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ABSTRACT 

Background.  Use of ultrasound to assess peripheral skeletal muscle architecture during 

critical illness is rapidly gaining research popularity but systematic review evidence is 

lacking. 

Objectives.  To critically evaluate and summarize identified evidence for the use of 

ultrasound to measure peripheral skeletal muscle architecture during critical illness. 

Data Sources.  Seven electronic databases (Medline, Cumulative Index to Nursing and Allied 

Health Literature, Cochrane Library, Physiotherapy Evidence Database, Scopus, Excerpta 

Medica Database and Web of Science (including Science Citations and Conference 

Proceedings)), and personal libraries were searched for relevant articles.  Cross-referencing 

further identified references. 

Study selection.  Quantitative study designs excluding abstracts, published in English, 

including adult critically ill patients in the intensive care unit, evaluating peripheral skeletal 

muscle architecture during critical illness with ultrasound.  Studies utilizing ultrasonographic 

muscle data as outcome measures in interventional trials were excluded.     

Data Extraction.  Performed by one reviewer using a standardized data extraction form and 

cross-checked by a second reviewer.  Quality appraisal was undertaken by two independent 

reviewers - studies were classified, graded and appraised according to standardized 

algorithms and checklists.  Preferred Reporting Items for Systematic Reviews and Meta-

Analyses guidelines were adhered to.   

Data Synthesis.  Seven studies with independent patient cohorts totaling 300 participants 

were included.  One study adopted a case-control design, the remainder were case series.  

Ultrasound data demonstrated deficits in a variety of peripheral skeletal muscle architecture 

parameters across a range of muscle groups associated with critical illness.  Ultrasound 
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offered more accurate data compared to limb circumference measurement and has 

excellent reported reliability, but underestimated data acquired via more invasive muscle 

biopsy.   

Conclusion.  Ultrasound provides clinical utility for assessing the trajectory of change in 

peripheral skeletal muscle architecture during critical illness, supplementing more detailed 

characterization, albeit rarely used, from muscle biopsy analysis.  Adoption of standardized 

operating protocols for measurement will facilitate future meta-analysis of data.  

Registration number.  CRD42013004892 (PROSPERO database, available at 

http://www.crd.york.ac.uk/prospero/).   
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299 
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INTRODUCTION 

Peripheral skeletal muscle wasting is a major complication of critical illness.  Described 

clinically as intensive care unit acquired weakness (ICU-AW), it is associated with prolonged 

weaning, delayed rehabilitation, increased hospital length of stay and mortality (1-6) with 

residual deficits in physical functional ability persisting up to five years following the index 

ICU admission (7).  Risk stratification of patients with peripheral muscle wasting is therefore 

vital for optimizing clinical management (8), including delivery of exercise therapy, 

rehabilitation and other therapeutic interventions. 

 

Volitional methods of measuring muscle strength such as manual muscle testing (9), whilst 

clinically appealing, are restricted to alert, awake and cognitively intact patients able to 

produce maximal efforts.  Distinguishing true muscle weakness from poor motivation or 

inability to complete the task is challenging and use of manual muscle testing in the early 

stages of critical illness is limited (10, 11).  Non-volitional techniques involving electrical (12, 

13), or magnetic (14-17) motor nerve stimulation to elicit twitch force responses require no 

patient cooperation but can be technically complex to perform, particularly in the ICU 

environment, requiring expensive dedicated equipment and skilled personnel for 

assessment and interpretation (18).  Consequently, recent attention has focused on the 

utility of ultrasound to monitor the trajectory of muscle wasting in critically ill patients (19).   

 

Principles of the neuromuscular ultrasound technique have been described previously (20-

22), with ultrasonographic differences evident between healthy and diseased skeletal 

muscle (23, 24) and a number of characteristics of peripheral skeletal muscle architecture 

including cross-sectional area, fiber pennation angle, muscle layer thickness and 
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echogenicity measurable (25).  In addition, ultrasound has both pragmatic and clinical 

advantages.  It is widely available across ICUs, and is portable, simple and quick to perform.  

