 53, 124, 196]. Under this circumstance, it is
of vital importance to design effective approaches for hyperparameter selection in
DNNs. Owing to their outstanding performance in discovering optimal solutions,
evolutionary computation approaches become a seemingly natural choice in optimizing
the hyperparameters of the DBNs. Recently, a variety of meta-heuristic algorithms
(e.g., harmony search, GA and PSO algorithms) have been successfully employed to
optimize the hyperparameter selection process in the DNNs. For example, the harmony
search algorithm has been used in [123] to optimize the hyperparameters (including
the learning rate, the weight decay, the penalty parameter, and the number of hidden
units) during the pre-training process. The genetic algorithm has been adopted in
[53] to tune the hyperparameters of a deep convolutional neural network. In order to
prevent overfitting, the meta-heuristic-driven techniques (including the PSO algorithm,
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bat algorithm, cuckoo search, and firefly algorithm) have been utilized to optimize the
dropout (a regularization term) in the convolutional neural networks [36].

As mentioned previously, PSO algorithms serve as a powerful family of algorithms
that can be effectively used to solve global optimization problems. Intuitively, a
natural idea is to introduce PSO algorithms in DNNs with the purpose of selecting
proper hyperparameters in an intelligent way [123, 126, 13, 53]. For example, the PSO
algorithm has been employed to optimize the hyperparameters in a deep convolutional
neural network in [2]. In [126], the PSO algorithm has been utilized to optimize the
hyperparameters in a deep Boltzmann machine. A non-linear marginalized stacked
denoising autoencoder has been proposed in [143] to extract useful features in visual
speech recognition where the PSO algorithm is employed to optimize the hyperpa-
rameters of the proposed model. To summarize, the utilization of PSO algorithms in
the deep learning community achieves a great success and it seems a natural idea to
investigate advanced PSO algorithms for optimizing the hyperparameters of the deep
learning architectures.



Chapter 3

A Novel Sigmoid-Function-Based
Adaptive Weighted Particle Swarm
Optimizer

3.1 Motivation

Optimization problem has long been an important research topic attracting enormous
interest from a variety of communities owing to its clear application potential in
real-world systems such as telecommunication systems, power systems, and network
operating systems [137, 148, 140, 188, 121, 164, 93, 40, 177, 94]. In the past few
decades, evolutionary computation (EC) techniques have been successfully employed
to effectively solve the optimization problems. In this regard, a famous EC approach,
known as the PSO algorithm, has been successfully implemented in various practical
applications in dealing with the optimization problems [46]. In a PSO algorithm, as
motivated by the swarm intelligence and social behaviors (e.g., birds flocking), all the
particles are randomly initialized and then encouraged to explore the problem space
thoroughly based on the individual experience and the interaction with other particles
[135, 136]. During the evolution process, the historically personal best position (pbest)
of each particle as well as the historically global best position (gbest) discovered by the
entire swarm are two important positions, based on which the particles are motivated
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to seek the optimal solution. According to [46, 48], the PSO algorithm outperforms
many popular EC approaches due to its easy implementation and fast convergence
rate.

It is well known that, the balance between global and local searches throughout
the searching process plays a vital role in successfully finding the optimal solution
[145, 181]. The inertia weight as well as acceleration coefficients, which serve as
two control parameters, are vitally important in the velocity updating model of the
PSO algorithm and have been extensively investigated in recent years for better
accuracy and faster convergence [30, 129, 145, 194, 17]. Up to now, some PSO variants
have been focused on the modification of the aforementioned control parameters. In
[135, 136], a linear-decreasing-inertia-weight-based PSO (PSO-LDIW) algorithm has
been proposed where the inertia weight is updated in a time-varying manner. For
the purpose of efficiently controlling the local and global searches, the time-varying-
acceleration-coefficient-based PSO (PSO-TVAC) algorithm has been introduced in
[129]. In addition to the adaptation of the control parameters, topological structures
have been introduced in some PSO algorithms with the hope to alleviate premature
convergence, see e.g. [192, 158, 106, 140, 188, 93]. In particular, time-delay terms have
been taken into account through the velocity updating process due to their utilization
of historical information during the evolution process which results in a better accuracy
than the standard PSO algorithm, see e.g. [140, 188].

Although some popular PSO algorithms have exhibited competitive performance on
searching the global optimum and increasing the possibility of avoiding the local optima,
the enhancement of the search performance of PSO algorithms is often at the expense of
sacrificing the convergence rate, which is certainly undesirable [25, 30, 23]. As such, it
is of practical significance to develop a new PSO algorithm that is capable of finding the
globally optimal solution yet with a satisfactory convergence rate through adaptively
updating the control parameters. Note that the inertia weight and acceleration
coefficients only change along with time in most of the existing PSO algorithms. In this
case, a seemingly natural idea is to make full use of the distances from each individual
particle to its pbest and gbest at each iteration, and adaptively update the control
parameters according to the outputs of a certain sigmoid function with the calculated
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distances as the inputs. In comparison with the time-varying parameter strategy
(see e.g. [135, 136, 129]), the sigmoid-function-based updating strategy possesses the
following advantages: 1) the control parameters are adaptively chosen which could
guarantee the search ability of the optimizer; and 2) the particles are motivated to
move towards the pbest and gbest as fast as necessary which could help improve the
convergence rate. It should be mentioned that the particles slow down once they get
close to the pbest and gbest.

To summarize, the main objective of this chapter is to propose an adaptive weighting
(AWPSO) algorithm with a sigmoid-function-based parameter selection scheme. The
main contributions are outlined as follows: 1) a novel sigmoid-function-based AWPSO
algorithm is proposed where an adaptive weighting strategy is designed to adaptively
adjust the control parameters at each iteration; and 2) The acceleration coefficients are
adaptively controlled according to the distances from the particle to its pbest and gbest,
thereby facilitating a relatively fast exploitation of the problem space.

The rest of this chapter is organized below. Section 3.2 describes the proposed
adaptive weighting strategy and the AWPSO algorithm. Benchmark functions, test
PSO algorithms, parameter setting, experiment results and discussions are illustrated
in Section 3.3. Conclusions and future directions are presented in Section 3.4.

3.2 A Novel AWPSO Algorithm

In a PSO algorithm, the acceleration coefficients are used to motivate the particles to
move to the pbest and gbest. The distances from the position of each particle to its pbest
and gbest are dominantly important in determining the movement of the particles. On
the other hand, the adaptation of the control parameters is a significant factor in seeking
the optimal solution with convincing efficiency and accuracy [129, 35]. Therefore, to
control the PSO algorithm in an effective way, in this chapter, we endeavor to propose
a novel adaptive weighting mechanism with which the acceleration coefficients are
adaptively adjusted as the iteration goes.
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3.2.1 Adaptive Weighting Strategy

In the classic PSO algorithm, the velocity of an individual particle gets accelerated
according to the distances from the particle to its pbest and gbest. As such, the selection
of appropriate acceleration coefficients is of vital importance for finding the globally
optimal solution through the problem space. In this case, it makes both theoretical
and practical sense to adaptively updating the acceleration coefficients iteration by
iteration based on the aforementioned distances to efficiently improve the searching
capability of the PSO algorithm.

In the literature, several popular updating strategies for acceleration coefficients
have been proposed during the past decade with satisfactory performance [129] while
avoiding premature convergence. Another PSO variant with linearly decreasing strategy
has been developed in [142] to update acceleration coefficients. However, these PSO
variants only adjust the acceleration coefficients in a time-varying manner without
taking the information of the population evolution into account.

It is clear that all the individuals are encouraged to explore the entire search space
as much as possible in the early stage of the evolution process. Then, in the latter
stage of the optimization process, the individuals are motivated to converge to the
global optimum and find the optimization solution as fast as possible. As can be seen
in Eq. (2.1), the velocity of the particle updates is dependent on the distances from
the particles to their own pbest and the gbest. In this case, it is reasonable to adjust
the acceleration coefficient according to the distances from each individual particle to
its pbest as well as the gbest.

Taking above all the mentioned concerns into consideration, an adaptive weighting
strategy is proposed to adaptively control the acceleration coefficients. The main
motivation is to accelerate the particles to find the optimal solution as fast as possible
and thus enhances the convergence rate. Different from the time-varying updating
strategy, the acceleration coefficients are altered according to the distance of the
particle towards its gbest and pbest. If the particle is far away from its pbest and gbest, a
relatively large acceleration coefficient is employed to accelerate the particle. However,
the value of the acceleration coefficient is limited in an appropriate range to avoid
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premature convergence, which means that the velocity should be bounded to guarantee
the searching capability of the algorithm.

Motivated by above discussions, we believe that an adaptive weighting updating
function is appropriate to describe the relationship between the acceleration coefficient
and the distances (from the particle to its pbest and gbest). In other words, the updates
of the former acceleration coefficients should be adaptive to the latter distances, thereby
fully justifying the velocity of the particle movements towards the global optimum.
From a mathematical viewpoint, the proposed adaptive weighting updating rule can
be described as follows:

cgpi
(k) = F (gpi(k))

cggi
(k) = F (ggi(k))

(3.1)

where the function F (·) represents the adaptive weighting updating function to be
discussed later; and gpi(k) and ggi(k) are defined by

gpi(k) = pi(k) − xi(k)

ggi(k) = pg(k) − xi(k),
(3.2)

which denote the distances from the particle i to its pbest and gbest at the kth iteration,
respectively.

3.2.2 Selection of Adaptive Weighting Updating Function

Intuitively, the adaptive weighting updating function should have the following two
properties: 1) the updating function is monotonically increasing; and 2) the updating
function is bounded. The first property is mainly due to the characteristics of the
acceleration coefficients. It is well known that the acceleration coefficients are the
weighting terms which pull the particles to the pbest and gbest. A particle which is
far away from its pbest and gbest requires a fast movement towards its pbest and gbest.
Therefore, a monotonically increasing function is required. The second property is
justified by the fact that the search space of a constrained optimization problem is
normally bounded. Once a particle is close to its pbest and gbest, the movement should
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be slowed down to avoid missing its pbest and the gbest. Consequently, the acceleration
coefficients should be bounded for the control of the velocity of the particle.

In search of adequate updating functions that are both monotonically increasing
and uniformly bounded, the activation functions employed in neural networks appear
to be ideal candidates. There are some popular activation functions for the neural
networks such as step functions and sigmoid functions, among which we decide to
select the sigmoid function as the adaptive weighting updating function for three
reasons: 1) the sigmoid function is monotonic and bounded; 2) the curve of the sigmoid
function is S-shaped and this would avoid undesirable abrupt changes of the control
parameters; and 3) the sigmoid function is smooth and differentiable, thereby reflecting
the adaptive/dynamic nature of the weight updating iteration by iteration.

According to the above discussion, in this chapter, a sigmoid function is employed
to adjust the acceleration coefficients as follows:

F (Dp) = b

1 + e−a×(Dp−c) + d (3.3)

where e is the natural logarithm base; a denotes the steepness of the curve which is
a constant value; b represents the peak value of the curve; c represents the abscissa
value of the central point of the curve; d is a positive constant value; and Dp is the
input of the function which is determined by Eq. (3.2). Specifically, Dp is the distance
between the particle and its pbest for the cognitive acceleration coefficient. For the
social acceleration coefficient, Dp indicates the distance between the particle and the
gbest.

Remark 1: In Eq. (3.3), it is of vital importance to choose appropriate values of
the four parameters (a, b, c and d). Note that a is the parameter which denotes the
steepness of the curve. It seems a natural idea to adjust the value of a according to
the search range of each individual optimization problem. In our work, we have run
25 tests to determine an appropriate value of each parameter. According to empirical
studies, we set a = 0.000035 · m where m indicates the search range of the optimization
problem. According to the characteristics of the sigmoid function and experimental
experience, b, c, d are set to be 0.5, 0, and 1.5, respectively.
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To conclude, the three major advantages of the proposed sigmoid-function-based
adaptive weighting strategy are summarized as follows:

1. the acceleration coefficients are adaptively controlled within reasonable bounds,
and the adaptive weighting strategy ensures the efficiency of the velocity updating
process;

2. the adaptive weighting updating function, chosen as the sigmoid function, is
utilized to reflect the monotonic yet relatively smooth changes of the acceleration
coefficients, where a larger distance will lead to a larger value of acceleration
coefficient; and

3. the particles are motivated to seek the optimal solution as fast as necessary,
thereby improving the convergence rate.

3.2.3 Framework of the AWPSO Algorithm

An AWPSO algorithm is developed in this chapter where the velocity updating equation
obeys an adaptive weighting strategy. During the population evolution process, the
velocity and position of the ith particle are updated on the basis of the following
equations:

vi(k + 1) = w × vi(k) + cgpi
(k) × r1 × gpi(k) + cggi

(k) × r2 × ggi(k)

xi(k + 1) = xi(k) + vi(k + 1)
(3.4)

where w is the inertia weight; gpi(k) and ggi(k) represent the distances from the
particle i to its pbest and gbest at the kth iteration, respectively; cgpi

(k) denotes
the acceleration constant determined by gpi(k), and cggi

(k) indicates the acceleration
constant determined by ggi(k).

The flowchart of the introduced AWPSO algorithm is depicted in Fig. 3.1.
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Fig. 3.1 Flowchart of the AWPSO algorithm
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3.3 Results and Discussions

In our work, the AWPSO algorithm is compared with some popular variant PSO
algorithms on a series of widely-used optimization benchmark functions consisting of
both unimodal and multimodal cases for performance evaluation. In addition, the
convergence performance of the adaptive weighting updating function is demonstrated
with visible results. For all the benchmark functions, the swarm size is set to be 30 and
the dimension of the problem space is set to be 30. In this simulation, each experiment
has been repeated for 50 times independently, and the maximum iteration number is
set to be 5000. It is worth pointing out that the Euclidean distance is chosen as the
distance metric in the simulation.

The performance indicators are of vital importance in evaluating the performance
of the proposed PSO algorithms. In general, the convergence rate, the solution
accuracy, the successful convergence ratio (also known as the success ratio), and the
population diversity are four major performance indicators to evaluate evolutionary
computation approaches. In this thesis, the convergence rate is employed to evaluate
the convergence performance of the PSO algorithm. The solution accuracy is used
to verify the effectiveness of the discovered solution, which is measured by the mean,
the minimum, and the standard deviation of the fitness value for all the benchmark
functions. The success ratio is used to describe the convergence accuracy of the PSO
algorithms. In addition, the population diversity of the propose PSO algorithm is
justified by using the formula defined in Eq. (3.13).

3.3.1 Benchmark Functions

It should be noticed that all the selected benchmark functions have been widely used in
the evolutionary computing community [176, 188, 140]. The Sphere function f1(x) is a
typical unimodal function. The Rosenbrock function f2(x) is called as the Rosenbrock’s
banana function which is a popular benchmark function. The Rastrigin function
f3(x), the Penalized 1 function f5(x) and the Penalized 2 function f8(x) are classical
multimodal problems consisting of many local optima, which are difficult to find the
globally optimal solution. The Schwefel 2.22 function f4(x) and the Step function
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f6(x) are also frequently used benchmark functions for optimization. The Schwefel
function f7(x) is a typical benchmark function with lots of local minima. Detailed
information of the chosen benchmark functions is given by (3.5) to (3.12). Note that
x = (x1, x2, · · · , xD) where D represents the dimension of the search space, and we set
D = 30 in the simulation.

Sphere : f1(x) = x2
1 + x2

2 + · · · + x2
D. (3.5)

Rosenbrock : f2(x) =
D−1∑
i=1

[
100(xi+1 − xi)2 (3.6)

+ (xi − 1)2
]
.

