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ABSTRACT 

3D depth information is widely utilized in industries such as security, autonomous 

vehicles, robotics, 3D printing, AR/VR entertainment, cinematography and 

medical science. However, state-of-the-art imaging and 3D depth-sensing 

technologies are rather complicated or expensive and still lack scalability and 

interoperability.   The research identified, entails the development of an 

innovative technique for reliable and efficient 3D depth estimation that deliver 

better accuracy. 

 

The proposed (1) multilayer Holoscopic 3D encoding technique reduces the 

computational cost of extracting viewpoint images from complex structured 

Holoscopic 3D data by 95%, by using labelled multilayer elemental images. It also 

addresses misplacement of elemental image pixels due to lens distortion error. 

The multilayer Holoscopic 3D encoding computing efficiency leads to the 

implementation of real-time 3D depth-dependent applications.  Also, (2) an 

innovative approach of a deep learning-based single image super-resolution 

framework is developed and evaluated.  It identified that learning-based image 

up-sampling techniques could be used regardless of inadequate 3D training data, 

as 2D training data can yield the same results. 

 

(3) The research is extended further by implementation of an H3D depth disparity 

-based framework, where a Holoscopic content adaptation technique for 

extracting semi-segmented stereo viewpoint image is introduced, and the design 

of a smart 3D depth mapping technique is proposed.   Particularly, it provides a 

somewhat accurate 3D depth estimation from H3D images in near real-time.   

Holoscopic 3D image has thousands of perspective elemental images from 

omnidirectional viewpoint images and (4) a novel 3D depth estimation technique 

is developed to estimates 3D depth information directly from a single Holoscopic 

3D image without the loss of any angular information and the introduction of 

unwanted artefacts. 
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The proposed 3D depth measurement techniques are computationally efficient 

and robust with high accuracy; these can be incorporated in real-time applications 

of autonomous vehicles, security and AR/VR for real-time interaction. 
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CHAPTER 1: INTRODUCTION 

The research overview is comprehensively documented in this chapter, outlining 

the research aim and objectives. The chapter layout is as follows: 1.1 PhD Research 

Overview, 1.2 The Research Aim and Objectives, 1.3 Research Motivations, 1.4 The 

Research Contributions, 1.5 Thesis Chapter Outline and 1.6 Author’s Publications. 
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1.1. PhD Research Overview 

In research fields such as robotics, artificial intelligence, AR/VR digitisation, and 

medical sciences, where 3D depth information is often used either for autonomous 

navigation, object and gesture recognition, and analyses of bio cells. Has sparked 

a new wave of research that centres around effective ways of digitally recording 

and extracting 3D depth information [1] [2][3][4]. An example of how 3D depth 

information is crucial to the operational success in some of the mentioned 

research areas are as follows: 

i. Robotics – assuming a task where a robot has to navigate itself from point 

A to B in a moderately busy environment. The robot will have to use 3D 

depth information to be able to identify the distance between itself and 

objects of the scene, helping it to accurately make decisions that will 

improve navigation and obstacle avoidance while making its way to point 

B (the desired destination). 

ii. Content digitisation – 3D depth information is essential in the sense that, 

for a user to successfully digitise an asset, the volumetric content captured 

and reconstructed in virtual space is only made possible when 3D depth 

information is present. 

iii. Cinematography – 3D depth, in this case, helps the cinematographer to 

easily segment a shot or refocus at different objects within the shot. 3D 

depth information can also be used in the creation of a realistic AR/VR 

realities. 

 

As the world becomes more connected due to the constant growth of internet-of-

things (IoT) and ultra-fast networks, there is a need for smart digital devices 

capable of recording high-quality contents on small digital spaces. The Holoscopic 

3D (H3D) imaging system is one of the few digital devices that fall into this 

category, as the imaging system can record the full parallax of any given scene in 

a single snapshot. This leading to the research topic "Robust 3D depth Estimation 

form an H3D Image", where the implementation of a scalable viewpoint extraction 

technique is presented, the implementation of a learning-based image up-

sampling technique and the development of an innovative H3D depth estimation 

technique are all presented in this thesis. 
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The mentioned research goal resulted in the comprehensive analysis of existing 

state-of-the-art 3D depth estimation techniques. This also resulted in the analysis 

of advanced 3D sensing systems and their recording principles. The research and 

analysis were done on the 3D sensing system used for this research, (Holoscopic 

3D imaging system) were present limitations are addressed by specially 

developed H3D pre-processing techniques, documented in chapter three. 

However, due to high cost needed to optimise the H3D imaging system to record 

3D image data of varying micro lens array specifications, the use of a cost-effective 

light field software known as POV-Ray is employed to render Synthetic Holoscopic 

3D (SH3D) data. This facilitated and aided the deduction of the ideal micro lens 

array (MLA) specification for recording depth ready H3D data. The SH3D data is 

also used for formulating the fundamental principle behind the innovative 3D 

depth estimation framework and pre-processing techniques presented in 

chapters three to five, as the SH3D data has no distortion errors. 

 

3D sensing systems can be used to record 3D information of any given scene 

successfully. These 3D sensing systems can be categorised either as Active, 

Stereo/Multiview, or H3D imaging systems (Integral light field imaging systems). 

Active imaging system employs the use of a controlled light source as part of its 

principle for estimating and recording 3D depth information. The Stereo and 

Multiview 3D imaging systems are similar as they are both modelled against the 

human binocular viewing system. The difference between the two being the stereo 

3D imaging system uses two 2D imaging systems to record the 3D depth 

information of a scene, while the Multiview imaging system is an extension of the 

Stereo imaging system that uses more than two 2D imaging systems to record 3D 

depth information. H3D imaging system, on the other hand, uses a micro lens 

array in place of an expensive multisensory rig to record the 3D depth information 

of a scene. The following being one of the main reasons the H3D imaging system 

is used to record all 3D data presented in this thesis. 

 

The H3D imaging "Integral Imaging" system, as mention earlier, is the most cost-

effective means of recording 3D data. First proposed by Ives [5] and 

Lippmann[6][7], the H3D imaging principle is based on Holographic imaging, 
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where slightly different views of a scene are projected to the viewers' eyes for the 

brain to reconstruct the 3D scene [8]. However, the H3D imaging system has some 

drawbacks that make the task of 3D depth estimation more complex to 

accomplish. First, the relatively small baseline between viewpoint images 

compared to the traditional stereo systems, primarily caused by the MLA used for 

recording H3D data. Secondly, the relatively low spatial resolution of viewpoint 

images (VI) and elemental images (EI), making the task of feature matching and 

cost calculation more tedious than usual. The lack of efficient pre-processing 

platforms for H3D data has continued to allow the following limitations to hinder 

the use of H3D imaging system as a primary device for recording 3D depth 

information in industries. To overcome the H3D image limitations, the detailed 

analysis of the H3D imaging system is conducted and presented in chapter two 

and three, identifying H3D image properties that are used to aid efficient 3D depth 

estimation. 

 

3D depth estimation techniques require only image data as its primary data 

source (In this case, a single H3D image). Although other Active 3D depth 

estimation techniques that employ the use of special control light to estimate 3D 

depth information have higher accuracy results, the lack of flexibility options has 

allowed 3D techniques to grow in popularity. The following, coupled with the 

advancement in super microprocessors, has made the use of 3D depth estimation 

technique a reliable form of extracting 3D depth information from any image data. 

3D depth estimation techniques can be further subcategorised into two groups, 

known as local and global 3D depth estimation techniques. Local 3D depth 

estimation techniques are computationally fast but error-prone, they employ the 

use of a finite neighbouring window to estimate 3D depth. Global 3D depth 

estimation techniques, on the other hand, generate high-quality 3D depth maps 

but are computationally expensive due to the complex nature, rendering it 

infeasible for real-time applications.  It has been indicated that the 3D depth 

estimation techniques generally include the following four steps: feature matching 

or cost estimation, cost accumulation, disparity estimation and disparity 

optimisation [3]. However, this does not mean the 3D depth estimation 

framework has been standardised, therefore, choosing the appropriate 



 

 5 

framework for estimating 3D depth depends on the list of circumstances 

presented below: 

i. Camera lens type – this could range from ultra-wide-angle (fisheye) lenses 

to super-telephoto lenses. 

ii. Inter-axial distance – this is the distance between the two cameras of a 

stereo system, also known as a baseline. 

iii. Data type – this ranges from, images, video, well-textured or lightly 

textured image data sets. 

iv. Application area – this could range from application areas that require real-

time estimation to application areas that do not require detailed 3D depth 

maps.  

 

To link as to how current state-of-the-art 3D depth estimation techniques, 

designed for a stereo 2D data set, is used for estimating 3D depth information from 

H3D data. They heavily depend on inefficient H3D data adaptation means of 

converting H3D images into stereo 2D images. The current adaptation technique 

cannot handle complex H3D data in real-time and do not take into account other 

suitable viewpoint up-sampling techniques. Having identified these limitations, 

the design and development of two robust 3D depth estimation frameworks are 

presented in chapter four and five. The H3D depth from disparity framework is 

designed based on the proposed Holoscopic 3D content adaptation technique that 

is capable of handling complex H3D data with 95% less computational effort in 

comparison to current adaptation techniques. This H3D depth from disparity 

framework also takes advantage of the H3D data ability to refocus at different 

focal planes to extract semi segmented viewpoint images for stereo 3D depth 

estimation. Design of a 3D depth mapping framework is proposed to reduce the 

computation cost accumulated during subpixel matching and pyramid 

optimisation. The following framework is also designed to aid estimation of depth 

information from H3D images with standard stereo algorithms. However, this 

framework still shares the same limitations as current state-of-the-art stereo 

frameworks regardless of the significant improvements. This is the introduction 

of wanted artefacts in the extracted viewpoint images and the loss of angular 

information. The second 3D depth framework presented in chapter five is 
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designed to by-pass the Holoscopic 3D content adaptation process, estimating 3D 

depth information directly from the H3D image. This is achieved by the 

implementation of a unique similarity measure that estimates 3D depth 

information by calculating the disparity between viewpoint pixels (VIPs) EI 

positions. 

 

The resulting 3D depth information or 3D depth maps are presented either as 

colour, 2D grayscale image or in Pseudo form. 

 

1.2. The Research Aim and Objectives 

The main aim of this research program is to develop a robust 3D depth estimation 

framework that is capable of estimating 3D depth information from a single H3D 

image. The mentioned aim is further subdivided into objectives that can be 

categorised into the following groups: literature exploration in 3D depth-related 

fields, general data review and analysis, experimentations and implementation of 

efficient and practical techniques. Below is the highlighted list of aim and 

objectives of this research. 

 

List of objectives 

i. To carry out comprehensive research on state-of-the-art 3D imaging 

systems, including related sensors and applications and evaluate the 

principles to scope the research. 

ii. To investigate 3D depth estimation techniques and evaluate them to 

identify suitable methods to estimate 3D depth from a single H3D image. 

iii. To carry out experiments on different micro lens array (MLA) specification 

to identify correct MLA parameters for 3D depth estimation as well as to 

find out the best trade-off between MLA aperture and disparity depending 

on the nature of the 3D depth estimation approach. 

iv. To investigate Holoscopic 3D (H3D) image processing for effective 3D 

depth estimation to improve computational performance with scalable 

H3D pre-processing techniques. 
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v. To design, implement and evaluate a scalable 3D depth estimation 

technique that is capable of estimating 3D depth directly from a low-

resolution H3D image without the need of any pre-processing. 

 

1.3. Research Motivations 

3D depth has a wide application area as mention earlier, therefore researching on 

this topic will provide flexible and broader career options.  

 

Vision is one of the most important senses for humans, and this contributes vastly 

to the ability to learn and improve on existing talents. Human visual systems are 

designed to slightly see a different view of the same scene in each eye, allowing 

the brain to perceive the world in three dimensions (3D). The use of a cost-

effective Holoscopic 3D imaging system as a primary source of recoding 3D depth 

data is an improvement from the traditional 2D stereo systems.  The fact a single 

Holoscopic 3D image can be used to produce stereo views, and with its ability to 

refocus on any object in the scene after capture, proves that Holoscopic 3D image 

is on the way and will eventually be the next generation imaging system. This 

being one of the motivations to go ahead and be amongst the first to introduce this 

technology to the world by proving one of the various ways a single Holoscopic 3D 

image can be used in multiple applications, as the imaging system undoubtedly 

records more information of a scene than any conventional 2D imaging system. 

 

Computer vision plays an essential role in the improvement of computer 

intelligence, since humans use all five senses to help accurately understand their 

surroundings, it is only reasonable to develop more straightforward ways to 

estimate 3D depth information, taking advantage of how 3D data is stored in a 

coded 2D format called an "elemental image" (EI), which can be used for different 

purposes in 3D depth-related fields. The computer vision society common goal 

serves as a motivation and will very much want to be part of, and academically 

contribute to this society. 
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1.4. The Research Contributions 

The original contributions of this research can be grouped into the three 

categories presented in Figure 1.1 below.  

 

 
Figure 1.1- Summary of the research contributions and area of application. 

 
The research contributions in Figure 1.1 is presented in more detail below, 

ranging from contributions made for optimisation of the H3D imaging system to 

the development of 3D depth estimation frameworks and implementation of H3D 

image pre-processing techniques.   

 

I. The implementation of a multilayer Holoscopic 3D encoding technique. 

II. The proposal of the use of a deep neural network for Holoscopic 3D image up 

sampling. 

III. The implementation of a Holoscopic content adaptation technique for depth 

estimation through disparity. 

IV. The implementation of a novel direct depth from Holoscopic technique. 

 

1. Holoscopic 3D Imaging System 

The detailed analysis of the H3D imaging system resulted in the identification of 

the best trade-off between spatial and angular information. Depending on the 

nature of the 3D depth estimation approach, the use of a smaller or larger MLA is 

employed, resulting in high-quality depth maps. 
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The proposed multilayer H3D encoding system reduces the computation cost of 

viewpoint extraction by 95%, as content adaptation is a crucial step for current 

state-of-the-art H3D depth estimation techniques. The multi-layered H3D is a 

stack of labelled elemental images that aids more efficient identification of 

viewpoint images and feature extraction during depth estimation. The following 

contribution should be used in the development of the second generation H3D 

imaging system, where the installation of an inbuilt H3D image encoding and 

calibration system will make the H3D system mature enough for industrial use. 

 

The underlying contribution is the development of a scalable Holoscopic content 

adaptation and 3D depth mapping technique for extracting reliable semi-segmented 

image data for standard H3D depth frameworks. 

 

2. Holoscopic 3D Image Pre-processing 

The H3D imaging system is known for its inability to record high-resolution 

viewpoint images. This limitation affects the feature matching process, a crucial 

stage of any depth estimation framework. The comprehensive investigation and 

evaluation of current single image up-sampling techniques currently used in 

handing the H3D low-resolution problem are executed and documented. The 

findings of the subsequent research led to the design and development of a 

learning-based single image up-sampling technique. This H3D learning-based 

network uses down-sampled multilayer EI stacks and 2D images as training data, 

using their default images as reference data. The network then learns the residual 

difference between the images to reproduce high-quality EI stacks that are 

reconstructed into a super-resolution H3D image. The proposed deep-learning 

single image resolution technique outperforms current state-of-the-art image up-

sampling techniques like Bicubic and Bilinear. The results are evaluated using the 

industry-standard image quality assessment matrix, specifically Peak Signal to 

Noise Ratio (PSNR) and Structure Similarity Index (SSIM).     

 

The underlying contributions are the design and development of a deep-learning-

based single image super-resolution (SISR) framework for up-sampling Holoscopic 

3D images. 
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3. Depth Estimation 

The design and development of two robust H3D depth estimation technique make 

up the final part of this research contributions. The first depth technique, referred 

to as H3D depth from disparity (H3DDD), is designed to estimate 3D depth 

information from stereo viewpoint images extracted from a single H3D image. The 

H3D adaptation process in this depth estimation framework makes use of the H3D 

imaging system's ability to refocus at any given point after capture, extracting 

semi-segmented viewpoint images that improve feature matching results. The 

framework also contains a proposed smart depth mapping technique that is 

designed to improve computational efficiency. However, the above framework 

still has limitations that are associated with H3D adaptation, specifically, loss of 

angular information and the introduction of unwanted artefacts that affect feature 

matching. These limitations were the motivation behind the design and 

development of the innovative Direct Depth from Holoscopic technique (DDH). 

The DDH technique estimates 3D information directly from an H3D image due to 

its unique ability to calculate disparity information at the EI level. 

 

The underlying contribution is the design and development of an innovative 3D 

depth estimation technique that estimates 3D depth information directly from a 

single Holoscopic 3D image.   

 

1.5. Thesis Chapters Outline 

This thesis is divided into five main chapters. The subsections below contain a 

brief outline of the chapters presented in this thesis. 

 

Chapter 2 – Literature Review on 3D Systems and 3D depth Estimation 

Techniques 

This chapter presents literature on current 3D imaging systems and the imaging 

principles, depth estimation techniques, learning based image up-sampling 

techniques and image evaluation metrics. The chapter starts by briefly 

introducing the principles behind Active imaging and Stereo/Multiview imaging 

systems before detailing light field/3D imaging principles. Elaborating on the 
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critical components in 3D imaging systems that make them the future in optics, 

and simultaneously justifying why it is used as the primary device for collecting 

3D image data in this research. 

 

This chapter also presents various techniques used in estimating 3D depth 

information from a 2D image(s), presenting ways in which 3D depth information 

or 3D depth maps are usually represented. The chapter also presents 3D depth 

correspondence constraints that are used later on in chapter four and five to 

determine the complexity of a 3D depth technique. The chapter concludes by 

presenting the classes of 3D depth estimation techniques and listing notable 

methods currently been used in the computer and stereo vision society. 

 

The chapter concludes by presenting the literature on learning-based image up-

sampling techniques and state-of-the-art image evaluation metrics used in the 

evaluation of Holoscopic 3D image up-sampling and depth map results used 

throughout this thesis. 

 

 Chapter 3 – Holoscopic 3D Image Pre-processing 

This chapter elaborates on the image registration process of H3D imaging 

systems, highlighting image registration errors associated with H3D images that 

can affect 3D depth estimation. The chapter presents all techniques implemented 

and designed to aid H3D depth estimation based on the following registration 

errors. The following techniques include a lens correction technique and an 

optimised viewpoint extraction technique based on the proposed H3D encoding 

technique. The analysis of current interpolation techniques such as the Nearest 

neighbour, Bilinear and Bicubic, currently been used to resolve the H3D low-

resolution problem is also presented in this chapter. The chapter concludes with 

the presentation of the proposed learning-based single image up-sampling 

technique for Holoscopic 3D images. 

 

Chapter 4 – Holoscopic 3D Depth Estimation from Disparity 

This chapter presents the first of the two H3D depth estimation frameworks. This 

framework estimate 3D depth information from stereo viewpoint images 
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extracted from a single Holoscopic 3D image. The process of extracting the stereo 

viewpoint images is referred to as Holoscopic content adaptation (HCA). The 

chapter starts by presenting the overall framework of the 3D depth from disparity 

(H3DDD) formulation, followed by a step by step process of how 3D depth 

information is estimated. This chapter concludes with the presentation of all the 

3D depth maps estimated from various Holoscopic 3D image dataset, evaluating 

the results against state-of-the-art 3D depth estimation techniques. 

 

Chapter 5 – Innovative Direct 3D Depth Estimation from Holoscopic 3D Image 

This chapter presents the second 3D depth estimation framework implemented 

uniquely for H3D images. This framework is implemented to by-pass the 

Holoscopic 3D content adaptation stage, totally eliminating the introduction of 

unwanted artefacts and loss of angular information that might affect the quality of 

estimated 3D depth maps. The technique also has the ability to estimated disparity 

information in both directions of an omnidirectional H3D image. The unique 

feature that enables this technique to estimate 3D depth information directly is 

the similarity measure, where the estimation of disparity is done at an EI level. 

This chapter concludes with the presentation of all the 3D depth maps estimated 

from varying Holoscopic 3D image dataset, evaluating the results against state-of-

the-art 3D depth estimation techniques.  

 

Chapter 6 – Conclusions and Future Works 

The overall conclusion of this research is presented in this chapter, suggesting 

future works based on these research contributions. 

 

1.6. Author’s Publications 
 
A. S. Aondoakaa, M. R. Swash, and A. Sadka, “3D depth estimation from a holoscopic 

3D image,” in 2017 4th International Conference on Signal Processing and 
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Belhi A., Bouras A., Alfaqheri T., Akuha A., Sadka A., and Foufou S., “Machine 

Learning and Digital Heritage: The CEPROQHA Project Perspective” Fourth 
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CHAPTER 2: LITERATURE REVIEW ON 3D SYSTEMS AND 3D 

DEPTH ESTIMATION TECHNIQUES 

This chapter presents qualitative research on current 3D imaging systems, state-

of-the-art 3D depth estimation techniques, deep learning-based image up-

sampling techniques and image up-sampling techniques. This chapter also 

introduces the evaluation constraints used for estimating the computational 

complexity of the 3D depth techniques presented in this thesis. The chapter layout 

is as follows: 2.1 3D Systems, 2.2 3D Depth Estimation Techniques, 2.3. 