It is also effort-independent, free of ionizing radiation, can be performed at the bedside, and 

with training can be implemented by non-specialist clinicians. 

 

The objective of this systematic review was to critically evaluate and summarize identified 

evidence for the use of ultrasound to measure peripheral skeletal muscle architecture 

during critical illness, and was conducted and reported in line with the Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (26).  

 

METHODS  

Registration 

This systematic review was registered on the National Institute for Health Research (NIHR) 

International Prospective Register of Systematic Reviews (PROSPERO) (Registration 

reference CRD42013004892, available at http://www.crd.york.ac.uk/prospero/).   

 

Eligibility criteria 

Study characteristics for eligibility are detailed in Table 1, including participants, 

interventions, control groups and outcome measures.  

 

Information sources 

Confirmation that a review of this nature had not been published or was in progress was 

obtained prior to commencement, from a search of the Cochrane Library, Physiotherapy 

Evidence Database (PEDro) and the NIHR PROSPERO databases. 

http://www.crd.york.ac.uk/prospero/
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Electronic databases (n=7) were searched by one reviewer (BC) using a systematic detailed 

and reproducible search strategy to identify published evidence (Table 2).  Databases were 

accessed via King’s College London, UK, and included Medline (1946-present), Cumulative 

Index to Nursing and Allied Health Literature (CINAHL) (1981-present), Cochrane Library 

(2013), PEDro (1993-present), Scopus (1960-present), Excerpta Medica Database (EMBASE) 

(1980-present) and Web of Science (including Science Citations and Conference 

Proceedings) (1900-present), with the last search run 16th October 2013.  Full search 

strategies are included in the Supplemental Digital Content (SDC).  Additional references 

were identified by cross-checking reference lists of included articles and searching personal 

libraries of the authors.   

 

Search 

Trial registries, conference proceedings and electronic databases were searched using the 

following terms: intensive care, critical care, critical illness, critically ill, multi-organ failure, 

sepsis, ultrasound, ultrasonography, muscle, muscle wasting, muscle mass, cross-sectional 

area, fiber pennation angle, muscle layer thickness, echo intensity, echogenicity, muscle 

architecture (Table 2). 

 

Study selection 

Figure 1 summarizes the study selection process.  From the initial search, two independent 

reviewers (BC, VM) adopted a standardized approach to assess studies for eligibility against 

predefined eligibility criteria using article titles and abstracts (Table 1).  In the absence of 

sufficient detail to inform decision-making, full texts were sourced and the process 

repeated.  In the event of disagreement, a consensus approach was taken to reach a 
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decision.  A third reviewer (NH) was employed to make the final decision if this could not be 

achieved.  At each stage, level of agreement was determined using percentage agreement 

and Kappa statistic (SPSS for Windows, Statistical Version 20, IBM, New York, NY).  All 

references were stored in Endnote software, Version 6 (Thomson Reuters, Philadelphia, PA).   

 

Data extraction 

Using a bespoke data collection form, data extraction from included studies was performed 

by one reviewer (BC) and cross-checked by a second (AL).  Data were stored in either 

Microsoft Excel or Word for PC 2007 (Windows 7, Microsoft Corporation, Redmond, WA). 

 

Data items 

Data extraction was conducted on all eligible studies including: 1) study design – type, 

author first name and country, publication journal and year, aim/objective; 2) participant 

characteristics; 3) ultrasound detail – timing of measurement, muscle groups and muscle 

architecture characteristics assessed, detail of technique, and results. 

 

Risk of bias in individual studies 

Two independent reviewers (BC, VM) assessed included studies.  Study design was 

determined using a published classification algorithm from the Scottish Intercollegiate 

Guidelines Network (SIGN) and the National Institute for Health and Care Excellence with 

associated relevant checklists employed to assess study quality (27, 28).  Studies were 

graded according to the Oxford Centre for Evidence-Based Medicine Levels of Evidence (29).  

In addition methodological quality and risk of bias in randomized controlled trials (RCTs) 
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were determined using the PEDro scale (30), and the Newcastle-Ottowa Scale (NOS) (31) for 

nonrandomized observational studies. 