Rastrigin : f3(x) =
D∑

i=1
(x2

i − 10 cos 2πxi + 10). (3.7)

Schwefel 2.22 : f4(x) =
D∑

i=1
| xi | +

D∏
i=1

| xi | . (3.8)

Penalized 1 : f5(x) = π

D

(
10 sin2(πy1) (3.9)

+
D−1∑
i=1

(yi − 1)2
(
1 + 10 sin2(πyi+1)

)

+ (yD − 1)2
)

+
D∑

i=1
u(xi).

yi = 1 + 1/4(xi + 1),

u(xi) =


100(−xi − 10)4, xi < −10,

0, |xi| ≤ 10,

100(xi − 10)4, xi > 10.

Step : f6(x) =
D∑

i=1
(⌊xi + 0.5⌋)2. (3.10)

Schwefel : f7(x) = 418.9828872724338D (3.11)

−
D∑

i=1
xi sin(

√
|xi|).

Penalized 2 : f8(x) = 0.1
(

sin2(3πx1) (3.12)
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+
D−1∑
i=1

(xi − 1)2
(
1 + sin2(3πxi+1)

)
+ (xD − 1)2

(
1 + sin2(2πxD)

))

+
D∑

i=1
u(xi).

u(xi) =


100(−xi − 5)4, xi < −5,

0, |xi| ≤ 5,

100(xi − 5)4, xi > 5.

The configurations of the benchmark functions are presented in Table 3.1. The
search range represents the range of the search space. Additionally, the threshold is a
problem-based parameter, which is utilized as a stopping criterion of the algorithm.

Table 3.1 Configuration of benchmark functions

Function Number Function Name Problem Dimension Search Range Minimum Threshold
f1(x) Sphere 30 [−100, 100] 0 0.1
f2(x) Rosenbrock 30 [−30, 30] 0 100
f3(x) Rastrigin 30 [−5.12, 5.12] 0 50
f4(x) Schwefel 2.22 30 [−10, 10] 0 0.1
f5(x) Penalized 1 30 [−50, 50] 0 0.1
f6(x) Step 30 [−100, 100] 0 0.1
f7(x) Schwefel 30 [−500, 500] 0 0.1
f8(x) Penalized 2 30 [−50, 50] 0 0.1

3.3.2 Experiment Results

In this chapter, four currently popular PSO algorithms (including the basic PSO
algorithm [46], the PSO-LDIW algorithm [135], the PSO-CK algorithm [27], and the
SDPSO algorithm [188]) are selected for performance evaluation via eight widely used
benchmark functions.

Experiment results are displayed in Figs. 3.2-3.9 where the vertical coordinate
indicates the mean fitness value in the logarithmic form, and the horizontal coordinate
indicates the iteration number. From the figures, we can see that the AWPSO algorithm
exhibits competitive performance on most of the benchmark functions. Although the
PSO-LDIW algorithm obtains better mean fitness value than the AWPSO algorithm
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Table 3.2 Algorithm evaluation on eight benchmark functions

PSO PSO-LDIW PSO-CK SDPSO AWPSO
f1(x) Minimum 1.75 × 103 2.03 × 10−33 8.13 × 10−87 4.11 × 10−3 5.25 × 10−45

Mean 2.72 × 103 2.00 × 102 6.00 × 102 1.2816 4.00 × 102

Std. Dev. 1.44 × 103 1.41 × 103 2.40 × 103 1.9592 1.98 × 103

Ratio 0% 98% 94% 22% 96%
f2(x) Minimum 2.70 × 105 2.49 × 10−2 1.51 × 10−4 7.77 × 101 3.95 × 10−2

Mean 4.66 × 105 1.28 × 104 5.54 × 103 2.29 × 103 5.90 × 103

Std. Dev. 1.07 × 105 3.15 × 104 2.16 × 104 1.27 × 104 2.15 × 104

Ratio 0% 74% 88% 4% 68%
f3(x) Minimum 1.68 × 102 1.19 × 101 4.88 × 101 2.97 × 101 2.39 × 101

Mean 2.00 × 102 4.64 × 101 9.46 × 101 6.47 × 101 5.70 × 101

Std. Dev. 1.75 × 101 2.31 × 101 2.59 × 101 2.42 × 101 2.27 × 101

Ratio 0% 62% 2% 36% 42%
f4(x) Minimum 1.89 × 101 6.32 × 10−22 1.73 × 10−26 1.13 × 10−2 1.98 × 10−16

Mean 3.96 × 101 2.62 × 101 1.06 × 101 8.6727 2.32 × 101

Std. Dev. 1.47 × 101 1.82 × 101 1.02 × 101 1.41 × 101 1.63 × 101

Ratio 0% 10% 36% 4% 12%
f5(x) Minimum 1.81 × 101 1.57 × 10−32 1.57 × 10−32 1.08 × 10−4 1.57 × 10−32

Mean 9.23 × 101 8.29 × 10−3 2.77 × 10−1 2.38 × 10−1 2.70 × 10−2

Std. Dev. 1.47 × 102 2.84 × 10−2 4.44 × 10−1 3.37 × 10−1 4.59 × 10−2

Ratio 0% 92% 46% 54% 74%
f6(x) Minimum 1.62 × 103 0.0000 0.0000 0.0000 0.0000

Mean 3.17 × 103 2.00 × 10−2 1.01 × 103 4.7400 4.00 × 10−2

Std. Dev. 2.40 × 103 1.41 × 10−1 3.03 × 103 4.4758 1.98 × 10−1

Ratio 0% 98% 14% 14% 96%
f7(x) Minimum 4.78 × 103 1.90 × 103 3.22 × 103 3.21 × 103 1.54 × 103

Mean 6.60 × 103 3.64 × 103 4.90 × 103 5.06 × 103 3.70 × 103

Std. Dev. 1.03 × 103 1.55 × 103 8.85 × 102 1.30 × 103 2.23 × 103

Ratio 0% 0% 0% 0% 0%
f8(x) Minimum 2.84 × 104 4.18 × 10−32 1.35 × 10−32 2.21 × 10−2 1.35 × 10−32

Mean 1.35 × 105 2.42 × 10−3 2.02 × 10−1 5.49 × 10−1 3.07 × 10−3

Std. Dev. 6.90 × 104 7.12 × 10−3 6.19 × 10−1 4.56 × 10−1 8.59 × 10−3

Ratio 0% 100% 84% 10% 100%

on most of the benchmark functions, the superiority is not obvious. Furthermore, it is
apparent that the AWPSO algorithm converges faster than most of the benchmark
functions with satisfactory mean fitness value.

In our work, the diversity of the swarm at the kth iteration is calculated as follows
[151]:

S(k) = 1
M

M∑
i=1

√√√√√ D∑
j=1

(xij(k) − x̄j(k))2 (3.13)
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Fig. 3.2 Optimization performance for Sphere function f1(x)
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Fig. 3.3 Optimization performance for Rosenbrock function f2(x)
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Fig. 3.4 Optimization performance for Rastrigin function f3(x)
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Fig. 3.5 Optimization performance for Schwefel 2.22 function f4(x)
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Fig. 3.6 Optimization performance for Penalized 1 function f5(x)
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Fig. 3.7 Optimization performance for Step function f6(x)
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Fig. 3.8 Optimization performance for Schwefel function f7(x)
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Fig. 3.9 Optimization performance for Penalized 2 function f8(x)
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Fig. 3.10 Diversity measure for Sphere function f1(x)

where M is the swarm size, D is the dimensionality of the optimization problem, xij

denotes the ith particle at the jth dimension, x̄j(k) is the average value of the jth
dimension over all particles at the kth iteration, i.e. x̄j(k) = 1

M

∑M
i=1 xij(k).

The population diversity of the classic PSO algorithm and our proposed AWPSO
algorithm are shown in Figs. 3.10-3.17, where the vertical coordinate represents the
diversity measure of the swarm and the horizontal coordinate indicates the number of
iteration. It can be seen that both the classic PSO algorithm and the AWPSO algorithm
have large values of population diversity at the early stage of the optimization process.
The population diversity of the classic PSO algorithm and the AWPSO algorithm
decreases as the iteration number increases. It is worth mentioning that a small value
of population diversity implies that the population converges to a certain region of the
search space. We can see that the population diversity of the AWPSO algorithm is
smaller than that of the classic PSO algorithm at the later stage of the optimization
process, which indicates that the convergence of the AWPSO algorithm is better than
the classic PSO algorithm.
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Fig. 3.11 Diversity measure for Rosenbrock function f2(x)
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Fig. 3.12 Diversity measure for Rastrigin function f3(x)
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Fig. 3.13 Diversity measure for Schwefel 2.22 function f4(x)
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Fig. 3.14 Diversity measure for Penalized 1 function f5(x)
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Fig. 3.15 Diversity measure for Step function f6(x)
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Fig. 3.16 Diversity measure for Schwefel function f7(x)
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Fig. 3.17 Diversity measure for Penalized 2 function f8(x)

The statistical results of the PSO algorithms are illustrated in Table 3.2. Notably,
the minimum, standard deviation and mean fitness value are utilized to evaluate the
searching capability of the particle swarm optimizers. The success ratio is used to judge
the convergence characteristics, which demonstrates the PSO algorithms’ capability
of getting rid of the local optima. Notice that all the selected benchmark functions
are minimization problems. As such, a smaller fitness value indicates a better solution.
In Table 3.2, the proposed AWPSO algorithm obtains smaller minimum fitness value
than the classic PSO algorithm, the PSO-LDIW algorithm, the SDPSO algorithm
for function (3.5). In addition, the AWPSO algorithm exhibits better performance
than the basic PSO algorithm, the PSO-CK algorithm and the SDPSO algorithm for
function (3.7). We can see that the minimum fitness value of the AWPSO algorithm
is the smallest comparing with all other PSO algorithms for function (3.9) to (3.12).
Moreover, the AWPSO algorithm achieves the satisfactory results for most of the
benchmark functions by comparing the mean fitness value.
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On the other hand, the success ratio is an important criterion to evaluate the
evolutionary algorithms. In Table 3.2, only the PSO-LDIW algorithm and the AWPSO
algorithm achieve 100% success ratio on function (3.12), which indicates the difficulty
of finding the global optimum for the selected benchmark functions. Note that the
success ratio of all the benchmark algorithms for Rastrigin function (3.7) and the
Schwefel function (3.11) are not satisfactory because these two functions have a large
number of local minima, which are hard to find the globally optimal solution, and thus
results in a low success ratio. Comparing the success ratio of the PSO algorithms, the
AWPSO algorithm demonstrate competitive performance on most of the benchmark
functions.

Note that the convergence rate is also a significant performance indicator. In
this chapter, the stopping criterion is set as the algorithm finds the globally optimal
solution within the threshold. In this case, a smaller number of iteration indicates a
better convergence performance of the PSO algorithm. To avoid random phenomena,
we repeat the experiment for 50 times on each benchmark function and calculate
the mean iteration number. The convergence plot of PSO algorithms is depicted
in Fig. 3.18 where the vertical coordinate denotes the number of iteration when the
algorithm converges, and the horizontal coordinate represents the number of benchmark
function. In Fig. 3.18, we can see that the AWPSO algorithm outperforms the basic
PSO algorithm, the PSO-LDIW algorithm and the SDPSO algorithm. The PSO-CK
algorithm converges faster than the AWPSO algorithm on function (3.5), function
(3.6), function (3.8) and function (3.12). Nevertheless, it is worth mentioning that the
overall difference of average convergence rate between the AWPSO algorithm and the
PSO-CK algorithm is not large. Importantly, the AWPSO algorithm demonstrates
higher success ratio than the PSO-CK algorithm.

The ranking method is employed in our work to evaluate the convergence perfor-
mance of the PSO algorithms in a quantitative way [66]. The ranking results are shown
in Table 3.3. In this work, the smaller the ranking value, the better the convergence
performance of the algorithm. It can be seen that the average ranking value of the
AWPSO algorithm is the smallest (which is 1.625) among all the PSO algorithms.
To summarise, we can arrive at the conclusion that the proposed AWPSO algorithm
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Fig. 3.18 Convergence plot of PSO algorithms

demonstrates competitive performance on the population diversity and the convergence
rate.

Table 3.3 Convergence performance evaluation by using the ranking method

PSO PSO-LDIW PSO-CK SDPSO AWPSO
f1(x) Ranking 5 3 1 4 2
f2(x) Ranking 4 4 1 3 2
f3(x) Ranking 5 1 4 3 2
f4(x) Ranking 5 4 1 3 2
f5(x) Ranking 5 2 3 4 1
f6(x) Ranking 5 3 1 4 2
f7(x) Ranking 5 3 1 4 2
f8(x) Ranking 5 3 1 4 2

Average Ranking 4.375 2.5 1.875 3.25 1.625
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3.4 Conclusion

To conclude, a novel PSO algorithm called the AWPSO algorithm has been proposed in
this chapter with hope to improve the convergence rate of the traditional particle swarm
optimizer. A sigmoid-function-based adaptive weighting strategy has been introduced
where the acceleration coefficients are adaptively controlled by employing a sigmoid
function based on the distances from the particle to the global best position and from
the particle to its personal best position. The AWPSO algorithm has demonstrated
competitive performance on the convergence rate by comparing with four popular PSO
algorithms on eight widely used optimization benchmark functions including both
unimodal and multimodal cases. In our future research directions, we aim to 1) further
improve the AWPSO algorithm in terms of the population diversity, and study the
movement behaviors of particles by using the Wilcoxon rank sum test [107, 108, 18];
and 2) apply the AWPSO algorithm to other research fields, such as system engineering
and signal processing [157, 185, 20, 125, 200].



Chapter 4

A Novel Randomised Particle
Swarm Optimizer

4.1 Motivation

In the past few years, a large number of optimization techniques have been developed
by various research communities, e.g., mathematics, telecommunication, computer
science [9, 203, 149, 188]. Particularly, the evolutionary computation approaches have
proven to be a powerful family of optimization techniques due to their highly efficiency
in dealing with global optimization problems [43, 183, 114, 150, 56, 79]. Motivated by
the social behaviours of the animal societies, the PSO algorithm has shown to be a
powerful family of the EC approaches owing to its strong search ability and relatively
fast convergence to the optimal solution [48, 153, 149, 188, 191].

In a PSO algorithm, the acceleration coefficients are crucial parameters in achieving
the balance between the global exploration and local searches through the entire
problem space [145, 136, 48, 97]. The selection of the acceleration coefficients plays an
important role in successfully seeking the globally optimal solution. To improve the
search capability of the PSO algorithm, a great many PSO variants have been developed
by adjusting the acceleration coefficients, for example, controlling the acceleration
coefficients in a time-varying manner [129]. In Chapter 3, the AWPSO algorithm with
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a sigmoid-function-based updating strategy is put forward to adaptively adjust the
acceleration coefficients in order to enhance the convergence rate of the PSO algorithm.

Intuitively, a properly designed random perturbation (with adequate intensity)
on the velocity updating model could lead to allowable variation of the acceleration
coefficient that will not affect the convergence of the PSO algorithm but, rather, enhance
the population diversity at each iteration, thereby further increasing the possibility
of getting rid of local optima. In choosing a candidate for random perturbations, the
well-known Gaussian white noise (GWN) appears to be an ideal candidate due to its
constant power spectral density and easily tunable intensity at different frequencies
when it comes to the implementation [167, 168].

Inspired by above argument of developing randomized algorithms [116], a seemingly
natural idea is to introduce the GWNs into the acceleration coefficients of the PSO
algorithm with hope to improve the population diversity and alleviate the premature
convergence. The advantages of utilizing the GWNs are concluded as twofold: 1) the
GWNs in the acceleration coefficients can alter the system dynamics (by means of
iterations) which could contribute to a more thorough exploration and exploitation
through the problem space; and 2) with the GWNs in place, the particles are entitled to
exhibit more complicated dynamical behaviors (than the conventional PSO algorithms)
which would enhance the capability of the particles escaping from the local optima
and also improve the population diversity.