Investigation of Learning Based Image Up-sampling Techniques, 2.4. H3D 

Evaluation Matric: PSNR and SSIM and 2.5 Summary. 
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2.1. 3D Systems 

2.1.1 Introduction 

Beyond standard two-dimensional (2D) imaging and photography, three-

dimensional (3D) imaging systems records more information of the world and has 

attracted a lot of interest in research societies such as computer vision [10] and 

life science [11]. The additional information recorded by 3D imaging systems is 

related to the structural composition of the scene, attracting an increasing amount 

of attention in recent years, as shown in Figure 2.1 below. 

 
Figure 2.1 - Indication of the growing interest in 3D imaging found in Google Scholar during 

the past decade.1 

The 3D depth or structural composition of objects recorded in addition to what 

2D imaging systems record is sometimes referred to as amplitude and phase 

imaging or wavefront imaging. Depending on the properties and density of an 

object, the invisible electromagnetic wave is inevitably changed as it passes 

through an object, inducing intensity changes. However, for 3D depth information 

to be estimated successfully from digital image data, specific 3D depth cues apart 

from the intensity variations are considered.  

 

                                                        
1 The recent growth of 3D imaging can be found at google scholar online at https://scholar.google.co.uk [Accessed: 30th 

December 2018]. 

https://scholar.google.co.uk/
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2.1.2 Active Imagining Principles  

Active imaging principles employs the use of a specially controlled light source as 

part of its technique to estimate 3D depth information of any given scene. The 

active lighting incorporates some form of temporal or spatial modulation of the 

illumination. This technique was proposed before the 3D techniques (3D depth-

through-disparity and 3D depth-through-defocus) because of the fact that the 

microprocessing was not yet invented [1] [12]. From a computational point of 

view, Active imaging systems tend to be less demanding, as special illumination is 

used to simplify some of the steps in the 3D recording process [13]. However, their 

applicability is restricted to environments where the special illumination 

techniques can be applied. A second distinction is between the number of vantage 

points from where the scene is observed, as a single vantage point is used to 

record and estimate 3D depth information of a scene. In the case where there are 

multiple viewing or illumination components positioned very close to each other, 

ideally, the illumination components could coincide. The latter (illumination 

components) can sometimes be realised virtually through optical means like semi-

transparent mirrors. For multi-vantage systems to work well, the different 

components often have to be positioned far enough from each other. One could 

say the 'baseline' between the components has to be wide enough. Technologies 

like 3D scanners, Vicon motion-capture and Xbox Kinect use this imaging principle 

to estimate 3D depth or produce 3D data directly. These technologies are both 

fitted with lasers and 3D scanners that project a laser beam onto the object and 

record the shape the beam makes or the time it takes to reflex the light source 

back to the sensor. Figure 2.9 below presents a visual representation of how this 

imaging principle works.  
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Figure 2.2 - Active and Time of flight (ToF) image recording principle.  

 
Although the Active imaging system has some disadvantages over the 3D systems, 

one of its great advantage is its accuracy in obtaining the ground truth depth 

information in comparison to 3D depth estimation techniques. 

2.1.3 Stereo / Multiview Imagining Principles  

Stereo/Multiview imaging principles are the fundamental procedure taken by all 

2D imaging systems to capture and display 3D data. In the early '50s, due to the 

decline in movie theatre attendance caused by television, stereoscopic cinema was 

seen as a method to regain this audience [14]. "This explains the first wave of 

commercial stereoscopic application and relevance in the '50s. 

 

Sir Charles Wheatstone first proposed this imaging technique in 1838 [15], where 

the use of stereo imaging systems is employed to record slightly different stereo 

views of a scene. The concept behind stereography is derived from the human 

visual system. The human optical system is approximately two-and-a-half inches 

apart, resulting in the visualization of the same scene from slightly different angles 

and perspective. The left image is shown only to the left eye and the right image 

to the right eye, the brain then combines the images to give a perception of 3D 

depth; this is called binocular vision. Stereoscopic relates to seeing space three-

dimensionally as a result of binocular disparity. The stereo imaging systems are 

usually set up to mimic the above system, either by a side-by-side camera rig or 

mirror camera rig, shown in Figure 2.12 below.  
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(a) side by side stereo rig (b) Mirror stereo rig 

Figure 2.3-(a) A stereo side-by-side camera rig, (b) A stereo mirror camera rig.  

 

The stereo imaging system has an interaxial separation between the stereo 3D 

imaging systems, similar to that of the human visual system. This distance is 

referred to as a baseline of the stereo imaging system, allowing the user to capture 

slightly different angles of a scene, and the difference between the stereo views is 

known as disparity. When disparity is processed and displayed with the right 

conditions, this information gives the viewer the perception of 3D depth like in a 

real-world scenario [16].  

 

The Multiview imaging system is an extension of the Stereo 3D imaging system. 

This 3D imaging system has attracted increasing attention thanks to the rapid 

drop in the cost of digital imaging systems. 3DTV and free point TV are the most 

popular application areas where Multiview 3D imaging systems are applied to 

expand user experience beyond what has traditionally been offered by 2D media. 

The multiview system is developed by the convergence of new technologies from 

computer vision, multimedia, computer graphics and related fields. The Multiview 

3D imaging systems use more than two camera array systems to capture different 

viewing angles of a scene. More than one user can visualise 3D depth at a time, this 

setup shown in Figure 2.13 below. 
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Figure 2.4 - (a) A 48 Multiview array camera system. (b) A mobile camera unit.[17]  

 

The captured data from the above set up in Figure 2.13 usually overlap each other, 

giving the user the ability to match distinctive features between them. This 

occurrence has been studied intensively to deduce a technique of 3D depth 

estimation in the field of stereo and computer vision. This imaging principle is not 

used in recording data for this research as the cost acquired when recording multi-

viewpoint images prove too costly compared to the 3D imaging system. 

 

2.1.4 Light Field Imaging Principles 

Light field "Holoscopic 3D" imaging can be seen as the next generation of imaging 

system in the optics industry due to its ability to record the full parallax of any 

given scene and its ability to refocus in post-processing. This imaging system has 

a wide application area such as robotics, autonomous navigation, AR/VR and 

many other imaging areas [1].  Lightfield is a true auto-stereo system that can 

provide all four-eye mechanism: binocular disparity, motion parallax, 

accommodation and convergence [6]. When using this system to capture accurate 

3D images, a considerable amount of tightly packed distinct micro-images is 

obtained, referred to as elemental images (EI). The use of micro-lens or series of 

lenses was first proposed by the physicist Prof M. Lippmann (1845-1921) rather 

than the use of opaque barrier lines [2]. The micro-lens used enabled him to 

record the full parallax a scene; the microlens array also referred to as fly's eye 

lens array is used to record and playback the image as shown in Figure 2.5 below.  
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(a) Recording Process (b) Replay Process 

Figure 2.5 - Principle of light field imaging system, (a) capture (recording) object process 
and (b) display reconstruction process. 

 

The next section presents the detail specifications of the Holoscopic 3D image 

system and its image properties. 

 

2.1.4.1 Brunel Holoscopic 3D Camera 

The Holoscopic 3D (H3D) imaging system is an adaptation of a standard 

commercial camera, where the image lens system is redesigned to enable the 

recording of the full parallax of any given scene. The lens architecture consists of 

a prime lens, microlens array and a relay lens as presented below in Figure 2.6. 

  

 
(a) 



 

 21 

 
(b) 

Figure 2.6 - (a) Square Aperture H3D lens integration with Sonny MKII sensor (b)H3D system 
schematics. 

 

Figure 2.6 description: Image sensor size= 35.9x24mm, Lens Barrel = Sonny 

35mm F2 wide-angle lens, Lens Mount = Sonny Fmount, Relay lens = Rodagon 

50mm F2.8 ×1.89, Image Sensor/Camera Body = Sonny Alpha MKII.  

 

The main difference between any H3D imaging system and a 2D imaging system 

is the introduction of the microlens array placed before the camera sensor, as 

shown clearly in Figure 2.6b. The microlens enables H3D imaging systems to 

record the spatial and angular information of any given scene in a single snapshot, 

serving as an advantage over 2D imaging systems. The MLA mention is usually 

group into two categories, (i) Omni-directional and (ii) unidirectional microlens 

array. 
 

 
Figure 2.7 - Omnidirectional MLAs and their corresponding H3D images.  
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Figure 2.7 above presents the Omni-directional MLAs capable of recording the full 

parallax of any given scene in both vertical and horizontal directions. This group 

of MLAs usually come in a square or hexagonal shaped aperture, however, when 

extracting viewpoint images from an H3D image recorded with a square-shaped 

MLA aperture. The process of viewpoint extraction is relatively straight forward 

compared to an H3D image recorded with a hexagonal shaped aperture. This is as 

a result of the consistency of the viewpoint image displacement in square 

apertures compared to the irregular displacements of viewpoint images in 

hexagonal shaped apertures.  

 
Figure 2.8 - Unidirectional MLAs and their respective H3D images. 

 

Figure 2.8 above presents the unidirectional MLAs, depending on how it is 

positioned, it records the parallax of any given scene in either vertical or 

horizontal direction (one direction only). Unidirectional MLA type includes 

lenticular sheet and parallax barriers, and each has its own characteristics and 

drawbacks. The lenticular sheet main advantage over the parallax barrier is its 

ability to let more light be pushed through, resulting in the perception of sharper 

viewpoint images. However, the number of VI that can be displayed is fixed. 

Parallax barrier, on the other hand, is more flexible when it comes to the 

alternation of VI displayed. However, due to its poor transparency properties, 

light pushed through this aperture is significantly deemed down, resulting in dull 

VI. The schematics of the above MLA types are presented in Figure 2.9 below.       
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Figure 2.9 - Micro lens array schematics [88][89]. (a,b) Unidirectional lenticular sheet and 
(c,d) spherical micro lens array. 

 

Given a lens pitch of a microlens, the number of pixels in an individual microlens 

can be defined as, EI Size = Pitch size /dot pixel pitch, Where EI Size is the 

maximum number of pixels an EI can capture, while the dot pixel pitch is the size 

of a single-pixel a specific imaging sensor can record. The total number pixels of 

an EI image is equal to the number of viewpoint images recorded by the H3D 

image system.  

 

2.1.4.2 Lytro Light Field Systems 

The Lytro imaging technology is of three types, the first generation, second 

generation and Lytro cinema. These cameras have the same properties of an H3D 

camera except for the fixed hexagonal-shaped MLA used for capture. The 

microscopic lens array (often in the range of 100,000) with tiny focal lengths as 

low as 0.15mm and split up what would become 2D pixel into individual light rays 

just before reaching the sensor. The resulting raw image is a composition of 

multiple hexagonal-shaped Elemental Images (See Figure 2.7). This camera is 

released with its image processing software for extracting viewpoint images and 
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refocusing at different planes within the 3D image. Figure 2.10 below are images 

of the Lytro light field technologies.   

 

 
 

(a) Lytro first-generation camera (b) Lytro Illum 

 
(c)Lytro cinema 

Figure 2.10 - Lytro imaging technologies. a/b) been the first and second-generation cameras, 
while c) is the latest camera.2 

 

2.1.4.3 Direct Comparison of Brunel H3D Systems and Lytro Systems 

Some of the positives that the Brunel H3D imaging system have over the Lytro 

imaging systems are as follows, 

i. Compared to the first and second generation Lytro cameras, the H3D 

imaging system has a much bigger imaging sensor for recording over the 

Lytro imaging systems.  

ii. The Microlens array placed right before the imaging sensor can be easily 

changed in the H3D imaging technology than that of the Lytro imaging 

systems. 

iii. Raw H3D image is available and easy to access, where the raw image of the 

Lytro imaging systems is more difficult to access and adapt, for application 

use. 

                                                        
2 The images of the Lytro imaging systems on this page where all downloaded from Lytro official website www.lytro.com 

[Accessed: 29th January 2016]. 

http://www.lytro.com/
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iv. Viewpoint images are restricted to a maximum of two for Lytro imaging 

systems while the H3D imaging system provides as much as the size of the 

Elemental image. 

v. H3D images give the user more refocusing options in comparison to the 

Lytro image data that is restricted to three planes. 

vi. The H3D imaging system is financially less expensive than Lytro imaging 

systems. 

 

Some of the positives the Lytro imaging system have over Brunel H3D imaging 

system are as follows, 

i. The Lytro imaging system is more mobile as the H3D imaging system still 

is at its prototype stage.  

ii. The fact that the calibration process of the H3D imaging system is done 

manually exposes the H3D data to human error, while the Lytro MLA is 

factor fitted and always ready for use. 

iii. The Lytro imaging system has a standard software for Lytro image 

processing while the Holoscopic 3D imaging system is still at its 

development stage of standard software. 

 

Based on the direct comparison of the H3D imaging system and the Lytro imaging 

system, the H3D imaging system is used due to its low cost, high-resolution sensor 

and easy access to raw image file for 3D depth estimation. 

 

The next section presents the 3D depth estimation techniques that are currently 

used to estimate 3D depth information from any image data. 

 

2.2. 3D Depth Estimation Techniques 

2.2.1. Introduction 

3D depth estimation also referred to as stereo correspondence problem, require 

only image data as its primary input to calculate the depth information of any 

given scene. Resulting to lower equipment cost that constitutes one of the 

advantages 3D depth estimation technique have over sensor-based or active 3D 

depth estimation techniques [18][19]. The most common 3D depth estimation 
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techniques are documented in this section and classified either as a global or local 

technique. The complexity range of 3D depth estimation problem is defined and 

presented in this chapter as stereo constraints in section 2.2.3. Depending on the 

number of restrictions a stereo problem requires to produce reliable results, the 

complexity of the stereo problem can be estimated as well. The stereo constraints 

presented in section 2.2.3 is used for evaluation of all H3D depth frameworks 

presented in this thesis. 

 

The stereo correspondence problem is usually tackled within four steps: matching 

cost calculation, cost accumulation, disparity calculation and lastly disparity 

refinement. However, a more detail framework for disparity estimation is 

presented in Figure 2.11 below. 

 

 
Figure 2.11 - Current state of the art 3D depth estimation framework. 

 
I) Data Acquisition 

Data acquisition in 3D depth estimation requires only the use of image recording 

systems. However, the data type can consist of a single image frame or multiple 

image frame. The process of estimating 3D depth information from such data is 

also referred to as structure from motion (SFM). The imaging systems used for 

recording the 3D depth estimation content can be classified into three major types, 

namely, (i) a single or monocular camera system, (ii) stereo camera or Multiview 

camera system and (iii) lastly, H3D camera imaging system. Single-camera system 

requires 3D depth to be estimated from just a single 2D image. Single camera is 

not a popular technique of recording 3D data as the absence of disparity makes 

3D depth estimation extremely complicated. In the case where this single image 

system records multiple image frames for estimating 3D depth, misalignment 

problems and camera calibration problems also make the estimation of 3D depth 

information a very complex task [20][21]. The principle behind Multiview imaging 

system is the use of two or more cameras to record a scene, when using this 

imaging setup to record 3D depth information for 3D depth estimation, the ability 
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to control the baseline between viewpoint images coupled with the high 

resolution gotten from this stereo imaging system, makes it the most popular 

technique of acquiring image data for 3D depth estimation. However, if the 

number of viewpoint images of a scene increases, the cost of acquiring those 

system increases as well. The fragile nature of the Multiview rig renders the 

recording setup immobile. Finally, the 3D imaging systems, these imaging systems 

can record the full parallax of any given scene and refocus after capture. However, 

due to its inability to produce high-resolution viewpoint images and small 

baseline range, makes it challenging to extract reliable 3D depth information. The 

implantation of a robust 3D depth estimation technique presented in this thesis 

makes the following H3D related issues irrelevant, making the H3D the most cost-

effective way of recording image data for 3D depth estimation purposes. 

 

II) System Geometry 

System geometry, also known as camera calibration, is a crucial but time-

consuming step in depth estimation frameworks. The information extracted from 

an imaging system indicates the actual 3D coordinates (intrinsic parameters) and 

the position of the imaging system in relation to the scene during capture 

(extrinsic parameters) as presented in Figure 2.12 below. These intrinsic and 

extrinsic parameters imaging do not only help in enforcing the Epipolar constraint 

but also help in correcting lens distortions errors. 

 
Figure 2.12 – An oriented central projective camera from a pinhole model. 

 

Several dynamic camera calibration techniques are used in extracting the imaging 

system position during data acquisition, but one of the most common is the 
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checkerboard technique. H3D data captured from the H3D imaging system does 

not require any form of camera calibration for 3D depth estimation as all 

viewpoint images are recorded orthographically. 

 

III) Disparity Estimation (Feature Extraction/ Matching-cost/ Depth 

Computation) 

The feature extraction, matching, and initial 3D depth estimation stages often 

work hand in hand. Depending on the technique used, they can be classified either 

as a local or global 3D depth estimation technique, presented in more detail in 

sections 2.2.4 and 2.2.5. As mentioned earlier, current 3D depth estimation 

techniques use stereo data recorded from a stereo imaging system. The stereo 

systems usually have a baseline that is targeted to be the same as the distance 

between the human visual systems. Resulting in the registration of scene features 

at different locations onto the 2D stereo imaging sensors. The difference in this 

feature registration is referred to as disparity. 

 
Figure 2.13 - Disparity representation of a rectified pinhole camera model.[1] 

 

The depth, Z, of point, P(X, Y, Z), presented in Figure 2.13 above is estimated 

through triangulation as the point in space is projected onto two image views at 

different positions pl(xl,yl) and  pr(xr,yr), with a fixed baseline ‘B’. The baseline 

distance between the optical systems is the main factor that results in the 

projected points been recorded at different positions. Projected points of objects 

closer to the optical system have more significant disparity while projected points 

or features of objects further away have lesser disparity between them. This basic 
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principle is the main idea on which various 3D techniques are derived. The 

following defined below, in Equation (1) as: 

 𝑍𝑍 =
𝑓𝑓𝑇𝑇𝑥𝑥
𝑑𝑑

  (1) 

Where, f is the focal length, Tx is the baseline and d is the disparity. The depth 

information mentioned can be represented or stored in one of the following 3D 

depth registration formats listed below. 

 
2.2.2. 3D Depth Map Representations 

I. Greyscale 2.5D Depth Map Representation 

Greyscale images are made up of pixels ranging from black and white intensity 

values. This mode of 3D depth representation registers 3D depth information by 

registering pixels closer to the recording systems with higher pixel intensity 

values than pixels further away, or vice versa, producing a grayscale image usually 

known as a greyscale 3D depth map, shown in Figure 2.14 below.   

 

 
(a)Reference viewpoint image (b) Depth map result….. 

Figure 2.14 - Greyscale 3D depth map representation.[22] [23] 

 

II. Colour 2.5D Depth Map Representation 

Similar to the greyscale 3D depth representation, this mode of representation uses 

all RGB values instead of a range of pixel values between a colour value to 

represent 3D depth information. Usually using darker RGB values to register 

objects further away from the recording system and lighter values for objects 

closer, shown in Figure 2.15 below.   
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(a)Reference viewpoint image (b) Depth map result….. 

Figure 2.15 - Colour 3D depth map representation. [22] [23] 

 
III. Pseudo-3D Depth Map Representation  

This mode of representation provides different viewpoints of the scene 

reconstructed with a point cloud, and in some cases, the point cloud is converted 

into a 3D mesh creating a virtual environment. This 3D depth representation is 

often used when multiple viewpoints are used to the estimate 3D depth 

information of a scene, shown in Figure 2.16 below. 

 

 
(a)Reference viewpoint images (b) Depth map result 

Figure 2.16 - Pseudo-3d 3D depth map representation.[53] 

 

The following 3D depth representation techniques are used throughout 

this thesis. Although the use of colour and grayscale 3D depth representation 

methods makes subjective evaluation between state-of-the-art 3D depth 

estimation algorithms easier, the limited angular information between viewpoint 

images recorded by the H3D system makes it tedious to represent depth data in a 

pseudo form. 
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2.2.3. Stereo Correspondence Problem 

The stereo correspondence problem is the process where two or more images of 

a scene are used to estimate the 3D depth information of a scene. The following 

achieved by determining the disparity of matching pixels between the stereo 

viewpoint images.  This problem can be defined or represented in different ways, 

however, in this thesis, the stereo matching problem is defined as a series of 

constraints and presented in subsections 2.2.3.1 to 2.2.3.6. 

 

 
Figure 2.17 - 3D depth estimation framework along with various stereo correspondence 
problems placed at the stage of rectification.  

 
2.2.3.1. Similarity Constraint 

The similarity constraint is the foundation of every 3D depth estimation 

technique, where the correlation between pixels registered on the reference and 

target viewpoints images are estimated. This is executed at the Feature extraction 

stage, enforcing the point that both projections of the same three-dimensional 

entity should have similar properties or attributes; like shapes, colours, sizes, 

vertex and number.  

