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Abstract 
Sensemaking is often associated with processing large or complex amounts of data obtained 
from diverse and distributed sources. Sensemaking is an important process for any business, 
since it deals with understanding data and facts that relate to unknown or ambiguous situations. 
To-date, the research base on sensemaking has not moved far from the conceptual realm 
however. Our vision here is to operationalise sensemaking in order to improve the human 
decision-making process (ultimately in the context of large data volumes in a business context). 
This study contributes to the knowledge base by proposing a novel conceptual framework that 
utilises Data Mining (DM) and Machine Learning (ML) to assist in transforming user 
interactions with the analytical software that models sensemaking patterns. These patterns 
reflect people’s experience during the analysis and exploration of the data related to the 
emergent ambiguous situation. 
Keywords: Sensemaking, Data Mining, Machine Learning. 

1. Introduction
Decision making is one of the basic cognitive processes of humans, traditionally seen as 
choosing a preferred option or a course of actions from among a set of alternatives based on 
previously defined criteria. In reality, however, problems within organizational and social 
realms are often difficult to explicitly model and (completely) formalize – often due to the 
constraints within organizations, people, data, technology, functionality, time, budget and 
resources [27]. In addition, decision criteria and alternatives are burgeoning due to the 
continuing increase in the Variety, Volume, Veracity, Velocity and Value (5Vs) of (big) data 
[4]. Thus, a challenge in relation to understanding and making sense of data are coming to the 
fore [2]: ‘Big data’ arguably, therefore, requires ‘big insight’.  
As a response to this challenge, there is an increasing focus on the development and application 
of technologies and concepts that have emerged such as data mining and machine learning. Less 
of a focus has been placed on how people actually make sense of data in their day-to-day 
activities however. Sensemaking is concerned with studying how people comprehend and 
analyse events and data that are characterised with ambiguity and equivocality [32]. At its 
simplest, sensemaking can be described as the interrelated recurring processes of noticing, 
interpreting and action [14]. Noticing, is a process in which individual actors single out some 
problematic stimuli as cues for further conscious processing out of their streams of experience 
in the situations that they face. Interpretation is a combining process in which the cue and data 
are connected to a frame of reference, through which meaning of the cue is constructed and 
hypotheses are generated. Lastly, action represents the current ‘work’ that is motivated by a 
future goal and at the same time makes it real. Action often triggers subsequent sensemaking 
(noticing and interpretation) [14]. 
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The discussion on sensemaking has not moved far from the conceptual realm to-date. Our vision 
here is to operationalise sensemaking process by intelligently capturing the analysis 
‘experience’ during data analysis life cycle. The objective is to harness the power of data mining 
and machine learning techniques to improve human decision-making process (ultimately in the 
context of large data volumes in a business context). In starting on this journey, the remainder 
of this paper is structured as follows. Section 1.1 highlights the importance of sensemaking 
research. Section 2 reviews the related work in different research communities and explains the 
similarities and differences among them. Section 3 introduces and describes our conceptual 
framework. Section 4 defines the application context where the proposed framework will be 
tested and validated, explaining the methodology that will be adopted. Finally, Section 5 
concludes the work and explains the future work required to advance this research. 

1.1 Importance of Sensemaking 
Sensemaking can be seen as the process that generates the heuristics, cues, options and 
hypotheses, which together form a frame of reference that is (implicitly) consulted when a new 
(ambiguous) situation triggers the sensemaking process [17]. Consequently, sensemaking 
support systems are qualitatively different from (traditional) decision support systems. The 
latter type helps decision makers with known situations by facilitating the comparison of 
alternative solutions or decisions – effectively optimising the decision space. Sensemaking 
support systems, on other hand, help actors with equivocal and ambiguous problems that require 
constructing (and/or reconstructing) frames of reference, in order first to understand the factors 
that trigger the sensemaking process [24]. Zack [35] argues that traditional Decision Support 
Systems are valuable in the context of uncertainty and complexity, but that they are lacking in 
the context of ambiguity and equivocality. Given that the latter are arguably prevalent in the 
social and organisational realm, there is a need to help decision-makers to better deal with 
ambiguous and equivocal (emergent) challenges – especially in rapidly changing conditions 
within organisations [10]. 

2. Sensemaking in the Literature 
Sensemaking provides the ability to deal with rapidly emerging threats as well as asymmetric, 
unfamiliar, and dynamic situations: Though Weick’s work [32], [34] is pivotal in the 
organisational realm, sensemaking has reared its head in other domains. We now therefore 
discuss sensemaking from business, enacted cognition and computational perspectives. 