To conclude the discussions made so far, in this chapter, we endeavor to propose a
randomized PSO (RPSO) algorithm where the GWN with adequately adjusted intensity
is utilized to randomly perturb the acceleration coefficients in order for the problem
space to be explored more thoroughly. The main contributions can be summarized as
follows: 1) a novel RPSO algorithm is developed where the GWNs are embedded in
the velocity updating model to adjust the acceleration coefficients at each iteration,
which helps prevent the undesirable premature convergence; and 2) the proposed RPSO
algorithm is comprehensively verified on a series of test functions (including both the
unimodal and multimodal cases) and it is demonstrated that the RPSO algorithm
outperforms some existing popular variants of PSO algorithms on a series of widely
used optimization benchmark functions.
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The rest of this chapter is organized as follows. In Section 4.2, the proposed RPSO
algorithm is explained in detail. Experiment results, parameter setting and discussions
are presented in Section 4.3. Finally, conclusions and future directions are drawn in
Section 4.4.

4.2 A New RPSO Algorithm

A novel RPSO algorithm is developed in this section where the GWNs are entered
into the updating model for velocity for randomly perturbing (with adequate intensity)
the acceleration coefficients with hope to decrease the trapping possibility into the
local optima and also seek the optimal solution more thoroughly. The motivation and
framework of the proposed RPSO algorithm are illustrated in details.

To control the PSO algorithm in an effective way, the control parameters (such
as the inertia weight, the social acceleration coefficient and the cognitive acceleration
coefficient) are dominantly crucial during the evolution process. The inertia weight
is a significant parameter in controlling the exploration of the search space which
is commonly set to be a constant or a dynamically changing value [136]. Similarly,
the acceleration coefficients (composed of the cognitive component and the social
component) are used to control the movement of the particles towards their personal
best position and the global best position discovered by the entire swarm, respectively.
In general, the parameter setting of the acceleration coefficients plays an adequate
role in achieving the balance between the local search and the global exploration
through the optimization process. As such, an appropriate selection of the acceleration
coefficients is of vital importance to seek the global optimum effectively and accurately.
Unfortunately, some existing PSO algorithms which focus on adjusting the control
parameters (such as the PSO-TVAC algorithm) may still easily get trapped in the local
optima. Therefore, it is of crucial importance to investigate an advanced parameter
selection mechanism to reduce the possibility of trapping into local optima and further
enhance the search capability of the PSO algorithms.

We are now ready to introduce our novel RPSO algorithm dedicatedly designed to
enhance the search ability of the particles with the hope to thoroughly explore and
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exploit the entire problem space. The major novelty of the newly proposed RPSO
model is to separately introduce the GWNs into the cognitive acceleration coefficient as
well as the social acceleration coefficient to effectively and efficiently seek the optimal
solution. By establishing such a new velocity updating model, the RPSO algorithm
consists of the following two advantages: 1) the GWNs are separately added to the
social and cognitive acceleration coefficients which randomly perturb the movement of
the particles at each iteration; and 2) the dynamical behavior of the RPSO algorithm
becomes more complicated than the basic PSO algorithm and the particles are therefore
allowed to expand their search space, which leads to a more thorough exploration of
the problem space with less trapping possibility into the local optima.

4.2.1 Framework of the RPSO Algorithm

For the novel RPSO algorithm, the flowchart is depicted in Fig. 4.1.
The velocity and position of the ith particle are updated based on the following

equations:

vi(k + 1) = wvi(k) + r1(Cp + δ1(k))(pi(k) − xi(k))

+ r2(Cg + δ2(k))(pg(k) − xi(k))

xi(k + 1) = xi(k) + vi(k + 1)

(4.1)

where k denotes the iteration number; Cp and Cg indicate the acceleration coeffi-
cients defined in Eq. (4.3) and Eq. (4.4), respectively; w is inertia weight represented
by Eq. (4.2); δ1(k) and δ2(k) represent two independent GWNs; and r1 and r2 are two
uniformly distributed random numbers on [0, 1]. Notably, the GWNs (δ1(k) as well as
δ2(k)) and the random numbers (r1 and r2) are mutually independent.

Motivated by the PSO-LDIW [136] and the PSO-TVAC [129] algorithms, the inertia
weight w and the acceleration coefficients Cp and Cg of the RPSO algorithm are shown
as follows:

w = wmax − (wmax − wmin) × k

maxit (4.2)

Cp = (Cp max − Cp min) × maxit − k
maxit + Cp min (4.3)
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Fig. 4.1 Flowchart of the RPSO algorithm
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Cg = (Cg min − Cg max) × maxit − k
maxit + Cg max (4.4)

where wmax, Cp max and Cg max represent the maximum value of the inertia weight w,
acceleration coefficients Cp and Cg, respectively; wmin, Cp min and Cg min denote the
minimum value of w, Cp and Cg, respectively; and maxit indicates the maximum
iteration.

4.3 Results and Discussion

In this section, the performance of the proposed RPSO algorithm is evaluated and
discussed by comparing with some widely used PSO algorithms. In the simulation,
some popular test functions including both of the unimodal and multimodal cases are
taken into account to provide a comprehensive review of the optimization performance
of the developed RPSO algorithm. In this chapter, all the experiments are implemented
by using MATLAB 2017b on a PC with the Intel Core i5 − 4590 3.30 GHz CPU and
the Microsoft Windows 7 Enterprise 64-bit operating system.

In our simulation, the swarm size is set as S = 30 and the dimension of the problem
space is D = 30. Furthermore, the maximum number of iteration is k = 10000 for all
the tested PSO algorithms. To strengthen the reliability of the simulation results, each
experiment is repeated independently for 50 times. The parameters of the compared
PSO algorithms are set up according to the literature [82, 135, 129, 27, 149, 188]. For
the RPSO algorithm, the inertia weight w is linearly decreased from 0.9 to 0.4. The
acceleration coefficients Cp and Cg are belonging to [0.5, 2.5] where Cp max = Cg max = 2.5
and Cp min = Cg min = 0.5. The mean value and the variance of the GWNs δ1(k) and
δ2(k) are both 0 and 0.07, respectively.

4.3.1 Test Functions

In this chapter, eight well-known test functions are selected for evaluating the search
ability of the proposed RPSO algorithm by comparing with six popular PSO algorithms.
The selected PSO algorithms include the standard PSO algorithm [82], the PSO-LDIW
algorithm [135], the PSO-TVAC algorithm [129], the PSO-CK algorithm [27], the
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SPSO algorithm [149], and the SDPSO algorithm [188]. Among the selected test
functions, f1(x) (the Sphere function) is a typical unimodal function which is often
utilized to justify the convergence rate of the EC approaches; f2(x) (the Rosenbrock
function), referred to as the Rosenbrock’s banana function, is a widely-used test problem
for optimization algorithms; f3(x) (the Rastrigin function) and f5(x) (the Griewank
function) have a large number of local optima, which are hard to discover the globally
optimal solution; and other selected test functions are also popular benchmark functions.
It should be pointed out that all the test functions are minimization problems and
all of them have a global minimum. Let x = (x1, x2, · · · , xD) where D = 30 is the
dimension of the problem space. The mathematical formulations of the test functions
are given as below.

Sphere : f1(x) =
D∑

i=1
x2

i . (4.5)

Rosenbrock : f2(x) =
D−1∑
i=1

(100(xi+1 − xi)2 + (xi − 1)2). (4.6)

Rastrigin : f3(x) =
D∑

i=1
(x2

i − 10 cos 2πxi + 10). (4.7)

Schwefel 1.2 : f4(x) =
D∑

i=1
(

i∑
j=1

xj)2. (4.8)

Griewank : f5(x) = 1 + 1
4000

D∑
i=1

x2
i −

D∏
i=1

cos( xi√
i
). (4.9)

Penalized 1 : f6(x) = π

D

(
10 sin2(πy1) (4.10)

+
D−1∑
i=1

(yi − 1)2
(
1 + 10 sin2(πyi+1)

)

+ (yD − 1)2
)

+
D∑

i=1
u(xi).

yi = 1 + 1/4(xi + 1),

u(xi) =


100(−xi − 10)4, xi < −10,

0, |xi| ≤ 10,

100(xi − 10)4, xi > 10.
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Step : f7(x) =
D∑

i=1
(⌊xi + 0.5⌋)2. (4.11)

Penalized 2 : f8(x) = 0.1
(

sin2(3πx1) (4.12)

+
D−1∑
i=1

(xi − 1)2
(
1 + sin2(3πxi+1)

)
+ (xD − 1)2

(
1 + sin2(2πxD)

))

+
D∑

i=1
u(xi).

u(xi) =


100(−xi − 5)4, xi < −5,

0, |xi| ≤ 5,

100(xi − 5)4, xi > 5.

The detailed information of the test functions is shown in Table 4.1 including
the name of the test functions, the search range of each optimization problem, the
maximum velocity of the particle for each test function, the threshold, and minimum
of the test functions. Notably, the search range of the test function which indicates
the range of the search space is determined by the literature [176]. Furthermore, the
maximum velocity of each particle in PSO approaches is usually limited by a certain
value with the hope to avoid searching outside the predefined search range. Due to
empirical investigations on the test functions, the maximum velocity is often set up by
10 − 20% of the dynamic range of each dimension for different test functions [129, 48].
In our simulation, the maximum velocity is set to be 20% of the dynamical range.

Table 4.1 Test function configuration

Test Functions Dimension Search Range Maximum Velocity Threshold Minimum
f1(x): Sphere 30 [−100, 100] 40 0.01 0
f2(x): Rosenbrock 30 [−30, 30] 12 100 0
f3(x): Rastrigin 30 [−5.12, 5.12] 2.048 50 0
f4(x): Schwefel 1.2 30 [−100, 100] 40 0.01 0
f5(x): Griewank 30 [−600, 600] 240 0.01 0
f6(x): Penalized 1 30 [−50, 50] 20 0.01 0
f7(x): Step 30 [−100, 100] 40 0.01 0
f8(x): Penalized 2 30 [−50, 50] 20 0.01 0
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Fig. 4.2 Algorithm Convergence Characteristics for Sphere function f1(x)

4.3.2 Experimental Studies of the RPSO Algorithm

To evaluate the solution quality of the proposed RPSO algorithm, three popular
performance indicators (including the convergence rate, success ratio and population
diversity) are utilized. Note that the success ratio is an important criterion to measure
the accuracy of the PSO approaches. The population diversity is used to evaluate
the solution quality. In this chapter, the convergence plots of the PSO algorithms are
depicted from Figs. 4.2-4.9 to demonstrate the convergence rate of the PSO algorithms
where the vertical coordinate indicates the logarithm value of the average fitness
value and the horizontal coordinate denotes the number of iteration. Furthermore,
the minimum, mean and standard deviation fitness values of the PSO algorithms
are employed to demonstrate the solution quality of the adopted PSO approaches in
Table 4.2.

From the figures, it is clear that the proposed RPSO algorithm exhibits competitive
performance than other selected PSO variants. In Figs. 4.3-4.5 and Figs. 4.7-4.8,
the RPSO algorithm obtains the best average fitness value among the selected PSO
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Fig. 4.3 Algorithm Convergence Characteristics for Ackley function f2(x)
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Fig. 4.5 Algorithm Convergence Characteristics for Schwefel 2.22 function f4(x)
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Fig. 4.6 Algorithm Convergence Characteristics for Griewank function f5(x)
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Fig. 4.7 Algorithm Convergence Characteristics for Penalized 1 function f6(x)
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Fig. 4.9 Algorithm Convergence Characteristics for Penalized 2 function f8(x)

algorithms, and the convergence rate is satisfactory. Additionally, the RPSO algorithm
discovers the globally optimal solution of function (4.11). Although the convergence
characteristics of the RPSO algorithm is not the best among all the PSO variants
for function (4.5), function (4.9) and function (4.12), the difference between the best
minimum value is not significant.

The ranking method is employed to quantitatively evaluate the convergence per-
formance of the PSO algorithms. The ranking results are displayed in Table 4.3. It
can be seen that the mean ranking value of the RPSO algorithm is 1.5, which is the
smallest one among all the selected PSO algorithms. Overall, the convergence behavior
of the RPSO algorithm outperforms other selected PSO algorithms.

The statistical results of the performance evaluation of the selected PSO approaches
are shown in Table 4.2. By analyzing the experiment results of the RPSO algorithm
on the chosen 30-D optimization problems, the proposed RPSO algorithm outperforms
six popular PSO algorithms in terms of both of the success ratio and the population
diversity. Although it is tough to find the optimal solution, the algorithm meets the



4.3 Results and Discussion 58

Table 4.2 Statistical Results of PSO Algorithms

PSO PSO-LDIW PSO-TVAC PSO-CK SPSO SDPSO RPSO
f1(x) Minimum 1.44 × 103 2.38 × 10−64 3.97 × 10−57 6.07 × 10−175 3.23 × 10−196 3.42 × 10−5 1.78 × 10−55

Mean 2.55 × 103 1.81 × 10−60 1.62 × 10−30 8.00 × 102 8.58 × 10−183 3.59 × 10−67 1.30 × 10−34

Std. Dev. 1.45 × 103 8.82 × 10−60 9.45 × 10−30 2.74 × 103 0.0000 2.88 × 10−2 5.61 × 10−34

Ratio 0% 100% 100% 92% 100% 74% 100%
f2(x) Minimum 2.28 × 105 5.75 × 10−3 2.31 × 10−3 7.67 × 10−6 5.33 × 10−4 2.77 × 101 3.82 × 10−4

Mean 3.95 × 105 1.65 × 104 1.96 × 103 2.09 × 103 5.43 × 103 3.13 × 102 1.10 × 102

Std. Dev. 1.12 × 105 3.48 × 104 1.27 × 104 1.27 × 104 2.16 × 104 6.95 × 102 4.32 × 102

Ratio 0% 64% 90% 80% 92% 54% 94%
f3(x) Minimum 1.34 × 102 1.29 × 101 1.39 × 101 4.97 × 101 3.18 × 101 2.69 × 101 1.29 × 101

Mean 1.93 × 102 4.58 × 101 2.65 × 101 9.96 × 101 9.46 × 101 6.21 × 101 2.69 × 101

Std. Dev. 2.22 × 101 2.18 × 101 6.5499 2.96 × 101 3.16 × 101 2.15 × 101 1.00 × 101

Ratio 0% 60% 100% 2% 8% 36% 96%
f4(x) Minimum 4.05 × 103 9.74 × 10−4 1.71 × 10−8 2.87 × 10−24 5.79 × 10−14 8.60 × 101 1.13 × 10−9

Mean 1.14 × 104 8.10 × 103 3.00 × 102 3.17 × 103 2.77 × 103 1.01 × 103 2.00 × 102

Std. Dev. 5.67 × 103 7.93 × 103 1.20 × 103 3.94 × 103 4.47 × 103 1.81 × 103 9.90 × 102

Ratio 0% 10% 92% 54% 62% 0% 92%
f5(x) Minimum 1.45 × 101 0.0000 0.0000 0.0000 0.0000 1.83 × 10−5 0.0000

Mean 2.42 × 101 1.8255 1.86 × 10−2 5.4554 1.8216 4.92 × 10−2 2.34 × 10−2

Std. Dev. 1.32 × 101 1.28 × 101 2.16 × 10−2 2.17 × 101 1.28 × 101 7.86 × 10−2 2.25 × 10−2

Ratio 0% 36% 54% 30% 56% 18% 38%
f6(x) Minimum 1.79 × 101 1.57 × 10−32 1.57 × 10−32 1.57 × 10−32 1.57 × 10−32 5.07 × 10−5 1.57 × 10−32

Mean 3.11 × 101 1.04 × 10−2 6.22 × 10−3 4.05 × 10−1 9.33 × 10−2 6.01 × 10−2 4.15 × 10−3

Std. Dev. 1.12 × 101 3.14 × 10−2 2.49 × 10−2 6.66 × 10−1 1.44 × 10−1 1.88 × 10−1 2.05 × 10−2

Ratio 0% 90% 94% 40% 54% 72% 96%
f7(x) Minimum 1.48 × 103 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 2.47 × 103 4.00 × 102 0.0000 6.13 × 102 2.00 × 102 1.60 × 10−1 0.0000
Std. Dev. 1.41 × 103 1.98 × 103 0.0000 2.40 × 103 1.41 × 103 5.48 × 10−1 0.0000
Ratio 0% 96% 100% 24% 92% 90% 100%

f8(x) Minimum 1.49 × 104 1.35 × 10−32 1.35 × 10−32 1.35 × 10−32 5.83 × 10−31 2.11 × 10−5 1.35 × 10−32

Mean 1.06 × 105 8.79 × 10−4 1.76 × 10−3 1.69 × 10−1 1.13 × 109 2.58 × 10−2 1.10 × 10−3

Std. Dev. 5.98 × 104 3.01 × 10−3 4.07 × 10−3 7.10 × 10−1 3.00 × 108 3.78 × 10−2 3.33 × 10−3

Ratio 0% 92% 84% 50% 2% 48% 90%

requirement if the fitness value reaches the specific threshold of each test function. The
RPSO algorithm obtains best success ratio in function (4.5), function (4.6), function
(4.8), function (4.10) and function (4.11). For function (4.7), function (4.9) and function
(4.12), the RPSO algorithm also exhibits competitive success ratio than other PSO
algorithms. Notably, the success ratio of each PSO algorithms on function (4.9) is very
low because the Griewank function consists of a large number of local minima, which is
difficult to discover the globally optimal solution. Overall, we can draw the conclusion
that the RPSO algorithm is capable of escaping from the local optima.