 

2.2.3.2. Epipolar Geometry Constraint 

Estimation of 3D depth from stereo images require a pixel from one view to match 

against to a pixel on the other view. Due to imaging errors like image misalignment 

and lens distortion, pixels projected onto a reference view is not usually projected 

onto the same horizontal plan onto the target view. In order to reduce the number 

of potential correspondences, the exploitation of additional information of the 

camera position is used, resulting in less computational cost and more reliable 

feature matching. This is known as the Epipolar geometry, and when applied to 

stereo viewpoint images, it is known as image rectification. 

 



 

 32 

2.2.3.3. Uniqueness Constraint 

This restriction applies the condition that a feature from the reference viewpoint 

image has one, and only one, feature related to it on the target viewpoint image. 

This is done to accommodate scenes with the object of similar texture, which leads 

to the possibility of a single feature having more than one match. Viewpoint 

images with occluded areas can further complicate the implementation of this 

restriction as well, resulting in most stereo algorithms working better on well-

textured scenes than scenes with less texture. 

 

2.2.3.4. Positional Order Constraint 

The Positional order restriction implies that on the target viewpoint image, 

features have to appear in the same order as the reference image. Given the 

situation where there is a cross-eyes projection, the disparity between those 

features can be more tedious to estimate. However, most stereo techniques do not 

have this problem, and specifically in the case of the H3D data, where the 

microlens array tightly packed together, prevent cross-eyes projection or 

positional disorder. 

 

2.2.3.5. Disparity Continuity Constraint 

Disparity continuity assumes that changes in the image disparity are smooth, i.e. 

if a disparity map is to be considered reliable, it is presented continuously except 

for expected discontinuities. This principle also appears in different forms and 

sometimes with some small variations, as the case of minimum differential 

disparity [24][25].  

 

2.2.3.6. Structural Relations Constraint 

Structural relations impose that object made of edges, verticals or surfaces with a 

specific structure and geometry arrangement between the elements. 

 

  The stereo matching problem/constraints described above can be applied in 

different orders depending on the application they are used. However, not all the 

restrictions are applied when it comes to the extracting 3D depth information 
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from an H3D image. For example, the positional order restriction would not be 

needed due to the slight pixel shift in perspective between reference and target 

viewpoint images extracted from an H3D image. This is caused by the microlens 

closely placed together. In a typical scenario, the most used H3D restrictions are 

similarity, uniqueness and continuity.   

 

The change in the order of the following constraints listed above, produces two 

typical alternatives, local and global techniques. A detail explanation of the local 

and global depth estimation techniques is presented in sections 2.2.4 and 2.2.5 

below. 

 
2.2.4. Local Depth Estimation Techniques 

Local depth estimation techniques apply constraints on a small number of pixels 

around the pixel been inspected (reference pixel). They are usually efficient but 

sensitive to local ambiguities of the regions (i.e. regions of occlusion or region with 

uniform texture) which are one its drawbacks. However, local depth estimation 

techniques are computationally less demanding and can be grouped as an area-

based technique or feature-based technique  [26][27].  

 

 
Figure 2.18 - A local area and feature-based matching workflow, presenting the difference in 
their matching process. 

 

3D depth estimation techniques that are usually associated with the following 

Feature-based and Area-based local techniques, presented in Figure 2.18 above 

are further explained in sections 2.2.4.1 and 2.2.4.2 below. 
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2.2.4.1. Area-based Matching Technique 

Area-based techniques solve matching problems by using the intensity patterns of 

the neighbourhood of a reference pixel to determine its correlation. It estimates 

the correlation between the distribution of disparity for each pixel in an image 

using a window centred at the reference pixel. A window of the same size centred 

on the target pixel along the epipolar scanline, presented in Figure 2.19 below.  

 
Figure 2.19 - Local similarity measure, where IR(xi,yj) is reference pixel, and IT(xi+d,yj) is the 
target pixel, matched along the epipolar scanline. 

 
The effectiveness of this technique depends largely on the window size taken. It 

can be assumed that the larger the window, the better the outcome. However, the 

larger the window size becomes, the higher its computational cost as well. 

Therefore, the biggest problem of this method is to find the appropriate window 

size that can ensure finding a correspondence between two viewpoint images, 

having in mind that if the window size is too large, it could cause a huge latency to 

the system. Also, if the window size is close to the total image size, it would be 

deriving to the global methods, which were not considered because of their 

computational inefficiency. 

 

A list of commonly used area-based depth estimation techniques is listed below. 
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I) Sum of Absolute Difference (SAD) 

The sum of absolute difference measures the similarity of a pixel from a reference 

image in the target image. By summing the intensity values of window including 

the discrete pixel from the target image and finding the same best match of that 

block in the reference image. Depending on the point in which the best match is 

found, the absolute difference is referred to that discrete pixel’s disparity value. 

The following is defined in Equation (2) below as: 

𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥, 𝑦𝑦,𝑑𝑑) =  � (𝐼𝐼𝑅𝑅(𝑥𝑥,𝑦𝑦) −  𝐼𝐼𝑇𝑇(𝑥𝑥 − 𝑑𝑑,𝑦𝑦))
(𝑥𝑥,𝑦𝑦)∈𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

 (2)           

 

Where, IR(x,y) is the reference image and reference pixel in which its disparity is 

estimated in the target image IT, and d is the disparity value. WINDOW is the pixel 

block containing the reference pixel.  

 

II) Sum of Squared Differences (SSD) 

Similar to the Sum of Absolute Difference (SAD) technique, the Sum of Squared 

Differences is a pixel by pixel similarity measure technique that estimates the sum 

of squared of a window between the target and reference viewpoint images. This 

technique estimates disparity of a pixel by finding it minimal squared value, as 

defined in Equation (3) below, 

 

𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦,𝑑𝑑) =  ��(𝐼𝐼𝑅𝑅(𝑥𝑥,𝑦𝑦) − 𝐼𝐼𝑇𝑇(𝑥𝑥 − 𝑑𝑑,𝑦𝑦))2
𝑁𝑁

𝑦𝑦=0

𝑀𝑀

𝑥𝑥=0

 (3)           

 

M and N is the maximum size of the array, d is the disparity, while x and y are 

values for pixel coordinates for the reference and target viewpoint image, IR and 

IT.  The SSD directly uses the formulation of the sum of square error [28].  

 

III) Birchfield-Tomasi Measure (BT) 

By linearly estimating the interpolated values of a window match and its nearest 

linear neighbouring pixels, the Birchfield-Tomasi dissimilarity measure is 

insensitive to image sampling [29]. However, for this technique to work well, the 
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intensity functions must vary predictably between pixels as long as aliasing does 

not occur. This technique is Equation (4) below, 

𝐶𝐶𝐵𝐵𝐵𝐵(𝑥𝑥𝑅𝑅 ,𝑦𝑦,𝑑𝑑) = 𝑚𝑚𝑚𝑚𝑚𝑚 � min
𝑥𝑥𝑅𝑅−

1
2≤𝑥𝑥≤𝑥𝑥𝑅𝑅+

1
2

�𝐼𝐼𝑅𝑅(𝑥𝑥𝑅𝑅 ,𝑦𝑦) − 𝐼𝐼𝑇𝑇(𝑥𝑥

+ 𝑑𝑑,𝑦𝑦)� , min
𝑥𝑥𝑅𝑅−

1
2≤𝑥𝑥≤𝑥𝑥𝑅𝑅+

1
2

�𝐼𝐼𝑇𝑇(𝑥𝑥𝑅𝑅 + 𝑑𝑑,𝑦𝑦) − 𝐼𝐼𝑅𝑅(𝑥𝑥,𝑦𝑦)��  

(4)           

Where, IR (x, y) and IT (x, y) are the reference and target image viewpoint image 

and respective pixels, and d is the disparity value of the reference pixel. This 

equation is derived with the assumption that the viewpoint images are rectified. 

 

IV) Normalized Cross-Correlation (NCC) 

Normalized cross-correlation (NCC) derives the matching cost between stereo 

viewpoint images using Cauchy Schwarz inequality [30][31]. Technically, this is 

achieved when a feature from a reference image is matched in the target image by 

locating its maximum value in the image matrices. NCC is computationally more 

expensive compared to the SAD and SSD techniques as it is more robust due to its 

involvement of numerous multiplications, division and square root operations. 

This technique is defined in Equation (5) below, 
 

𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥,𝑦𝑦) =  
∑ ∑[𝐼𝐼𝑅𝑅(𝑖𝑖, 𝑗𝑗) ∗ 𝐼𝐼𝑇𝑇(𝑥𝑥 + 𝑖𝑖, 𝑦𝑦 + 𝑖𝑖)]𝑖𝑖,𝑗𝑗∈𝐴𝐴

�∑ ∑ 𝐼𝐼𝑇𝑇2(𝑥𝑥 + 𝑖𝑖,𝑦𝑦 + 𝑖𝑖)𝑖𝑖,𝑗𝑗∈𝐴𝐴 �
1
2

 (5)           

 

Where the x and y variables are shift component that travels along the axis of the 

target viewpoint image, the numerator term defined in Equation (5) is the cross-

correlation between the reference and target viewpoint image. However, the 

cross-correlation alone cannot be used as a similarity measure because it will 

produce false results. Therefore, the denominator term is used as a normalized 

cross-correlation to acquire a correct match.  

 

V) Census Transform (CT) 

Census transform reduces the image intensity composition of an image data into 

binary intensity values depending on the value of the centre pixel [32]. This 
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technique is often used in the stereo vision community as it is not sensitive to 

global radiometric differences, such as global illumination differences [33].   

 
Figure 2.20 - Census transform technique.[63] 

 

The Census transform technique shown in Figure 2.20 above is highly dependent 

on the centre pixels and depending on the window size used could result in high 

computationally cost. 

 

2.2.4.2. Feature-based Matching Techniques  

This group uses some specific features like edges, shapes and curves [34][35][36] 

resulting to the use of a differential operator (typically Laplacian or Laplacian of 

Gaussian, as in [37][38]). Feature-based matching also requires a convolution of a 

minimum of 3x3 to a maximum window size equivalent to the reference and target 

viewpoint image; resulting to an increase in computational load as the size of the 

operator grows. However, these algorithms do not allow real-time 

implementations as oppose to area-based techniques. The main difference being 

feature-based matching techniques require an extra step where images are pre-

processed to extract suitable and reliable features for the matching step (see 

Figure 2.18 above). This pre-processing stage usually extract features from both 

images, resulting in the identification of features of each image. This step is closely 

linked to the matching stage of the respective matching techniques in which it is 

used because, without this step, the technique would not be able to have enough 

information to make an inference and obtain the image correlation.  

 

For feature-based depth estimation, the most widely used features within the 

stereo images are breakpoints, isolated chains of edge points or regions defined 

by borders. Once the important aspects of edges are extracted as shown in Figure 

2.21, the techniques then use arrays of edge points to represent straight segment, 

not straight segments and closed geometric structures, defined or unknown. 
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Figure 2.21 - Edge detections in a feature-based algorithm. [1] 

 

Other primitive regions that can be used in feature-based techniques apart from 

the edges are regions within an image were an area that is typically associated 

with a given surface in the 3D scene is bounded by borders, basically, objects of 

the 3D scene that are made up of well know geometric shapes. 

 

Depending on the matching technique used and the number of object features, an 

additional segmentation step may be necessary. In the segmentation step, 

additional information would be extracted from the known features which are 

calculated based on inferences from known characteristics. Therefore, the 

matching technique that receives the inferred data possesses much more 

information than the technique that works directly on the pixel intensity. A list of 

the commonly used feature extraction techniques in Stereo/Computer vision is 

presented below. 

 

I. Scale Invariant Feature Transform (SIFT) 

SIFT feature extraction technique is insensitive to image rotation, translation, 

scaling and partly robust to illumination changes. This feature is classified as a 

part-based approach [39] and consists of three main steps. First, the Laplacian of 

Gaussian (LoG) filter with different sigma value or kernel size is applied on 

multiple copies of the same local area in which a feature is examined within the 

stereo viewpoint images. However, finding the right sigma value when using the 

Laplacian of Gaussian (LoG) can be challenging as there is no true way of deriving 

the best value suitable for the local feature scales. Secondly, the calculation of 

Difference of Gaussians to locate the extrema within the localised area. Finally, the 

maxima along edges within the local area are suppressed to reduce the possibility 
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of ambiguous matches [40]. Once this is completed, reliable features suitable for 

disparity estimation is matched. 

 

II. Speeded-Up Robust Gradients (SURF) 

SURF feature descriptors share similar properties as SIFT descriptors, where 

mixing of crudely localised information and distribution of gradient related 

features are used for feature extraction. Specifically detecting feature points by 

the use of integer approximation of the determinant of Hessian blob detector [41]. 

The main difference between the two is that the SURF descriptors computationally 

cost less compared to SIFT descriptors due to its less complex nature. 

 

III. Histogram of Oriented Gradients (HoG) 

Histogram of Oriented Gradients (HoG) is, by default, a global feature detector. 

However, the same technique can be optimised to work with local 3D depth 

estimation algorithms. The HoG technique consists of the following steps, i) 

computing the centred horizontal and vertical gradients with no smoothing, 

followed by the computation of gradient orientation and magnitudes. In cases of 

colour images, only one colour channel gradient and magnitude are computed. 

HoG descriptors are sensitive to occlusion and are commonly used for human 

detection [42].  

 

2.2.5. Global Depth Estimation Techniques 

Global depth techniques estimate 3D depth information from images by applying 

restrictions on the entire image, they are usually less sensitive to local 

peculiarities, and they add support to regions that are difficult to study in a local 

way, for instance, occluded regions. To overcome such ambiguities, restriction 

terms or functions are implemented to minimises the global cost or energy for 

more reliable estimation of 3D depth maps. This technique is also referred to as 

an energy minimisation problem [43][33][44][45][46]. The following is defined in 

Equation (6) as: 

 𝐸𝐸(𝑓𝑓) = 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑓𝑓) + 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜(𝑓𝑓) + 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑓𝑓) (6) 
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Where the data energy function 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑓𝑓) , measures the agreement or 

disagreement between pixels, based on their assumed disparities. 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑓𝑓)  is 

defined below, imposing a penalty based on the intensity differences of matching 

pixels p and q. 

 

 

                            
(7) 

The smoothness energy function 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑓𝑓) measures the disparity smoothness 

between pixel pairs. This is enforced when pixels of the same disparity segment 

have relatively close disparities or minor disparity difference between them, 

keeping a consistent change between them. This is defined below as:  

 

 

  

(8) 

The presence of occlusions makes it more complex to accurately enforce the 

smoothing function above and relying on the data energy function alone will not 

improve 3D depth results. In order to rectify this issue, the occlusion energy 

function, 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜(𝑓𝑓) is enforced, where pixels are modified to present pairs of pixels 

which potentially correspond. This is defined below as:  

 

 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜 =  � 𝐶𝐶𝑝𝑝
𝑝𝑝∈𝐼𝐼1∪𝐼𝐼2

∙ 𝑇𝑇(𝑝𝑝 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) ( 9) 

Where a penalty term is imposed on a specific pixel p in the stereo image pair I1 or 

I2 is occluded, and T(.) is the indication function. The occlusion term above could 

lead to an excess of regularisation, and the penalty function or cost of assigning 

different disparity to neighbouring pixels is not always convex, resulting in the 

estimation of relative disparities. 

 

Although global depth estimation techniques often produce dense 3D depth maps, 

they tend to be computationally expensive and not suitable for real-time 3D depth 

applications. Techniques such as the Sum of Absolute Differences (SAD), Sum of 

Squared Differences (SSD) and Census Transform (CT) can be optimised to 

perform as a semi-global 3D depth estimation technique by the introduction of a 
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3D depth optimisation stage or smoothness function to refine initially estimated 

3D depth map. 

 

Formulations and graph models associated with Global depth estimation 

techniques are presented in section 2.2.5.1 below. 

 

2.2.5.1. Graph Cut Formulations and Models 

Graph Cuts formulations take into consideration the dimensional nature of the 

stereo correspondence problem. The dynamic use of graph theory in solving this 

problem was initially proposed by Roy and Cox 1998 [47], then reformulated by 

Veksler 1999 [48] in which the stereo correspondence problem is considered as 

an energy minimisation problem. This was followed by the introduction of an 

iterative graph-cut algorithm by Kolmogorov and Zabih in 2001, 2002a, and 

2002b [49][50][51][52]. Boykov et al. 1998 & 1999 also proposed another graph 

cut technique that is formulated by a Markov Random Field (MRF)[53], accepting 

nonlinear penalties for discontinuities making its estimate more precise disparity 

maps near object edges or occlusion edges. The use of Markov random field (MRF) 

or different variants of MRFs such as loopy-BP, iterative BP, Markov Belief 

Propagation (BP) can be associated with the global 3D depth estimation structure 

presented in Equation (6) above[54][55]. The workflow of the mentioned graph 

cut formation is presented in Figure 2.22 below, where information is 

communicated between nodes, and the cost is represented as the weight of their 

edge. This group of techniques splits and smooths the image to match disparity 

regions, estimating 3D depth information in the process. 

 
Figure 2.22 - Belief propagation (BP) model, where computing of new incoming information 
to neighbouring nodes is represented by the yellow arrow from information gotten from the 
node with the green arrow.[44]  
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2.2.5.2. Dynamic Programming Techniques 

3D depth estimation or matching techniques classified under dynamic 

programming do not have a straightforward technique. As techniques under this 

group use specialised techniques that changes drastically depending on the 3D 

depth problem. 3D depth from defocus and 3D depth from a single 2D image often 

fall into this group. 3D depth from defocus takes into account the focal properties 

of its image data to estimate 3D depth, while 3D depth from single 2D images takes 

into account the monocular cues in the VI to estimate 3D depth information. 

 

I) 3D Depth from Defocus  

3D depth from defocus (DD) was initially used to estimate 3D depth in the early 

1980s [56][57], but due to change in imaging technologies and their setting, 

various DD techniques have been suggested [58][21][59][60][61]. This approach 

to 3D depth estimation has received renewed attention in recent years. The 

method of estimation requires scene points that lie on a focal plane located at a 

certain distance from the lens be correctly focused onto the sensor, while points 

at greater distances or further away from the imaging sensor will appear 

increasingly blurred due to defocus. The traditional method of achieving this is by 

the capture of two images at camera settings with different focusing 

characteristics. One can then infer the 3D depth of each point in the scene from 

their comparative focus. 3D depth from defocus is more robust to occlusion 

problems compared to the shape reconstruction techniques. 

 

II) 3D depth from a Singe Monocular View 

3D depth from a single monocular view depends heavily on image segmentation 

and the monocular 3D depth cues found within the image view. Segmentation is 

based on edges, hue and saturation [20]. This technique often relies on known 

object structures that are made up of shaped like squares, circles and cylinders. 

This is often the case when estimating the 3D depth information of buildings with 

a single image. Other single image techniques rely on supervised learning 

[62][63], where training image data of buildings, trees, sidewalks, and various 
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structured and unstructured environments are collected. Supervised learning is 

then used to predict the value of the 3D depth map as the function of the image. 

 

2.3. Investigation of Learning Based Image Up-sampling Techniques 

This section presents a brief overview of current learning-based single image up-

sampling networks that inspired the framework of the proposed learning-based 

solution presented in chapter three. 

 

Single image super resolution approaches are mainly classified either as 

interpolation based, reconstruction based and lastly learning based techniques.  

Interpolation based techniques up-samples images by weighting the value of 

neighbouring pixels. The bicubic technique being the most accurate out of the 

interpolation-based technique.  Reconstruction based techniques solve only 

specific super-resolution problem, therefore lacking generalisation 

accommodation to other domains [64]. Finally, learning-based techniques which 

are mostly populated with machine learning techniques are currently the most 

robust image up-sampling technique. Learning-based techniques analyse the 

visual cues and learn the nonlinear mapping between low-resolution images and 

super-resolution images [65]. As a result, this class technique is investigated and 

applied to Holoscopic 3D image data. 

 

Deep learning is an aspect of machine learning that is based on principles of deep 

neural networks [66]. Originally used as classifiers and trained using pairs of 

labels [66], this class of technique has been used in across image processing 

domains such object recognition, natural language processing, gesture recognition 

and computer vision [67][68]. The main aim of deep-learning techniques is to 

efficiently train classifiers to generalise unnoticed data samples, making it one of 

the major advantages of deep-learning techniques over other machine learning 

techniques, due to its handling and generalisation capability of unstructured data.  

Due to its high success, deep learning has been implemented for other applications 

such as time series prediction [69].  
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Single Image Super-Resolution (SISR) is a class of image up-sampling technique 

that aims to increase the resolution of low-resolution images (LR) to higher 

resolution images (HR) without losing the image's structural information and its 

high-frequency details. Other SR techniques such as legacy have several 

limitations concerning the irregularities of their LR-HR mapping and the 

inefficiency in handling a large amount of data. However, deep-learning-based 

techniques are proven in the mentioned area and continue to maintain their high 

standard of modelling due to their high-level ability to learn abstractions from 

training data [70]. 

 

Before presenting the framework for SR Holoscopic 3D data, a brief investigation 

of other deep-learning techniques follows. 