Sensemaking in the (Strategic) Organisational Literature 

Weick’s work [32], [34] provides a fundamental grounding of sensemaking within 
organisations. He defines sensemaking as the process where people generate their own 
understanding and interpretations of certain situations. Thus, sensemaking can be seen as a 
continuous retrospection, where beliefs, implicit assumptions, stories from the past, unspoken 
premises for decision, actions, and ideas about what will happen as a result of what can be done, 
are gathered to form an acceptable understanding or sense that is described with clear rules and 
words. Nevertheless, the generated sense is affected by selective perception, since only some 
aspects of the world are considered, while others are forgotten or neglected. The distinguishing 
features of sensemaking are listed in Table 1. 
Other works in the area focus on characteristics, features and functionalities such as the 
recurring process of creating and modifying views and visions about ambiguous issues and 
situations [10], the importance of the past experiences in shaping the primary assessments [10], 
[18], providing explanations and attributes for the emergent events and predicting the following 
ones [10], [12], [18], the ability to build relations between views, expectations and actions [18], 
the ability to create rational accounts of the world that enable actions [12], [28], and finally, the 
ability to extract , interpret and explain cues from people’s environment [21], [29], [32]. 

Table 16. Sensemaking features 
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Feature Description and Justification 
The identity of the 
sense maker 

Sensemaking is grounded in the identities of the sense makers who continually 
redefine their perception of themselves and the situation they face. 

Retrospective  Because, a never-ending reconstruction of experience occurs.  
Enactive Enactive of the working environment, because people create or enact their 

environment by interacting with it and among each other based on the knowledge 
gained through physical actions as well as individuals’ own skills and perceptions. 

Social and Systematic Social and Systematic, since it occurs between people inside and outside the 
organization. 

On-going On-going, because sensemaking is a continuous process. 
Plausibility Driven by plausibility rather than accuracy, since the absolute accuracy is 

impossible in an equivocal and changing world where stakeholders go through 
guesswork, subjectivity, and arbitrariness 

Noticing and 
labelling 

Sensemaking happens by noticing and labelling cues emerge from data and 
actions 

 
Recent studies have concentrated on the social nature of organisational sensemaking. These 
studies have focused on language, rather than cognition as the enabler of sensemaking [3], [19, 
20, 21], [33]. Similarly, emotion as a dimension is also receiving some attention [22] – negative 
emotion, in particular, is considered of a particular importance in crisis situations as well as 
organisational change [7], [21]. Negative emotion can take the form of fear, desperation, 
anxiety and panic, which can significantly affect individual cognitive information processing 
ability as well as the capability to notice and extract cues [21], [29]. Conversely, it has also 
been demonstrated that planned organisational change can generate positive emotions that help 
the involved stakeholders to understand the change initiative [21]. The point, however, is that 
the significance of emotion stems from its role as the necessary triggering factor that initiates 
the sensemaking process [7]. 

Enacted Sensemaking Perspective  
The enactive cognition literature examines how individuals use interaction to perceive and then 
shape their world to create meaning and value [32] – concentrating on the dynamics of that in 
good part. Enactive cognition is based on key principles such as the autonomous nature of an 
individual, the emergence of an individual’s world through their interaction with the world, the 
embodiment of the learning process and, finally, the importance of experience in 
comprehending situation [30, 31].  
Autonomy asserts that agents continuously regenerate their own understanding of the 
environment they are interacting with and through [5]. Adaptivity provides the tolerance to face 
and deal with the emergent and varying challenges during the communication in the 
environment [6]. Consequently, sensemaking is defined as the interaction and the engagement 
of a system (typically an individual) with its environment via a relational process. Addressing 
the social perspective, interaction is seen as a sustainable coordination between individuals, 
where additional meaning and value is created [5]. 

Computational Sensemaking Perspective  

The computational sensemaking literature examines the phenomena in a way that seeks to 
operationalise it. One stream centres on situational awareness, exploring how the cognitive 
capability of human mind uses non-stop creativity, curiosity, perception, comprehension, 
projection and mental modelling to form the sense out of people’s experiences – typically in 
the form of heuristics, cues and hypotheses [1], [15], [17]. Much of the background here comes 
from studies of Naturalistic Decision Making (NDM), studying cognition in real-world 
environments that are characterised by ill-structured problems, uncertain and dynamic 
environments, ill-defined and competing goals, time stress, high stakes, multiple participants 
and important organizational goals [25]. 
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The naturalistic approach seeks to empirically trace the ‘paths’ that humans take in making 
sense of the world. One school of thought structures this process in two main iterative loops 
derived from Cognitive Task Analysis (CTA) studies, see Figure (1a): 1) A foraging loop, 
where sense makers seek information about the ambiguous problem and generate examples and 
hypotheses that can provide answers; and 2) a sensemaking loop, in which sense makers 
iteratively develop a mental model that best fits the examples and hypotheses generated in 
foraging [17], [26]. 
A second (but related) school examines how people start the sensemaking process by 
constructing a basic and minimal frame which allows them to have some view on the problem 
at hand. This frame can be further developed by the addition of details and questioning the 
explanations the initial frame delivers. Ultimately, this can lead to preserving or elaborating the 
frame, or to start a reframing cycle, in which new, better and enhanced frame is created [16]. 
This model, see Figure (1b), was examined in a crisis situation and demonstrated how the loop 
of framing, questioning and reframing has proved its potentials to model human’s intelligence 
and sensemaking process [23]. 
 