 

RESULTS 

Study Selection 

Searching of the seven databases resulted in 672 potentially eligible studies, with a further 

11 articles identified through cross-referencing and personal libraries (Figure 1).  Studies not 

published in English were excluded (n=1).  Two conference proceedings were checked but 

no relevant studies identified.  For the remaining conference abstracts (n=10), two studies 

within the author’s own library contained data pertaining to four of these.  Authors of a 

further two abstracts were contacted to determine if data were available in peer-reviewed 

publication format, following which neither study was included.  No contact was made with 

the remaining four abstract authors as data had been collected in non-ICU settings (n=2), in 

healthy subjects (n=1) or no email address or other contact details were available (n=1). 

  

High levels of agreement between the two independent reviewers were evident for 

potentially relevant titles and abstracts (percentage agreement=90.2%, Kappa=0.72) and 

full-text articles (percentage agreement=100.0%, Kappa 1.0).  The reviewers disagreed on 

four potentially eligible studies based on title and abstract.  Following consensus, agreement 

was reached on all four studies and no study was included.  Input from a third reviewer was 

not required.  Review of title, abstract and full text resulted in the inclusion of seven original 

articles each evaluating unique patient cohorts. 

 

Study Characteristics 
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Study design characteristics are summarized in Table 3.  None of the seven included studies 

(32-38) were randomized controlled trials.  Six were primarily single group studies, classified 

as case series (33-38).  One of these studies involved comparison with an unmatched control 

group (35).  The final study adopted a case-control design (32).  All studies were Level 4 

evidence grade (29).  Significantly, the majority of included studies were published between 

2012 and 2013 (32, 34, 35, 37) indicating the emerging research interest in ultrasound as a 

technique for evaluating peripheral skeletal muscle architecture during critical illness.  Five 

studies were European (33, 35-37, 39), with one conducted in Australia (32) and one in 

North America (34).  Patient characteristics of included studies are reported in Table 4.   

 

Of the seven studies included, each involved independent general ICU patient populations, 

overall totaling 300 patients, where the primary purpose involved assessment of peripheral 

skeletal muscle function during critical illness with ultrasound as the evaluation tool.  

Sample sizes ranged between 9 (33) and 118 (36) patients.  Eligible patient populations in 

studies were characterized according to either clinical diagnostic descriptors (e.g. multi-

organ failure and sepsis) (33-35), ICU admission-related descriptors (e.g. duration of 

mechanical ventilation and length of stay) (36, 37), or a combination of both (32, 38).   Only 

four studies reported actual illness severity of their patient cohorts using standard critical 

care scoring systems (APACHE) scores) (32, 35, 37, 38), of which three further reported 

actual duration of mechanical ventilation for their patient cohorts (32, 35, 37).   

 

Muscle thickness was the most common characteristic of muscle architecture evaluated 

(five studies) (32-34, 36, 38) (SDC, Table 1).  In one study this was termed muscle layer 

thickness and used to reflect muscle mass (36).  Muscle composition using echogenicity was 
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investigated in two studies (34, 35), and cross-sectional area in one (37).  A combination of 

mid-upper arm, forearm and thigh muscle groups were all measured in four studies (32, 33, 

35, 38).  In addition, tibialis anterior and abductor digiti minimi muscle were also reported 

(34, 35).  Quadriceps muscle alone was measured in two studies (36, 37).  Details of 

measurement procedure were provided in all studies.  Timings of measurements varied 

between single measurements performed at specific time-points during ICU admission (32, 

34-37), or sequentially throughout the duration of ICU admission (33, 38).  

