Submitted 17 November 2015
Accepted 15 June 2016
Published 18 July 2016

Corresponding author
Giuseppe Destefanis,
giuseppe.destefanis@brunel.ac.uk

Academic editor
Arie van Deursen

Additional Information and
Declarations can be found on
page 29

DOl 10.7717/peerj-cs.73

© Copyright
2016 Destefanis et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Software development: do good manners
matter?

Giuseppe Destefanis', Marco Ortu’, Steve Counsell', Stephen Swift',
Michele Marchesi’ and Roberto Tonelli’

! Department of Computer Science, Brunel University, London, United Kingdom
? Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy

ABSTRACT

A successful software project is the result of a complex process involving, above all,
people. Developers are the key factors for the success of a software development
process, not merely as executors of tasks, but as protagonists and core of the whole
development process. This paper investigates social aspects among developers working
on software projects developed with the support of Agile tools. We studied 22 open-
source software projects developed using the Agile board of the JIRA repository.
All comments committed by developers involved in the projects were analyzed and
we explored whether the politeness of comments affected the number of developers
involved and the time required to fix any given issue. Our results showed that the level
of politeness in the communication process among developers does have an effect on the
time required to fix issues and, in the majority of the analysed projects, it had a positive
correlation with attractiveness of the project to both active and potential developers.
The more polite developers were, the less time it took to fix an issue.

Subjects Data Mining and Machine Learning, Data Science, Software Engineering

Keywords Social and human aspects, Politeness, Mining software repositories, Issue fixing time,
Software development

INTRODUCTION

High-level software development is a complex activity involving a range of people and
activities; ignoring human aspects in the software development process or managing them
in an inappropriate way can, potentially, have a huge impact on the software production
process and team effectiveness. Increasingly, researchers have tried to quantify and measure
how social aspects affect software development. Bill Curtis claimed that “the creation of
a large software system must be analyzed as a behavioural process” (Curtis, Krasner &
Iscoe, 1988). Coordinating and structuring a development team is thus a vital activity for
software companies and team dynamics have a direct influence on group successfulness.
Open-source development usually involves developers that voluntarily participate in a
project by contributing with code-development. In many senses, the management of such
developers is more complex than the management of a team within a company: developers
are not in the same place at the same time and coordination therefore becomes more
difficult. Additionally, the absence of face-to-face communication mandates the use of
alternative technologies such as mailing lists, electronic boards or issue tracking systems. In
this context, being rude or aggressive when writing a comment or replying to a contributor
can affect the cohesion of the group, its membership and the successfulness of a project.

How to cite this article Destefanis et al. (2016), Software development: do good manners matter? Peer] Comput. Sci. 2:¢73; DOI
10.7717/peerj-cs.73

https://peerj.com
mailto:giuseppe.destefanis@brunel.ac.uk
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.73
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

On the other hand, a respectful environment provides an incentive for new contributors
to join the project and could significantly extend the lifetime and usefulness of a project to
the community.

According to VersionOne (https://www.versionone.com/pdf/2013-state-of-agile-
survey.pdf) (VersionOne, 2013): “more people are recognising that agile development
is beneficial to business, with an 11% increase over the last two years in the number of
people who claim that agile helps organisations complete projects faster”. A main priority
reported by users was to accelerate time to market, manage changing priorities more
easily and better align IT and business objectives. Agile project management tools and
Kanban boards experienced the largest growth in popularity of all agile tool categories,
with use or planned use increasing by 6%. One of the top five ranked tools was Atlassian
JIRA (https://www.atlassian.com/software/jira), with an 87% recommendation rate. Agile
boards represent the central aspect of communication in the Agile philosophy. According
to Perry (2008) “the task board is one of the most important radiators used by an agile team
to track their progress.” The JIRA board is a good solution for bridging the gap between
open-source software development and the Agile world. It is the view of many that agile
development requires a physical aspect, i.e., developers working together in the same room
or building, or at the same desk; the pair programming paradigm, for example, requires at
least two people working simultaneously on the same piece of code. By using tools such as
the JIRA board (Fig. 1) it is possible to use an agile board for development of a project by
developers in different physical places. Working remotely, in different time zones and with
different time schedules, with developers from around the world, requires coordination
and communication. The JIRA board displays issues from one or more projects, giving the
possibility of viewing, managing and reporting on work in progress. It is possible to use a
board that someone else has created, or create as many boards as needed.

When a new developer joins a development team, the better the communication
process works, the faster the new developer can become productive and the learning curve
reduced. The notion of an agile board therefore places emphasis on the know-how and
shared-knowledge of a project being easily accessible for the development team throughout
the development process. Fast releases, continuous integration and testing activities are
directly connected to the knowledge of the system under development. The potential for
agile boards to simplify development across geographically disparate areas is in this sense
relatively clear. In a similar vein, the social and human aspects of the development process
are becoming more and more important. The Google work style has become a model
for many software start-ups: a pleasant work environment is important and affects the
productivity of employees.