 
(a) 

 
(b) 

Fig 14. Sensemaking models a) Notional sensemaking model (adapted from [26]) 

                              b) Data/Frame model (adapted from ([16]) 
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3. Toward a Computational Sensemaking Framework 
Despite the fact that sensemaking accounts are generated in different domains at different times, 
a number of similarities arise. First, all accounts study the retrospective nature of how 
individuals shape their world via recurring interaction and the creation of meaning and value. 
Second, both organisational and enactive literature, examine how new knowledge is created via 
a continuous (social) interaction with the environment they interact with and/or exist within. 
Third, the enactive and computational approaches in particular, seek to put some ‘flesh on the 
bones’ in identifying constructs generated from the sensemaking process such as frames of 
reference, cues, hypotheses etc. Thus, the computational literature proposes sensemaking 
models by identifying concepts such as foraging, framing, elaboration and reframing. As the 
state-of-the-art stands, however, there is little in the way of research that examines how to make 
these constructs operational using current/emerging computational techniques.  
Our synthesis of the current literature is shown diagrammatically in Figure 2. The noticing, 
interpreting and acting loop are considered as the core processes that inform/reform a Frame of 
Reference (FoR); this is a schema that contains and connects cues and, in addition, contains the 
hypothesis/hypotheses about the problem under investigation. In this model, sensemaking 
process starts with noticing, which is the process of cue extraction, then, interpretation, which 
is the process of structuring cues, developing (competing) hypotheses and selecting the most 
likely as a precursor to make actions based on the interpretations. An inner loop represents the 
ongoing dynamics of that process via the questioning of a frame (as a reflection on action), 
elaboration of a frame and, ultimately, reframing. 

 

 
Fig 15. Conceptual sensemaking model 

We conceptualise the FoR as a schema that holds the question(s) driving an analytical event, 
the cues (data) that are seen as important in relation to the analysis task, the relations between 
those data (which can be taken as an initial hypothesis), and the findings seen as the satisficing 
answers. Table 2 lists the elements that form the FoR as well as their descriptions. Our aim is 
to operationalize this framework in the context of (business) analysts going about their daily 
business, following the process shown at Figure 3. This process model embodies the work 
environment, where an analyst uses (interacts with) software to analyse and visualise data. In 
addition, the work environment symbolises the sensemaking system that captures and mines 
user interactions with the analytical software. The interactions will be captured using 
specialised software that has the capability to record mouse clicks and keyboard strokes in two 
formats, as a written text and as a screenshot, which will be further processed in order to 
transform them into a time series data that reflect user’s interactions. 
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Table 17. Frame of Reference (FoR) Elements 

FoR Element Description 
Analysis question(s) The event or task that triggers the sensemaking process 
Findings The answers or results that are seen as satisficing for the analysis 

question 
Analysis task successful Yes \ No 
User-Software data exchange  The data exchanged between the user and the software 
Cues The data that are important for the current analysis task 
hypothesis/hypotheses 
developed during analysis 

The initial as well as the modified hypothesis throughout the 
sensemaking life cycle 

 
We envisage that, at the beginning of a task, the analyst could consult the (computational) 
Frame-of-Reference for similar use cases in order to check the hypotheses and findings 
previously generated for similar problems. In the absence of a prior use case, the sensemaking 
system will log the user interaction with the data analysis and visualisation tool. Then, 
interaction pattern mining techniques [9] will be applied to the log to discover usage scenarios 
that help to uncover the analytical cues of importance and the relationships between them, 
which form a hypothesis for how to solve the analytical task.  
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Fig 16. Process model to operationalise sensemaking process 

We expect that the analytical ‘paths’ that result will differ across analysts working on the same 
task, reflecting analyst’s experience and prior technical and domain knowledge. Consequently 
we expect that there may be multiple paths taken in achieving the same analytical objective. 
This means that the outcomes of consulting the computational Frame-of-Reference will likely 
differ across analysts interacting with the software. Where differences are minimal, patterns 
may be observed. Where differences are more marked, we believe it will be necessary for 
computational mechanisms to evaluate competing hypotheses (this aspect can be thought of as 
part of the inner questioning, reframing, elaborating cycle in the conceptual sensemaking model 
shown in Figure 2). 