In Table 4.2, the mean, minimum, and standard deviation of the fitness values are
also presented. Note that the minimum fitness value represents the optimal solution
found by the PSO algorithm. It should be mentioned that all the test functions utilized
in this chapter are minimization problems. In this regard, a smaller fitness value
indicates a better solution explored by the PSO algorithm. The RPSO algorithm
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Table 4.3 Convergence performance evaluation by using the ranking method

PSO PSO-LDIW PSO-TVAC PSO-CK SPSO SDPSO RPSO
f1(x) Ranking 7 2 4 6 1 5 3
f2(x) Ranking 7 6 3 4 5 2 1
f3(x) Ranking 7 3 2 6 5 4 1
f4(x) Ranking 7 6 2 5 4 3 1
f5(x) Ranking 7 4 1 6 4 3 2
f6(x) Ranking 7 3 2 6 5 4 1
f7(x) Ranking 7 5 2 6 4 3 1
f8(x) Ranking 6 1 3 5 7 4 2

Average Ranking 6.875 3.75 2.375 5.5 4.375 3.5 1.5

obtains the smallest minimum fitness value on function (4.7) and functions (4.9)-
(4.12). In addition, the RPSO algorithm obtains satisfactory minimum fitness values
on the rest of the test functions. It is worth mentioning that the RPSO algorithm
also gets the smallest mean and standard deviation of the fitness value on function
(4.6), function (4.8), and functions (4.10)-(4.12), which indicates that the population
diversity of the RPSO algorithm is competitive than other compared PSO algorithms.
Furthermore, the RPSO algorithm outperforms the standard PSO algorithm, the
PSO-LDIW algorithm, the PSO-CK algorithm, the SPSO algorithm and the SDPSO
algorithm on the mean, minimum, and standard deviation of the fitness values as
well as the success ratio for function (4.7). For function (4.11), the success ratio of
the RPSO algorithm is 100% which indicates that the globally optimal solution is
discovered for all the repeats. In this case, we can draw the conclusion that the search
ability of the RPSO algorithm is competitive than the compared PSO algorithms. To
summarize, the proposed RPSO algorithm demonstrates superior performance over
the compared popular PSO algorithms in terms of the strong ability to escape from
the local optima, the satisfactory convergence performance and population diversity.

4.4 Conclusion

In this chapter, a RPSO algorithm has been proposed to improve the search ability
of the basic PSO approach. The GWNs have been added to the social acceleration
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coefficient and the cognitive acceleration coefficient separately to randomly change the
acceleration coefficients. Experimental results have shown that the introduced RPSO
algorithm outperforms six existing PSO algorithms on eight popular test functions. In
the near future, we will 1) further investigate advanced approaches to improving the
population diversity of the RPSO algorithm for large-scale and complex optimization
problems; 2) apply the proposed RPSO algorithm to other research areas, e.g., system
science and telecommunication [167, 168]; and 3) extend our work to multi-objective
optimization [122, 95, 202, 147, 205].



Chapter 5

A Randomly Occurring
Distributedly Delayed Particle
Swarm Optimizer

5.1 Motivation

Owing to its wide application potential and satisfactory performance, the past few
decades have witnessed the rapid development of the PSO algorithm [136, 46, 192,
193, 6]. It is worth mentioning that the PSO algorithm suffered from the premature
convergence problem especially for high-dimensional optimization problems. Therefore,
it is of vital importance to further improve the search capability of the PSO algorithm.
Note that we develop the AWPSO algorithm in Chapter 3 and the RPSO algorithm in
Chapter 4 by modifying the control parameters to improve the convergence and the
population diversity. To further improve the PSO algorithm in terms of the updating
behavior of the particles, we aim to put forward a new variant PSO algorithm by
designing new topological structures.

It should be pointed out that the PSO algorithms perform well by adding certain
time-delays in the velocity updating model, see [149, 140, 188]. In the existing delayed
PSO algorithms, the time-delay terms (composed of both personal and global best
particles in the velocity updating model) contribute significantly to the full use of
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historical information and the thorough exploration of the search space, by which the
convergence behaviors of PSO algorithms are improved and the capability of getting rid
of local optima is enhanced. Time-delay is a physical phenomenon existing in dynamical
systems such as single-frequency global positioning systems [51] and genetic regulatory
networks [149]. According to the way they occur, time delays can be categorized as
constant, time-varying, discrete and distributed ones, see e.g. [165, 139].

Distributed time-delays exhibit a distinct spatial nature that models delay in signal
propagations distributed through an amount of parallel channels/pathways during a
certain time period. So far, the dynamical behaviors of complex systems (e.g. neural
networks [165, 139]) with distributed time-delays have been well studied. Intuitively, a
natural idea is to introduce certain distributed time-delays in the PSO algorithm with
the hope to enhance the capability of escaping from the local optima and getting rid
of the problem of premature convergence. As compared with the discrete time-delays
in [149, 140, 188], distributed time-delays could have the following two advantages: 1)
a better use of longer (more accumulated) history of the population evolution leading
to a better accuracy; and 2) a more complicated dynamical behavior leading to less
possibility of trapping local optima. Furthermore, to play an adequate tradeoff between
the convergence and the diversity, the introduced distributed time-delays could be
made randomly occurring with reasonably small probability. As such, the main purpose
of this chapter is to launch a major study on a novel randomly occurring distributedly
delayed PSO (RODDPSO) algorithm with applications in healthcare informatics.

Motivated by the above discussions, the purpose of this chapter is to propose a
RODDPSO algorithm. The main contributions of this chapter can be summarized
as follows: A novel RODDPSO algorithm is introduced where the randomly occurring
distributed time-delay terms not only contribute to a) a thorough exploration of the
entire search space; b) a significant reduction of the possibility of trapping local optima;
and c) a proper balance between the local and global search abilities.

The remaining part of this chapter is organized as follows. A novel RODDPSO
algorithm is introduced in Section 5.2. Experiment results of the RODDPSO algorithm
are presented in Section 5.3. Finally, conclusions and discussions on relevant future
work are presented in Section 5.4.
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5.2 A Novel RODDPSO Algorithm

In this section, a novel RODDPSO algorithm is proposed to further improve the search
ability of the traditional PSO algorithm. The main novelty of the proposed RODDPSO
lies in the introduction of the randomly occurring distributed time-delays into the
velocity updating model. More specifically, a certain number of historical personal best
particles and global best particles are randomly selected according to the evolutionary
state. Note that the delayed terms are selected by multiplying a random number which
is 0 or 1. Compared to the traditional delayed PSO algorithms, the newly introduced
randomly occurring distributed time-delays in the velocity updating model make it
possible for us to 1) make better use of accumulated history about the population
evolution with better accuracy; 2) pursue stronger capability of avoiding local optima
trapping problems; and 3) keep an adequate balance between the convergence and the
diversity. As such, the proposed RODDPSO could explore and exploit the search space
more thoroughly than the traditional PSO algorithm.

5.2.1 Framework of the RODDPSO Algorithm

The velocity and position in the novel RODDPSO algorithm are updated as follows:

vi(k + 1) = wvi(k) + c1r1(pi(k) − xi(k)) + c2r2(pg(k) − xi(k))

+ ml(ξ)c3r3

N∑
τ=1

α(τ)(pi(k − τ) − xi(k))

+ mg(ξ)c4r4

N∑
τ=1

α(τ)(pg(k − τ) − xi(k)),

xi(k + 1) = xi(k) + vi(k + 1),

(5.1)

where k denotes the current iteration number; w is the inertia weight defined in equation
(2.2); acceleration coefficients c1 and c2 are updated according to equations (2.3) and
(2.4), respectively; c3 and c4 are the acceleration coefficients for distributed time-delay
terms, which are equal to c1 and c2, i.e., c1 = c3 and c2 = c4; N represents the upper
bound of the distributed time-delays; α(τ) declares a N -dimensional vector where each
element is randomly chosen from 0 or 1; ri(i = 1, 2, 3, 4) are random numbers which
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are uniformly distributed in [0, 1]; ml(ξ) and mg(ξ) represent the intensity factors of
the distributed time-delay terms according to the evolutionary state ξ.

It is worth mentioning the relationship between the delayed iteration number τ

and the current iteration number k. Note that the velocity updating model performs
according to (5.1) when τ is smaller than k, and otherwise we set τ = 0. On the
other hand, the selections of the inertia weight and acceleration coefficients are very
important in implementing PSO algorithms. The balance of the local and global
searching performance is obtained by adjusting the inertia weight. In this chapter, the
selection of inertia weight adopts the linearly decreasing strategy proposed in [136]
with equation (2.2). Due to the success in improving the search ability of conventional
PSO algorithms by employing time-varying acceleration coefficients in [129], we adopt
the time-varying strategy to adjust acceleration coefficients with equations (2.3) and
(2.4).

The flowchart of the novel RODDPSO algorithm is given in Fig. 5.1.

5.2.2 Evolutionary State

In the proposed RODDPSO algorithm, the velocity and position equations are updated
according to the evolutionary state depending on the evolutionary factor as mentioned
in [192, 149]. The searching characteristics of the PSO algorithm are revealed through
the four evolutionary states, i.e., the convergence state, the exploitation state, the
exploration state, and the jumping-out state denoted by ξ(k) = 1, ξ(k) = 2, ξ(k) = 3
and ξ(k) = 4, respectively.

As mentioned in [192], the evolutionary factor is calculated based on the distance
between the particles. The mean distance between the ith particle and other particles
denoted by di is given as follows:

di = 1
S − 1

S∑
j=1,j ̸=i

√√√√ D∑
k=1

(xik − xjk)2, (5.2)
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where S denotes the swarm size and D represents the dimension of the particle. The
evolutionary factor denoted by Ef is shown as follows:

Ef = dg − dmin

dmax − dmin
, (5.3)

where dg represents the global best particle among di; dmin and dmax represent the
minimum and maximum of di in the swarm, respectively.

In this chapter, the equal division strategy is employed to classify the four evolu-
tionary states represented by ξ(k) as follows:

ξ(k) =



1, 0.00 ≤ Ef < 0.25,

2, 0.25 ≤ Ef < 0.50,

3, 0.50 ≤ Ef < 0.75,

4, 0.75 ≤ Ef ≤ 1.00.

(5.4)

where ξ(k) = 1, 2, 3, 4 represent the convergence state, the exploitation state, the
exploration state, and the jumping-out state, respectively. Detailed information about
the four evolutionary states can be found in the literature [192, 149, 140, 188].

5.2.3 Velocity Updating Strategy Based on Randomly Occur-

ring Distributed Time-delay

In this chapter, a novel velocity updating strategy with randomly occurring distributed
time-delays is demonstrated for four aforementioned evolutionary states as below:

• In the convergence state denoted by ξ(k) = 1, the particles are trying to fly into
the globally optimal region as soon as possible. Therefore, the velocity updating
model in the traditional PSO algorithm is employed, and the distributed time-
delay terms are ignored by setting the intensity factor to be zero, i.e., ml(ξ) = 0
and mg(ξ) = 0, respectively.

• In the exploitation state denoted by ξ(k) = 2, the particles are supposed to
exploit the region around personal best particles. To avoid premature convergence,
randomly occurring distributed time-delays are added in the velocity updating
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model, and a certain number of historical personal best particles are randomly
selected for a more thorough search. In this case, the intensity factors are set as
ml(ξ) = 0.01 and mg(ξ) = 0.

• In the exploration state denoted by ξ(k) = 3, the particles are encouraged to
explore the entire search space thoroughly. Hence, randomly occurring distributed
time-delays are added in the velocity updating model, and a certain number of
historical global best particles are randomly selected with the intensity factors
ml(ξ) = 0 and mg(ξ) = 0.01.

• In the jumping-out state denoted by ξ(k) = 4, the particles are trying to escape
from the region around the local optimum. Therefore, distributed time-delays
are added in the velocity updating model where a certain number of historical
personal and global best particles are randomly selected with the intensity factors
ml(ξ) = 0.01 and mg(ξ) = 0.01.

The discussion of the above strategy can be summarized in Table 5.1, where the
intensity factors ml(ξ) and mg(ξ) are determined by the evolutionary states; and k

represents the number of current iteration.

Table 5.1 Velocity Updating Strategy for Distributed Time-delayed Information

State Mode ml(ξ) mg(ξ)
Convergence ξ(k) = 1 0 0
Exploitation ξ(k) = 2 0.01 0
Exploration ξ(k) = 3 0 0.01
Jumping-out ξ(k) = 4 0.01 0.01

5.3 Results and Discussions

5.3.1 Selection of Benchmark Functions

In this chapter, eight well-known benchmark functions are employed to evaluate the
performance of the proposed RODDPSO algorithm. The benchmark functions are
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shown by (5.5) to (5.12). It should be pointed out that detailed information of the
benchmark functions is displayed in Table 5.2 including the function number, the
function name, the dimension, the search space of each dimension, the threshold, and
the minimum of the benchmark functions.

Table 5.2 Configuration of benchmark functions

Functions Name Dimension Search space Threshold Minimum
f1(x) Sphere 50 [−100, 100] 0.01 0
f2(x) Rosenbrock 50 [−30, 30] 100 0
f3(x) Ackley 50 [−32, 32] 0.01 0
f4(x) Rastrigin 50 [−5.12, 5.12] 50 0
f5(x) Schwefel 2.22 50 [−10, 10] 0.01 0
f6(x) Schwefel 1.2 50 [−100, 100] 0.01 0
f7(x) Griewank 50 [−600, 600] 0.01 0
f8(x) Step 50 [−100, 100] 0 0

Note that all the benchmark functions are high-dimensional problems. The Sphere
function f1(x) is unimodal and is used to explore the convergence rate of the opti-
mization problem. The Rosenbrock function f2(x) is a non-convex function which is
also known as the Rosenbrock’s banana function. The Ackley function f3(x) and the
Rastrigin function f4(x) are very difficult to optimize because of a large number of
local minima. The Schwefel 2.22 function f5(x) and the Schwefel 1.2 function f6(x)
are classical unimodal and multimodal functions, which are hard to find the optimum.
The Griewank function f7(x) is a popular benchmark function which is widely used
to test the convergence of optimization algorithms. The step function f8(x) is also a
typical benchmark function. Here, x = (x1, x2, · · · , xD) where D is the dimension of
the search space. In our simulation, D is taken as 50.

