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We report a measurement of the CP-violation parameter sin28 with B® — J/¢K2 decays in
which the J/ decays to hadrons or to muons that do not satisfy our standard identification criteria.
With a sample of 88 million BB events collected by the BABAR detector at the PEP-II asymmetric-
energy B factory at SLAC, we reconstruct 100 £ 17 such events, with J/¢ — 777~ 7° being the
most prevalent, and measure sin 28 = 1.56 £ 0.42(stat.) £ 0.21(syst.).



PACS numbers: 13.25.Hw, 12.15.Hh, 11.30.Er

Measurement of CP violation in the B-meson system,
particularly in b — ¢Cs transitions, has been a primary
goal of the BABAR experiment. In the Standard Model,
these decays exhibit a CP asymmetry that is proportional
to sin 28, where (3 is defined as arg[—V_, V3 /V, , Vii], with
Vi; the elements of the CKM matrix [l]. The current
world average value of sin2f is 0.731+0.056 [2], with the
B factories (BABAR at SLAC and Belle at KEK) provid-
ing the most precise measurements |3, 4]. The dominant
decay mode in these measurements is BY — J/¢Y K3,
where only leptonic decays of the J/¢ are considered.
Leptonic decay modes have the advantage of low back-
grounds, but account for only 12% of J/¢ decays |2].
Since the current measurements of sin28 are statisti-
cally limited, in this article we extend the measurement
through the use of hadronic J/v¢ decays, as well as pre-
viously unused muonic decays.

At the B factories, B mesons are produced via
efe™ — T(4S) — B°B. For BY mesons produced in
this manner and decaying to the CP eigenstate J/ ng,
sin2 appears as the amplitude of a time-dependent CP
asymmetry. The Standard Model predicts the decay rate

o1t /750

fr(At) = [1 £ sin23 sin(AmgAt)],

47’30

where the plus (minus) sign indicates that the other,
"tagging”, BY meson in the event decays as a B°(B°),
At is the decay time of the CP-eigenstate B meson mi-
nus the decay time of the tagging B° meson, 7po is the
BO lifetime, and Amy is the mass difference between the
two mass-eigenstate neutral B mesons (Amg is also the
B® — BY oscillation frequency). The time-dependent CP
asymmetry is:

f+(At) — f(At)
f+(At) + f-(At)

Acp = = sin25 sin(AmdAt).

Measurement of Acp requires that a sample of B® mesons
decaying to J/1 K2 be reconstructed, that the flavor of
the other B? meson in the event be determined, and that
At be measured.

A sample of 88 4 1 million BB events recorded by the
BABAR detector [3] was used in this analysis. The in-
nermost component of BABAR is a five-layer double-sided
silicon microstrip vertex detector with 90° stereo angle,
allowing precise reconstruction of the location of the B
decay vertices along the beam direction. Since the 7°(4.5)
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is boosted along the beam direction, the difference in po-
sition between the BY decay vertices in this direction al-
lows one to measure At. The primary tracking device is
a 40-layer drift chamber operated with a helium-based
gas mixture to minimize multiple scattering. The drift
chamber is surrounded by a Cherenkov particle identifi-
cation device, and a CsI(T1) calorimeter. All of the above
detectors reside in a 1.5 T field generated by a supercon-
ducting solenoid. The flux is returned via layers of steel
interleaved with active detectors for the identification of
muons and detection of neutral hadrons.

Two types of Monte Carlo simulated events are used
in the analysis. One, called “full MC”, consists of events
that are generated according to the known physics of BB
and continuum production, passed through a detailed
model of the detector response [f], and reconstructed in
the same manner as the data sample. The second, called
“parametrized MC”, consists of events for which the rel-
evant parameters are randomly generated according to
the distributions observed in data or in detailed simu-
lations. For any study where an accurate model of the
physics or detector response is required, full MC is used.
Parametrized MC, which can be generated more quickly
than full MC, is only used to explore the statistical prop-
erties of the extraction of sin 28.