One important contributor to a healthy work environment is that each employee
is considerate and polite towards their fellow employees. Collins dictionary (http:
/[www.collinsdictionary.com/dictionary/english/polite) defines politeness as “showing
regard for others, in manners, speech, behaviour, etc.” We focus on the politeness of the
comment-messages written by the developers. The research aims to show how project
management tools such as agile boards can directly affect the productivity of a software
development team and the health of a software project.

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 2/35

https://peerj.com
https://www.versionone.com/pdf/2013-state-of-agile-survey.pdf
https://www.versionone.com/pdf/2013-state-of-agile-survey.pdf
https://www.atlassian.com/software/jira
http://www.collinsdictionary.com/dictionary/english/polite
http://www.collinsdictionary.com/dictionary/english/polite
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

Apache Mesos

QUICK FILTERS: Assigned Unassigned

670 Backlog (Accepted)

() MESOS-4233
4 Logging is too verbose for sysadmins / syslog

MESOS-4766
Improve allocator performance.

&

MESOS-5401

Add ability to inject a Volume of Nvidia GPU-
related libraries into a docker container.

MESOS-5343

Behavior of custom HTTP authenticators with
disabled HTTP authentication is inconsistent
between master and agent

> o

L0}

MESOS-5369

Coarse-grained autherization of endpoints is
supported only for short url paths.

> @

MESOS-5028
Copy provisioner cannot replace directory with
symlink

Unified Container

MESOS-4053
MemoryPressureMesosTest tests fail on CentOS
6.6

>

0]

@ MES0S-4823
4 Implement port forwarding in “network/cni” isolator

CNI Support

MESOS-5027
4 Enable authenticated login in the webui

Assigned To Me

G

Kanban board | Reports Board ~ R’
Missing Shepherd I'm Shepherding Newbie Recently Updated (1 day) Recently Updated (7 days) Epics
93 In Progress 197 Reviewable 174 Done <4wks
() MESOS-4690 B MESOs-5221 R
4 Reorganize 3rdparty directory 4 Add Documentation for Nvidia GPU support 4 Remove Nvidia GPU Isolator’s link-time
dependence on “libnvidia-ml”
[GPU |
................................ GPU
@ MESOS-4626 (®) MESOS-2043 E
4 Support Nvidia GPUs with filesystem isolation 4 Framework auth fail with timeout error and never MES’M%& R
enabled. get authenticated + Uﬁ:dgmGCcR:lamenzel.:resources() to use the
"NvidiaGpuAllocator”
GPU =
o e T) MESOS 4080
- 4 parallel make tests does not build all test targets
4 Design doc for adding resource limits support for . & MESQS-5559 o .
Mesos containerizer Reorganize 3rdparty + Irlllte%raté Ihle r‘\mdlaGpuAHocamr into the
............... ‘NvidiaGpulsolator
Container Security
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ (®) MESOS-5445 GPU
4 Allow libprocess/stout to build without first doing
5 Inproe CHANGELOG and upgrades make in drcpary. B Mesos 5562 K
mprove and upgrades.m .
Reorganize 3rdparty 4 Add class to share Nvidia-specific components
‘‘‘‘‘‘‘‘‘‘‘‘‘ between containerizers.
""" @ MES0S-4749 GPU
MESOS-5568 . 4 Move HTB out of containers
4 Improve error handling when parsing acls.) MESOS-5553
4 Rearrange Nvidia GPU files to cleanup semantics
"""""""""" for header inclusion.
(#) MESOS-5582
& MESOS-4544 . m 4 Create a "cgroupsi/devices’ isolator. GPU
4 Propose design doc for agent partitioning
behavior @ MESOS-5699 A
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 4 Create new documentation for Mesos networking. -
® MESOS-5228 . :
® MES0S-3235 4 Add tests for Capability API J Containerization Documentation
4 FetcherCacheHttpTest.HttpCachedSerialized and
FetcherCacheHttpTest. HttpCachedConcurrent are Container Security =
flak MESOS-6576 .
L | S PP P PP R F 4 Masters may drop the first message they send J
--------------- @ MESOS-5232 . between masters after a network partition
MESOS-4882 4 Add capability information to Containerinfo
4 Add support for command and arguments to protobuf message.
mesos-execute.] G
Container Securi .
............... i P, 4 Support docker registry authentication
MESOS-4941 @ MESOS-5275 Unified Container
4 Support update existing quota. 4 Add capabilities support for unified containerizer.
Quota Container Security (&) MESOS-5216 B
.............................. 4 Document docker volume driver isolator.

Figure 1 Example of JIRA board with issues.