 

Results of Individual Studies 

Change in muscle architecture of critically ill patients was evident in six studies and 

associated with duration of time in the ICU (33-38) (SDC, Table 2).  In the remaining case-

control study, muscle thickness was found to be significantly reduced compared to case-

controlled healthy subjects at the single time-point assessed (32).  Rates of reported muscle 

wasting varied between 6.0% per day (33) and 1.6% per day, with more notable wasting in 

patients with greater muscle layer thickness at baseline (38).  A third study reported a 12.5% 

reduction between days 1 and 7, which further differed significantly between those with 

single and multiple organ failure (37).  A quantifiable measurement of degree of muscle 

wasting was not given in one study (36).  Muscle quality (echogenicity) was shown to be 

affected during critical illness with increases in image grey-scale values (34, 35), which were 

significantly different to healthy controls, albeit an unmatched population (35).  Three 

studies reported high levels of ultrasound image reproducibility in critically ill patients 

(intraclass correlation coefficients (ICC) >0.9), for inter-image (muscle thickness and muscle 

echogenicity) (32, 35), intra-rater (muscle echogenicity) (35) and inter-observer (muscle 

cross-sectional area) (37) agreement.  Reid et al (38) also presented reproducibility data, 
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reporting a coefficient of variation (CV) for total muscle thickness of 2.5% although this was 

in a separate cohort of healthy volunteers rather than their ICU patient cohort.  Similarly, 

Campbell et al (33) reported an intra-observer CV of 1.5% and an inter-observer CV of 1.9% 

for total muscle thickness in a cohort of healthy subjects assessed within their study.   

 

Risk of bias within studies 

Two independent reviewers (BC and VM) agreed on the study design of included studies 

(percentage agreement=100%).  Due to the nature of study design assigned to the majority 

of studies (n=6, case series) involving single groups of patients receiving ultrasound 

measurements of peripheral skeletal muscle architecture during critical illness, no tool was 

available to assess risk of bias in these studies (27).  The reviewers considered that the 

design of one of the studies (35) involving comparison with an unmatched control group did 

not meet the criteria for categorization as a case-controlled study with associated quality 

review.  The single identified case-controlled study (Baldwin et al (32)) demonstrated 

positive scoring on seven out of eleven binary outcome criteria, according to the SIGN 

checklist (63.6%), and percentage agreement of 84.6%, however no grading system exists to 

equate this to an overall descriptor of quality level (27).  This article scored 6 on the NOS 

indicating ‘good’ overall quality (31). 

 

Synthesis of results 

Meta-analysis or pooling of results was not appropriate due to the observational nature and 

design of studies included, heterogeneity of patient cohorts, and varying results related to 

different aspects of peripheral skeletal muscle architecture measured. 
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DISCUSSION 

This systematic review identified and included seven studies evaluating the effect of critical 

illness on peripheral skeletal muscle architecture assessed using ultrasound.  Each study 

reported a general ICU population in patients presenting with sepsis and multi-organ failure 

with ICU lengths of stay of at least seven days.  Changes in a range of muscle architecture 

parameters were reported across a range of muscle groups, with ultrasound assessment 

demonstrating clinical reliability and utility. 

 

Significance of findings 

Ultrasound data characterized the negative effects on peripheral skeletal muscle 

architecture associated with acute critical illness.  Nonetheless, meta-analyses of data were 

not possible due to variability in muscle group and architecture parameter assessed, study 

protocols, and the extent and clarity of data reporting.  Hence consideration of confounding 

factors such as age, illness acuity or nutritional management on muscle architecture during 

critical illness was limited.   

 

Five studies measuring muscle thickness (32-34, 36, 38) produced varying results, possibly 

contributed to by inconsistency in baseline measurement point resulting in an 

underestimation of muscle wasting during ICU admission.  Three of these analyzed total 

muscle thickness, calculated as the average across a variety of muscle groups (33, 36, 38).  

The remaining two studies reported, but did not compare, muscle thicknesses for individual 

muscles, (32, 34).  As a result, the relative degree and significance in distribution of 

peripheral skeletal muscle wasting was unknown.  Muscle echogenicity increased in two 

studies, albeit measured using different methods, suggesting presence of myopathic 
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changes in the muscle during critical illness possibly due to edema from capillary leak during 

acute sepsis with loss of the typically organized muscle architecture occurring during 

breakdown (34, 35).  Biopsy data from our own group, from days 1 and 7 of ICU admission, 

confirmed this, demonstrating muscle necrosis and macrophage cellular infiltrate (37).  