 

2.3.1. State-of-the-Art Super Resolution Deep-learning Networks 

I) SRCNN (Image Super-Resolution Using Deep Convolutional 

Networks) 

By learning an end-to-end mapping between low/high-resolution images, a deep 

convolutional neural network (CNN) proposed by Chao Dong et al. [65] takes the 

low-resolution image as input data and outputs a high-resolution one. Let the 

high-resolution reference image be donated as X and the subject low-resolution 

test image donated as Y, is up-sampled using an interpolation-based technique 

such as bicubic interpolation to match the reference image size X. The main goal 

is then recovering an image for F(Y) to match the same spatial and feature quality 

of the reference X. This is achieved by the learned mapping F between Y and X.  

This mapping consists of the following three operations: 

i. Patch extraction and representation: this operation extracts overlapping 

matches from the low-resolution image denoted as Y and represents each 

patch as a high dimensional vector that is made up of a set of feature maps, 

which equal to the dimensionality of the vectors.  

ii. Nonlinear mapping: this is a nonlinear operation that maps each high-

dimensional vector onto another high-dimensional vector, as these vectors 

comprise another set of the feature map, where each mapped vector is 

conceptually the representation of a high-resolution patch. 
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iii. Reconstruction: this operation aggregates the high-resolution patch 

representation to reconstruct the final high-resolution image. The 

resulting image is expected to have similar qualities to the ground truth X. 

The following operations form the convolutional neural network presented in 

Figure 2.23, where the overview of the network is depicted. 

 

 
Figure 2.23 – SRCNN work flow, where the first convolutional layer of the SRCNN extracts a 
set of feature maps from  low-resolution image Y. The second layer maps extract features 
nonlinearly to high-resolution patches. Finally, the last layer combines the predictions within 
a spatial neighbourhood to produce the high-resolution image F(Y).[65]   

 

II) VDSR (Accurate Image Super-Resolution Using Very Deep 

Convolutional Networks) 

VDSR single super-resolution(SR) image using very deep convolution networks is 

inspired by Simonyan and Zisserman [71] and proposed by Kim et al. [72] where 

the technique uses a very deep convolutional network to reproduce single super-

resolution images (SSRI). This technique is regarded as deep due to the 

involvement of up to 20 weigh layers. Apart from the first and last layers, the used 

layers have the same 64 filters of size 3 x 3 x 64, where a single filter operates on 

a 3x3 spatial area across 64 channels or feature maps. The first layer operates on 

the input image data while the last layer used for reconstruction of SR image, 

taking in an interpolated low-resolution image as input data, then predicting 

image details.  However, with very deep layers, convergence speed becomes a 

critical problem at the data training stage. The following issue is resolved by 

feeding only residual data to the network to learn, outperforming networks like 

SRCNN. In residual-learning, instead of using the exact copy of the input that goes 

through all layers until it reaches the output layer resulting in an end-to-end 
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relation requiring very long-term memory often associated with SRCNN networks. 

The use of residual-learning to solve the vanishing gradient problem [73] is 

essential, where residual image r = y - x, where most values are likely to be zero 

or small as the input and output image are mostly similar. The VDSR network 

configuration is presented in Figure 2.24 below. 

 
Figure 2.24 – VDSR network structure. Where an interpolated low-resolution image (ILR) 
goes through hidden layers to transform into a high-resolution (HR) image. The following 
network uses 64 filers for each convolutional layer, and some sample feature maps are drawn 
for visualization. Most features, after applying rectified linear units (ReLu) are zero. [72] 

 

III) ESPCN (Real-Time Single Image and Video Super-Resolution Using an 

Efficient Sub-Pixel Convolutional Neural Network) 

Real-time single image and video super-resolution using an efficient sub-pixel 

convolutional neural network (ESPCN) are proposed by Wenzhe Shi et al. [74]. 

This network is the first to compute super-resolution videos of 1080p in real-time 

using a single K2 GPU. This is achieved by the extraction of feature maps in LR 

space and the introduction of an efficient sub-pixel convolution layer which learns 

an array of upscaling filters to upscale the final LR feature maps into the HR 

output. The ESPCN configuration is presented in Figure 2.25 below. 
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Figure 2.25 – Architecture of the efficient sub-pixel convolutional neural network (ESPCN), 
with two layers for feature maps extraction, and a subpixel layer that aggregates the feature 
maps from LR space and builds the SR image in a single step. [74] 

 

On like the SRCNN and VDSR convolutional neural networks, the SISR estimates 

an HR image given an LR image downscaled from the corresponding HR image, 

instead of the usual upscaling to match the HR. The subsampling operation 

reproduces LR image from HR image by first convolving the HR image using a 

Gaussian filter (simulating the camera's point spread function) then subsampling 

the image by a factor r. The following factor can also be referred to as the upscaling 

ratio. The first layer of the convolutional neural network is applied directly to the 

LR image. A sub-pixel convolution layer then upscales the LR feature maps to 

produce HR image. 

 
IV) RDN (Residual Dense Network for Image Super-Resolution) 

As most very deep convolutional neural network based on SR models do not make 

full use of hierarchical features from the original low-resolution (LR) images, 

thereby achieving to relatively low performance. A novel residual dense network 

(RDN) proposed by Yulun Zhang et al. [75] is used to address the following 

problem in image SR. The configuration of this RDN network is presented in Figure 

2.26 below.   

 
Figure 2.26 – Architecture of the proposed residual dense network (RDN) by Yulun et al. [75] 
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The proposed network fully exploits the hierarchical feature from all the 

convolutional layers. As presented in Figure 3.20 above, the RDN network mainly 

consists of four stages: shallow feature extraction net (SFENet), residual dense 

blocks (RDB), dense feature fusion (DFF), and lastly the up-sampling net (UPNet). 

The RDN network uses two convolutional layers to extract shallow features, 

where the first layer extract features from the LR input used for further shallow 

feature extraction and global residual learning. The second convolution layer 

extracts shallow features used as input for residual dense blocks (RDB). 

Specifically, the RDB is used to extract abundant local features through dense 

connected convolutional layers. The RDB further accommodates direct 

connections from the state of preceding RDB to all the layers of current RDB, 

resulting in contiguous memory (CM) mechanism. The fused local features in RDB 

is used to adaptively learn more effective features from previous and current local 

features and stabilizes the training of a wider network. After fully obtaining dense 

local features, the use of a global feature fusion to jointly and adaptively learn 

global hierarchical features is executed in a holistic way.   

 
V) WDSR (Wide Activation for Efficient and Accurate Image Super-

Resolution) 

The expansion of features before ReLU activation layer without computational 

overhead results to better performance for single image super-resolution (SISR), 

when the same parameters and computational budgets are the same. The 

resulting WDSR network proposed by Jiahui Yu et al. [76] widens the slim identity 

mapping pathway to (2x to 4x) channels before activation in each residual block. 

This can be further widened to (6x to 9x) without computational overhead by the 

introduction of linear low-rank convolution into SR networks and achieving better 

accuracy-efficiency trade-offs.  The configuration of the WDSR network is 

presented in Figure 2.27 below.  
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Figure 2.27 – Configuration of a residual block (left) widened before activation (middle) and 
further extended by the introduction of linear low-rank convolution into the SR network 
(right).[76] 

 
2.4. H3D Evaluation Matric: PSNR and SSIM 

This section presents the two image quality assessment techniques, namely Peak 

Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) [77], used in 

evaluation of image up-sampling techniques that where investigated to in order 

to improve the Holoscopic content adaptation technique. This is because any 

processing applied on an image may result to important loss of information or 

quality. In the case of depth estimation, this important information could be an 

important feature that might result to better feature matching.  

Image evaluation techniques are classified either as objective or subjective based 

techniques [78][79]. Subject based image evaluation are based on human 

judgement without any explicit numerical criteria [80].  Object based image 

evaluation techniques require explicit numerical criteria and image reference or 

ground truths to evaluate an image[81][82]. The PSNR and SSIM techniques 

presented in this section is classified under this category. Object image evaluation 

techniques are mainly based on human judgement and require not explicit 

reference point. 

The use of the objective based image evaluation techniques mentioned below, to 

analyse current interpolation techniques currently used for H3D up-sampling is 

key in the determination of the trade-off between angular and spatial information, 

details of the resulting evaluation presented in chapter three.  

Given a reference image r and a target image t, both of size MxN, the PSNR between 

the two images r and t can be defined as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑟𝑟, 𝑡𝑡) = 10𝑙𝑙𝑙𝑙𝑙𝑙10(
2552

𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟, 𝑡𝑡)
) (10) 
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where 

 
𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟, 𝑡𝑡) =

1
𝑀𝑀𝑀𝑀

��(𝑟𝑟𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑖𝑖𝑖𝑖)2
𝑁𝑁

𝑗𝑗=1

𝑀𝑀

𝑖𝑖=1

 
 (11) 

As the PSNR value approaches infinity the MSE approaches zero, the means that 

the higher PSNR value provides a higher image quality. Inversely, small PSNR 

values implies high numerical differences between images.   

The SSIM developed by Wang et al. [83] is a popular image quality metric used to 

measure the similarity between two images and considered to be correlated with 

the quality perception of the human visual system (HVS). On like the PSNR, where 

traditional error summation techniques are employed, the SSIM is designed as a 

combination of the three factors that are loss of correlation, luminance distortion 

and contrast distortion. The SSIM is defined as: 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑟𝑟, 𝑡𝑡) = 𝑙𝑙(𝑟𝑟, 𝑡𝑡)𝑐𝑐(𝑟𝑟, 𝑡𝑡)𝑠𝑠(𝑟𝑟, 𝑡𝑡) (12) 

where 

 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑙𝑙(𝑟𝑟, 𝑡𝑡) =

2𝜇𝜇𝑟𝑟𝜇𝜇𝑡𝑡 + 𝐶𝐶1
𝜇𝜇𝑟𝑟2 + 𝜇𝜇𝑡𝑡2 + 𝐶𝐶1

𝑐𝑐(𝑟𝑟, 𝑡𝑡) =
2𝜎𝜎𝑟𝑟𝜎𝜎𝑡𝑡 + 𝐶𝐶2
𝜎𝜎𝑟𝑟2 + 𝜎𝜎𝑡𝑡2 + 𝐶𝐶2

𝑠𝑠(𝑟𝑟, 𝑡𝑡) =
𝜎𝜎𝑟𝑟𝑟𝑟 + 𝐶𝐶3
𝜎𝜎𝑟𝑟𝜎𝜎𝑡𝑡 + 𝐶𝐶3

 

 (13) 

The first term 𝑙𝑙(𝑟𝑟, 𝑡𝑡) , in Equation (13) is the luminance similarity measure 

function, estimating the closeness of given image mean luminance (𝜇𝜇𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝜇𝜇𝑡𝑡). 

The following factor is maximal and equal to 1 only if 𝜇𝜇𝑟𝑟 =  𝜇𝜇𝑡𝑡. The second term 

𝑐𝑐(𝑟𝑟, 𝑡𝑡), is the contrast similarity measure, estimating the closeness of the contrast 

or the standard deviation (𝜎𝜎𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝑡𝑡)  of the reference (r) and target image (t). 

The following is maximal and equal to 1 only if 𝜎𝜎𝑟𝑟 =  𝜎𝜎𝑡𝑡. The last term 𝑠𝑠(𝑟𝑟, 𝑡𝑡), is the 

structure similarity measure between given images r and t, where 𝜎𝜎𝑟𝑟𝑟𝑟  is the 

covariance between the given images. A result value of 0 means no correlation 

between images, and 1 means 𝑟𝑟 = 𝑡𝑡 , where [0,1] are the positive values of the 
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SSIM index. The position constants, 𝐶𝐶1,𝐶𝐶2 𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶3 , in equation (13) are used to 

avoid a null denominator. 

As there are no exact rules for selection of the SSIM or PSNR when 

evaluation of images quality, both methods are used in this project as they 

together evaluate different aspects and feature of an image.    

 

2.5. Summary 

The following chapter is made up of four sections, where the principles of existing 

3D system, 3D depth estimation techniques, learning-based up-sampling 

techniques and image evaluation metric are presented. 

 

The 3D systems presented range from Active, Stereo/Multiview and Light field 

imaging system. The principles of the Active, Stereo and Multiview techniques are 

briefly discussed, the light-field imaging systems and its imaging principle is 

discussed in greater detail. The first section then concludes with the 

comprehensive examination of the H3D imaging system used in this project, 

where the direct comparison of the Lytro imaging system and Brunel H3D imaging 

system is presented. The Brunel Holoscopic 3D imaging system is used as the 

primary research 3D imagining system for recoding 3D image data due to cost-

effective reasons, bigger recording sensor, easy accessibility its raw 3D image 

data, and easy ability to interchange micro lens arrays amongst a host of other 

reasons. However, as H3D imaging has not yet reached full maturity, there is a lack 

of a pre-processing platform for H3D data. Therefore, a detail investigation and 

evaluation of current processing H3D techniques is conducted, followed by the 

design and development of efficient pre-processing H3D techniques, all presented 

in chapter three. 

 

Documentation of state-of-the art depth estimation technique is documented 

where the core principle and reasoning behind each technique is documented. 

This is done to identify the most suitable depth estimation techniques for the 

Holoscopic 3D image. Due to the one of the Holoscopic 3D image main drawbacks, 

which is its inability to extrapolate high resolution viewpoint images, a survey of 
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deep learning-based super resolution techniques is explored. Concluding the 

chapter with state-of-the-art image evaluation metrics used in this project.  
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CHAPTER 3: HOLOSCOPIC 3D IMAGE PRE-PROCESSING  

This chapter presents used and newly developed Holoscopic 3D imaging pre-

processing techniques needed for H3D depth estimation. The motivation has been 

to implement scalable pre-processing techniques to address drawbacks 

associated with H3D data that affect H3D depth estimation. The chapter layout is 

as follows: 3.1 Introduction, 3.2 Distortion Error Correction, 3.3 Optimised 

Viewpoint Extraction Technique, 3.4 Evaluation of State-of-the-art Interpolation 

Techniques, 3.5 Proposed Deep-learning Framework for H3D Up-sampling and 

3.6 Summary. 
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3.1. Introduction 

3D depth estimation from a Holoscopic 3D image is a new research area. As a 

result, it has no standard 3D depth estimation framework. Specifically, there is no 

technique to extract 3D depth information directly from a Holoscopic 3D image 

apart from the innovative Direct 3D depth from Holoscopic (DDH) presented in 

chapter five. Current 3D depth estimation frameworks rely heavily on various pre-

processing techniques to convert H3D images into stereo viewpoint images before 

3D depth estimation. This chapter presents the proposed pre-processing 

techniques specifically developed for effective conversion of H3D image data to 

stereo image data. This chapter also evaluates current H3D pre-processing 

techniques and compares them against the proposed techniques presented in this 

chapter. The following make up the first and second block of this research 

contributions, shown in Figure 3.1 below, highlighted in red.  

 

 
Figure 3.1 – The research contributions of this chapter, highlighted in red. 

 

The following research contributions come as a result of tackling Holoscopic 3D 

imaging system-based errors caused by its unique image registration process. 

These image registration-based errors sometimes have an irreversible negative 

effect on estimated 3D depth maps. They are also extremely costly to 

accommodate during 3D depth estimation, should the proposed H3D image pre-

processing techniques be ignored. 
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The Holoscopic 3D image registration principle is based on light diffraction, as 

shown in Figure 3.2 below. 

 

 
Figure 3.2 – H3D image registration principle, where the viewpoint image (Xvp1 … vp3) of object 
X is recorded by an H3D imaging sensor. Highlighting different refocusing plane that can be 
accessed in post-processing.   

 

Figure 3.2 above presents the registration of light rays reflected off “object X”. The 

reflected light is diffracted by the prime lens and then individually recorded by the 

MLA, resulting in the registration of multiple viewpoint images onto the imaging 

sensor of the H3D imaging system. Figure 3.2 also presents the focus plane that 

can be achieved computationally by the interpolation of the diffracted light rays, 

this is one of the unique abilities of the H3D imaging system and is fully utilized in 

the proposed H3D depth from disparity framework in Chapter four. The 

diffraction of light results to the three major drawbacks presented in Figure 3.3 

below. These drawbacks inspired the design and development of the following 

pre-processing techniques presented in this chapter. 

 

 
Figure 3.3 – Classification of H3D pixel registration errors that affect the integrity and 
increases the computational cost of estimating 3D depth information from H3D data.  
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The three main errors caused by the H3D system registration principle is 

presented in Figure 3.3 above. The first category, referred to as Distortion errors, 

is caused by all the lenses of the H3D imaging system. This class of errors cause 

the diffracted light to be registered at slightly different positions than intended on 

the H3D image sensor. This error can make the viewpoint extraction process more 

complex and sometimes impossible to locate all relating pixels needed to 

reconstruct a viewpoint image.  However, existing techniques for reducing the 

amount of lens distortion errors presented in this chapter is incorporated in the 

HCA workflow presented in chapter four. The second class of error revolve around 

the bases of extracting reliable viewpoint images as well. Due to the current 2D 

image format, the H3D image is saved as, the extraction of viewpoint images is 

computationally expensive, especially when the complexity of the H3D image data 

increases. However, the proposed multi-layer H3D image encoding help reduces 

the computational cost of extracting viewpoint images by 95%. The multi-layer 

encoding of the H3D image also aids the innovative Direct depth from Holoscopic 

(DDH) technique, as the location of EIs is clearly labelled. The third and final class 

of errors in the "Image up-sampling errors", which is a result of the current H3D 

imaging systems inability to record high-resolution viewpoint images. By up-

sampling the Holoscopic 3D image or viewpoint image used for 3D depth 

estimation, unwanted artefact or noise is introduced as this can affect the 

reliability of resulting 3D depth maps.  The first and second classes of error can be 

seen as low-level errors, but the third is a high-level error with leads to the 

detailed analysis of current interpolation-based techniques to deduce the rate at 

which noise is introduced into an extracted viewpoint image — the result of the 

following investigation leading to the proposal of a trade-off between angular and 

spatial resolution, and the design and suggestion of using learning-based 

networks to up-sample H3D data. 

 

Before presenting the Holoscopic processing techniques needed for adaptation of 

3D images to stereo 2D viewpoint images, the following scene preparation is to be 

considered and met. 

i. Object distance: the object distance is essential as this influences the 

disparity size between the micro lens array. 
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ii. Lighting: the light has to be adequate enough for enabling the registration 

of reliable features. However, some low lighting images can also be 

recorded as it is easier to improve the overall illumination of medium-light 

images compared to overexposed images. 

iii. Aperture size: the size of the square aperture also works in controlling the 

amount of light that is exposed to the H3D sensor, the right amount of light 

helps prevent ghosting or overlapping of elemental images been recorded. 

 

3.2. Distortion Error Correction 

Distortion errors are a result of the diffraction of light that passes through the 

Holoscopic 3D image camera lenses. The distortion errors associated with the 

H3D image data are listed below. 

 

I. Barrel distortions:  

This error occurs because the image captured is been fitted into a compact state. 

The error is most noticeable at the edges of the image and decreased as you draw 

closer to the centre, as shown in Figure 3.4 below. The barrel lens distortion error 

is easy to notice in an H3D image as one can track the borderlines that separate 

the array of EIs.  

 
(a) Undistorted view………………..……. (b) Barrel distortion view…. 

Figure 3.4 – Barrel lens distortion effect often found in images. 

 
II. Dark Moiré effect:  

This occurs when a dark borderline is visible around the edges of the acquired 

H3D image, known as the "dark moiré effect" or vingnetting. This is as a result of 

the lack of light and the overall micro lens array size being too small to occupy the 
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whole imaging sensor, this highlighted in Figure 3.5 below. When this occurs, the 

unwanted area of the image is cropped out.  

 

 
Figure 3.5 – Dark moiré effect usually found at the corner or edges of images. 

 

The mentioned distortion errors above usually result in the mismatch of 

elemental images as well as the misplacement of viewpoint images. The following 

distortion can be corrected with two techniques. The first is the use of an advanced 

photo editing software such as Photoshop. This software has a built-in function 

that can automatically correct lens distortion, given the appropriate parameter. 

The second is the use of MATLAB lens correction function with the use of 

checkerboard images [84][85]. Subsection 3.2.1 below presents the principle 

behind the two motioned techniques used in the correction of lens-related errors. 

 
3.2.1. H3D Distortion Minimization Techniques 

I. Checkerboard technique 

The popular checkerboard camera calibration technique [84][85] consists of the 

analysis of different checkerboard images to estimate the extrinsic parameters of 

an imaging system, shown in Figure 3.6 below. This technique of camera 

calibration is mostly used on stereo imaging systems and can be used not only to 

resolve distortion errors but also used to enforce the Epipolar constraint. 
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Figure 3.6 – Checkerboard distortion correction technique.[95][96] 

 
II. Grid board technique 

The Grid board technique also found in Photoshop corrects lens distortion errors 

by using a grid formulated based on the micro lens array and lens aperture 

segmentation grid.  This grid is superimposed on the entire H3D image to skew 

the H3D image in such a way the H3D image grid and the imposed grid align 

uniformly. The grid-based technique is shown in Figure 3.7 below.  