Sphere : f1(x) =
D∑

i=1
x2

i . (5.5)

Rosenbrock : f2(x) =
D−1∑
i=1

(100(xi+1 − xi)2 + (xi − 1)2). (5.6)

Ackley : f3(x) = −20e
−0.2

√
1
D

∑D

i=1 x2
i + 20 + e

− e
1
D

∑D

i=1 cos 2πxi . (5.7)
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Rastrigin : f4(x) =
D∑

i=1
(x2

i − 10 cos 2πxi + 10). (5.8)

Schwefel 2.22 : f5(x) =
D∑

i=1
| xi | +

D∏
i=1

| xi | . (5.9)

Schwefel 1.2 : f6(x) =
D∑

i=1
(

i∑
j=1

xj)2. (5.10)

Griewank : f7(x) = 1 + 1
4000

n∑
i=1

x2
i −

n∏
i=1

cos( xi√
i
). (5.11)

Step : f8(x) =
D∑

i=1
(⌊xi + 0.5⌋)2. (5.12)

5.3.2 Experiment Results of the RODDPSO Algorithm

As discussed above, eight benchmark functions are employed to evaluate the per-
formance of the introduced RODDPSO algorithm. The superiority of the proposed
RODDPSO algorithm is demonstrated over six popular PSO algorithms including
the PSO-LDIW [135], PSO-TVAC [129], PSO-CK [27], SPSO [149] SDPSO [188] and
MDPSO [140]. The parameters of the experiments are given as follows: the dimension
of the search space is D = 50, and the population of the swarm is S = 20. It should be
noted that each experiment has been repeated 20 times independently to avoid random
influence. The setting of the distributed time-delay τ is determined based on the
simulation results. The performance of the RODDPSO algorithm in the 20-dimensional
search space with different settings of the upper bound of the distributed time-delay
N is shown in Table 5.5. It can be seen that the RODDPSO algorithm demonstrates
competitive performance when N = 100.

The performance tests for the proposed RODDPSO algorithms are shown in Fig. 5.2
to Fig. 5.9. The vertical coordinate represents the logarithmic formation of the mean
fitness value of all the tested PSO algorithms, and the horizontal coordinate denotes
the number of iteration for Fig. 5.2 to Fig. 5.9. Additionally, detailed information of
the optimization performance is listed in Table 5.4, where the mean, the minimum, and
the standard deviation of the fitness value with respect to each benchmark function is
presented to demonstrate the performance of various PSO algorithms as well as the
successful convergence ratio.
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Table 5.3 Performance evaluation of RODDPSO algorithm with different N
N=25 N=50 N=75 N=100 N=125 N=150 N=175 N=200

f1(x) Minimum 7.33 × 10−179 0.0000 0.0000 0.0000 0.0000 8.95 × 10−319 2.26 × 10−305 8.94 × 10−281

Mean 1.12 × 10−142 1.48 × 10−323 4.94 × 10−324 4.94 × 10−324 0.0000 1.69 × 10−300 4.45 × 10−260 3.52 × 10−236

Std. Dev. 4.80 × 10−142 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ratio 100% 100% 100% 100% 100% 100% 100% 100%

f2(x) Minimum 2.03 × 10−2 4.19 × 10−3 2.28 × 10−2 2.29 × 10−4 1.16 × 10−3 2.61 × 10−4 1.60 × 10−5 5.14 × 10−6

Mean 8.0533 5.1520 1.60 × 102 6.4467 1.02 × 101 1.45 × 101 1.03 × 101 7.5699
Std. Dev. 4.5765 4.4331 6.75 × 102 6.2135 1.47 × 101 2.01 × 101 1.46 × 101 4.9529
Ratio 100% 100% 95% 100% 100% 100% 100% 100%

f3(x) Minimum 2.66 × 10−15 2.66 × 10−15 2.66 × 10−15 2.66 × 10−15 2.66 × 10−15 2.66 × 10−15 2.66 × 10−15 2.66 × 10−15

Mean 6.04 × 10−15 5.15 × 10−15 4.26 × 10−15 4.80 × 10−15 5.15 × 10−15 4.26 × 10−15 5.68 × 10−15 4.80 × 10−15

Std. Dev. 7.94 × 10−16 1.67 × 10−15 1.81 × 10−15 1.79 × 10−15 1.67 × 10−15 1.81 × 10−15 1.30 × 10−15 1.79 × 10−15

Ratio 100% 100% 100% 100% 100% 100% 100% 100%
f4(x) Minimum 4.9748 5.9698 6.9647 4.9748 4.9748 4.9748 4.9748 4.9748

Mean 1.02 × 101 1.04 × 101 1.05 × 101 1.12 × 101 1.02 × 101 1.06 × 101 8.9049 9.8998
Std. Dev. 2.8345 2.9316 3.0874 3.7350 3.2422 3.8096 2.3384 2.9844
Ratio 100% 100% 100% 100% 100% 100% 100% 100%

f5(x) Minimum 5.40 × 10−48 4.34 × 10−60 9.26 × 10−76 3.17 × 10−77 4.56 × 10−86 1.28 × 10−86 2.22 × 10−102 1.04 × 10−86

Mean 1.15 × 10−31 1.83 × 10−33 6.83 × 10−44 1.63 × 10−58 6.02 × 10−59 4.28 × 10−52 4.04 × 10−59 8.72 × 10−56

Std. Dev. 3.43 × 10−31 7.91 × 10−33 2.10 × 10−43 4.94 × 10−58 2.07 × 10−58 1.48 × 10−51 1.75 × 10−58 3.89 × 10−55

Ratio 100% 100% 100% 100% 100% 100% 100% 100%
f6(x) Minimum 1.47 × 10−32 1.39 × 10−45 1.84 × 10−60 1.78 × 10−66 2.50 × 10−67 2.35 × 10−67 1.18 × 10−62 9.19 × 10−59

Mean 1.23 × 10−22 2.28 × 10−34 1.88 × 10−45 2.37 × 10−55 2.39 × 10−53 5.43 × 10−53 6.71 × 10−52 1.64 × 10−47

Std. Dev. 2.57 × 10−22 6.83 × 10−34 8.35 × 10−45 5.03 × 10−55 1.07 × 10−52 2.12 × 10−52 3.00 × 10−51 6.23 × 10−47

Ratio 100% 100% 100% 100% 100% 100% 100% 100%
f7(x) Minimum 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 3.77 × 10−2 3.10 × 10−2 4.47 × 10−2 4.90 × 10−2 3.32 × 10−2 1.83 × 10−2 1.96 × 10−2 2.86 × 10−2

Std. Dev. 3.24 × 10−2 2.38 × 10−2 3.47 × 10−2 4.34 × 10−2 3.22 × 10−2 1.96 × 10−2 2.68 × 10−2 2.11 × 10−2

Ratio 25% 15% 10% 15% 15% 45% 50% 20%
f8(x) Minimum 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Std. Dev. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ratio 100% 100% 100% 100% 100% 100% 100% 100%

It can be seen that the proposed RODDPSO algorithm demonstrates superiority over
other PSO algorithms in terms of evaluation indices such as the mean, the minimum,
and the standard deviation of the fitness values for function (5.5) to (5.12). Specifically,
the mean fitness value of the RODDPSO algorithm is smaller than that of other PSO
algorithms, which demonstrates the superiority of RODDPSO in reaching the global
optimum. Moreover, although the RODDPSO algorithm cannot reach the best mean
fitness for function (5.11), it presents competitive performance compared with the
PSO-LDIW, PSO-TVAC, PSO-CK and SPSO algorithms. Similarly, the RODDPSO
algorithm outperforms the PSO-LDIW, PSO-CK, SPSO, and SDPSO algorithms for
function (5.12) as shown in Fig. 5.9.

In addition to the mean fitness, the successful convergence ratio is a very important
index to justify the convergence performance of optimization algorithms. The successful
convergence ratio is not always 100% because the testing algorithms cannot always
reach the global optimum for all the benchmark functions as shown in Table 5.4. Note
that the RODDPSO algorithm demonstrates competitive performance over other PSO
algorithms for function (5.5) to function (5.10) and function (5.12). Note that the
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Table 5.4 Comparisons of various PSO algorithms on eight optimization benchmark
functions

PSO-LDIW PSO-TVAC PSO-CK SPSO SDPSO MDPSO RODDPSO
f1(x) Minimum 1.83 × 10−201 5.19 × 10−159 0.0000 6.35 × 10−177 8.37 × 10−18 3.59 × 10−102 0.0000

Mean 5.00 × 102 4.76 × 10−97 5.00 × 102 5.00 × 102 3.85 × 10−11 3.59 × 10−67 9.88 × 10−324

Std. Dev. 2.24 × 103 1.76 × 10−96 2.24 × 103 2.24 × 103 7.35 × 10−11 1.60 × 10−66 0.0000
Ratio 95% 100% 95% 95% 100% 100% 100%

f2(x) Minimum 5.38 × 10−3 1.2375 6.81 × 10−9 2.70 × 10−6 9.41 × 10−1 1.53 × 10−2 2.43 × 10−2

Mean 1.37 × 104 1.51 × 101 9.07 × 103 1.37 × 104 1.91 × 101 1.16 × 101 6.6373
Std. Dev. 3.29 × 104 1.74 × 101 2.77 × 104 3.29 × 104 1.78 × 101 1.39 × 101 4.7374
Ratio 75% 100% 75% 75% 100% 100% 100%

f3(x) Minimum 2.66 × 10−15 2.66 × 10−15 6.22 × 10−15 6.22 × 10−15 2.93 × 10−8 6.22 × 10−15 2.66 × 10−15

Mean 7.68 × 10−1 5.68 × 10−15 2.2544 2.9002 1.57 × 10−6 6.93 × 10−15 4.80 × 10−15

Std. Dev. 3.4329 1.30 × 10−15 3.2030 3.3136 1.91 × 10−6 2.19 × 10−15 1.79 × 10−15

Ratio 95% 100% 15% 10% 100% 100% 100%
f4(x) Minimum 4.9748 3.9798 1.89 × 101 3.08 × 101 2.9850 6.9647 3.9798

Mean 1.29 × 101 9.8501 5.49 × 101 6.60 × 101 1.93 × 101 1.11 × 101 9.5516
Std. Dev. 1.34 × 101 4.0435 2.28 × 101 2.12 × 101 1.13 × 101 3.6845 3.0692
Ratio 95% 100% 50% 25% 100% 100% 100%

f5(x) Minimum 8.46 × 10−121 2.67 × 10−32 5.74 × 10−34 2.08 × 10−66 4.22 × 10−9 1.02 × 10−44 8.79 × 10−80

Mean 1.65 × 101 1.01 × 10−19 6.0000 9.0000 5.00 × 10−1 1.69 × 10−28 1.61 × 10−52

Std. Dev. 1.18 × 101 4.50 × 10−19 6.8056 1.21 × 101 2.2361 7.18 × 10−28 7.18 × 10−52

Ratio 20% 100% 50% 45% 95% 100% 100%
f6(x) Minimum 5.69 × 10−26 1.92 × 10−29 8.30 × 10−103 5.11 × 10−53 2.12 × 10−1 5.30 × 10−28 6.62 × 10−70

Mean 1.00 × 103 4.40 × 10−15 1.25 × 103 2.33 × 103 1.8968 1.31 × 10−18 2.42 × 10−48

Std. Dev. 2.05 × 103 1.97 × 10−14 2.22 × 103 3.88 × 103 1.4415 4.23 × 10−18 1.08 × 10−47

Ratio 80% 100% 75% 65% 0% 100% 100%
f7(x) Minimum 9.86 × 10−3 0.0000 0.0000 0.0000 2.72 × 10−13 0.0000 0.0000

Mean 4.83 × 10−2 3.22 × 10−2 5.29 × 10−2 4.5869 1.88 × 10−2 2.05 × 10−2 2.80 × 10−2

Std. Dev. 2.79 × 10−2 3.51 × 10−2 1.19 × 10−1 2.03 × 101 1.55 × 10−2 2.43 × 10−2 2.56 × 10−2

Ratio 5% 25% 40% 20% 30% 40% 30%
f8(x) Minimum 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.0000 0.0000 5.01 × 102 6.5500 0.0000 0.0000 0.0000
Std. Dev. 0.0000 0.0000 2.24 × 103 2.70 × 101 0.0000 0.0000 0.0000
Ratio 100% 100% 80% 85% 100% 100% 100%

Griewank function has a very large number of local minima, therefore, it is difficult
to detect the global minimum, which leads to a low successful convergence ratio. We
can see that all the testing PSO algorithms have low successful convergence ratio
for function (5.11) which are 5%, 25%, 40%, 20%, 30%, 40% and 30%, respectively.
Nevertheless, the proposed RODDPSO algorithm can still reach the global minimum
with a satisfactory mean fitness value, which demonstrates its competitive performance
than other PSO algorithms.

The plots of the convergence rate for testing algorithms are depicted in Fig. 5.2
to Fig. 5.9. It is clear that the convergence rate of the RODDPSO algorithm is not
as fast as the PSO-TVAC algorithm and the SDPSO algorithm at the beginning for
function (5.5), however, the RODDPSO algorithm reaches the global optimum with
better mean fitness value than other PSO algorithms. Moreover, it can be seen that the
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RODDPSO algorithm tends to reach the global optimum robustly for all the benchmark
functions according to the low mean fitness value and high successful convergence ratio.
The proposed RODDPSO algorithm outperforms six popular PSO algorithms in both
unimodal and multimodal optimization benchmark functions, which indicate that the
RODDPSO algorithm is capable of getting rid of local optima. As such, the RODDPSO
algorithm can solve the optimization problem with satisfactory convergence speed and
convergence accuracy.

The ranking method is applied to quantitatively evaluate the convergence per-
formance of the RODDPSO algorithm, where the ranking results are displayed in
Table 5.5. It can be seen that the mean ranking value of the RODDPSO algorithm is
1.5, which is the smallest one among all the selected PSO algorithms. To summarise,
the convergence behavior of the RODDPSO algorithm outperforms other selected PSO
algorithms.

Table 5.5 Convergence performance evaluation by using the ranking method

PSO-LDIW PSO-TVAC PSO-CK SPSO SDPSO MDPSO RODDPSO
f1(x) Ranking 5 2 5 5 4 3 1
f2(x) Ranking 6 3 5 6 4 2 1
f3(x) Ranking 5 2 6 7 4 3 1
f4(x) Ranking 4 2 6 7 5 3 1
f5(x) Ranking 7 3 5 6 4 2 1
f6(x) Ranking 5 3 6 7 4 2 1
f7(x) Ranking 5 4 6 7 1 2 3
f8(x) Ranking 5 2 7 8 1 4 3

Average Ranking 5.25 2.625 5.75 6.375 3.375 2.625 1.5

To comprehensively evaluate the performance of the proposed RODDPSO algorithm,
the 50-dimensional search space is utilized. In this case, a series of experiments have
been conducted to evaluate the effectiveness of the proposed RODDPSO algorithm
where the search space is D = 50, the upper bound of the distributed time-delay is
N = 110, and other parameter settings remain the same. The corresponding experiment
results are displayed in Table 5.6.