Finally, no study reported measurement of fiber pennation angle, which in combination 

with anatomical cross-sectional area values allows calculation of physiological cross-

sectional area, in turn associated with the force-generating capacity of a muscle (25).  The 

clinical advantages of this potentially more complex parameter require further investigation. 

 

The relationship between muscle wasting in critically ill patients and functional outcome 

was not investigated in any studies.  Clinically significant muscle loss has yet to be defined, 

even when changes are at a statistical level.  Strength correlates with peripheral muscle 

cross-sectional area in healthy subjects and patients with chronic co-morbidity (13, 40-42), 

albeit there are few data for critically ill patients.  Ideally, contemporaneous measures of 

muscle force would validate ultrasound measures of peripheral skeletal muscle architecture, 

and which could then be mapped to levels of physical functional ability. 

 

Technical considerations of ultrasound 

Ultrasound measurements were feasible across all patients in all studies with the exception 

of two circumstances.  Puthucheary et al (37) reported one patient unable to complete 

assessment of quadriceps rectus femoris cross-sectional area due to morbid obesity, and 

diaphragm echotexture was not assessed by Cartwright et al (34) as the muscle was too thin 

for accurate measurement.  High reliability of the ultrasound technique was evident in three 

included studies (32, 35, 37).   
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 All studies reported technical detail of ultrasound measurement including make and model 

of machine and transducer specification.  However, there was a lack of reported detail 

regarding image acquisition settings e.g. scanning depth or gain.  Furthermore, despite 

commonality in a number of muscle groups assessed, variation was evident in patient 

position and probe location on the muscle group.  Whilst protocol standardization within 

studies provides internal validity for the use of ultrasound as a tool for monitoring change in 

muscle architecture, variation across studies limited pooling of data to determine overall 

effect and influences external validity.   

 

Ultrasound findings all indicated superiority over results of limb circumference, where 

performed, due to the confounding problem of subcutaneous edema influencing 

measurement accuracy.  Typically whilst muscle cross-sectional area or thickness decreased, 

limb circumference remained unchanged (33, 36, 38).  Ultrasound measures of muscle 

architecture have also been shown to correlate closely with data obtained via magnetic 

resonance imaging (43) and computed tomography (41) scanning modalities, supporting 

clinical benefit over techniques that are more costly, time-consuming and involve radiation.  

Although these data originate from healthy subjects or stable patients with chronic co-

morbidity, they are nonetheless valuable as conducting similar studies in critically ill patients 

has limited feasibility.   

 

However, additional investigation by Puthucheary et al (37) highlighted a limitation in 

ultrasound data interpretation.  A subset of their cohort underwent additional measures of 

muscle wasting, including quadriceps vastus lateralis muscle biopsy and quantification of 

protein to deoxyribonucleic acid (DNA) ratio.  Ultrasound of muscle cross-sectional area not 
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only underestimated fiber cross-sectional area, but also actual loss in muscle mass with the 

greatest reduction observed in the protein/DNA ratio over the 10 day study period.  Indeed, 

as the protein/DNA ratio is unaffected by water content of the muscle and these data 

strongly support the observation that quadriceps rectus femoris ultrasound underestimated 

muscle loss as a consequence of muscle oedema.  Evaluation of muscle composition using 

grey-scale analysis may assist in determining level of intramuscular fluid to provide a 

clinically applicable assessment of muscle quality, albeit further validation of echogenicity 

findings is required.  The additional analyses undertaken by Puthucheary et al (37) were 

invasive, costly, required expertise to conduct, analyze and interpret and these invasive 

measurements were only feasible in a very select patient group.  As previously described, 

ultrasound demonstrates advantages in all these areas and these data should not detract 

from the clinical utility of the tool.   