 

 
Figure 3.7 – Grid based distortion correction technique.  

 

As mentioned earlier, the H3D image has been corrected of lens distortion by 

slight skew and transformation, to fix its distortion error. This technique is 

computationally less expensive and is easily incorporated in the proposed H3D 
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depth estimation frameworks. Secondly, the PDV can also be used (should you 

skip the lens correction stage) later as a thresh hold to optimize the viewpoint 

extraction algorithm as it is extremely difficult to totally eliminate the distortions 

caused by the Holoscopic 3D image system lenses. Viewpoint images and their 

surrounding neighbours share similar PDV, which can be used to extracts accurate 

views without the need for high accuracy lens corrections. Effects of the lens 

distortion error before and after correction is presented in Figure 3.8 below. 

 

  
(a) Before lens error correction (b) After lens error correction 

Figure 3.8 – Viewpoint image extracted from H3D image before distortion correction  in (a) 
and after distortion correction  in (b).  

 
3.3. Optimised Viewpoint Extraction Technique 

Viewpoint extraction from a Holoscopic 3D image is a tedious process. It consists 

of the selection of various pixels from multiple EIs to reconstruct a viewpoint 

image. This is done because a viewpoint ray is usually split into multiple rays and 

recorded by the micro lens array. Current H3D image can be represented as H3DI 

= [H3DI (x, y)] where x and y are the horizontal and vertical positions of the H3D 

image pixels, shown in Figure 3.9 below. 

 
Figure 3.9 – H3D viewpoint extraction process. Producing viewpoint images of size equal to 
the number of Elemental images (EI). 
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Extraction of a viewpoint image from an H3D image, requires constant updating 

of pixel positional values due to the current 2D representation of the Holoscopic 

3D image, resulting in more computational cost. The current viewpoint extraction 

process is defined in Equation (14) below, 
 

 
𝑉𝑉𝑉𝑉(𝑥𝑥,𝑦𝑦) =  ��𝐻𝐻3𝐷𝐷𝐷𝐷𝑘𝑘,𝑙𝑙(𝑥𝑥 + 𝑀𝑀,𝑦𝑦 + 𝑁𝑁)

𝐿𝐿

𝑙𝑙=1

𝐾𝐾

𝑘𝑘=1

 

 

(14) 

Where x and y represent the viewpoint image location to be extracted from the 

Holoscopic 3D image (H3DI), while M and N are constantly updated variables that 

ensures the selection of all relating pixel associated with the to be extracted 

viewpoint image specified VI(x,y). As mentioned earlier, this techniques pixel 

updating cost compounds to cause high computation cost when the complexity 

H3D image increases. Specifically, when a large number of MLA is used for H3D 

data acquisition. 

 

In order to solve the above problem and make the viewpoint extraction process 

more efficient and scalable, the multi-layer Holoscopic 3D image encoding system 

is proposed, relabelling the current H3D image to a 5D structure. 

 

3.3.1. Multi-layer H3D Image Encoding for Efficient Viewpoint Extraction 

As mentioned above the extraction of viewpoint images from an H3D image is a 

costly and tedious task, especially when the complexity of the H3D image is greatly 

increased. To reduce the computational cost that would have been gained if the 

encoding process is ignored, the conversion of the H3D image to a 5D Metrix is 

key. This Metrix reflects the actual structure of the H3D image. The extraction of 

stereo viewpoint image from the encoded H3D image improves computational 

efficiency due to the labelling all EIs that make up the H3D image, presented in 

Figure 3.10 below.  This, in turn, reduces to overall computation cost for 

estimating H3D depth from disparity. 
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Figure 3.10 - Omnidirectional H3D image and multi-layer structural composition. 

 

Figure 3.10 above reflects the actual structure of an H3D image, represented as 

𝐻𝐻3𝐷𝐷𝐷𝐷 = [𝑚𝑚,𝑛𝑛, 𝑖𝑖, 𝑗𝑗, : ] , where the horizontal and vertical coordinates of the EI, 

viewpoint images and their RGB are all labelled. This multi-layer encoding system 

is more convenient for image processing purposes. It reduces the computational 

cost needed in the execution of H3D depth estimation formulations presented in 

chapter four and five. Equation (15) below is formulated to extract viewpoint 

images from this multi-layer H3D image format, as pixels at same location in each 

EI is selected to make up a viewpoint image.  
 

 
𝑉𝑉𝑉𝑉(𝑥𝑥,𝑦𝑦) = ��𝐸𝐸𝐸𝐸𝑘𝑘,𝑙𝑙(𝑥𝑥,𝑦𝑦)

𝐿𝐿

𝑙𝑙=1

𝐾𝐾

𝑘𝑘=1

 

 

(15) 

Where VI (x, y) is the coordinate of the viewpoint image to be extracted from the 

array of elemental images (EIk, l).   

 

The cost of extracting VI using the technique presented in Equation (14) in 

comparison to the optimised technique represented in Equation (15) is presented 

below in Figure 3.12. However, Synthetic H3D images are used in testing the 

efficiency of both viewpoint extraction techniques presented in Equations (14) 

and (15). The SH3DIs are computationally generated in the Persistence of Vision 

Ray Tracer software, referred to as POV-RAY, which is written in C++ and 
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developed by the POV-Team  [86]. The use of POV-RAY serves as a cost-effective 

means of generating H3D data with different MLA specifications.  

 

 
(a) H3D image recorded with a 79x53 MLA. (Low complexity) 

 
(b) H3D image recorded with a 397x265 MLA. (High Complexity) 

Figure 3.11 – Synthetic Holoscopic 3D image data set used for evaluating the optimized 
viewpoint extraction technique against the previous viewpoint extraction technique. 

 
Figure 3.11 above presents the low and high complexity H3D data set used to test 

the scalability of the current and new viewpoint extraction techniques mentioned 

earlier.  
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Figure 3.12 – Result indicating how well the optimised viewpoint extraction technique copes 
with complex H3D data compared to previous viewpoint extraction techniques. 

 

Figure 3.12 indicates how well the new optimised viewpoint extraction technique 

presented Equation (15) scales when presented with complex H3D data, unlike 

the current viewpoint extraction technique represented Equation (14). However, 

Equation (14) and Equations (15) above presents the extraction of viewpoint 

images without any form of image up-sampling or interpolation.  

 

To extract reliable viewpoint images with high spatial resolution for H3D depth 

estimation. Current up-sampling techniques are evaluated using industrial 

standard image quality assessment matrix PSNR and SSIM. The results from the 

evaluating led to the identification of the optimal trade-off between angular and 

spatial information and the proposal of a deep-learning-based H3D image up-

sampling technique. 

 
3.4. Evaluation of Current State-of-the-art Interpolation Techniques 

Interpolation is the process of up-sampling or down-sampling an image from one 

resolution to the other without losing essential information by applying 

approximating continues functions on discrete samples [87].   
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Figure 3.13 – Interpolation based image up-sampling principle. 

 

Figure 3.13 above presents the basic concept behind image interpolation (up-

sampling), where discrete pixels are interpolated to make up newly introduced 

pixels.  

 

As the low-resolution problem is a significant limitation that affects the efficient 

estimation of depth information from an H3D image, the consideration of the 

optimal trade-off between angular and spatial resolution helps improve VI quality 

by increasing the default H3D image size and reducing the scaling factor. This 

section presents the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity 

Index (SSIM) [77] evaluation result of various interpolation techniques used in up-

sampling the H3D viewpoint images. This evaluation Metrix require an identical 

target image to evaluate the up-sampled viewpoint image. The targeted viewpoint 

resolution used for this viewpoint image quality assessment ranges from 

Standardbred definition (SD) to high definition (HD) as most 3D depth estimation 

data resolution are within that range [9][88][89].  The results of this evaluation 

help provide an estimate of the amount of noise or unwanted artefact been 

introduced in images in correlation to their scaling factor. Leading to the 

suggestion and consideration of the MLA size when recording H3D data for 3D 

depth estimation purposes.  

 

The default viewpoint image is always the same as the microlens array size, and 

the total number of viewpoint images recorded by the Holoscopic 3D imaging 

system is the same as the size of the EI. It is well known in Stereovision and 
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Computer vision societies that 3D depth estimation techniques work better with 

high-resolution image data [90][23]. The reason behind this is due to the higher 

chance of extracting more reliable features for stereo correspondence. The 

inability to extract high-resolution viewpoint images is a significant drawback of 

the Holoscopic 3D imaging system, leading to the use of various interpolation 

technique to up-sample viewpoint images. However, interpolation techniques 

always introduce unwanted artefacts in the resulting VI, leading to the evaluation 

of state-of-the-art interpolation techniques in this section, such as the Bicubic, 

Bilinear and Nearest Neighbour techniques. POV-Ray light tracer is used in 

generating the various H3D image data of different MLA parameters used in 

evaluating the interpolation techniques mention. Figure 3.14 below presents the 

rendered SH3D image data. 

 

   
(a)79x53p (b)99x66p (c)132x88p 

 

 
(d)198x132p (e)397x265p 

Figure 3.14 - SH3DIs used in evaluating state-of-the-art interpolation technques. 

 

Subsections 3.4.1 to 3.4.3 presents the results of the image quality assessments of 

the various SH3D image data set ranging from 79x53 to 397x265 MLA sizes. A 

brief introduction of the techniques used for evaluation is presented. 

   

3.4.1. H3D Image: Nearest Neighbour Interpolation 

The nearest neighbour interpolation technique is the most basic and does not 

require much computational power. This technique does not interpolate pixels 



 

 67 

based on surrounding pixels but recreates duplicates of pixels closest to the linear 

position at which the intended interpolated pixel is to be placed. One of this 

technique drawback is that it introduces unwanted artefacts that cause up-

sampled images to look pixelated. Table 3.1 below presents the PSNR and SSIM 

image quality assessment results of default Holoscopic viewpoint images up-

sampled by the Nearest neighbour interpolation technique. 

 
Table 3.1 

Nearest neighbour PSNR assessment results. 
VI resolution 

(Pixels) 

480x300p  

PSNR 

720x480p  

PSNR 

1920x1380p 

PSNR 

79X53 26.6674 26.3288 26.0340 

99X66 27.5794 27.1218 26.8026 

132X88 28.6127 28.1307 27.7222 

198X132 30.5036 29.5963 29.0477 

397X265 33.5005 31.5856 30.7088 
 

Nearest neighbour SSIM assessment results. 
VI resolution 

(Pixels) 

480x300p  

PSNR 

720x480p  

PSNR 

1920x1380p 

PSNR 

79x53 0.6765 0.6970 0.8329 

99x66 0.6990 0.7098 0.8349 

132x88 0.7371 0.7357 0.8380 

198x132 0.8116 0.7916 0.8504 

397x265 0.9109 0.8674 0.8717 

 
The default viewpoint resolution is upscaled to the 480p, 720p and 1920p resolution using 
the Nearest neighbour interpolation technique. The quality assessment of the resulting image 
is assessed with PSNR and SSIM matrix. 
 
 
3.4.2. H3D Image: Bilinear Interpolation 

Bilinear interpolation averages the linear and neighbouring horizontal pixels to 

acquire the value of the desired interpolated pixel, providing better results 

compared to the Nearest neighbour interpolation technique. However, it is 

computationally more demanding. Depending on the scaling factor, the centre 
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positions between the discrete pixel samples is interpolate first, and this process 

is repeated until the suggested positions for the interpolated pixels have 

neighbouring pixels at all directions. Table 3.2 below presents the PSNR and SSIM 

image quality assessment score of default Holoscopic viewpoint images up-

sampled by the Bilinear interpolation technique. 
Table 3.2 

Bilinear PSNR assessment results. 
VI resolution 

(Pixels) 

480x300p 

PSNR 

720x480p 

PSNR 

1920x1380p 

PSNR 

79x53 27.6321 27.2607 27.7467 

99x66 28.5997 28.1701 27.7467 

132x88 29.8006 29.2245 28.7004 

198x132 31.9171 31.0312 30.2765 

397x265 37.7689 34.9186 33.2698 
 

 
Bilinear SSIM assessment results. 

VI resolution 

(Pixels) 

480x300p 

PSNR 

720x480p 

PSNR 

1920x1380p 

PSNR 

79x53 0.7221 0.7400 0.8653 

99x66 0.7412 0.7527 0.8653 

132x88 0.7729 0.7739 0.8732 

198x132 0.8353 0.8211 0.8894 

397x265 0.95279 0.9234 0.9323 
 
The default viewpoint resolution is upscaled to the 480p, 720p and 1920p resolution using 
the Bilinear interpolation technique. The quality assessment of the resulting image is assessed 
with PSNR and SSIM matrix. 
 
3.4.3. H3D Image: Bicubic Interpolation 

Bicubic interpolation is the most complex compared to the Bilinear and Nearest 

neighbour interpolation techniques. The Bicubic considers the weighted values of 

sixteen neighbouring pixels to predict the value of the desired interpolated pixel 

[91]. This technique is computationally more expensive than the Nearest 

neighbour and Bilinear technique. Table 3.3 below presents the PSNR and SSIM 
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quality score of default Holoscopic viewpoint images up-sampled by the Bicubic 

interpolation technique. 
Table 3.3 

Bicubic PSNR assessment results. 
VI resolution 

(Pixels) 

480x300p 

PSNR 

720x480p 

PSNR 

1920x1380p 

PSNR 

79x53 27.9513 27.5726 27.2040 

99x66 28.8830 28.4307 27.9944 

132x88 30.0841 29.5295 28.9905 

198x132 32.2609 31.4944 30.7356 

397x265 38.8198 36.8267 35.0139 

 
 

Bicubic SSIM assessment results. 
VI resolution 

(Pixels) 

480x300p 

PSNR 

720x480p 

PSNR 

1920x1380p 

PSNR 

79x53 0.7188 0.7373 0.8591 

99x66 0.7355 0.7472 0.8633 

132x88 0.7682 0.7699 0.8711 

198x132 0.8360 0.8254 0.8892 

397x265 0.9705 0.9564 0.9530 

 
The default viewpoint resolution is upscaled to the 480p, 720p and 1920p resolution with the 
Bicubic interpolation technique. The quality assessment of the resulting image is assessed 
with PSNR and SSIM matrix. 
 
3.4.4. Trade-off Consideration 

Based on the results presented in Table 3.1 to Table 3.3, it is clear that the bigger 

the sampling factor, the greater the amount of unwanted artefact is introduced in 

any extracted viewpoint image. This, in turn, affects the quality of 3D depth maps 

because the unwanted artefacts make it more difficult to extract reliable features. 

Therefore, the use for smaller MLA sizes will reduce the scaling factor resulting in 

more quality viewpoint images. However, this comes at the cost of the angular 

information within the image. Furthermore, since the H3D depth from disparity 

does not need more than two viewpoint images to extract 3D depth information, 

the trade-off has less impact on the resulting 3D depth map.   
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The trade-off further investigated in chapter four, where the H3D depth from 

disparity framework presented, where a disparity test range is conducted.  The 

graphs are shown below in Figure 3.15, and Figure 3.16 visually presents how the 

MLA sizes affect the image quality of the up-sampled default Holoscopic viewpoint 

images during H3D adaptation when using current up-sampling techniques.   

 

 
Figure 3.15 - Interpolated viewpoint image quality assessment results of PSNR. The default 
Holoscopic viewpoint image ranging from 79x53pixels to 397x265pixels(p), all upscaled to 
480p. 

 

 
Figure 3.16 - Interpolated viewpoint image quality assessment results of SSIM. The default 
Holoscopic Viewpoint image ranging from 79x53pixels to 397x265pixels(p) all upscaled to 
480p. 
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The H3D data used in this evaluation ranges from 79p to 397p, clearly shown in 

Figure 3.15 and 3.16 above. The results closer to 1 and 40 indicates high-quality 

up-sampling, which consist of a smaller scaling factor. 

 

The next subsection presents the second proposed solution for addressing the 

low-resolution problem of the H3D imaging system. 

 
3.4.5. Holoscopic 3D Deep-learning Configuration 

This section presents the second solution for the low-resolution problem 

associated with the H3D imaging system. A Single Image Super-Resolution (SISR) 

technique that can be applied either on the entire Holoscopic 3D image or the 

extracted viewpoint images.  The results of these deep-learning-based techniques 

are promising and could lead to future works where the full incorporation of this 

technique into the Holoscopic Content Adaptation framework developed. 

 

Based on the following low-resolution problem that affects the 3D depth matching 

process, H3D training and remodelling layer is fitted to a CNN. The training layer 

extracts EIs from the H3D image and uses it as training data, while the remodelling 

layer reconstructs the up-sampled elemental images into a single super-resolution 

H3D image. The learning-based up-sampling technique requires reference data 

for each training data set. The training data is a mixture of down-sampled 

segments of 2D images and EIs, using the default data mix as reference data. The 

residual difference is then learned by the network to produce HD elemental 

images that are reconstructed into an SRH3DI. The proposed deep-learning 

configuration for SH3D up-sampling is presented in Figure 3.22 below. 
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Figure 3.17 – Architecture of the proposed deep-learning network for single H3DI up-
sampling.  

 

The proposed learning-based network uses additional 2D images segments, 

down-sampled to match the size of the corresponding EI data due to lack of H3D 

database. The results presented in the next section proves the lack of H3D training 

data does not affect the quality of the up-sampled H3D image as previously 

expected. 

 

I) Results  

Table 3.4 below presents the results obtained from the proposed configuration 

presented in Figure 3.22 above. The image quality is assets using PSNR and SSIM, 

where the feature and structural qualities are accessed and evaluated against their 

respective reference images. The images are scaled from two to four times its 

original size and values on the bottom left are PSNR results while values on the 

right are SSIM evaluation result. 
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Table 3.4 

Quality comparison of pretrained SR models on a selection of H3D data, using PSNR and SSIM. 

 
 

The results presented in Table 3.4 above are promising; this serves as 

encouragement for the incorporation of deep learning-based techniques in H3D 

viewpoint extraction. However, the proposed deep-learning technique is not yet 

optimized to extract viewpoint images at different focal planes. Therefore, the 

patch-based viewpoint extraction technique, derived from the Bicubic and 

Bilinear, is used for extracting viewpoint images for the proposed H3D 3D depth 

estimation technique presented in chapter four. 

 

PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM 
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3.5. Summary 

This chapter presents the various Holoscopic pre-processing techniques that can 

be used to aid the extraction of reliable viewpoint images for H3D depth 

estimation. The motivation behind the design and development of the following 

H3D pre-processing techniques mentioned is to counterattack the significant 

limitations associated with the H3D recording principle. 

 

The most obvious limitation is the H3D inability to reproduce HD viewpoint 

images. However, the process of extracting the viewpoint images itself is a 

complicated task. Current viewpoint extraction techniques cannot efficiently scale 

whenever handed the task of extracting viewpoint images from complex H3D data. 

This chapter presents a more effective viewpoint extraction technique that is a 

result of the multi-layer H3D image encoding system, where the EI images are 

stacked and clearly labelled. As pixel interpolation is also an integral step in 

viewpoint extraction, evaluation of current state-of-the-art single image 

interpolation techniques is presented in the above chapter. The results of the 

evaluation led to the deduction of the optimal trade-off between angular and 

spatial information for H3D depth from disparity techniques. The chapter also 

presents a deep-learning-based technique that uses H3D and 2D images as 

training data, resulting in up-sampling of high-resolution EIs that are 

reconstructed to produce super-resolution H3D images. 

   

The techniques are used in the next chapter to create a robust Holoscopic Content 

Adaptation framework that is capable of extracting viewpoint image from low-

resolution H3D data and scales comfortably when tasked with the extraction of 

viewpoint images from more complex H3D data. The following HCA framework 

consists mainly of three stages, namely; ii) Distortion Error Correction, ii) Multi-

layer H3D Encoding, and iii) Viewpoint Image Extrapolation. 
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CHAPTER 4: HOLOSCOPIC 3D DEPTH ESTIMATION FROM 

DISPARITY 

This chapter presents the proposed framework for Holoscopic 3D depth from 

disparity. The framework consists of the most compatible 3D depth techniques 

with H3D data and a specially developed H3D content adaptation technique. The 

chapter layout is as follows: 4.1 Introduction, 4.2 Holoscopic Content Adaptation, 

4.3 Similarity Measure and Depth Estimation, 4.4 Results and Evaluation, 4.5 

Smart 3D Depth Mapping Design, and 4.6 Summary. 
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4.1. Introduction 

3D depth estimation has a wide application area such as Space exploration, 

AR/VR, Robotics, Autonomous navigation, and Biomedical science. 3D depth from 

disparity is a technique that estimates 3D depth information by calculating the 

difference in distance between corresponding pixels of a stereo viewpoint image. 