We can see that the successful convergence ratio of the RODDPSO algorithm is
satisfactory. Moreover, the proposed RODDPSO algorithm demonstrates competitive
performance over other PSO algorithms in terms of the mean, the minimum, and
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Table 5.6 Comparisons of various PSO algorithms in 50-dimensional search space

PSO-LDIW PSO-TVAC PSO-CK SPSO SDPSO MDPSO RODDPSO
f1(x) Minimum 4.03 × 10−51 1.58 × 10−14 1.55 × 10−69 2.63 × 10−140 1.51 × 10−1 4.24 × 10−27 2.35 × 10−118

Mean 3.00 × 103 7.29 × 10−10 5.50 × 103 2.50 × 103 9.3336 2.63 × 10−19 7.29 × 10−102

Std. Dev. 4.70 × 103 1.49 × 10−9 7.59 × 103 4.44 × 103 9.8519 1.11 × 10−18 2.87 × 10−101

Ratio 70% 100% 60% 75% 0% 100% 100%
f2(x) Minimum 5.0985 1.65 × 101 1.23 × 10−5 4.6525 1.83 × 102 4.8925 4.66 × 10−5

Mean 4.76 × 103 1.40 × 102 4.00 × 106 4.91 × 103 1.02 × 103 5.95 × 101 1.91 × 102

Std. Dev. 2.01 × 104 1.41 × 102 1.79 × 107 2.01 × 104 9.55 × 102 4.41 × 101 6.67 × 102

Ratio 70% 50% 90% 60% 0% 85% 95%
f3(x) Minimum 1.33 × 10−14 3.85 × 10−6 4.1669 1.33 × 10−14 7.44 × 10−1 1.72 × 10−12 2.04 × 10−14

Mean 5.2116 1.4500 1.11 × 101 4.6816 1.8167 1.32 × 10−6 5.84 × 10−1

Std. Dev. 6.6150 2.6486 4.3265 4.8179 5.48 × 10−1 5.74 × 10−6 7.42 × 10−1

Ratio 60% 35% 0% 10% 0% 100% 60%
f4(x) Minimum 4.08 × 101 5.27 × 101 1.38 × 102 1.07 × 102 8.98 × 101 3.48 × 101 4.68 × 101

Mean 1.21 × 102 8.86 × 101 2.23 × 102 1.76 × 102 1.38 × 102 7.62 × 101 7.45 × 101

Std. Dev. 5.57 × 101 2.18 × 101 4.28 × 101 3.19 × 101 3.93 × 101 2.10 × 101 1.45 × 101

Ratio 5% 0% 0% 0% 0% 10% 5%
f5(x) Minimum 2.00 × 101 2.34 × 10−6 2.76 × 10−2 1.97 × 10−60 2.23 × 10−1 1.28 × 10−12 3.12 × 10−17

Mean 5.85 × 101 2.5012 2.86 × 101 3.70 × 101 2.49 × 101 1.0000 1.0000
Std. Dev. 2.54 × 101 4.4421 1.85 × 101 1.56 × 101 2.14 × 101 3.0779 3.0779
Ratio 0% 70% 0% 10% 0% 90% 90%

f6(x) Minimum 5.01 × 103 3.2281 6.59 × 10−11 1.58 × 10−4 2.84 × 103 3.00 × 10−1 4.49 × 10−4

Mean 2.58 × 104 3.94 × 103 1.22 × 104 1.67 × 104 1.30 × 104 1.11 × 103 5.01 × 102

Std. Dev. 1.41 × 104 3.80 × 103 1.01 × 104 1.92 × 104 7.15 × 103 2.30 × 103 1.54 × 103

Ratio 0% 0% 15% 25% 0% 0% 30%
f7(x) Minimum 0.0000 1.76 × 10−12 1.01 × 10−14 0.0000 3.92 × 10−1 0.0000 1.11 × 10−16

Mean 4.52 × 101 2.37 × 10−2 4.54 × 101 9.1116 8.81 × 10−1 3.30 × 10−2 2.13 × 10−2

Std. Dev. 6.22 × 101 2.96 × 10−2 6.88 × 101 2.78 × 101 2.28 × 10−1 3.43 × 10−2 2.80 × 10−2

Ratio 35% 50% 15% 40% 0% 35% 45%
f8(x) Minimum 0.0000 0.0000 1.30 × 101 0.0000 6.0000 0.0000 0.0000

Mean 1.50 × 103 2.50 × 10−1 7.38 × 103 2.01 × 103 1.41 × 101 0.0000 2.50 × 10−1

Std. Dev. 3.66 × 103 5.50 × 10−1 6.59 × 103 4.10 × 103 6.2146 0.0000 4.44 × 10−1

Ratio 85% 80% 0% 15% 0% 100% 75%

the standard deviation of the fitness value via the selected benchmark functions.
Therefore, the proposed RODDPSO algorithm exhibits satisfactory performance on
the convergence, accuracy and the success ratio in the 50-dimensional search space.

5.4 Conclusion

In this chapter, a novel RODDPSO algorithm is proposed with hope to improve the
search ability of the PSO algorithm. The velocity updating model of the RODDPSO
algorithm is adaptively adjusted depending on the evolutionary state. It is worth
mentioning that the distributed time-delay terms containing historical information of
previous personal and global best particles are added in the velocity updating model. As
such, the RODDPSO algorithm is capable of escaping from local optima, and the search
space is explored and exploited more thoroughly than the classic PSO algorithm. The
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superiority of the proposed RODDPSO algorithm is demonstrated over six well-known
PSO algorithms on eight popular benchmark functions including both unimodal and
multimodal cases. In the future, we aim to: 1) further improve the convergence speed
of the RODDPSO algorithm; 2) extend our results to multi-objective optimization
[58, 174, 69, 184, 99]; and 3) apply our RODDPSO algorithm to practical applications,
such as telecommunication, power systems, healthcare, and control systems.
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Evaluate the fitness of all the particles individually,  update pbest and gbest 

and save as historical information

Compute the mean distance di  of each particle based on (5.2)  

Determine current evolutionary state ξ(k)  according to (5.4)

Compute evolutionary factor Ef  of each particle according to (5.3)  

Update the inertia weight according to (2.2) 

Update the acceleration coefficients according to (2.3) and (2.4) 

Update the randomly occurring distributed delayed information according 

to Table 5.1 

Update the velocity and position according to (5.1) 

If k < maximum iteration ?

k = k + 1

End

No

Yes

Fig. 5.1 The flowchart of the RODDPSO algorithm
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Fig. 5.2 Performance test for Sphere function f1(x)
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Fig. 5.3 Performance test for Rosenbrock function f2(x)
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Fig. 5.4 Performance test for Ackley function f3(x)
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Fig. 5.5 Performance test for Rastrigin function f4(x)
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Fig. 5.6 Performance test for Schwefel 2.22 function f5(x)
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Fig. 5.7 Performance test for Schwefel 1.2 function f6(x)
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Fig. 5.8 Performance test for Griewank function f7(x)
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Fig. 5.9 Performance test for Step function f8(x)



Chapter 6

Applications of Particle Swarm
Optimization Algorithms in
Intelligent Data Analysis

6.1 Motivation

Accident & emergency (A&E) departments in National Health Service (NHS) in the
UK are open for 24 hours and 365 days a year. Targets for A&E departments aim
to ensure that at least 98% of patients are treated from arrival to discharge, transfer
or admission within 4 hours. An obvious challenge is that patients requiring urgent
treatment can go straight to the A&E at any time, thereby causing substantial strain
on limited medical resources. Moreover, increasing numbers of emergency cases are
leading to overcrowding in many A&E departments. Consequently, A&E departments
suffer from financial pressures [3, 155]. Furthermore, a number of non-emergency
patients go to the A&E departments, which leads to the increasing burden on the
human and medical resources. Non-emergency patient groups could be targeted with
other (non-emergency) services.

In A&E departments, an obvious challenge is that patients requiring urgent treat-
ment can go straight to the A&E at any time, thereby causing substantial strain on
limited medical resources. Hence, the number of emergency cases increases rapidly in
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recent years, which leads to overcrowding in many A&E departments. In response to
the revolution of data mining and machine learning techniques, it becomes more and
more convenient for A&E staff to manage medical resources and arrange work schedules,
thereby meeting the 4-hour requirement in emergency departments [15]. For instance,
computer simulation models have been widely used for simulating real-world systems.
Mathematical models have been introduced in [45, 28] to simulate the patient flow of
emergency departments. A discrete-event simulation model has been introduced in [85]
to simulate the patient flows in A&E departments, and multi-objective optimization
analysis has been conducted for bed management. The relationship between ambient
air pollution and patients’ attendance at emergency departments has been studied in
[68].

Moreover, overcrowding in A&E departments brings many adverse effects such
as lower treatment quality, increased working burden and increased patient waiting
time. Note that the identification of illness severity plays an important role in medical
resources management. Grouping patients with an appropriate triage category is an
important element in improving the efficiency of medical treatment. Therefore, it is of
vital importance to identify the triage category of the patients, which can be treated as
a clustering problem. Importantly, an appropriate triage category enables patients with
serious illness or injury to be treated. Non-emergency cases can also be re-routed to
other services in the health system. In addition, the management of medical resources
can be allocated in an appropriate manner to reduce the financial cost. As such, the
generation of an accurate triage category is important for A&E departments.

It is worth mentioning that the unplanned and non-urgent patients may cause the
overcrowding problem which leads to long waiting time. In this situation, patients with
severe illness may not be treated on time thus leading to negative patient outcomes
[10, 16, 15]. It is of practical significance to reduce the number of unplanned and non-
urgent patients and their length of stay at the A&E departments to save the financial
costs and deliver high-quality service to the patients with severe illness [169, 117, 80].
Therefore, an efficient and accurate identification of the patient attendance disposal
based on the patient diagnosis record is required to reduce inpatient services, which
can be treated as a classification problem.
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Recently, a large number of machine learning (ML) algorithms have been successfully
employed in the healthcare informatics [41, 38, 130, 100, 4, 80, 146]. For example, the
random forests and the gradient boosted decision tree algorithm have been utilized in
[130] in order to predict clinical outcomes (critical care and hospitalization) in A&E
departments. In [100], an ensemble learning-based scoring system has been developed
to predict acute cardiac complications for patients with chest pain in A&E departments.
Very recently, the popular deep learning techniques (also known as deep neural networks
(DNNs)) have been recognized as competitive ML approaches due to their promising
performance in dealing with complex data with high-dimensionality, and the deep
learning techniques have been successfully used in a wide range of research fields,
e.g., signal processing, telecommunication, healthcare informatics, natural language
processing and computer vision [65, 204, 55, 87].

To summarize, we focus on the clustering and classification problems in A&E
data which are shown as follows: 1) the patient clustering problem for generating an
accurate triage category for patients attending the A&E departments; and 2) the patient
classification problem for efficiently and accurately identifying the patient attendance
disposal for patients in A&E departments. For the first problem, a novel RODDPSO-
based clustering algorithm is put forward which combines the proposed RODDPSO
algorithm with the traditional K-means clustering algorithm, and successfully employed
to analyze the A&E data in order to verify the triage categorization. For the second
problem, a RODDPSO-based DBN is designed where the hyperparameters of the DBN
is optimized by using the RODDPSO algorithm. The developed model is applied to
the A&E data for classifying the patient attendance disposal categories.

The remainder of this chapter is organized as follows. The introduction of the A&E
data is provided in Section 6.2. In Section 6.3, a novel RODDPSO-based clustering
algorithm is proposed with hope to analyze the patient clustering problem in order
to generate an appropriate triage category for all the patients attending the A&E
department. In 6.4, the RODDPSO-based DBN is discussed and employed to classify
the categories of the patient attendance disposal in A&E department. Finally, the
conclusions of this chapter are drawn in Section 6.5.
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6.2 A&E Data

6.2.1 Data Description

The data used in this thesis is provided by a hospital in West London including the
urgent care center, the minor injury unit and the A&E department. The overall
number of patient attendances at the emergency departments is 126986 over the period
examined. Patient attendances at the A&E department, the urgent care center and the
minor injury unit are 51713, 15151 and 60122, respectively. The detailed information
of the three departments and the patient attendance are displayed in Table 6.1.

Table 6.1 Patients Attendance at the Emergency Departments

Department Number of attendance
Accident and Emergency department 51713
Minor Injury Unit 15151
Urgent Care Centre 60122

In the raw data, each record represents an incident in a single row and each column
indicates an attribute with respect to the patient. Note that there are totally 25
attributes in the data consisting of the pseudo NHS number, general practitioner (GP)
practice code, patient age, arrival time, departure time, provider code, provider name,
date time for treatment, fiscal year label, arrival month, arrival date, modal of arrival,
mode of arrival description, attendance disposal, attendance disposal description, core
healthcare resource group (HRG), HRG description, referral source, referral source
description, A&E department description, clinical commissioning groups (CCGs), first
diagnosis, diagnosis description, and postcode sector of usual address. The data is
recorded in real-time, especially the arrival date time, conclusion date time and date
time seen for treatment. Hence, we compute the time interval of treatment time and
waiting time in A&E departments for later analysis.
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6.3 Patient Clustering in A&E Data

On one research front with data analysis, clustering techniques have been successfully
employed in a variety of research areas such as biology, signal processing, computer
vision, market segmentation, and healthcare, see e.g., [146, 141, 52, 152, 39]. Clustering
techniques are used to discover the natural groupings of a set of objects where the
objects in the same cluster share similar characteristics. It has been shown in [32, 119]
that many popular clustering algorithms are heavily dependent on the initial state
of cluster centroids, and may get trapped in local optima. As such, it is reasonable
to optimize the parameters of clustering algorithms (e.g. the number of clusters and
the initial state of cluster centroids) in order to improve the clustering performance.
In this context, various optimization algorithms have been applied to optimally set
the parameters with examples including the genetic algorithm [84, 63], the simulated
annealing algorithm [133, 128], the PSO algorithm [153, 78], and the artificial bee
colony [195] algorithm.

PSO algorithms have proven to be a strong competitor to other optimization
algorithms [6, 153, 173, 77, 34, 105]. For instance, a PSO-based clustering technique
has been proposed in [153] where the initial swarm adopts clusters formed by the
K-means clustering algorithm. A hybrid PSO-based clustering algorithm has been
developed in [173] for gene clustering by employing the self-organizing map algorithm.
Recently, a hybrid fuzzy clustering algorithm on the basis of the conventional PSO
algorithm and fuzzy C-means clustering algorithm has been proposed in [77] with
satisfactory performance on several well-known benchmark data sets. Very recently,
a density-based PSO algorithm has been introduced in [6] for data clustering by
combining the kernel density estimation method with the PSO algorithm. In response
to the aforementioned successful applications that use PSO to improve clustering
algorithms, a seemingly natural idea is to introduce the proposed RODDPSO approach
to the clustering problem, which is then tested on the patient clustering problem using
A&E hospital attendance data.

In this section, a novel RODDPSO-based clustering algorithm is devised by em-
ploying the proposed RODDPSO algorithm to improve the basic K-means clustering
algorithm. It is well known that the K-means clustering algorithm is a popular
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clustering algorithm due to its low computation cost and simple implementation. In
our work, the RODDPSO algorithm is used to optimize the cluster centroids where
each particle consists of Nc cluster centroids in a single vector. Moreover, the pro-
posed RODDPSO-based clustering algorithm is applied to evaluate the patients’ triage
category using A&E attendance data. Note that the clustering performance of the in-
troduced RODDPSO-based clustering algorithm is evaluated by adopting the silhouette
clustering validation method [131]. The triage category is defined to include 5 groups in
[112] which are immediate resuscitation, very urgent, urgent, standard and non-urgent.
Therefore, the number of clusters is five, and the clustering performance is evaluated by
comparing the silhouette coefficients obtained by the K-means clustering algorithm and
the fuzzy C-means (FCM) clustering algorithm with the RODDPSO-based clustering
algorithms.

6.3.1 A RODDPSO-Based Clustering Algorithm

Objective Function

In our work, the purpose of the objective function is to minimize the average distance
between the data points to their own centroids, and the objective function is given as
follows:

J =
∑Nc

j=1

[∑
∀Pt∈Cij

dist(Pt, Mij)/Np

]
Nc

(6.1)

where Nc represents the number of clusters; Cij denotes the jth cluster of the ith
particle; Mij represents the jth cluster centroid of the ith particle; Pt denotes the tth
data point; dist(Pt, Mij) represents the Euclidean distance between the data point Pt

and its cluster centroid Mij; Np represents the number of data points belonging to
cluster Cij; and Nc denotes the number of clusters.