While many J/1 decays to exclusive hadronic final
states have been observed [2], the sum of their mea-
sured branching fractions is less than 20%. To allow
for the possibility of observing a signal in previously un-
measured decay modes, we take an inclusive approach in
the first stage of event selection. Charged tracks are as-
signed either the electron, muon, pion, kaon, or proton
mass based on particle identification information, and
candidates for 70 — vy and n — yy or 7t 7" are
formed. All neutral combinations of up to six tracks and
neutral mesons are considered (a maximum of two neu-
tral mesons is allowed), and those consistent with baryon
number conservation, strangeness conservation, and Bose
symmetry, and having invariant mass mj, in the range
2.80 — 3.20 GeV/c?, are retained for further analysis. De-
cay modes of the type J/¢ — KK are excluded to en-
sure that the selected sample is independent of the sam-
ple used in BABAR’s previous measurement of sin2f [3],
which included B — 7.K? events with 1. — K K.

We form K? candidates from a pair of oppositely-
charged tracks that have invariant mass between 489 and
507 MeV and a vertex displaced by at least 1 mm from
the J/1 candidate’s vertex. The selected J/¢ and K9
candidates are combined to form B° candidates. Two
kinematic variables are used to isolate the B meson sig-
nal: the difference AE between the energy of the re-
constructed B candidate and the beam energy in the
center-of-mass frame, and the beam-energy substituted
mass mgs = \/E;2, | — p;f, where p}; is the momentum
of the reconstructed B and Ej_, = is the beam energy,



both in the center-of-mass frame. The small variations
of Ef,.., within the data sample are taken into account
when calculating mgs. Signal events will have AE close
to 0 and values of mpg close to the B® meson mass.
Candidates are required to have mgg > 5.20 GeV/c? and
|AE| < 55MeV if the J/v decays entirely to charged
particles, and < 105MeV if the decay includes one or
more neutral hadrons. The AFE selection accepts candi-
dates within 3o of the distribution observed in simulated
signal events. The resolution in mgg is 3MeV, so the
selection admits a large region at low mgg in addition to
the region populated by signal candidates. Inclusion of
this sideband region allows the magnitude of the combi-
natoric background to be measured.

Backgrounds arise both from continuum ¢g production
and from B meson decays to other modes. The contin-
uum events tend to have a two-jet topology, in contrast
to the more spherically symmetric BB events. A set of 18
variables (described in [d]) that are sensitive to this dif-
ference are combined in a Fisher discriminant F, which
is defined to have an average value of 1 for signal and
-1 for continuum events. The weight of each variable in
the discriminant is calculated by maximizing the sepa-
ration between a sample of data taken below the BB
threshold (and thus composed entirely of continuum ¢g
events) and a sample of simulated signal events. We place
progressively tighter requirements on F as the candidate
J/¢ decay multiplicity increases: for two-body decays
we require F > —1.14, for three-body decays we require
F > —0.70, and for higher-multiplicity decays we require
F > —-0.37.

For three-body J/v decays, which have a larger com-
binatoric background than two-body decays, additional
separation between signal and background is attained by
considering the angle 64 between the normal to the plane
in which the momenta of the J/¢ daughter particles lie
and the K direction in the J/1) rest frame. Conservation
of angular momentum requires this variable to be dis-
tributed as cos? 04 for J/v decays to three pseudoscalars
(the most common type of three-body decays), while it
is uniformly distributed for BB backgrounds and peaks
at cosfy = 0 for continuum ¢qg backgrounds. We require
candidates to have | cos 64| > 0.55. The selection in cos 6y
and F was chosen to maximize S/+/S + B, where S is the
expected signal and B the expected background.

There are two classes of BB backgrounds. The first
consists of candidates formed from a subset of a given
B meson’s decay products, or from a combination of de-
cay products from the two B mesons in the event. This
background and the continuum ¢g background are hence-
forth referred to as “combinatoric backgrounds”. They
have a linearly falling distribution in AF, and their dis-
tribution in mgg may be parametrized by an empirical
phase-space distribution [&] (henceforth referred to as the
ARGUS function):

1-— (mEs/m0)2 X

exp(Carg(1 — (mEs/mo)?)),

A(mES;mO; Carg) X MES

where mg is a cutoff mass set to 5.291 GeV (a typical
center-of-mass beam energy) and carg is a fitted para-
meter.