The technique presented in this chapter can be classified as a semi-global 

technique, as it does not take into account the matching costs of the entire image 

when estimating 3D depth. The resulting 3D depth information is stored in a 2D 

depth map array that contains the z values of each pixel from the reference 

viewpoint image. The following Holoscopic 3D depth from disparity (H3DDD) 

framework consists of three main stages, namely i) Holoscopic Content 

Adaptation (HCA), ii) Feature Matching and iii) Disparity Estimation and 

Optimisation. However, Feature Matching, Disparity Estimation and Optimisation 

often work hand in hand and is discussed under similarity measure, and depth 

estimation presented Figure 4.1 below.   

Similarity Measure and Depth Estimation 

 
Figure 4.1 -The Holoscopic 3D depth from Disparity (H3DDD) Framework. 

 

The Holoscopic Content Adaptation (HCA) stage of the proposed H3DDD 

framework presented in Figure 4.1 above converts H3D image to stereo images 

for successful estimation of 3D depth. The HCA stage is crucial as current 3D depth 

estimation frameworks [92][93][80] find it tedious to estimate reliable 3D depth 

information directly from a Holoscopic 3D image. In cases where the successful 

extraction of stereo viewpoint is accomplished, there is no indication of feature 

quality control. This leads to the use of inconsistent 3D depth optimisation 

techniques, making current 3D depth frameworks lack stability. However, the 

H3DDD framework presented in this chapter takes into consideration MLA 

specifications to improve the quality of viewpoint images extracted. Therefore, 

improving the overall chances of estimating reliable 3D depth maps.  The 

proposed framework also takes advantage of the Holoscopic 3D system ability to 
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extract viewpoint images of different focal planes after capture, where current 

frameworks do not. This results in the extraction of semi segmented viewpoint 

images that do not only result in high feature matching results but also results in 

the estimation of 3D depth information from stereo viewpoint images with 

smaller baselines. 

 

This chapter also presents a detail evaluation of the proposed framework and the 

Holoscopic 3D dataset used during evaluation. Testing the frameworks disparity 

range, capability and scalability capabilities. The chapter then concludes with the 

design of a smart 3D depth calibration framework for Holoscopic 3D depth from 

Disparity techniques, aimed to reduce the computational cost of the technique. 

 

The following is part of the third block of this research’s contribution, shown in 

Figure 4.2 below, highlighted in red and emphasised in green.  

 

 
Figure 4.2 – The research contribution of this chapter highlighted in red and emphasised in 
green. 

 
4.2. Holoscopic Content Adaptation 

The Holoscopic content adaptation (HCA) stage focuses on converting Holoscopic 

3D images into suitable stereo image data that can be used in 3D depth estimation. 

The workflow of the HCA process is presented in Figure 4.3 below, where the 

workflow consists of three significant steps.  
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Figure 4.3 – The HCA process found in the H3DDD framework.  

 

HCA process presented in Figure 4.3 above consist of the three following steps; i) 

Distortion Error Correction, ii) Multi-layer H3D Encoding, and iii) Viewpoint 

Image Extrapolation.  

 

Distortion Error Correction as the name implies is the process of reducing or 

eliminating all barrel and dark moiré errors. Distortion errors result in 

inconsistent registration of viewpoint image pixels across the entire H3D image. 

Without the correction of these distortion errors, 3D depth estimation is near 

impossible as the process of extracting reliable viewpoint images is rendered 

extremely complex. Chapter three presents the detail explanation of the Grid 

board technique used in the lens correction process of all H3D data used in this 

research.   

 

Secondly, the encoding of the Holoscopic 3D image is conducted to reduce the 

computational cost acquired during viewpoint extrapolation. The multi-layer H3D 

formatting process converts the Holoscopic 3D image into a 5D matrix, labelling 

all the Elemental images and its respective pixels. Chapter three-section three 

contains the full details of the mentioned multi-layer H3D encoding process. 

  

Lastly, the viewpoint extrapolation process, where stereo viewpoint images with 

an adequate spatial resolution (320p and above) are extracted from a single H3D 

image. Since the resolution of viewpoint images is directly proportional to the 
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number MLAs used during capture, viewpoint images have very low spatial 

information. As a result, the extraction and matching of reliable features become 

extremely complex. The viewpoint extrapolation stage up-samples viewpoint 

images with a patch-based technique. This patch-based technique acquires the 

neighbouring viewpoint pixels around the pixels of the intended viewpoint image 

to be extracted. The extracted window of pixels is then interpolated and smoothed 

over with a Gaussian blur. It is wise to note that the patch-based uses as little 

image filter as possible as over smoothing of the viewpoint images, can confuse 

the 3D depth estimation algorithm, especially at the matching cost stage. This is 

because of the lack of sharp difference between pixels will make it difficult to 

extract even the easiest edge features within an image. 

 

The next subsection presents the H3D data used in the evaluation and explanation 

of the proposed H3DDD framework.  

 

4.2.1. H3D Data Set and Extracted Viewpoint Images 

The subsection presents all H3D images and their extraction parameters used in 

this chapter for evaluating the proposed H3D depth from disparity framework.  

 

The H3D data presented in  Figure 4.4 below is captured with the Brunel H3D 

image system, sensor size of 35x24mm and a dot pixel pitch of 0.00451mm. The 

Spiderman data is captured in the Brunel University lab under normal lighting 

conditions. However, the Bighead, Vase and Flax are H3D image recordings of 

some of Qatar cultural asset, only available at their national museum. 

 

  
(a) Spiderman: (64x34 MLA) 5160 × 2743p (b) Bighead: (85x45 MLA) 7916 × 4412p 
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(c) Vase: (85x56 MLA) 7952 × 5232p (d) Flax: (85x47 MLA) 7936 × 4408p 

Figure 4.4 - Holoscopic 3D dataset, captured in Brunel lab and Qatar national museum. 
Highlighting their MLA specifications and image size. 

 
Figure 4.4 above presents the Holoscopic 3D data set used, highlighting MLA size 

and image resolution. The maximum number of viewpoint images that can be 

extracted from the following data set is the same as the size of their respective 

elemental image. However, for this H3D depth estimation framework, the 

disparity is calculated only from a single direction. Therefore, the maximum 

number of viewpoint images available for H3D depth estimation is the same as the 

size of the EI in one axis (x or y). This value also serves as the maximum disparity 

size of the Holoscopic 3D image in theory. However, depending on the patch size, 

only a limited amount of viewpoint images can be extracted, meaning only a 

limited amount of disparity can be assessed regardless of the maximum disparity.   

 

Table 4.1 below presents the starting variables of all the extracted viewpoint 

images, using the proposed Holoscopic Content Adaptation framework mentioned 

earlier.  

 
Table 4.1 

Holoscopic viewpoint extraction variables for all reference viewpoint images used in 
estimation of H3D depth through disparity. 

 Number 

of VI 

VI x-axis 

location 

VI y-axis 

location 

Patch size 

(win) 
x-shift 

(xs) 

y-shift 

(ys) 

Spiderman 82 16 29 13 -0.6 -0.7 

Bighead 93 16 29 13 0.3 0.9 

Vase 92 10 40 13 1.7 1.2 

Flax 92 20 40 13 1.7 1 
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Samples of the viewpoint images extracted with the following parameters above 

are presented in Figure 4.5 below, where stereo views of the following image 

samples will be used as our prime stereo input data. 

  
(a) Spiderman (b) Bighead 

  
(c) Vase (d) Flax 

Figure 4.5 - Holoscopic viewpoint image samples extracted from the Holoscopic 3D data set 
presented in Figure 4.4 above. 

 
Table 4.2 below presents the average computational cost in seconds taken to 

extract the following viewpoint images, patch size ranging from 9p to 21p.  

 

Table 4.2 

The computational cost taken in seconds to extract viewpoint image from patch sizes 9p to 
21p. 

Window size (pixels) Time taken in seconds (secs) 

9x9 5.2047 secs 

13x13 9.3444 secs 

15x15 12.2895 secs 

17x17 14.9178 secs 

19x19 18.2112 secs 

21x21 21.8869 secs 

Figure 4.6 below presents the VIs extracted with varying patch sizes, detailing the VI 

resolution in pixels (p). 
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(a)Patch Size: 5x5p  

VI size: 269 × 124p 

(b)Patch Size: 7x7p 

VI size: 393 × 190p 

(c)Patch size: 9x9p 

VI size: 517 × 256 pixels 

   
(d)Patch Size: 11x11p  

VI size: 641 × 322 pixels 

(e)Patch Size: 13x13p 

VI size 765 × 388 pixels 

(f)Patch Size: 15x15p 

VI size 889 × 454 pixels 

   
(g)Patch Size: 17x17p 

VI size: 1013 × 520p 

(h)Patch Size: 19x19p 

VI size: 1137 × 586p 

(i)Patch Size: 21x21p  

VI size: 1261 × 652p 
Figure 4.6 – Viewpoint image samples extracted with various patch sizes ranging from 
5x5pixels to 21x21pixels(p). 

 
Based on the viewpoint images presented in Figure 4.6 above, it is evident that the 

patch-size variable of the Holoscopic content adaptation process has an effect on 

the quality and size of the viewpoint image.  However, the patch-size variable also 

has an effect on the focusing plane of the extracted viewpoint images. This is a 

unique ability of the Holoscopic 3D imaging system, and it is exploited to aid the 

reliable estimation of 3D depth maps. Figure 4.7 below presents a more evident 

effect of the patch-size variable on the extracted viewpoint images.  

 

 
(a) Viewpoint image extracted with a 7x7pix patch-size  
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(b) Viewpoint image extracted with a 13x13pix patch-size 

 
(c) Viewpoint image extracted with 21x21pix patch-size 

Figure 4.7 – Viewpoint images highlighting the effects various patch-size effect on the H3D 
image focusing planes. 

 
Figure 4.7 above presents three viewpoint images from the table of viewpoint 

images in Figure 4.6. Figure 4.7a presents a viewpoint image from a 7x7 patch-size 

that results in an out of focus low-resolution viewpoint image. However, as the 

patch-size increases, the focal range move to where the foreground objects are in 

focus and the background becomes out of focus and shown in Figure 5.4b above. 

Figure 5.4c, on the other hand, presents an inverse focus, where the background 

features are in full focus while the foreground is slightly out of focus. Figures 5.4b 

and Figure 5.4c presents the idea data set and this slight segmentation of features 

assist in reliable feature matching and 3D depth estimation. Test results proving 

this is presented later on the chapter in section 4.4.  

 

The next section presents the detail explanation of the similarity measure and 

depth estimation stage of the Holoscopic 3D depth form disparity framework. 

 



 

 84 

4.3. Similarity Measure and Depth Estimation 

Matching cost in 3D depth estimation determines the similarity measure of pixels 

by either the use of global or local search. However, the matching technique used 

in the H3D depth from disparity framework presented in this chapter is a local 

technique, where the mean square error (MSE) between pixels values of the 

window patch between stereo viewpoint images are compared. This is done to 

find the best match between pixels of the stereo viewpoint images, followed by 

the calculation of 3D depth through disparity. Based on the Holoscopic 3D imaging 

system principles mentioned earlier in chapter two, it is obvious that the lack of 

disparity between the viewpoint images is a drawback that can result in the 

inaccurate 3D depth map. This small baseline problem can render the use of block 

matching techniques obsolete when estimating 3D depth information from stereo 

viewpoint images. The suggested solution for the following drawback is the use of 

a dynamic subpixel block matching technique, and the use of semi segmented 

viewpoint images, resulting in the estimation of reliable 3D depth maps. However, 

due to the computational cost that occurs during dynamic subpixel matching, the 

use of pyramiding and telescopic search to guide the block matching is introduced 

to reduce the severity of this problem [94][95].  A step by step explanation of the 

feature extraction and disparity estimation process is presented in pseudo code 

in Algorithm (1) below, following by an explanation of its key functions in sections 

4.3.1 and 4.3.2. 

 

Algorithm 1: Dynamic Depth Extraction Technique from Holoscopic 3D Image 
Input: H3D: Left view and right view   

Iter: number of iterations 

finf: false infinity 

1. for i = 1 to Iter do 

2.         Disparity cost = finf 

3.         set min/max row bonds for image block 

4.         for j = 1 to Iter do 

5.                compute disparity bonds 

6.                Compute as save all matching cost 

7.                 for d = min disparity to max disparity 

8.                          Disparity cost = sum of absolute difference 
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9.                 end for 

10.         end for 

11.         Process scanline disparity cost with dynamic programming 

12.         for k = 1 to Iter do 

13.               cfinf = (disparity cost size – i +1) * finf 

14.              Construct matrix for finding optimal move for each column 

15.              Record optimal routes 

16.        end for 

17.        for l = 1 to Iter do 

18.               Recover optimal route 

19.        end for 

20. end for 

Output: Depth map 

  

4.3.1. Concatenation of Viewpoint Images 

The extracted H3D viewpoint pair used is first converted into grayscale before the 

commence of the single-channel matching process. Although the use of coloured 

images sometimes results in better estimates, it is not efficient. The composite of 

the stereo viewpoint image is presented in Figure 4.8 below.  

 

 
Figure 4.8 – Concatenated viewpoint image, presenting the left and right images in cyan and 
red. 

 
This form of representation is popularly referred to as an anaglyph stereo 

representation, where one viewpoint image is tinted in blue or cyan, and the other 

is tinted in red. This help shows clearly if the disparity is present within the 

extracted viewpoint images, followed by the use of a concatenate function that 
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links the stereo images together. This viewpoint concatenation is straight forward 

when the stereo image dataset is extracted from Holoscopic 3D image as there is 

no need for calibration. H3D imaging image rectification is not needed. This is as 

a result of Holoscopic 3D imaging system able to record multiple viewpoints of a 

scene in a single snapshot where stereo or Multiview imaging system fall short. 

 
4.3.2. Block Matching with Dynamic Subpixel Accuracy 

Once the stereo viewpoint images are extracted and concatenated, feature 

matching is the next step that follows. Area-based or feature-based matching 

techniques can be used to find the corresponding pixels, by searching along the 

horizontal scanline of the stereo viewpoint images. For this 3D depth estimation 

framework, the use of area-based matching with dynamic subpixel accuracy is 

applied. This is because of the baseline problem that occurs in Holoscopic 3D data 

set. The dynamic subpixel matching technique takes into account the cost of 

corresponding neighbouring pixels and refines an initial 3D depth map that is 

estimation without such consideration. 

 

In cases where the baseline between viewpoint images are small, 3D depth map 

estimated from such viewpoint images have a high amount of noise, rendering the 

3D depth map unreliable as presented in Figure 4.9a. The noise initially 

introduced during viewpoint extrapolation stage also contributes to this problem; 

that is why the 3D depth map in Figure 4.9b still have some noise.    

 

  
(a) Without subpixel accuracy (b) With subpixel accuracy 

Figure 4.9 – Direct comparison of feature matching result without subpixel accuracy and with 
subpixel accuracy. 
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Figure 4.9 above presents a direct comparison of the 3D depth map estimated with 

and without subpixel accuracy, indicating a definite improvement. The 3D depth 

map presented in Figure 5.9b above is extracted with the suggested feature 

matching technique. However, the use of this technique for estimating 3D depth 

maps is computationally demanding and depending on the window size used for 

matching this could be even more expensive. Apart from the following problems 

mentioned, traces of noise are still noticeable in the estimated 3D depth map, 

although not enough to render the 3D depth map unreliable. This leads to the use 

of dynamic matching technique implementation as a pyramid based structure [96] 

[97] to help tackle the problem at hand. Figure 4.10 below presents the final depth 

map after pyramid optimisation.  

 

 
Figure 4.10 – Estimated 3D depth map from a single Holoscopic 3D image with dynamic 
pyramid optimisation. 

 

The pyramid structure is a type of multi-scale signal representation, and in terms 

of 3D depth estimation, corresponding viewpoint images are subjected to 

repeated smoothing and subsampling. During subsampling, Gaussian filters are 

used to reduce the subsampling error caused by the pixel by pixel approach. 

 

Section 4.4 presents the detail evaluation of the above framework, presenting the 

computationally cost acquired by this approach. This limitation led to the design 

of a smart 3D depth map mapping between H3D depth maps, presented in section 

4.5, to possibly help reduce the computation burden of the H3D depth technique.  



 

 88 

4.4. Results and Evaluation 

This section presents all 3D depth results estimated by the H3DDD technique 

presented in this chapter. The image resolution range, matching window size 

range and disparity test range is conducted to test the robustness the H3DDD 

technique. Concluding with the direct comparison of this technique against 

current state-of-the-art techniques. 

 

The H3DDD depth is implemented on an Intel(R) Core (TM) i7-4790 CPU @ 3.60 

GHz CPU.  

 

4.4.1. Image Resolution Test 

The 3D depth maps in this section are estimated from viewpoint images with 

different patch sizes. This test emphasises how the lack of spatial information 

within the extracted viewpoint image can affect the resulting 3D depth map. 

Figure 4.6 in section 4.2 presents the VIs extracted from different patch sizes, 

detailing their VI resolution in pixels (p). 

 

   
(a) Patch-size 5x5p 3D depth map (b) Patch-size 7x7p 3D depth map (c) Patch-size 9x9p 3D depth map 

   
(d)Patch-size 11x11p 3D depth map I Patch-size 13x13p 3D depth map (f) Patch-size 15x15p 3D depth map 

   
(g) Patch-size 17x17p 3D depth map (h)Patch-size 19x19p 3D depth map (i) Patch-size 21x21p 3D depth map 

Figure 4.11– 3D depth map estimation of stereo viewpoint images extracted with patch sizes 
ranging from 5x5pixels to 21x21pixels. 
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Results from Figure 4.11 above clearly indicates that viewpoint image with higher 

resolution results to better estimation of 3D depth maps. However, this comes at 

computation cost during 3D depth estimation. Therefore, the use of viewpoint 

images with just enough spatial information is advice. Also, as mentioned earlier, 

the ability to refocus at different planes of the viewpoint image begin to take effect 

as the patch size increases. The following also contributes to the improvement of 

the estimated 3D depth maps presented above. 

 

4.4.2. Match Window Size Test 

The 3D depth maps in this section are estimated from stereo viewpoint images 

with different block matching sizes, ranging from 5x5 pixels to 21x21 pixels, 

shown in Figure 4.12 below.  

 

  
(a) Block matching size: 5x5 pixels (b) Block matching size: 7x7 pixels 

  
(c) Block matching size: 9x9 pixels (d) Block matching size: 11x11 pixels 

  
(e) Block matching size: 13x13 pixels (f) Block matching size: 15x15 pixels 
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(g) Block matching size: 17x17 pixels (h) Block matching size: 21x21 pixels 

Figure 4.12 – 3D depth map estimation with block matching windows ranging from 5x5p to 
21x21p. 

 

As presented in Figure 4.12 above, 3D depth maps estimated with small matching 

block sizes of 5x5 to 9x9 pixels have patchy looking 3D depth maps, especially 

within prominent features. However, as the block matching sizes increase, this 

patchy effect is gradually reduced at a minimal increase in computational cost. 

However, 3D depth maps estimated from small patch-sizes can also be optimized 

to match depth maps estimated with a larger matching window. Figure 4.13 

presents the time taken measured in seconds (secs), to estimate each 3D depth 

map from the window sizes ranging from 5x5pixels to 21x21pixels. 

 

 
Figure 4.13 – The computation cost as the matching window size increases, measured in 
seconds. 
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4.4.3. Disparity Range Test 

The 3D depth maps in this section are estimated from stereo viewpoint images of 

varying disparity sizes. This helps in deducing the best trade-off between angular 

and spatial information. Figure 4.14 below presents the 3D depth maps estimated 

with different disparity sizes ranging from 1 to 10 pixels between the stereo 

viewpoint images. 

 

  
(a)3D depth map estimated from BL 10p (b)3D depth map estimated from BL 8p 

  
(c)3D depth map estimated from BL 6p (d)3D depth map estimated from BL 4p 

  
(e)3D depth map estimated from BL 2p (f)3D depth map estimated from BL 1p 

Figure 4.14 – 3D depth map estimated from stereo viewpoint images with a baseline (BL) 
ranging from 1pixels to 10pixels(p). 

 

The following 3D depth maps present in Figure 4.14 above begins to present a 

precise segmentation of features when the baseline between viewpoint images in 

about four pixels and above. This is only possible due to the semi segmentation of 

the extracted viewpoint images. This information can lead to the use of smaller 

microlens arrays to increase the default resolution of viewpoint images without 
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interpolation. Emphasising on the fact that MLAs specifications should be 

considered when recording H3D data for H3D depth from disparity. 

 

4.4.4. Multi Data 3D Depth Maps and Point Cloud Reconstruction 

The 3D depth maps in this section are estimated from stereo viewpoint images of 

all the H3D data set presented in Figure 4.4 above.  Figure 4.15 shows the before 

and after optimisation effect. 

 

  
(a)Spiderman initial 3D depth map (b)Spiderman optimized 3D depth map 

  
(c)Bighead initial 3D depth map (d)Bighead optimized 3D depth map 

  
(e)Vase initial 3D depth map (f)Vase optimized 3D depth map 
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(g)Flax initial 3D depth map (h)Flax optimized 3D depth map 

Figure 4.15– 3D depth maps of  H3D data set, with a side by side presentation of 3D depth 
maps before and after depth map optimization. 