Framework of the RODDPSO-Based Clustering Algorithm

The RODDPSO algorithm is used to optimize the cluster centroids in order to improve
the clustering performance. It is worth mentioning that the powerful search ability
of the proposed RODDPSO can reduce the possibility of being trapped in local
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optima, and hence improve the clustering performance. The procedure of the proposed
RODDPSO-based clustering algorithm is demonstrated in Algorithm 1.

Algorithm 1 RODDPSO-Based Clustering Algorithm
1. Initialize the parameters including the population size P , the velocity and position
of the particles vi, xi, acceleration coefficients c1, c2, inertia weight w, maximum
iteration, the number of clusters Nc, maximum velocity Vmax and intensity factors
mi, mg.
2. Randomly initialize every particle to contain Nc cluster centroids.
3. Calculate the Euclidean distance dist(Pt, Mij) between the data point and its
cluster centroid.
4. Assign the data points to the closest cluster.
5. Calculate the fitness of all particles based on the objective function (6.1).
6. Select the personal best particle and the global best particle.
7. Confirm the evolutionary state depending on the calculated evolutionary factor.
8. Update the velocity and position equations based on the evolutionary state
according to (5.1).
9. Repeat Steps 3 to 8 till the algorithm reaches the maximal number of iterations.

6.3.2 Results and Discussions

Data Pre-processing

It should be noticed that the data includes missing values and redundant information.
Hence, 3, 778 incidents are removed from the dataset because their treatment date time
is null or missing. Furthermore, redundant information is also removed, e.g., healthcare
resource group (HRG) and HRG description, where the latter only represents the
description of previous attribute. In addition, the irrelevant attributes such as the
provider code and the GP practice code are also abandoned by employing statistical
analysis. In this part, 10 attributes are selected as the inputs of the clustering
algorithms: year, month, week, day, age, mode of arrival, first diagnosis, emergency
attendance disposal, treatment time, and HRG. Furthermore, to avoid the influence of
the attributes with larger number of values, the data is normalized according to the
following equation:

XNorm = x − min(X)
max(X) − min(X) (6.2)
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where XNorm represents the normalized value, min(X) represents the minimum value
of data X, max(X) describes the maximum value of data X.

Cluster Evaluation

In data mining, the cluster evaluation is of vital importance in the cluster analysis,
and thus we can

1) determine if there exist any non-random structures in the data;

2) determine the appropriate number of clusters;

3) evaluate the performance of clustering algorithms without reference to external
information; and

4) determine the clustering performance by comparing the obtained results to some
externally known results such as the class labels provided by experts.

In general, there exist three types of evaluation methods to judge various aspects
of cluster validity: 1) unsupervised cluster evaluation, 2) supervised cluster evaluation,
3) and relative cluster evaluation. In our work, the unsupervised cluster evaluation
approach is adopted to evaluate the clustering performance. The measures that the
unsupervised cluster evaluation approach uses include cohesion and separation. The
cohesion measure determines how the data points in a cluster are closely related and
the separation measure reveals how a cluster is distinct from others.

Silhouette is a popular cluster evaluation method proposed in [131]. The value
of the silhouette coefficient varies between -1 and 1. The positive values show that
the data points are very far from neighboring clusters, and negative values represent
that the data points are probably assigned to the wrong cluster. If the silhouette
coefficient is 0, it means the data point lies equally far away from two clusters and can
be assigned to any one of them. By taking the average of all the silhouette coefficients
of data points, the average silhouette coefficients can be obtained. Generally, the
overall clustering performance is evaluated by the average silhouette coefficients.
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Experiment Results

In our work, we assume that the distribution of the collected data obeys the Gaussian
distribution. To evaluate the clustering performance of the proposed RODDPSO-based
clustering algorithm, we compare the silhouette coefficients of the RODDPSO-based
clustering algorithm with the K-means and FCM clustering algorithms. In this part,
the squared Euclidean (sqeuclidean) distance metric is adopted due to its simple
implementation. The MATLAB plots of the silhouette coefficients of the K-means, the
FCM and the RODDPSO-based clustering algorithms are depicted in Fig. 6.1, Fig. 6.2
and Fig. 6.3, respectively.

Fig. 6.1 Silhouette coefficient of K-means clustering algorithm

The mean silhouette coefficients of the K-means, the FCM and the RODDPSO-
based clustering algorithms are 0.2970, 0.1253 and 0.3166, respectively. We can see
that in Fig. 6.1, most of the silhouette values of the K-means clustering algorithm
are positive, which indicates that most of the data points are assigned to the proper
clusters. In Fig. 6.2, more than half of the data points obtain negative values of
the silhouette coefficients, and the mean silhouette coefficient is much smaller than
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Fig. 6.2 Silhouette coefficient of Fuzzy C-means clustering algorithm
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Fig. 6.3 Silhouette coefficient of RODDPSO-based clustering algorithm
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that of the K-means and the RODDPSO-based clustering algorithms. As such, the
clustering performance of FCM algorithm is not satisfactory. It has been shown in
Fig. 6.3 that the mean silhouette value of the RODDPSO-based clustering algorithm
is 0.3166 which is higher than the results of the K-means and the FCM clustering
techniques. Furthermore, it is clear that there are fewer negative silhouette values using
the RODDPSO-based clustering algorithm than the K-means and the FCM clustering
techniques, which indicate fewer data points are assigned to the inappropriate clusters.
Thus, the superiority and feasibility of the proposed RODDPSO-based clustering
algorithm is demonstrated and the generated triage category is reasonable.

6.4 Patient Classification in A&E Data

In this section, the RODDPSO algorithm proposed in Chapter 5 is employed to optimize
the hyperparameters of the DBN. With the optimized hyperparameters, the DBN is
effectively and efficiently trained which results in better classification accuracy. The
proposed RODDPSO-based DBN is successfully applied to analyze the A&E data so
as to investigate the patient attendance disposal problem. The patient routing, the
efficiency of both human and non-human resource management in A&E departments
can be improved with a proper identification of the patient discharge, transfer or
admission conditions.

6.4.1 Deep Belief Network and Restricted Boltzmann Ma-

chine

It is well known that the DBN proposed in 2006 has been recognized as the breakthrough
of the deep learning [73, 65, 64, 11, 123, 55]. The DBN is stacked by a series of simple
learning modules which are the restricted Boltzmann machines (RBMs) where each
RBM is composed of a visible layer and a hidden layer. In this section, we will discuss
about the main concepts of the DBN and RBM.
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Restricted Boltzmann Machine

The RBMs are undirected probabilistic graphical models which are composed to build
DBNs. RBMs are capable of learning the probability distribution with respect to the
input data [115, 37]. An RBM is composed of one hidden layer and one visible layer.
The hidden layer represents the features, and the visible layer represent the input data.
A hidden layer consists of a number of binary stochastic hidden units represented by a
hidden vector h, and a visible layer consists of several binary stochastic visible units
represented by a visible vector v. In one visible layer, all the visible units are fully
connected to all the hidden units in the hidden layer with certain weights. It should
be mentioned that there are no inner connections among the units in the same layer.
The schematic diagram of an RBM is depicted in Fig. 6.4.

v1

v2

v3

h2

h3

h4

h1visible units 

hidden units 

Fig. 6.4 The architecture of an RBM



6.4 Patient Classification in A&E Data 91

An energy-based model, the energy function of an RBM is defined by the following
function:

E(v, h|θ) = −
m∑

i=1

n∑
j=1

wijvihj −
m∑

i=1
bivi −

n∑
j=1

cjhj (6.3)

where θ = (w, b, c) represent the parameters of an RBM. In this RBM, the weight (also
known as the symmetric interaction term) between the visible unit vi and the hidden
unit hj is defined by wij. The number of hidden and visible units are represented by
n and m, respectively. The bias of the visible unit vi is denoted by bi, and the bias
of the hidden unit hj is represented by cj. The joint probability distribution p(v, h|θ)
over the visible layer and the hidden layer is computed by the following function:

p(v, h|θ) = e−E(v,h|θ)

Z(θ) (6.4)

where Z(θ) is the partition function which is also known as a normalizing constant
that is given by summing over all possible configurations of the visible and hidden
vectors. The partition function Z(θ) is defined by:

Z(θ) =
∑
v,h

e−E(v,h|θ) (6.5)

The marginal probability of a visible vector v is defined as follows:

p(v|θ) =

∑
h

e−E(v,h|θ)

Z(θ) (6.6)

It is worth mentioning that there are no intra-layer connections in an RBM, and all
the hidden and visible units are conditionally independent. Taking above discussions
into consideration, the conditional probabilities p(v|h, θ) and p(h|v, θ) can be derived
from the joint distribution by:

p(vi = 1|h, θ) = σ(
n∑

j=1
wijhj + bi)

p(hj = 1|v, θ) = σ(
m∑

i=1
wijvi + cj)

(6.7)
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where σ(·) is a sigmoid function shown as follows:

σ(x) = 1
1 + e−x

(6.8)

A fast learning algorithm named by the contrastive divergence (CD) algorithm
has been proposed in [73] to train the RBMs. According to the CD algorithm, the
parameters of an RBM are updated by the following functions:

∆wij = ϵ1(⟨vihj⟩data − ⟨vihj⟩rec)

∆bi = ϵ1(⟨vi⟩data − ⟨vi⟩rec)

∆cj = ϵ1(⟨hj⟩data − ⟨hj⟩rec)

(6.9)

where ϵ1 denotes the learning rate, ⟨·⟩data represents the expectation with respect to
the distribution of the input data, and ⟨·⟩rec is the expectation with respect to the
distribution defined by the reconstruction model.

Deep Belief Network

DBNs have drawn tremendous attention in the past few years. As mentioned previously,
the DBNs are formed by stacking a series of RBMs and the schematic diagram of
a DBN is shown in Fig. 6.5. The upper layers of a DBN are expected to extract
high-level features, which explain the input data, and the lower layers extract low-level
features from the input data. The learning algorithm of the DBNs is a greedy layer-wise
unsupervised learning algorithm proposed by Hinton in [73].

The learning algorithm of the DBNs can be summarized into two stages: 1) the
unsupervised pre-training stage; and 2) the supervised fine-tuning stage. In general, the
pre-training process of a DBN is used to initialize the weights of a deep neural network.
The RBMs are trained in the bottom-up manner layer by layer where the input of the
upper RBM is provided by the output of the lower RBM. At the fine-tuning stage,
an additional output layer is added to the deep neural network in order to predict
the desired labels, and the parameters of network are further tuned by employing the
back-propagation algorithm [115, 65, 11, 72].
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The penalty term which is also called the weight decay term is added in the DBN
with hope to penalize the network and prevent overfitting [65, 81, 156]. In this case,
the capacity of the DBN is controlled by adding the weight decay term on the weights,
and the performance of the model on the testing dataset can be improved. It is also
well-known that the momentum is an important factor in training a deep neural network
which is used to control the learning speed and smooth out the update of the weights
during the training process [81]. The momentum and the penalty term are employed
in both of the pre-training stage and the fine-tuning stage in order to control possible
oscillations during the training process.

The model parameters θ = (w, b, c) in the pre-training process at iteration t are
thus updated by the following equations:

∆wt
ij = m1 × ∆wt−1

ij − λ1 × wt
ij

+ ϵ1 × (⟨vihj⟩data − ⟨vihj⟩rec)

∆bt
i = m1 × ∆bt−1

i + ϵ1 × (⟨vi⟩data − ⟨vi⟩rec)

∆ct
j = m1 × ∆ct−1

j + ϵ1 × (⟨hj⟩data − ⟨hj⟩rec)

(6.10)

where m1 represents the momentum parameter in the pre-training process. ϵ1 is the
learning rate in the pre-training process. λ1 denotes the weight decay parameter (which
is used to penalize weights with large magnitude) in the pre-training process. After
the pre-training process, the DBN is further fine-tuned by using the back-propagation
algorithm with the purpose of improving the classification performance of the DBN.
Additionally, the momentum is also used to make the learning process stable, and the
penalty term is added on the weights to avoid overfitting at the fine-tuning stage.

6.4.2 A Novel RODDPSO-Based DBN

In this part, we utilize a recently proposed PSO algorithm, the RODDPSO algorithm,
to select suitable hyperparameters for DBNs. As mentioned previously, the momentum
and weight decay terms are employed in both of the pre-training and fine-tuning stages.
In this case, there are six parameters we need to optimize in our work which are the
momentum parameter for pre-training m1, the momentum parameter for fine-tuning
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m2, the weight decay for pre-training λ1, the weight decay for fine-tuning λ2, the
learning rate for pre-training ϵ1, and the learning rate for fine-tuning ϵ2. Therefore, the
dimension of the search space is D = 6 and a candidate solution of our optimization
problem is represented by a vector

[
m1 m2 λ1 λ2 ϵ1 ϵ2

]
.

Objective Function

In our work, the developed approach aims to select a set of parameters to minimize
the objective function of the RODDPSO algorithm, which is given as follows:

Ĵ = 1
2

N∑
i=1

(ŷi − yi)2 + λ2

2

M−1∑
l=1

ml+1∑
j=1

ml∑
i=1

w2
ijl + λ2

2

M∑
l=2

ml∑
i=1

d2
il (6.11)

where yi and ŷi indicate the real class and the predicted class of the ith data point,
respectively. N is the number of total data points. λ2 represents the weight decay
parameter for the fine-tuning process. M is the total number of layers in the DBN. ml

represents the number of neurons in the lth layer. wijl denotes the weight between the
ith neuron in the lth layer and the jth neuron in the (l + 1)th layer. dil represents the
threshold of the ith neurons in the lth layer. It should be mentioned that the objective
function of the RODDPSO algorithm is also used as the loss function of the DBN at
the fine-tuning stage.

Framework of the RODDPSO-Based DBN

It is worth mentioning that the RODDPSO algorithm is utilized to optimize the
hyperparameters of a DBN in order to improve the classification performance. In our
work, each particle (candidate solution) is represented by a vector which contains six
hyperparameters. The training procedure of the introduced RODDPSO-based DBN is
demonstrated in Algorithm 2.
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Algorithm 2 The Training Algorithm of the RODDPSO-Based DBN
1. Initialize the parameters of the DBN and the RODDPSO algorithms (including
the population size P , the velocity and position of the particles vi, xi, acceleration
coefficients c1, c2, inertia weight w, maximum iteration number, the maximum value
of velocity Vmax and intensity factors mi, mg.)
2. Randomly initialize every particle containing the momentum terms m1, m2, the
weight decay λ1, λ2, and the learning rates ϵ1, ϵ2.
3. Train the DBN and adjust the weighting parameters of the network based on
(6.10).
4. Calculate the fitness of all particles according to the objective function (6.11).
5. Find the personal best particle and the global best particle.
6. Determine the evolutionary state according to the computed evolutionary factor.
7. Update the velocity and position equations according to (5.1).
8. Repeat Steps 3 to 7 till the algorithm reaches the maximal number of iterations.
9. Calculate the classification accuracy of the RODDPSO-based DBN with parame-
ters in the global best particle.

6.4.3 Experiment Results and Discussions

Data Pre-processing

In this part, a well-known deep learning approach, the DBN is employed to investigate
the classification problem on the patient attendance disposal. To comprehensively
evaluate the performance of the proposed RODDPSO-based DBN, the standard DBN,
the penalized DBN (with momentum and weight decay terms), and the KNN algorithms
are used for comparison. It should be mentioned that the penalized DBN utilizes the
momentum and weight decay methods and the only difference between the penalized
DBN and the RODDPSO-based DBN is that the hyperparameters of the penalized
DBN is chosen due to empirical experience and the hyperparameters of the RODDPSO-
based DBN is determined by the RODDPSO algorithm. To summarize, the data set
used in this simulation consists of 6 attributes, where 5 of them (the age, the mode
of arrival, the diagnosis, the treatment time and the healthcare resource group) are
inputs of the neural network, and the rest one (the attendance disposal) belongs to the
output class.