The second class of BB background consists of B
mesons that decay to a topology also allowed for J/1 K2,
but without a J/¢ in the intermediate state. These
“peaking” backgrounds are dominated by B decays that
have a charmed meson in the intermediate state, so we
remove any candidates for which a D or D* meson within
20 of the nominal mass can be formed from the final-state
hadrons. Since these backgrounds arise from fully recon-
structed B® mesons, they have the same distribution in
mgs and AFE as the signal.

Since the branching fractions for many of the modes
that contribute to the peaking backgrounds are not well-
measured, we must extract the peaking background mag-
nitude from the data. We do this by performing a two-
dimensional unbinned maximum likelihood fit to the mgg
and m ,y distributions. The likelihood function used is:

L = (ncombA(mES; mo, Carg) + (nsig + ngcak)G(mES)) X

((Tcomb + ”geak)c(mJ/w;Phpz) + nsigG(my/y)),
where n¢omp is the fitted combinatoric background, ngeak
is the fitted peaking background, ngg is the fitted signal,
A is a normalized ARGUS function, G are normalized
Gaussians, and C' is a normalized second-order Cheby-
shev polynomial with parameters p;. The mean and
width of G(mgg) are fixed to the values observed in high-
statistics hadronic B-decay samples, and the mean and
width of G(mj/y) are fixed to the values observed in
our J/¢ — pTp~ sample for two-body decay modes,
and to the values observed in full MC events for higher-
multiplicity modes. The photon-energy resolution in the
simulated events is degraded to match that observed in
data. The additional smearing required is 3% of the mea-
sured photon energy for photons below 100 MeV, and
decreases with increasing photon energy (no additional
smearing is required for photons above 1 GeV).

The J/v¢ decay modes for which the measured signal
magnitude is less than its statistical uncertainty are re-
moved from the analysis. The surviving modes, and their
contribution to the signal, are listed in Table[ll Note that
no modes including an 7 meson are observed, and also
that no decays with a multiplicity of greater than three
are visible above background.

The observation of 28 candidates in the J/v — 77~
channel is inconsistent with our expectation of observing
about one event given the known branching fraction of
(1.47 £0.23) x 10~* [2] for this mode. We interpret the
excess candidates as J/v — pTp~ decays in which both
muons fail the standard muon selection criteria. Studies
using simulated events with muon identification efficien-
cies measured in data confirm that the observed signal
magnitude is consistent with the J/v — utu~ hypoth-
esis. Since these events do measure sin23, and are in-
dependent of the events used in our previous measure-
ments [3], we retain them for this analysis.



J/1¢ decay mode Signal Peaking Bkg. Comb. Bkg.

Tt 28+ 8 84 + 17 206 + 12
KTK~ 543 —-1+6 4245
PP 6+3 1+6 34+5
Total hTh~ 40+9 86 + 19 279 + 13
After final selection 28 £+ 8 13+3 15+ 3
T 7o 58+ 17 104 +29 652 + 23
ppr’ 11+6 9+9 TTET
Total hTh™ 7 60+ 18 113430 716 + 22
After final selection 72 + 13 19+5 74+ 8

TABLE I: Observed B® — J/$K2 signal and background.
The combinatoric backgrounds reported are the integral of
the fitted ARGUS function in the region mgs > 5.27 GeV/c2.
Except for the rows labelled “After final selection”, the num-
bers are measured prior to application of the final selection
criteria on m s, and AE. All uncertainties are statistical
only.

After ngcak is determined, the following final selection
criteria are imposed to improve the purity of the sam-
ple: We recalculate AE with the J/v¢ candidate con-
strained to the nominal mass, and define the result as
AFE,.. The resolution in AFE, is 11 MeV for two-body
J/1¢ decay candidates, and 12 MeV for three-body can-
didates. For two-body J/v decay candidates we re-
quire 3.06 < mj/y < 3.12GeV/c* and |AE,| < 33MeV,
and for three-body J/v decay candidates we require
3.05 < my/y < 3.15GeV/c? and |AE,| < 35 MeV.