 

The 3D depth maps estimated using the proposed framework shows how robust 

the H3D depth from disparity technique is in handling varying Holoscopic 3D data 

of varying specifications and feature properties.  The point cloud representation 

of the following 3D depth maps in Figure 4.15 above is presented in Figure 4.16 

below.  

 
(a) Spiderman point could reconstruction 

 
(b) Bighead point could reconstruction 
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(c) Vase point could reconstruction 

 
(d) Flax point could reconstruction 

Figure 4.16 – Point cloud representation of the above 3D depth maps in Figure 4.15. 

 
4.4.5. Direct Comparison 

This section presents the direct comparison of the proposed H3D depth 

estimation and state-of-the-art depth estimation technique developed by Szeliski 

et al., which can be downloaded at the Middlebury website3 [9]. This section also 

presents the complexity assessment based on the stereo correspondence 

constraints presented in chapter two. The complexity evaluation matrix uses a 

binary ranking system to present the amount of constraint used in the stereo 

depth technique, averaging the score against the total number of constraints. The 

                                                        
3 vision.middlebury.edu/stereo/ 
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computational cost is then taken in time (seconds) concluding the two-step 

evaluation process. Table 4.3 below presents the stereo constraints and their 

descriptions. 

 
Table 4.3 

The stereo depth constrains, presenting their identification code and brief description.  

ID 
Stereo 

Constrains 
Description 

C1 
Similarity 

Constraint 

Enforces pixel matching between stereo viewpoint 

images. 

C2 
Epipolar 

Constraint 
Enforces stereo image rectification. 

C3 
Uniqueness 

Constraint 

Enforces that each pixel has a one unique match or 

occlusion. 

C4 
Positional 

Constraint 

Enforces matching of pixels at irregular positions, the 

cross-eye depth problem. 

C5 
Disparity 

Constraint 

Enforces smoothness between pixels of similar 

disparity. 

C6 
Structural 

Constraint 

Enforces structural shape of depth map to be the 

same as the reference viewpoint image. 

 

Figure 4.17 below presents the 3D depth map estimated from the proposed H3D 

depth from disparity framework presented in this chapter, compared directly to 

depth map estimated from state-of-the-art stereo 3D depth estimation technique.  
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(a) Szeliski 3D depth result with our data set 

 
(b) Our 3D depth result with our data set  

Figure 4.17– Direct comparisons of the H3DDD frameworks and current state-of-the-art 
framework using the Spiderman H3D image. 

 

The following comparison indicates that the Holoscopic content adaptation of the 

proposed 3D depth from disparity framework can be used on other 3D depth from 

disparity frameworks. However, since the other frameworks where designed to 

estimate 3D depth information from Stereo/Multiview imaging stereo data that 

have different properties from H3D images. Their frameworks fail to match the 

accuracy of the proposed framework in this chapter. The complexity of the 

following 3D depth from disparity frameworks are presented in Table 4.4 below, 



 

 97 

where the number closest to one (1) entails that the 3D depth estimation 

framework is more complex.  

 
Table 4.4 

Complexity evaluation result of the H3DDD and Szeliski et.al. depth frameworks. 

3D Depth frameworks 
Stereo constraints 

C1 C2 C3 C4 C5 C6 Avg. 

3D Depth Szeliski et al. 1 1 1 0 1 0 0.6 

H3D Depth from Disparity 1 1 0 0 1 0 0.5 

 

The computational cost of the following 3D depth estimation techniques 

presented in Table 4.4 above is shown in Figure 4.18 below.   

 

 
Figure 4.18 – Computational cost of Szeliski et.al. and H3DDD depth techniques measured in 
seconds.  

 

Although the presented framework in this chapter is very robust, this comes at a 

computational cost, as shown in Figure 4.18 above, this results in the use of this 

technique in only near-real-time applications. To further improve the 

computational efficiency of the framework, the proposal of a smart 3D depth 

mapping framework is presented next. 
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4.5. Smart 3D Depth Mapping Design 

The smart 3D depth mapping design presented in this section is proposed to 

reduce the computational workload taken to estimated 3D depth maps from high-

resolution images. The design takes advantage of the HCA ability to extract 

multiple viewpoint images of different image sizes. It is well established that the 

higher the image resolution, the greater the chance of extracting reliable 3D depth 

maps. The smart 3D depth mapping takes advantage of this by estimating various 

3D depth maps of low-resolution images and high-resolution images of the same 

viewpoint image. The low-resolution 3D depth map is then up-sampled and 

mapped against the high-resolution 3D depth map, training a deep-learning 

network to understand the residual difference between the two 3D depth maps. 

This design workflow is presented below in Figure 4.19.  

 

 
Figure 4.19 – Architecture of the Smart 3D depth mapping technique for H3D images. 

 

The design above will result in the estimation of 3D depth maps with low-

resolution viewpoint images after the intimal mapping of 3D depth information 

between low- and high-resolution 3D depth maps. The subsequent 3D depth 

estimations will take lesser computational effort as the initial 3D depth map is 

estimated from low-resolution then optimized into high-quality 3D depth maps. 

The smart 3D depth mapping will also consider the suitable parameters when 
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handling a large data set, making the presented framework even more robust. The 

full implementation of this will be done in future works. 

 
   

4.6. Summary 

This chapter presents a standard and robust 3D depth estimation framework for 

Holoscopic 3D data. The proposed technique takes advantage of various H3D 

image properties when extracting viewpoint images for the 3D depth from 

disparity framework. This includes the ability to record multiple viewpoint 

images and the ability to refocus at any focal plane after capture. As the low-

resolution problem that is commonly associated with the H3D data is resolved 

with smart viewpoint extraction technique that is capable of handling complex 

H3D data. The Holoscopic content adaptation process can also be used to extract 

viewpoint images for other stereo 3D depth estimation frameworks. However, 

current 3D depth from disparity frameworks is designed against the image 

properties of standard 2D data. The 3D depth calculation and optimization section 

of the proposed framework in this chapter employs 3D depth techniques that are 

most suitable for H3D data. This includes the use of subpixel and pyramid dynamic 

programming to match the corresponding pixel and optimize initial estimates of 

3D depth maps. The documented depth map results range from image resolution 

test to disparity range test. The image resolution test clearly indicates that the 

higher the resolution of extracted viewpoint images, the better the 3D depth maps. 

 

Matching window experiment is conducted as well, however, does not have a huge 

enough impact on the 3D depth map estimated, therefore opting for the window 

size with the least computational burden been considered. The reason as to why 

the size of the matching window does not have an impact is due to the fact that 

initial 3D depth maps estimates from small window sizes can still be optimized to 

produce a reliable 3D depth map. 

 

Lastly, the disparity range test indicates that 3D depth information can be 

extracted from stereo viewpoint images with a baseline as small as 10pixels 

(0.41mm). This proves and elaborates on the suggestions that Holoscopic 3D data 
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captured with smaller MLAs might be most suitable for 3D depth from disparity 

frameworks.  

 

The chapter also presents a smart 3D depth mapping design that aims to reduce 

the overall computational time taken to estimation 3D depth information the 

intimal mapping of low and high-resolution 3D depth maps.  
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CHAPTER 5: INNOVATIVE DIRECT 3D DEPTH ESTIMATION 

FROM H3D IMAGE 

This chapter presents the innovative direct 3D depth from Holoscopic 3D image 

framework. Due to the inability to accurately predict or quantify the amount of 

unwanted noise introduced in viewpoint images and the loss of angular 

information, this approach extracts 3D depth information directly from a single 

H3D image by estimating disparity at the EI level. The chapter layout is as follows: 

5.1 Introduction, 5.2 Holoscopic 3D Data, 5.3 Feature Extraction with Census 

Transform, 5.4 Similarity Measure and 3D Depth Estimation, 5.5 3D Depth 

Optimization with Segmentation, 5.6 Results and Evaluation and 5.7 Summary. 
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5.1. Introduction 

This chapter presents an innovative 3D depth estimation technique specifically 

designed to estimate 3D depth information directly from a Holoscopic 3D image. 

The technique referred to as Direct 3D depth from Holoscopic (DDH) can estimate 

3D depth information from a single H3D image Omni directionally. The motivation 

behind the development of this depth technique is to by-pass the content 

adaptation stage that often introduces unwanted artefacts into extracted 

viewpoint images and results in loss of angular information. In doing so, the 

quality of extracted 3D depth information is preserved. The unique feature in this 

3D depth estimation technique is the implementation of a similarity measure that 

estimates 3D depth information by calculating the disparity between Elemental 

images. Depending on the Elemental image position of the start viewpoint image 

pixel (VIP) and position in which the corresponding VIP is located, the disparity is 

calculated by their squared differences. The workflow of the following 3D depth 

estimation technique is presented in Figure 5.1 below. 

 

 
Figure 5.1 – The innovative Direct 3D Depth from Holoscopic framework.  

  

The Direct 3D depth from Holoscopic technique workflow presented in Figure 5.1 

above consists of four steps: (i) H3D pre-processing, (ii) Feature extraction with 

census transform, (iii) Similarity measure and 3D depth estimation and, (iv) Final 

3D depth optimisation with segmentation.  The following is discussed in detail in 

their respective sections, before concluding with the detailed testing and 

evaluation of the DDH technique. Due to the DDH technique novelty, an indirect 

comparison to existing stereo techniques is conducted, where similar viewpoint 

images estimated by the DDH technique is extracted, up-sampled and estimated 

by current state-of-the-art stereo matching techniques. A complexity and cost 

evaluation are also presented, where the DDH technique outperforms current 

state-of-the-art techniques. The pseudo code of the DDH technique presented in 

Algorithm (2) below is as follows: 
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Algorithm 2: Direct Depth from Holoscopic 3D Image Algorithm 
Input: H3D: single Holoscopic 3D image   

Iter: number of iterations 

1. for i = 1 to Iter do 

2.          best_match = initialised disparity diff 

3.         for j = 1 to Iter do 

4.                ref_p = reference pixel position 

5.                ref_patch = block of pixels including reference pixel 

6.                Apply gaussian and census transform to ref_patch 

7.                 for k = 1 to Iter do 

8.                          tar_p = target pixel position 

9.                          tar_patch = block of pixels including target pixel 

10.                          Apply gaussian and census transform to tar_patch 

11.                          find best match for ref_patch 

12.                       If curr_match < best_match 

13.                           best_match = curr_match  

14.                          Z = depth value 

15.                      end if 

16.                  end for 

17.          Depth map (i,j) = Z  

19.        end for 

20.  end for 

Output: Depth map 

 

The following is part of the third block and final contribution of this research, 

shown in Figure 5.2 below, highlighted in red and emphasised in green.  

 

 
Figure 5.2 – The research contribution of this chapter highlighted in red and emphasised in 
green. 
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5.2. Holoscopic 3D Data  

The synthetic Holoscopic 3D image used in this chapter mimics the real 

registration process of Brunel University Holoscopic 3D imaging system 

principles. However, the distortions that occur when recording such imaging in 

the real world do not occur in the virtual environment, leading to the generation 

of error-free synthetic Holoscopic 3D (SH3D) images. The SH3D images used in 

this chapter as the prime H3D dataset is computationally generated in The 

Persistence of Vision Ray Tracer software referred to as POV-RAY, written in C++ 

and developed by the POV-Team  [86]. However, due to the lack of maturity of the 

software, the rendering of highly textured objects is challenging. On the other 

hand, its ability to render error free-viewpoint images of different EI sizes is the 

main reason why the software is employed in this chapter. 

 

The synthetic Holoscopic 3D data set used in this chapter is rendered in 

accordance with the principles of an H3D imaging system with a square Omni-

directional MLA. The virtual H3D system has a sensor size of 35.9x24mm and dot 

pixel pitch size of 0.00451mm. The specifications of the synthetic H3D data set is 

presented in Table 5.1, while the data sample is presented in Figure 5.3 below.  

 

 
Figure 5.3 – Samples of SH3D dataset used in this chapter and with their respective viewpoint 
images, all rendered from POV-RAY. 
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Table 5.1 

Full specifications of the Synthetic Holoscopic 3D image data rendered from POV-RAY. 

EI Size (pixel) VI SIZE (pixel) MLA Size 

100x100 79x53 79x53 

80x80 99x66 99x66 

60x60 132x88 132x88 

40x40 198x132 198x132 

20x20 397x265 397x265 

 
Table 5.1 above presents a clear correlation between MLA and viewpoint image 

resolutions. Table 5.1 also presents the Synthetic Holoscopic 3D image data set 

properties used in the following subsection, testing the robustness of DDH 

technique to be presented.  

The following section discusses the feature extraction process of the DDH 3D 

depth estimation technique.  

 

5.3. Feature Extraction with Census Transform 

The feature extraction process employed by the DDH technique can be seen as an 

area-based matching technique. This technique, like all other area-based matching 

technique, employs the use of block matching windows to extract feature within 

an image with a pixel by pixel movement. The workflow of the feature extraction 

process presented in Figure 5.4 below. 

 

 
Figure 5.4 – Feature extraction process with Census Transform. 

 
Figure 5.4 above presents the detailed workflow of the feature extraction 

technique used in the DDH 3D depth estimation process. The technique extracts a 

widow patch around the viewpoint image pixel (VIP) in which 3D depth is to be 

currently estimated. The extracted window-patch then converted to grayscale to 

before the application of the CT. The Census transform applied on the window 
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reduces the intensity component of the extracted window-parch into binary 

intensity values depending on the value of the reference pixel. This is done to 

prevent the extracted features form been affected by global radiometric 

differences, such as global illumination differences. The Gaussian filter is then 

applied to help create a contrast between pixels and at the same time, group pixels 

of the same properties. As the DDH is a 3D depth technique that estimates 3D 

information on a pixel by pixel bases, the next section discusses the similarity 

measure and 3D depth estimation process of the following technique.  

 
5.4. Similarity Measure and 3D Depth Estimation 

Current stereo algorithms estimate 3D depth through disparity or triangulation, 

given a set of stereo images, a feature is selected from a reference image and a scan 

is executed on the target image to find its corresponding match. The squared 

difference of the match is stored as the disparity value of the reference pixel. The 

DDH technique, on the other hand, estimates the disparity difference of a 

reference pixel in relation to the position of the EI origin position and 

corresponding EI match location. As discussed earlier in section 5.3 above, once 

the feature of the start VIP is extracted, the summation of the window is executed 

before a unidirectional scan through aligning a set of Elemental images is 

conducted to find the best match. This innovative similarity measure can be 

defined as,  

𝐸𝐸𝐸𝐸(𝑢𝑢,𝑣𝑣)(𝑥𝑥,𝑦𝑦,𝑑𝑑) =  � ��𝐸𝐸𝐸𝐸(𝑢𝑢,𝑣𝑣)(𝑥𝑥, 𝑦𝑦) − 𝐸𝐸𝐸𝐸(𝑢𝑢−𝑑𝑑,𝑣𝑣)(𝑥𝑥,𝑦𝑦)�
2
�

𝐸𝐸𝐸𝐸(𝑈𝑈,𝑉𝑉)

𝐸𝐸𝐸𝐸(𝑢𝑢,𝑣𝑣)(𝑥𝑥,𝑦𝑦,)∈𝑊𝑊

 (16) 

 

Equation (16) above presents the DDH similarity measure and disparity 

estimation, where 𝐸𝐸𝐸𝐸(𝑢𝑢,𝑣𝑣) , is the starting position in which the reference pixel 

candidate is located, defined as 𝐸𝐸𝐸𝐸(𝑢𝑢,𝑣𝑣)(𝑥𝑥, 𝑦𝑦), and the disparity 𝑑𝑑, is calculated from 

squared difference between the 𝐸𝐸𝐸𝐸(𝑢𝑢,𝑣𝑣) and 𝐸𝐸𝐸𝐸(𝑢𝑢−𝑑𝑑,𝑣𝑣), where the best match of the 

reference VIP is located.  
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Figure 5.5 -  Principle of the similarity measure for the Direct 3D Depth from Holoscopic 3D 
image, whereas BL is the distance between viewpoint pixels. 

 

However, to improve the quality of the estimated results, a threshold is applied, 

reducing the number valid of Elemental images a feature point can be searched in 

depending on the reference VIP's Elemental image location. Figure 5.5 above 

further gives a graphical explanation of the principle behind the innovative DDH 

similarity measure and initial 3D depth estimation process. The following 

technique presented in this chapter currently searches for matches along the x-

axis of the Holoscopic 3D image. However, the following matching technique has 

the ability to estimated 3D depth inform from both axes, making use of the vertical 

as well as the horizontal 3D depth information recorded by the Omni-directional 

MLA of the H3D imaging system. In order to successfully estimate the disparity of 

a viewpoint image, all VIP that combines to make up a specific reference viewpoint 

is matched against all VIP that combines to make the targeted viewpoint. This is 

shown in Figure 5.6 below. 

 

 
Figure 5.6 – H3D image indicating all reference and target viewpoint image pixels.  
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Viewpoint image pixels (VIP) are pixels that combine to make up a specific 

viewpoint image. They are distributed across the Holoscopic 3D image in uniform 

distance to each other on both x and y-axis, provided there are no lens distortion 

errors. The following results to all viewpoint pixels having the same neighbouring 

pixels, therefore the use of an area-based matching technique to estimate their 

individual disparities. The area-based matching technique focuses on the RVIPs 

and its neighbours as well as the TVIPs and its neighbours, ignoring any pixel that 

does not belong to those set of pixels. The window size has to be within the size of 

the Elemental image and depending how big it is, the computational cost could 

increase accordingly. 

 

The second advantage the DDH technique have over 3D depth estimation 

techniques is its ability easily handle edges without the need for image padding 

done by stereo 3D depth techniques. Image padding is usually done by stereo 

based techniques because the stereo image data needed for 3D depth estimation 

do not have neighbouring pixels surrounding the pixels that make up the edge or 

boundary of the images. This often results in more computational effort to 

estimate the 3D depth information of image edges, mainly when the data is 

acquired with an out of bound error. As for the DDH technique, due to the H3D 

imaging systems unique ability to record multiple viewpoints of any giving scene, 

by merely choosing a reference viewpoint image with adequate neighbouring 

pixels (see Figure 6.5) surrounding it, rectifies this problem showing another 

massive potential of the H3D image and DDH technique. 

 

Although this chapter only presents how the Census Transform (CT) and the sum 

of squared difference (SSD) are adapted in finding the best match and initial 

disparity map, other area-based techniques can also be incorporated in the DDH 

technique. 

 

The next section presents the 3D depth optimization technique used to refine the 

3D depth map extract from this stage. 
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5.5. 3D Depth Optimization with Segmentation 

The 3D depth optimization stage of the DDH technique uses segmentation to 

refine the initial 3D depth map. In order to achieve this, a smoothness term is 

applied to the reference viewpoint image, labelling each pixel into feature 

segments, resulting in an energy minimization problem. As presented in Figure 

5.7 below, the segmentation principle is elucidated with a directed weighted 

graph A = (K, U), consisting of nodes U and a set of directed edges K that connects 

them. In 3D depth estimation, the nodes can be referred to as pixels or reliable 

image features and depending on the number of objects recorded by an imaging 

system, extra nodes or terminals are created for labelling, in which nodes are 

grouped. As for Graph A(K,U) that consist of two main features, they are ladled as 

the “source” 𝒔𝒔 ∈ 𝑼𝑼 and the “sink” 𝒕𝒕 ∈ 𝑼𝑼 nodes. 

 

 
Figure 5.7 – Segmentation of Graph A (K, U). 

 

However, the segmentation technique elucidated in Figure 5.7 above, is used in 

correcting only disparity discontinuities that occur inside 3D depth segments, as 

shown in Figure 5.8 below. The binary technique takes the maximum value around 

the discrete pixel within the enclosed feature to optimize the disparity depth map. 
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(a)Initial 3D depth estimate (b) Optimized 3D depth result 

Figure 5.8 – 3D depth map before and after the result is optimized.   

 
Other 3D depth optimization techniques like the graph cut formulations presented 

in chapter three can also be used in place of the segmentation technique presented 

above to improve initially estimated 3D depth maps.   

 

All test results gotten from this innovative DDH technique is presented in the next 

section. 

 

5.6. Results and Evaluation 

This section is subdivided into three subsections where all 3D depth map 

estimated by the DDH technique are presented. The first section presents a 

disparity test where viewpoint images with baselines ranging from 7 to 22pixels 

are documented. Secondly, the EI size test is conducted where the correlation 

between the window patch and the EI size is examined. The final experiment is an 

indirect comparison, complexity test and computational efficiency test between 

this research innovative DDH technique and state-of-the-art stereo techniques 

from the Middlebury website4 and Hae-Gon et al. [9] [98].  

 

The DDH is implemented on an Intel© Core © i7-4790 CPU @ 3.60 GHz CPU. 