4. Application Context and Methodology 
In moving from the conceptual to the empirical, the process model will be tested and validated 
in the context of data analysis related to student recruitment in UK Higher Education (HE). This 
is a sector that has become increasingly competitive with the increase of student fees and the 
deregulation of student numbers. As a consequence, significant sensemaking effort is being 
expended on understanding what drives student choice in-and-around courses and institution 
for example. For those doing the analysis, the situation is ambiguous and equivocal – though a 
central data source is available (the Higher Education Information Database for Institution 
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(HEIDI)), whether it covers the necessary data, how the data link in the context of specific 
questions and, indeed, what questions to ask are open.  Further, HEIDI data is not currently in 
a shape or format that allows advanced analytics or visualization – so additional tools and data 
preparation are required.  
Within this context, our aim is to empirically seed the model above by (automatically) 
monitoring how analysts in the HE sector go about their work and interact with the data and the 
analytical software. In doing this we adopt a Design Science Research (DSR) approach 
comprising of three iterations. Figure 4 illustrates an overall view of the DSR methodology in 
this research: 
 

1. First iteration (Infrastructure set-up).  

This iteration (completed) concentrates on extracting, transforming and loading HEIDI 
data into a new database in a manner suitable for advanced analytics and visualisation. 
Here, the technical sensemaking monitoring infrastructure is created, enabling the 
capture of analyst interaction with data through the chosen analytical software 
(Tableau). 

2. Second iteration (Analytical observation and interaction pattern mining).  

This iteration takes a clickstream approach to recording analysts’ interactions with the 
analytical software. Here, we focus on applying suitable Data Mining (DM) techniques, 
interaction pattern mining, on the captured interactions in order to discover usage 
patterns/scenarios [9], [11]. These patterns along with the analysis objectives, 
discovered cues, developed hypothesis/hypotheses and concluded findings help in 
constructing and updating the computational Frame-of-Reference (FoR) each time the 
analyst/s perform new analysis tasks on the software, see Figure 3. 

3. Third iteration (Clustering sensemaking patterns using machine learning).  

In the third and last iteration, we aim to improve the frame of reference by utilising 
Machine Learning (ML) techniques in order to cluster the developed competing 
hypotheses into categories depending on the analysis objectives they fall under. Then, 
Analysis of Competing Hypotheses (ACH) [8], [13] will be applied to aid the judgment 
on the best developed hypothesis for the same analysis objective category – leading to 
update the computational frame of reference.  

 



LYCETT AND MARSHAN.  CAPTURING SENSEMAKING PATTERNS... 
 

114 
 

 
Fig 17. Methodology overview 

 

5. Conclusion and Future Work 
The importance of sensemaking in organisational decision-making stems from its role in 
understanding emerging equivocal and ambiguous situations (especially with a world of ever 
increasing data). This understanding is achieved through constructing or re-constructing Frames 
of Reference (FoR) that help in understanding the factors initiating the sensemaking processes 
of noticing, interpretation and action. The proposed framework for discovering sensemaking 
patterns during data analysis seeks to benefit from combining the powers of data mining and 
machine learning techniques and algorithms, applying them on user interactions with data 
analysis tools in order to discover usage patterns. These usage patterns represent the 
sensemaking journey the users go through until finding answers that are satisficing for the 
problem under investigation - in essence capturing a trail of analyst’s naturalistic decision 
making processes. Over time, automated task monitoring will capture an audit trail of how data 
were brought together and used in relation to the analysis task, enabling a view on how the FoR 
is questioned, elaborated and reframed. 
The proposed framework aims to preserve the analysis experience during the data analysis life 
cycle. Moreover, it offers a way to highlight the dominant usage pattern for a specific analysis 
objective and to find the percentage of the successful, unsuccessful and abandoned analysis 
tasks. Consequently, it intends to address the absence of a computational sensemaking 
framework that can be operationalised. We believe that addressing this gap is of importance to 
the research of sensemaking in organisations.  
At this point, we have completed the first iteration of research and on-going research is twofold.  
First, to record and mine analyst interaction with their software tools in order to construct their 
frame(s) of reference. Second, we will utilize machine learning and analysis of competing 
hypothesis to cluster analysis objectives into categories and find the most satisfactory 
hypothesis in each category. 
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