The efficiency of this selection for peaking backgrounds
(Epeax) is estimated using full MC events. We define
Epeak as the ratio of the area of the fitted Gaussian in
mgs after the final selection to the area before the fi-
nal selection. For two-body decay candidates epeax =
0.15 + 0.01(stat.) and for three-body decay candidates
€peak = 0.17 £ 0.02(stat.). An unbinned maximum like-
lihood fit to the sum of a Gaussian distribution and
an ARGUS function is performed on the mgg distri-
butions of the surviving candidates. The integral of
the ARGUS function measures the combinatoric back-
ground, while the integral of the Gaussian measures the
sum of the signal and peaking background. Subtracting
Npeak = Epcak”gcak from the latter provides an estimate
of the signal. The mgg distributions are shown in Fig. [,
and the signal and background magnitudes in the final
sample are reported in Table [l

Once the sample of B — J/9K? candidates has
been isolated, the extraction of sin28 proceeds in the
same manner as for BABAR’s other recent measure-
ments [3]. Information from the final-state particles re-
coiling against the J/1K? meson candidate is used to
determine whether the other B meson in the event was a
B° or BY at the time of its decay. This is referred to as
the flavor “tag”. The variables used for tagging include
the charge of any high-momentum identified electron or
muon, the charge of any identified kaon, and the charge of
a slow pion consistent with arising from D* meson decay.
The efficiency € and mistag rate w are measured using
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FIG. 1: mgg distributions for candidates for B® — J/z/)Kg
with the J/1¢ decaying to (a) two and (b) three particles.
The dotted line represents the fitted combinatoric background
distribution. The dashed line represents the total background
distribution, while the solid line represents the signal plus
background distribution.

the data as described below, and reported in Ref. [3]; the
overall figure of merit for the flavor-tagging performance,
e(1 —2w)?, is (28.1 4+ 0.7)%.

The extraction of sin28 is done using an unbinned
maximum likelihood fit to the At distribution of the
candidate events, where the assumed functional form is
f+(At) convolved with the resolution of the At measure-
ment, with the mistag probability taken into account.
The input to the fit consists of both the signal sam-
ple and a large sample of fully reconstructed B de-
cays to D®*Tg= D&+ p= DE+g~ and J/P K with
K% — K+n~. The B° flavor is known for these modes,
so this sample constrains a set of parameters describ-
ing the flavor-tagging performance and vertex resolution,
The simultaneous fit takes into account any correlations
between these parameters and the value of sin28. The
result is:

sin23 = 1.56 + 0.42 (stat.)

The At distribution for flavor-tagged signal events is
shown in Fig. Bl and the CP asymmetry observed be-
fore correction for backgrounds and mistag probability is
shown in Fig. Bl In each case a projection of the best-fit
model is superimposed.

As a cross-check, the analysis was repeated using a
sample of B¥ — J/9K* events selected in a manner
analogous to the CP sample, and with the same J/¢
decay modes considered. This sample yields an apparent
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FIG. 2: At values observed in the B® — J/#K$ candidates.
The plots show the distribution for events in which the recoil-
ing B meson is tagged as (a) B° and (b) B°. In each plot the
solid line represents the result of the maximum likelihood fit,
and the shaded area the contribution of background.
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FIG. 3: At asymmetry observed before correction for back-
grounds and mistag probability in B® — J/z/;Kg candidates,
with best-fit asymmetry displayed.

sin2/3 of —0.1340.20 (stat.), consistent with the expected
null result.

Systematic uncertainties arise from several sources. In
performing the fit for sin2f it is assumed that the back-
ground has no CP asymmetry. Since some of the back-
ground is composed of real B® mesons this may not be
true. Fitting for sin28 on a sample composed of candi-
dates in the mj/, or AE, sidebands yields 0.18 & 0.46.
The signal sample is then refit with the CP asymme-
try of the peaking background fixed to the +1o limits of
the measured asymmetry, and the observed variation of
40.15 in sin2f is taken as a systematic uncertainty.

The next most significant systematic uncertainty arises
from the estimation of the background magnitudes.
When the sin2g fit is performed, the parameter c,,¢ of the
ARGUS distribution describing the combinatoric back-
ground is fixed to the central value determined from fit-
ting the mgg distribution. The sin2f fit is repeated with

this value fixed to its +1¢ limits, and the observed vari-
ation in sin2f of +0.13 is taken as a systematic uncer-
tainty.