The categories of the patient attendance disposal in the A&E department are
illustrated in Table 6.2.
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Table 6.2 Patient Attendance Disposal

Category Description Number of incidents
1 Admitted to a hospital bed or became a logged patient 20468
2 Discharged - follow up treatment to be provided by GP 31540
3 Discharged - did not require any follow up treatment 51795
4 Referred to A&E clinic 115
5 Referred to fracture clinic 4010
6 Referred to other outpatient clinic 7130
7 Transferred to other healthcare provider 1598
8 Died in department 62
9 Referred to other healthcare professional 5627
10 Left department before being seen for treatment 546
11 Left department having refused treatment 235
12 Other 80

Considering the suggestions from an expert in an A&E department, the number
of output classes is reduced to 5. Out of all 12 real labels, 6 labels are abandoned
as follows: 1) label 3, it is clear to see that the patient does not require any further
follow up treatment and there may exist misdiagnosed cases, hence incidents within
this category are abandoned; 2) label 4, most of the hospitals stop doing A&E clinic as
they are dealing with acute emergency conditions rather than follow up cases, which
could be done by GP or other outpatients specialists in recent years; 3) label 9, label
9 is part of other categories such as labels 5-7; 4) labels 10-12, these three labels are
removed according to the domain knowledge of an expert in the A&E department. In
addition, label 1 and label 8 are combined as one output class because the number of
incidents within label 8 is very small, and patients who are admitted to a hospital bed
(label 1) may have severe illness.

Overall, as displayed in Table 6.3, 5 output classes are utilized for classifying
the patient attendance disposal in our work, which are: 1) admitted to a hospital
bed, became a logged patient of the same health care provider or died in emergency
department (20530 cases); 2) discharged, follow up treatment to be provided by the
general practitioner (31540 cases); 3) referred to fracture clinic (4010 cases); 4) referred
to other outpatient clinic (7130 cases); and 5) transferred to other healthcare provider
(1598 cases). The diagram of the usage of the output classes is depicted in Fig. 6.6.
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Table 6.3 Modified class for patient attendance disposal

Output class Original category Number of incidents
1 1, 8 20530
2 2 31540
3 3 5 4010
4 6 7130
5 7 1598

Data pre-processing is performed to remove the missing data and redundant at-
tributes. Notice that the patient arrival time, the attendance conclusion date time and
the treatment date time are recorded in real-time. To investigate the treatment time
of each patient, the time interval between the treatment date time and the attendance
conclusion date time. It is worth mentioning that the data is normalized to reduce
the computation cost. In this simulation, 3, 778 incidents are deleted due to missing
treatment date time or null incidents. Moreover, some attributes containing redundant
information are removed during the pre-processing. For example, referral source and
referral source description are used to describe the source of referral of each A&E
episode where the second one is the descriptions of the first attribute. Furthermore,
some irrelevant attributes such as fiscal year label and postcode sector are removed
from the data set according to statistical analysis.

Parameter Setting

In the simulation, 64800 incidents are selected where 48600 incidents are used for
training and the rest 16200 incidents are utilized for testing. The number of particle
is 10 and the maximum iteration is set to be 10. The number of the hidden layers
in the standard DBN, penalized DBN and the RODDPSO-based DBN are all set
to be 3, and the number of hidden units in three hidden layers is 100, 64 and 50,
respectively. The pre-training epochs of the three DBNs are all 100. The numbers of
epoch of the fine-tuning process of the standard DBN, the penalized DBN, and the
RODDPSO-based DBN are set to be 300. It should be mentioned that the activation
function of the three variant DBNs is the sigmoid function. The parameter setting
of three DBNs at the pre-training stage are given in Table 6.4. Note that we give
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the range of the learning rate, the momentum, and the weight decay factor for the
RODDPSO-based algorithm in Table 6.4. At the fine-tuning stage, the learning rate of
the RODDPSO-based DBN is in the range of [0, 1], the momentum is in the range of
[0.5, 1], and the weight decay factor is in set in the range of [0, 5e − 6].

Table 6.4 Configuration of the Standard DBN at the pre-training stage

Parameter Standard DBN Penalized DBN RODDPSO-based DBN
Learning rate 0.01 0.01 [0, 0.01]
Momentum 0 0.5 [0.5, 1]
Weight decay factor 0 1e-5 [0, 1e-5]
Mini-batch size 50 50 50

Performance Metric

In our work, we aim to analyze the patient attendance disposal from emergency de-
partments, which is a classification problem. In general, the accuracy is a fundamental
performance indictor to evaluate the classification performance of the utilized classifica-
tion algorithm. Here, the introduced RODDPSO-based DBN is applied to the patient
attendance disposal classification problem and the standard DBN, the penalized DBN
(with momentum and weight decay) and the k-nearest neighbor algorithm are employed
in comparison with the RODDPSO-based DBN. The accuracy that is used as the
classification performance indictor in our work is defined as follows:

Ac = Nc

Nc + Nf

× 100% (6.12)

where Nc is the number of correct prediction, and Nf represents the number of incorrect
prediction. In this case, a larger value of classification accuracy indicates a better
classification performance. It should be mentioned that the mean squared error (MSE)
value is calculated by the difference between the algorithm output and actual output.
It is a widely used performance indicator for evaluating the performance of the trained
classifiers (the standard DBN, the RODDPSO-based DBN and the penalized DBN in
our work).
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Experiment Results

To comprehensively evaluate the performance of the RODDPSO-based DBN, the
standard DBN and the penalized DBN are used for comparison. The full-batch training
MSE of the standard DBN is displayed in Fig. 6.7 where the vertical coordinate
indicates the full-batch MSE and the horizontal coordinate is the epoch number. From
the figure, we can see that the MSE of the DBN decreases very fast, which indicates
that the pre-trained DBN performs well. In Fig. 6.8, it is apparent that the learning
curve of the penalized DBN is relatively smooth. The full-batch training MSE of
the DBNs which use different sets of hyperparameters (in each particle) in the final
iteration are demonstrated in Fig. 6.9. The full-batch training MSE of the DBN with
hyperparameters in particle 1 performs better than other DBNs with hyperparameters
in other particles.

The comparison of classification accuracy of the three DBNs are depicted in
Fig. 6.11. It is clear that the full-batch training MSE of the RODDPSO-based DBN
is less than that of the standard DBN and the penalized DBN, which indicates that
the RODDPSO-based DBN outperforms the other two DBNs. In addition, the MSE
curve of the RODDPSO-based DBN decreases faster than that of the standard DBN
and the penalized DBN. The classification accuracy of the RODDPSO-based DBN,
the penalized DBN, and the standard DBN is 76.06%, 68.10% and 69.83%. To sum
up, the RODDPSO-based DBN demonstrates superior classification performance over
the penalized DBN and the standard DBN.

In addition, the classification accuracy of the KNN algorithm is depicted in Fig. 6.10.
From the results, the best classification accuracy of the KNN algorithm is 75.65%
when k = 20. By comparing the accuracy of the KNN algorithm and the RODDPSO-
based DBN, we can conclude that the developed RODDPSO-based DBN demonstrates
superiority over the KNN algorithm. As such, we can draw the conclusion that
the RODDPSO-based DBN performs well on the patient attendance data in A&E
departments. With the output class obtained by the RODDPSO-based DBN, it
becomes easier to verify the patient attendance disposal category, which may improve
the patient care, discharge the non-urgent patients to release the overcrowding problem
and save the NHS costs in terms of both the medical and human resources.
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6.5 Conclusion

In conclusion, the proposed RODDPSO algorithm has been successfully employed to
improve the standard K-means clustering algorithm and fine-tune the hyperparameters
in a DBN on A&E attendance data. The effectiveness of the proposed RODDPSO-
based clustering algorithm is demonstrated by comparing the mean silhouette value
with the K-means and FCM clustering algorithms. The developed RODDPSO-based
DBN outperforms the KNN algorithm, the penalized DBN and the standard DBN on
the A&E data.

Future work can be summarized into the following four aspects: (1) how to further
apply the RODDPSO algorithm in other data mining problems in A&E departments
and the wider health system [161, 50, 8, 67]; (2) how to use the proposed RODDPSO
algorithm to improve other deep learning architectures, such as the graphical neural
network and the autoencoder [189, 190]; (3) how to employ the RODDPSO algorithm
in other engineering applications such as telecommunication and signal processing
[166, 163, 60, 104, 103, 162]; and how to further investigate the application potential of
the AWPSO algorithm (proposed in Chapter 3) and the RPSO algorithm (introduced
in Chapter 4).
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Fig. 6.7 Full-batch training mean squared error results of the DBN
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Fig. 6.8 Full-batch training mean squared error results of the DBN
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Chapter 7

Conclusions and Future Research

In this chapter, we first provide a comprehensive summarization of our work in this
thesis and the contributions of each chapter are also presented in Section . Then, we
point out some future research directions that follow from this thesis in Section .

7.1 Summarization

In optimization problems, the problem of premature convergence poses great challenges
to evolutionary computation algorithms, and the PSO algorithm is not an exception.
The balance between the local exploitation and the global exploration plays a significant
role in discovering the optimal solution and affects the convergence rate of the optimizer.
In this light, we aim to put forward new PSO algorithms by designing advanced
parameter updating schemes and novel topological structures of the velocity updating
model in order to maintain the population diversity and alleviate the premature
convergence problem.

In this thesis, we have proposed some variant PSO algorithms with the purpose of
further improving the search capability of the optimizer in terms of the population
diversity and the convergence rate so as to alleviate the premature convergence problem.
An adaptive weighting PSO (AWPSO) algorithm has been designed in order to improve
the convergence rate of the optimizer (Chapter 3). A randomized PSO (RPSO)
algorithm has been proposed where a sigmoid-function-based weighting mechanism
has been designed to randomly perturb the acceleration coefficients with hope to
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thoroughly exploit and explore the problem space (Chapter 4). A novel randomly
occurring distributedly delayed PSO (RODDPSO) algorithm has been introduced
which could not only thoroughly seek the optimal solution through the entire search
space but also reduce the possibility of stagnating within local optima (Chapter 5).
The application potential of the PSO algorithm has been addressed, and the proposed
RODDPSO algorithm has been successfully applied to data clustering and deep learning
applications with regards to A&E departments (Chapter 6). In the following paragraphs,
the research outputs in each chapter are concluded.

In Chapter 3, a novel AWPSO algorithm has been proposed with hope to improve
the convergence rate of the standard particle swarm optimizer. The acceleration
coefficients of the AWPSO algorithm are adaptively adjusted according to the designed
sigmoid-function-based weighting mechanism. The designed weighting mechanism
employs a sigmoid function and the distances from the particle to its pbest and from
the particle to the gbest are both taken into consideration, thereby contributing to the
enhancement of the convergence rate of the optimizer. It has been observed that the
AWPSO algorithm has shown competitive performance by comparing to several popular
PSO algorithms in terms of the convergence rate via eight widely used optimization
benchmark functions.

In Chapter 4, a RPSO algorithm has been presented in order to enhance the
search capability of the PSO algorithm where the Gaussian white noises (GWNs) have
been introduced to randomly perturb the social and cognitive acceleration coefficients.
Under this parameter updating strategy, the RPSO algorithm could explore and exploit
the search space more thoroughly, thereby having the distinguishing feature of easily
escaping the local optima trap. Experimental results have demonstrated that the
devised RPSO algorithm outperforms six existing PSO algorithms via eight popular
optimization benchmark functions.

In Chapter 5, a novel RODDPSO algorithm has been developed by introducing the
distributed time-delay (DTD) terms into the velocity updating model. The velocity
updating model of the RODDPSO algorithm is adaptively adjusted depending on the
evolutionary state. The DTD terms make full use of historical information during the
evolution process and contribute to a thorough exploration of the problem space. In
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this case, the convergence behaviors of the optimizer are improved and the capability
of escaping the local optima is enhanced. The superiority of the proposed RODDPSO
algorithm is demonstrated over six popular variant PSO algorithms via a series of
optimization benchmark functions including both the unimodal and multimodal cases.

In Chapter 6, the intelligent data analysis applications of the PSO algorithm in the
healthcare domain have been discussed. The developed RODDPSO algorithm has been
successfully employed for intelligent data analysis of the patient attendance data in an
A&E department in West London. The detailed information of the A&E data has been
presented, and two practical data mining problems (the patient clustering problem
and the patient classification problem) have been studied on the A&E data. First,
RODDPSO algorithm has been exploited in analyzing the A&E data by improving the
traditional K-means clustering algorithm with the purpose of generating an accurate
triage category for the patients who attend the A&E departments. The RODDPSO-
based clustering algorithm has shown promising performance for data clustering as the
cluster centroids are obtained by using the RODDPSO algorithm instead of randomly
selecting the cluster centroids. Experiment results have illustrated that the RODDPSO-
based clustering method outperforms two other well-known clustering algorithms.
Second, the RODDPSO algorithm has been applied to the popular deep learning
techniques by optimizing the hyperparameters of the deep belief network (DBN). The
developed RODDPSO-based DBN has been successfully applied to analyze the A&E
data for predicting the patient attendance disposal in a London A&E department.

7.2 Future Work

In this thesis, we have studied the well-known evolutionary computation approach,
the PSO algorithm. To address the challenging problems of the PSO algorithm, three
variant PSO algorithms have been proposed with hope to improve the search capability
of the PSO algorithms in terms of the population diversity and the convergence.
Although the developed approaches have been successfully applied to intelligent data
analysis, there is still much room to extend our work from perspectives of algorithm
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and application. Below are some future research directions relevant to the research
work in this thesis.

• In this thesis, the effectiveness of the proposed three novel PSO algorithms
is evaluated by comparing with that of some existing PSO algorithms on the
widely used benchmark functions. Some research work has been focused on
the convergence of the PSO algorithms [17, 27, 202]. In the future, we aim to
perform a thorough empirical investigation of the stability and convergence of
the proposed PSO algorithms.

• The initialization of the population size, the position and the velocity of the
particles is a challenging problem for dealing with high-dimensional problems. In
addition, another challenging problem is to discover the optimal solution efficiently
and accurately. Notice that there aren’t any PSO algorithms capable of fully
solving the premature convergence problem, especially in the high-dimensional
search space. Under this circumstance, one future research direction is to consider
the initialization process and develop new variant PSO algorithms with hope to
alleviate premature convergence.

• It is well known that in the standard PSO algorithm, all the particles update
their velocity and position based on their personal best position and the global
best position. However, some recent results demonstrate that the PSO algorithms
without considering the global best position may also perform well and even
outperform the standard PSO algorithm. In this case, the memory of the particles
should attract some interest. It is possible to imagine that the current particle
could interact with its neighbors’ memories and then get updated. Under this
circumstance, the typology of the neighbors should be investigated and considered
as another future research direction.

• In this thesis, we only apply the RODDPSO algorithm proposed in Chapter 5 to
intelligent data analysis. In the near future, we aim to apply our other algorithms
to other practical applications, such as path planning [140], system engineering
and signal processing [157, 185, 20]. Also, how to extend our results to other
health informatics arises to be an interesting future topic [161].
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• The multi-objective or many-objective optimization are also important research
directions in the optimization community. The multi-objective optimization
problem has attracted increasingly interest in various areas, e.g., healthcare
informatics, signal processing, power systems, and manufacturing [58, 174, 69,
184, 99, 202, 147]. In this context, we aim to extend our results to the multi-
objective and many-objective optimization problems.

• In this thesis, the effectiveness of the proposed three novel PSO algorithms is
evaluated by comparing with that of some existing PSO algorithms via the widely
used benchmark functions. Some theoretical research work has been focused on
the convergence of the PSO algorithms [17, 27, 202]. In the future, we aim to
perform a thorough empirical investigation of the stability and convergence of
the proposed PSO algorithms.
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