 

Critique of the method 

This systematic review was conducted and reported in line with PRISMA guidelines (26), 

specifically identifying studies primarily evaluating peripheral skeletal muscle architecture 

during critical illness using ultrasound.  Data regarding respiratory musculature changes 

were excluded, including from two eligible studies (34, 44).  However, this topic has recently 

been reported in two comprehensive reviews (45, 46), with growing evidence documenting 

diaphragm atrophy during critical illness and weaning from mechanical ventilation (32, 34, 

47-49).  Furthermore, interventional trials using change in peripheral skeletal muscle 

architecture as an outcome measure were also excluded.  The majority of these related to 

electrical stimulation for preservation of muscle mass during critical illness (50-54), itself 

also the topic of a recent, more focused systematic review (55).  That the current review 
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failed to identify all studies reported by Parry et al (55), highlights the pragmatic limitations 

of robustly identifying all potential interventional trials where peripheral skeletal muscle 

architecture measured using ultrasound could be an outcome measure.  Prior knowledge of 

the intervention would be required to facilitate database searching using relevant indexing 

terms.  

 

We included studies based only within the ICU, focusing on early critical illness.  Two 

sources of excluded evidence and one included study reported ultrasound data of 

peripheral skeletal muscle architecture following ICU discharge on the ward (56), up to 6 

(34) and 12months post discharge (39) suggesting utility of the technique for longitudinal 

monitoring of the trajectory of recovery of peripheral skeletal muscle architecture following 

critical illness.  This could further assist in identifying the optimum time for delivery of 

exercise-based rehabilitation interventions following hospital discharge.    

 

We acknowledge potential publication bias through database searching that may have 

excluded non-peer-reviewed publications.  Despite this, our chosen databases were wide-

ranging and identified conference proceedings and other citations.  We did not search 

clinical trial registries due to the observational nature of the review topic.  As per usual, data 

available in abstract form only were excluded due to lack of technical detail provided in 

these summaries, and this accounted for only one item.  Mampilly et al (57) reported 

reduced rectus femoris cross-sectional area values for critically ill patients compared to 

healthy subjects (n=5 each group; 4.5 ± 0.6cm2 vs. 10.1 ± 0.8cm2, p<0.002), but similar to 

those found in ambulatory patients with chronic obstructive pulmonary disease (n=5; 5.8 ± 

0.7cm2, p=0.22). 
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We adhered to recognized classification algorithms for determining study design (27) and 

we acknowledge the majority of included studies were non-comparative case series.  Whilst 

this is perhaps not unsurprising given the observational nature and purpose of the review, 

there was no tool available to assess the quality of these studies, which is a limiting factor to 

their methodological robustness. 

 

Future considerations 

Currently, there is no gold standard for the measurement of peripheral skeletal muscle 

architecture using ultrasound, and this review demonstrates a variety of parameters 

employed in the critical illness population.  Further work is necessary to determine 

uniformity of technical application.  Minimum reporting detail would include make and 

model of machine, probe specification, image acquisition settings, and precise description of 

patient position and location on the muscle for measurement.  Inclusion of standard 

operating protocols as supplementary materials to data publication would strongly facilitate 

future consensus on this.  Future studies are required to determine the relationship 

between ultrasound measurements, both single and sequential measurements, and 

clinically relevant functional outcomes of the patient and the temporal change in the muscle 

itself. 

 

CONCLUSION 

Ultrasound is gaining in profile as a tool for evaluating changes in peripheral skeletal muscle 

architecture during critical illness.  Whilst the technique has been shown to underestimate 

the extent of muscle wasting obtained from invasive muscle biopsy techniques, its practical 

and clinical advantages, when supplemented with data demonstrating high levels of 
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reliability, strongly confirm the clinical utility of ultrasound.  Further investigation with 

regards to muscle composition using grey-scale analysis of images will assist in 

corroborating detailed muscle biopsy data.  Standardization of protocol detail will improve 

external validity for performance of future studies, and permit future meta-analysis of data 

and investigation of confounding factors associated with alteration of peripheral skeletal 

muscle architecture during critical illness. 
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FIGURE LEGEND 

Figure 1.  Flow diagram summarizing article selection 

Abbreviations: CINAHL = Cumulative Index to Nursing and Allied Health Literature.  EMBASE = Excerpta Medica 
Database.  PEDro = Physiotherapy Evidence Database.  ICU = intensive care unit.  US = ultrasound. 

 