The uncertainty on the peaking background arises from
several sources, the largest of which is the statistical un-
certainty on ngcak. The next most significant source is
uncertainty in epeax. We estimate the magnitude of this
uncertainty by observing the variations in epcak among
samples of different simulated B° decay modes. In ad-
dition, one could define epeax as the efficiency for any
candidate with mggs > 5.27 GeV to pass the final selec-
tion, rather than defining it as the ratio of fitted Gaussian
areas. We take the difference between the two definitions
as a systematic. The estimate of ngcak is also subject to
uncertainty in the distribution of peaking backgrounds
inm T/ which is modeled as a second-order Chebyshev
polynomial. The variation in ngeak when the order is
changed by +1 is propagated to the systematic uncer-
tainty. The accuracy of the fit used to extract the signal
is verified using background-only samples, such as data
recorded below the BB threshold or samples of candi-
dates reconstructed in modes not accessible to the J/1.
No statistically-significant signal yields are reported in
fits to these samples. We assign the largest artificial
signal yield consistent with these tests as a systematic
uncertainty. The final source is the uncertainty on the
resolution of the J/1 peak (which is held fixed in the fit
that determines ngeak). Variation of this assumed width
between values observed in different decay modes yields
a variation in ngcak. The sum in quadrature of all these
effects totals 25% of the magnitude of npeak. Repeating
the fit on many samples of parametrized MC events, each
of which has the same size and background as the sample
observed in data, shows that the variation in sin2/ result-
ing from a 25% uncertainty in the peaking background is
+0.07.

There are potentially differences in the flavor-tagging
performance and vertex resolution between events with
hadronic J/v decays and the other fully-reconstructed
B decays used to measure these parameters. Perform-
ing a sin2f fit to a large sample of full MC signal events
with J/1 — 777~ 70 with the flavor tagging and vertex
resolution fixed to the measured values yields a result
consistent with the generated value. The statistical un-
certainty of the result (£0.04) is taken as a systematic
uncertainty.

Another systematic uncertainty arises from events in
which one or more of the final state particles assigned to
the reconstructed B in fact originated from the other
BY in the event. The fraction of such events is negligible
for two-body J/v decays, and about 5% for three-body
decays. Performing sin2/ fits on full MC samples with
and without including the incorrectly reconstructed can-
didates yields a variation of +0.01 in sin2/.

Finally we take into account all the sources of system-
atic uncertainty that apply to BABAR’s previous mea-
surements of sin28 3], except for those specific to the
B — J/¢K? mode, that have not already been specifi-



Source Uncertainty
Peaking background CP 0.15
Combinatoric background magnitude 0.13
Peaking background magnitude 0.07
Tagging and vertexing differences 0.04
Common to leptonic modes 0.03
Misreconstructed signal 0.01
Total 0.21

TABLE II: Summary of systematic uncertainties on the mea-
surement of sin2[.

cally addressed here. These uncertainties primarily arise
from limits on our understanding of flavor-tagging and
vertex reconstruction performance, and yield a variation
of +0.03 in sin24.

The systematic uncertainties are summarized in Ta-
ble M The sum in quadrature of all contributions is
0.21.

The value of sin2f reported in this analysis is higher
than the world average value of 0.731 £ 0.056. To esti-
mate the consistency of this result with the world aver-
age, 10,000 parametrized MC samples with the same sig-
nal and background magnitudes as observed in the data
were generated with a true sin2f of 0.731. To simulate
the systematic uncertainty in this analysis and the total
uncertainty on the world average, a random number with
Gaussian distribution and o = 0.22 is added to the sin2j3
result for each sample. Of the 10,000 samples, 629 fluc-
tuated to a value of 1.56 or greater, indicating that the
probability of such a fluctuation is 6.3%.

In summary, we have extended BABAR’s previous sin2(
measurement by including J/9 K2 modes where the J/v

decays to hadronic final states. The result is
sin28 = 1.56 £ 0.42 (stat.) £ 0.21 (syst.).

Although we searched for many hadronic J/v decay
modes, signals were observed only in modes that have
been previously seen [2]. Further, only in hadron multi-
plicities of two and three was it possible to observe a sig-
nal above background. Extending the analysis to the x.
and 1(2S5) mass regions does not yield additional signifi-
cant signals, nor is an 7, signal observed after elimination
of K K'm modes.
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