 

5.6.1. Disparity Test 

The 3D depth maps estimated from the synthetic Holoscopic data presented in 

Figure 5.3 above is presented in this section. The 3D depth maps are estimated 

from VIPs with disparity or baseline sizes varying from 7 to 82 pixels. The 

                                                        
4vision.middlebury.edu/stereo/ 
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Synthetic Holoscopic data set has an Elemental image resolution of 100x100 

pixels, with a default viewpoint image resolution of 79x53 pixels. The window 

patch size used for this experiment is a fixed 15x15pixels. The following 

parameters are presented in Table 5.2 below. 

 
Table 5.2 

SH3D image parameters and disparity range values used for the disparity test. 

MLA size 

(Pixels) 

VIP size 

(Pixels) 

EI Size 

(Pixels) 

Disparity Range 

(Pixels) 

Patch Size 

(Pixels) 

79x53 79x53 100x100 7 – 82 15x15 

 

The 3D depth maps estimated form the following parameters are as follows. 
 

    
(a) (b) (c) (d) 

    
© (f) (g) (h) 

    
(i) (j) (k) (l) 

    
(m) (n) (o) (p) 

Figure 5.9 – 3D depth maps estimated from the SH3D data set labelled “cones”. All 3D depth 
maps have a disparity difference of 5pixels between each result. 
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(a) (b) © (d) 

    
© (f) (g) (h) 

    
(i) (j) (k) (l) 

    
(m) (n) (o) (p) 

Figure 5.10 – 3D depth maps estimated form the SH3D data set labelled “birds”. All 3D depth 
maps have a disparity difference of 5pixles between each result. 

    
(a) (b) (c) (d) 

    
© (f) (g) (h) 

    
(i) (j) (k) (l) 

    
(m) (n) (o) (p) 

Figure 5.11 – 3D depth maps estimated from the SH3D data set labelled “dice”. All 3D depth 
maps have a disparity difference of 5pixels between each result. 
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(a) (b) (c) (d) 

    
© (f) (g) (h) 

    
(i) (j) (k) (l) 

    
(m) (n) (o) (p) 

Figure 5.12 – 3D depth maps estimated from the SH3D data set labelled “mixed”. All 3D depth 
maps have a disparity difference of 5pixels between each result. 

 

The 3D depth results presented in section 5.6.1 indicates the more significant the 

disparity, the better the 3D depth map. However, the disparity size is restricted by 

the number of horizontal pixels within the Elemental image and the window size. 

This leads to the next analysis of finding the best trade-off between Elemental 

image size and window size. 

 

Secondly, the data set used for this experiment lack adequate texture within them, 

Figures 5.9 to Figure 5.11 register less accurate disparity values compared to the 

Figure 5.12 test results as it is rendered with objects of different shapes and 

textures, making it easier for image features to be matched accurately. Therefore, 

the Mixed Holoscopic data set is to be used for experiments presented in section 

5.6.2 and 5.6.3. 

 

5.6.2. Elemental Image Size vs Block Matching Size Test 

In this subsection, the 3D depth results gotten from different Elemental image 

sizes and viewpoint image resolutions, ranging from 79x53 pixels to 397x265 
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pixels are presented in Figure 5.13 to Figure 5.16. The results presented below 

indicates that regardless of the disparity difference or size of the Elemental image, 

it is still possible to extract 3D depth information from any Holoscopic 3D image. 

However, since the current DDH technique only extracts the 3D depth information 

of a viewpoint image from one direction, the maximum disparity size is always 

limited to the horizontal number pixels. Since the larger the disparity between the 

viewpoint images the better the 3D depth results, it is clear that H3D images that 

produce low-resolution viewpoint images will most likely produce better 3D 

depth results due to their more significant disparity range.  
 

   
(a) WS: 7x7pixels (b) WS: 9x9pixels (c) WS: 11x11pixels 

Figure 5.13 – Elemental image size vs matching window test results, estimated from SH3D 
data set labelled “mixed”. The Elemental image size of the SH3D data is 20x20pixels and the 
viewpoint image size is 397x265pixels. 

 

  

(a) WS: 7x7pixels (b) WS: 9x9pixels 

  

(c) WS: 11x11pixels (d) WS: 15x15pixels 
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Figure 5.14 – Elemental image size vs matching window test results, estimated from SH3D 
data set labelled “mixed”. The Elemental image size of the SH3D data is 40x40pixels and the 
viewpoint image size is 198x132pixels. 

 
 

   
(a) WS: 9x9pixels (b) WS: 11x11pixels (c) WS: 15x15pixels 

   
(a) WS: 17x17pixels (b) WS: 19x19pixels (c) WS: 21x21pixels 

Figure 5.15 – Elemental image size vs matching window test results, estimated from SH3D 
data set labelled “mixed”. The Elemental image size of the SH3D data is 60x60pixels and the 
viewpoint image size is 132x88pixels. 

 

Secondly, another observation is that, as the window size increases the maximum 

disparity between the viewpoint images decreases in order to accommodate the 

window size growth, making it challenging to optimise 3D depth results when 

there is a low number of pixels in the Elemental images. 
 
 

   
(a) WS: 7x7pixels (b) WS: 9x9pixels (c) WS: 11x11pixels 

   
(d) WS: 15x15pixels © WS: 17x17pixels (f) WS: 19x19pixels 
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(g) WS: 21x21pixels (h) WS: 23x23pixels (i) WS: 25x25pixels 

   
(j) WS: 27x27pixels (k) WS: 29x29pixels (l) WS: 31x31pixels 

Figure 5.16 – Elemental image size vs matching window test results, estimated from SH3D 
data set labelled “mixed”. The Elemental image size of the SH3D data is 80x80pixels and the 
viewpoint image size is 99x66pixels. 

 

This effect occurred mostly in Elemental images with an image resolution of 20x20 

pixels to 40x40 pixels, and the computation cost needed to computed 3D depth 

information from H3D image increases since the smaller the Elemental image size, 

the higher the overall number Elemental images the algorithm has to search in 

order to find the best match. 

 

Elemental image sizes ranging from 60x60 pixels to 100x100 pixels begin to show 

a better distinction within the disparity maps, however, finding the best trade-off 

between the window size and disparity is limited as choosing the biggest window 

does not always result in better 3D depth maps.  

 

5.6.3. Comparison of Proposed Technique 

Since there is no H3D depth estimation technique, like the DDH presented in this 

chapter, the technique is evaluated by comparing the results gotten to other state-

of-the-art stereo and 3D depth estimation techniques. The 3D depth technique 

developed by Schavstein et al. can be downloaded from the Middlebury website 

[9] and the second is developed Hae-gon et al. [98]. The Middlebury 3D depth 

technique is implemented to estimate 3D depth information from stereo images 

recorded by a 2D imaging system. This means the 3D depth algorithm is not 

implemented to accommodate the H3D system small baseline problem. The 
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second algorithm is implemented by Hae-gon et al., on like the previous algorithm, 

it is implemented to accommodate the small baseline problem that comes with 

H3D images. However, they estimate 3D information from an array of viewpoint 

images which is subjected to some form of viewpoint image interpolation. The 

results of these comparisons are presented in Figure 5.18 below; however, the 

viewpoint image sample of the interpolated samples used in presented in Figure 

5.17. 
 

  
Figure 5.17 – Holoscopic viewpoint image samples used for the direct comparison, up-
sampled from a viewpoint image of default size 79x53p, excluding the DDH which is extracted 
directly . 

   

   

(a) DDH 3D depth result 
(b) Schavstein et al. 3D depth 

results 

 (c)Hae-Gon et al. 3D 

depth results 

Figure 5.18 – The innovative DDH 3D depth map compared to other state-of-the-art 3D depth 
algorithms. 

 
The complexity of the following 3D depth from disparity frameworks are 

presented in Table 5.3 below, where the number closest to one (1) entails that the 

3D depth estimation framework is more complex. 
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Table 5.3 

Complexity evaluation results of the DDH, Szeliski et al. and Hae-gon et al. depth frameworks. 

3D Depth frameworks 
Stereo constraints 

C1 C2 C3 C4 C5 C6 Avg. 

DDH 1 1 0 0 1 0 0.5 

3D Depth Schavstein et al. 1 1 1 0 1 0 0.6 

 3D Depth Hae-gon et al. 1 1 1 1 1 0 0.8 

 

The computational cost of the following 3D depth estimation techniques 

presented in Table 5.3 above is shown in Figure 5.19 below.   

 
 

 
Figure 5.19 – The computational cost of the DDH, Szeliski et al. and Hae-gon et al. measured 
in seconds.  

 
Figure 5.19 presents the computational cost of the DDH technique presented in 

this chapter compared to other state-of-the-art techniques. The DDH technique is 

the most efficient of the three and also extracts higher quality depth maps. The 

DDH technique can, therefore, be optimised and used in Realtime applications, 

where all angular information can be assessed, Making this the only true H3D 

depth estimation technique. 
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5.7. Summary 

The following chapter presents the innovative Direct 3D depth from Holoscopic 

technique, implemented to estimate 3D depth information directly from a single 

H3D image without the need of the adaptation of H3D images into stereo 

viewpoint images.  The DDH technique has the ability to estimated 3D depth 

information of a viewpoint image in both directions of the H3D image. However, 

only the estimation of 3D depth information from the x-axis is documented in this 

chapter. The DDH does not require the padding of viewpoint images as the use of 

VIPs with adequate neighbouring pixels makes it is possible to estimate 3D depth 

information around image borders accurately. 

 

As the current H3D imaging systems lack MLA of different sizes, a synthetic H3D 

image database is rendered in POV ray to help deduce the core principle of the 

DDH technique. On like H3D images that are exposed to lens distortion errors, the 

synthetic H3D image data is free from any form of distortion, making the H3D data 

rectified.   However, the synthetic data lack detail texturing that can be seen in real 

H3D data. The data set labelled "mixed" served as the prime data set as it had the 

most similar properties to the real H3D image data. 

 

The DDH technique is made up of the following three stages; (i) Feature extraction 

with Census transform, (ii) Similarity measure and 3D depth estimation and (iii) 

3D depth optimisation with segmentation. Feature extraction technique in the 

depth framework can be grouped as an area-based feature extraction technique. 

The Similarity measure and 3D depth estimation are implemented to traverse 

along both axis EI of the H3D image, resulting in the estimation of 3D depth at the 

EI level. 

 

The DDH technique presented in this chapter is the first of its kind as current 3D 

depth estimation frameworks prefer to convert their 3D image into 2D images, in 

the process losing a lot of 3D depth information.  Therefore, an indirect 

comparison of this technique and current state-of-the-art stereo matching 3D 

depth frameworks is conducted by extracting the VIP used for 3D depth 

estimation by the DDH to stereo viewpoint image. The following viewpoint image 
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is used as a data set for the stereo matching techniques to be compared. Other 

tests, such as the disparity range test and Elemental image size VS matching 

window size, were conducted to see the limits of the DDH technique. The main 

conclusion has been the DDH technique works better with Holoscopic 3D images 

of bigger and fewer MLAs. 
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CHAPTER 6: CONCLUSIONS AND FURTHER WORKS  

In this chapter, the main findings and contribution in regard to the research topic 

"Robust 3D depth estimation from an H3D image" is summarised, and general 

conclusion based on the research contributions presented in this thesis 

documented. The chapter concludes with the suggestions for further research 

topics, taking into consideration this thesis limitations and strengths. 
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6.1. Conclusions 

Holoscopic 3D imaging is a new research area. Therefore, there is no standard 

platform to process H3D data captured by the imaging system. This limits the 

application areas of which the H3D imaging systems can be used. In place of this 

system, stereo imaging systems and active systems are used as current industrial 

systems for recording 3D depth information of a scene, but the following system 

is costly in comparison to H3D imaging systems. However, due to the limitations 

associated with the H3D imaging system, industries continue to rely on the 

current inefficient way of recording and estimating 3D depth information. This 

gap led to the research "Robust 3D depth estimation from a single H3D image". 

 

The incorporation of the research finding, and contributions presented in this 

thesis leads to industrial usage of the H3D imaging system, making use of the 3D 

depth qualities along with other attributes of the H3D imaging system in different 

application areas. The main research goal is subdivided into aims and objectives 

that constitute the comprehensive qualitative research on 3D depth sensors and 

estimation techniques, and the development of scalable H3D depth estimation and 

H3D pre-processing techniques. 

 

(1) This study led to the design and implementation of multilayer H3D encoding 

technique that enables efficient viewpoint image extraction from complex H3D 

data, reducing the computational cost by 95%. 

 

(2) This study led to the finding that suggests the consideration of the trade-off 

between angular and spatial information, resulting in higher quality viewpoint 

images. The MLA has a direct correlation to the scaling factor of the viewpoint 

images and the disparity range when adapting H3D data for 3D depth estimation. 

Therefore, the considerations of MLA aperture sizes when recording H3D for 3D 

depth is highly recommended.  Taking into account of the MLA size can increase 

the spatial resolution or improve the angular information depending on the H3D 

3D depth estimation framework or application area. 
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(3) This study led to the design and implementation of deep-learning-based single 

image upscaling technique for H3D images, where the use of EIs and low-

resolution 2D data is used as training data. The results found outperformed 

current H3D upscaling techniques, proving that 2D data can be used as training 

data for H3D image resolution problems. 

 

Based on the following contributions above, (4) the implementation of a robust 

H3D 3D depth from disparity framework is implemented. The robust framework 

has an H3D content adaptation technique capable of extracting semi segmented 

viewpoint images, making use of the H3D imaging system unique ability to refocus 

at any point after capture. This contribution then led to the proposal of a 3D depth 

mapping technique to reduce the computation cost to make the 3D depth 

estimation technique usable in near real-time applications. 

  

Although the following H3D 3D depth from disparity technique performs better 

than other depth estimation techniques, the following limitations below still affect 

the quality of H3D data and their resulting 3D depth maps; 

i. The introduction of unwanted artefacts that affect the quality of 3D depth 

maps. 

ii. The loss of valuable angular information when adapting 3D content into 2D 

content.  

 

The following limitations above led to (5) the implementation of a 3D depth 

technique that can extract 3D depth information directly from a single H3D image. 

The innovative Direct 3D depth from Holoscopic (DDH) technique results in 100% 

preservation of the quality and integrity of the angular information recorded by 

the H3D imaging system. The innovative technique has a unique similarity 

measure and 3D depth estimation technique that calculates the disparity of a VIP 

by the sum of the squared difference between the RVIP Elemental image position 

and TVIP Elemental image location. The DDH technique also can estimate 

disparity from both directions of an omnidirectional H3D image. 
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Based on the research findings for MLA consideration and multilayer H3D image 

encoding, the development of the second generation H3D imaging system should 

be considered. The new H3D imaging system having the inbuild version of the 

proposed multilayer H3D encoding program will make the H3D imaging an 

industrial tool. 

 

The detail examination and implementation of various pre-processing solutions 

that are aimed at addressing the current drawbacks of the H3D imaging system 

should lead to the development of a low-cost H3D image pre-processing platform. 

The following would allow the average to explore the advantages of the H3D 

imaging system with can lead to the replacement of multi-lens systems that are 

found on smartphones like "iPhone 11" and "Samsung Galaxy X".  The H3D image 

pre-processing findings have already been used in the CEPROHA project where 

the digitization of cultural assets was achieved. 

 

Based on the H3D 3D depth estimation frameworks presented in this thesis, the 

implementation of cost-effective applications that are heavily dependent on 3D 

depth information is possible. These applications include autonomous navigation, 

3D digitization, and other various depth-related applications, further expanding 

the use of H3D imaging systems in communities as there is no doubt that it will 

eventually replace conventional 2D imaging systems in the near future. 

 

6.2. Further Work 

The development of an automated technique for extracting viewpoint images 

could be a sensible research area. This research area will lead to the redesign of 

the current H3D imaging system with perfect MLA calibration to the sensor. 

Followed by a deep-learning-based viewpoint extraction technique that can 

automatically correct lens distortion errors and extract the viewpoint image with 

minimal input from the user. 

 

The implementation of a 3D depth mapping technique that can be used to map 

low-resolution 3D depth maps to their respective high respective resolution 

counterparts. In doing so, when estimating 3D depth information form video H3D 
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data or multi-frame H3D data, the estimation and optimization of low-resolution 

3D depth to high-resolution 3D depth maps will significantly reduce the 

computational expensive. 

 

Further research into 3D scene reconstruction from H3D video data is also 

research that benefits from this research. 

 

Further research into the extension of the direct 3D depth from Holoscopic 3D 

image technique to accommodate real H3D images is expected. This is a possibility 

because synthetic H3D images where used to prove and standardize the DDH core 

3D depth estimation principles. The synthetic H3D used had no lens-related 

errors, where the real H3D data will at least have lens distortion error which will 

undoubtedly lead to extension and optimization of the current DDH framework to 

accommodate more image restrictions. 

 
A. Appendix 

This appendix provides additional details about the Holoscopic 3D computer 

graphics data set in this thesis. The CG H3D data is used in chapter 3 and chapter 

5 for image sampling evaluation and direct Holoscopic depth estimation. 

 
POV ray configuration of Holoscopic 3D image rendering 
 

Parameter Value  Description 

MLA size 86x48 Includes MLA affected by 

vignetting. 

Valid MLA size 84x47 Only MLA not affected by 

vignetting. 

Dot pixel pitch 0.00451mm Size of single pixel on 

sensor. 

Censor Length 35.9x24mm Width and length of 

sensor. 

Max resolution 7952x5304 pixels (8K) Max. H3D image size. 

Max Obj. in scene 3  
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Scene properties No shadow Do not render shadows of 

scene. 

Scene gamma 2.2  

Focal length range 1:0.5:11  

Depth range Focal length*EI length  

 

 CG Holoscopic 3D image data set properties 
 

Square MLA size (mm) EI size / No. VPIs (pixels) Default VPI size (pixels) 

0.4512 1002 79x53  

0.40592 902 88x58 

0.36082 802 99x66 

0.31512 702 113x75 

0.27062 602 132x88 

0.22552 502 159x106 

0.18042 402 198x132 

0.13532 302 265x178 

0.09022 202 397x265 

0.04512 102 795x533 

 
 
B. Appendix 

This appendix provides details about the patch-based interpolation [99] 

technique used in chapter 4 for viewpoint extrapolation. 

 

A Holoscopic 3D image is made up of a set of Elemental images and the size of each 

Elemental image equals the number of viewpoint images recorded in a single 

snapshot. Furthermore, the total number of micro lens array (MLA) equals the 

default size of each viewpoint image recorded. This resulting to one of the major 

setbacks of the Holoscopic imaging system, its inability to record high resolution 

that results to difficulty in feature matching. However, details of the patch-based 

image sampling technique [99] discussed in chapter 4, is utilized to avoid 

mismatching problems associated with the low-resolution set back. This defined 

in Equation B.1 below as: 
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 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  ��𝐾𝐾𝑛𝑛+𝛿𝛿𝑥𝑥(1+𝑖𝑖),𝑖𝑖,   𝑚𝑚+𝛿𝛿𝑦𝑦(1+𝑗𝑗),𝑗𝑗

𝑁𝑁

𝑙𝑙=1

𝑁𝑁

𝑘𝑘=1

 (B.1) 

 

Where the up-sampled list of reference images LRVPIs (K) and the resulting super 

resolution Viewpoint image is donated as SRVI.  The coordinates of the SRVI is 

donated as n and m while the Vis index numbering range from 1 to 𝑁𝑁  and 

represented by 𝑘𝑘 and 𝑙𝑙. The omnidirectional sub-pixel shift parameters are 𝛿𝛿𝑥𝑥 and 

𝛿𝛿𝑦𝑦 respectively. The shift parameter value 𝛿𝛿 is defined as: 

  

 𝛿𝛿 =  
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑁𝑁
 (B.2) 

 

However, due to over or underfitting of the reconstruction of SRVI, the resulting 

image do not have well defined features [100], resulting in the smoothing and 

sharping of the shift-integrated LRVPIs with Gaussian blurring low-pass filter 

kernel and image sharping techniques [101]. 

 
C. Appendix 

This appendix provides details about the Holoscopic 3D image data set used in 

conjunction with 2D image data sets for viewpoint image up-sampling with deep 

learning in this thesis.  

 

As mentioned in chapter two section three, deep-learning based networks require 

a large data set in order to accurately create a regression model. In terms of image 

up-sampling, the network is used to deduce the difference between up-sampled 

viewpoint images and their reference image. In doing so, the successful and 

accurate up-sampling of the Holoscopic viewpoint images is achieved. The data 

collection guide for testing and training learning-based networks is listed below. 

 

i. Acquisition of raw benchmark Holoscopic 3D data of size ranging from 2k 

to 8k in pixels.  

ii. Raw Holoscopic 3D data is subdivided as two classes, training and test data. 
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iii. The training data of size ranging from 2k to 8k is then subsampled and 

broken down into Elemental or sub aperture images.  

iv. The raw Holoscopic data is also broken down into Elemental images and 

used as reference data of the previously subsampled EIs.  

v. As this data is insufficient, 2D image data is used to supplement the training 

data. 

vi. Once the network creates a regression model that can up-sample the 

training data with high accuracy. 

vii. The up-sampled Elemental image is then reconstructed into a single 

Holoscopic image. 

viii. The results evaluated with PSNR and SSIM, state-of-the-art image 

evaluation metric.  
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