The state of the art tool developed by Danescu-Niculescu-Mizil et al. (2013) was used
to evaluate politeness within comment-messages. The authors proposed a machine
learning approach for evaluating the politeness of a request posted in two different web
applications: Wikipedia (https://en.wikipedia.org/wiki/Main_Page) and Stack Overflow
(http://stackoverflow.com). Stack Overflow is well known in the software engineering
field and is largely used by software practitioners; hence, the model that authors used
in Danescu-Niculescu-Mizil et al. (2013) was suitable for our domain based on Jira issues,
where developers post and discuss about technical aspects of issues. The authors provide a
Web application (http://www.mpi-sws.org/~cristian/Politeness.html) and a library version
of their tool. To prepare the training set for the machine learning approach, over 10,000
utterances were labeled using Amazon Mechanical Turk. The authors decided to restrict the
residence of the annotators to the US and conducted a linguistic background questionnaire.

Since “politeness is a culturally defined phenomenon and what is considered polite
in one culture can sometimes be quite rude or simply eccentric in another cultural
context” (http://en.wikipedia.org/wiki/Politeness), the choice of limiting the residence of
the annotators to the US could be interpreted as a weakness of the the tool. However, the
annotators analysed comments written by authors from around the world and not only

Destefanis et al. (2016), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.73

3/35

https://peerj.com
https://en.wikipedia.org/wiki/Main_Page
http://stackoverflow.com
http://www.mpi-sws.org/~cristian/Politeness.html
http://en.wikipedia.org/wiki/Politeness
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

from the US. Therefore, the possible bias introduced by annotators with a similar cultural
background, is reduced and the different cultures of the developers involved in the analysis
considered. The use of the tool would have been problematic, if annotators were from the
US and they had analysed only comments written by authors from the US.

We considered 22 open source projects from one of the largest datasets of issues reports
openly available (Ortu et al., 2015d). This paper aims to answer the following research
questions:

e Does a relationship exist between politeness and issues fixing time?

Issue fixing time for polite issues is shorter than issue fixing time for impolite and

mixed issues.

e Does politeness among developers affect the attractiveness of a project?

Magnetism and Stickiness are positively correlated with the percentage of polite

comments.

e Does the percentage of polite comments vary over time?

The percentage of polite comments does vary over time and in some cases it changes

from lower percentage of polite comments to higher percentage of polite comments

from two consecutive observation intervals. The percentage of polite comments over
time is (for the majority of the projects in our corpus) seasonal and not random.

e How does politeness vary with respect to JIRA maintenance types and issue
priorities?

Comments related to issues with maintenance Bug, priority Minor and Trivial, tend to

have a higher percentage of impolite comments. Issues with maintenance New Feature,

priority Blocker and Critical tend to have a higher percentage of polite comments.

This paper is an extended version of earlier work by the same authors (Ortu et al., 2015b).
We added eight new systems to the original corpus analysed in (Ortu et al., 2015b) and
two new research question (RQ3 and RQ4), we also reviewed the RQ2 performing deeper
statistical analysis. The remainder of this paper is structured as follows: In the next section,
we provide related work. ‘Experimental Setup’ describes the dataset used for this study
and our approach/rationale to evaluate the politeness of comments posted by developers.
In ‘Results,” we present the results and elaborate on the research questions we address.
In ‘Discussion’ we present a discussion on the obtained results and “Threats to Validity’
discusses the threats to validity. Finally, we summarise the study findings and present plans
for future work in ‘Conclusions and Future Work.’

RELATED WORK

A growing body of literature has investigated the importance and the influence of human
and social aspects, emotions and mood both in software engineering and software
development. Research has focused on understanding how the human aspects of a technical
discipline can affect final results (Brief ¢ Weiss, 2002; Capretz, 2003; Cockburn & Highsmith,
2001; Erez & Isen, 2002; Kaluzniacky, 2004), and the effect of politeness (Novielli, Calefato
& Lanubile, 2014; Tan & Howard-Jones, 2014; Winschiers ¢ Paterson, 2004; Tsay, Dabbish
¢ Herbsleb, 2014; Rousinopoulos, Robles & Gonzdlez-Barahona, 2014).

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 4/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

Feldt et al. (2008) focused on personality as a relevant psychometric factor and presented
results from an empirical study about correlations between personality and attitudes to
software engineering processes and tools. The authors found that higher levels of the
personality dimension “conscientiousness” correlated with attitudes towards work style,
openness to changes and task preference.

IT companies are also becaming more conscious of social aspects. Ehlers (2015) evaluated
the efforts of IT companies in acquiring software engineers by emphasizing socialness in
their job advertising. The research analyzed 75,000 jobs advertising from the recruiting
platform Indeed and about 2,800 job ads from StackoverflowCareers to investigate
correlations between social factors and the employee satisfaction of a work place. The
findings showed that many companies advertise socialness explicitly. The Manifesto for
Agile Development indicates that people and communications are more essential than
procedures and tools (Beck et al., 2001).

Studies have also investigated the relationship between affect and work-related
achievements, including performance (Miner & Glomb, 2010) and problem-solving
processes, such as creativity, (Amabile et al., 2005). Furthermore, strong evidence for
emotional contagion on all its possible polarities has been found in a recent very large scale
study (Kramer, Guillory ¢ Hancock, 2014). Therefore, affect is an interesting avenue for
research in software engineering.

Steinmacher et al. (2015) analyzed social barriers that obstructed first contributions of
newcomers (new developers joining an open-source project). The study indicated how
impolite answers were considered as a barrier by newcomers. These barriers were identified
through a systematic literature review, responses collected from open source project
contributors and students contributing to open source projects.

Roberts, Hann ¢ Slaughter (2006) conducted a study which revealed how the different
motivations of open-source developers were interrelated, how these motivations influenced
participation and how past performance influenced subsequent motivations.

Guzman ¢ Bruegge (2013) and Guzman (2013a) have proposed prototypes and initial
descriptive studies towards the visualization of affect over a software development process.
In their work, the authors applied sentiment analysis to data coming from mailing lists, web
pages, and other text-based documents of software projects. Guzman et al. built a prototype
to display a visualization of the affect of a development team, and they interviewed project
members to validate the usefulness of their approach. In another study, Guzman, Azécar
¢ Li (2014), performed sentiment analysis of Github’s commit comments to investigate
how emotions were related to a project’s programming language, the commits’ day of
the week and time, and the approval of the projects. The analysis was performed over 29
top-starred Github repositories implemented in 14 different programming languages. The
results showed Java to be the programming language most associated with negative affect.
No correlation was found between the number of Github stars and the affect of the commit
messages.

Panichella et al. (2015) presented a taxonomy to classify app reviews into categories
relevant to software maintenance and evolution, as well as an approach that merges
three techniques (Natural Language Processing, Text Analysis, Sentiment Analysis) to

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 5/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

automatically classify app reviews into the proposed categories. The authors showed that
the combined use of these techniques achieves better results (a precision of 75% and a
recall of 74%) than results obtained using each technique individually (precision of 70%
and a recall of 67%).

Pletea, Vasilescu & Serebrenik (2014) studied security-related discussions on GitHub,
as mined from discussions around commits and pull requests. The authors found that
security-related discussions account for approximately 10% of all discussions on GitHub
and that more negative emotions were expressed in security-related discussions than in
other discussions. These findings confirmed the importance of properly training developers
to address security concerns in their applications as well as the need to test applications
thoroughly for security vulnerabilities in order to reduce frustration and improve overall
project atmosphere.

Garcia, Zanetti ¢ Schweitzer (2013) analyzed the relation between the emotions and the
activity of contributors in the Open Source Software project Gentoo. The case study built on
extensive data sets from the project’s bug tracking platform Bugzilla, to quantify the activity
of contributors, and its mail archives, to quantify the emotions of contributors by means
of sentiment analysis. The Gentoo project is known for a period of centralization within
its bug triaging community. This was followed by considerable changes in community
organization and performance after the sudden retirement of the central contributor. The
authors analyzed how this event correlated with the negative emotions, both in bilateral
email discussions with the central contributor, and at the level of the whole community
of contributors. The authors also extended the study to consider the activity patterns of
Gentoo contributors in general. They found that contributors were more likely to become
inactive when they expressed strong positive or negative emotions in the bug tracker, or
when they deviated from the expected value of emotions in the mailing list. The authors
used these insights to develop a Bayesian classifier which detected the risk of contributors
leaving the project.

Graziotin, Wang & Abrahamsson (2015) conducted a qualitative interpretive study based
on face-to-face open-ended interviews, in-field observations and e-mail exchanges. This
enabled the authors to construct a novel explanatory theory of the impact of affects on
development performance. The theory was explicated using an established taxonomy
framework. The proposed theory built upon the concepts of events, affects, attractors,
focus, goals, and performance.

In other work Graziotin, Wang & Abrahamsson (2014) reported the results of an
investigation with 42 participants about the relationship between the affective states,
creativity, and analytical problem-solving skills of software developers. The results offered
support for the claim that happy developers were better problem solvers in terms of
their analytical abilities. The authors provided a better understanding of the impact of
affective states on the creativity and analytical problem-solving capacities of developers,
introduced and validated psychological measurements, theories, and concepts of affective
states, creativity, and analytical-problem-solving skills in empirical software engineering,
and raised the need for studying the human factors of software engineering by employing
a multi-disciplinary viewpoint.

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 6/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

Rigby ¢ Hassan (2007) analyzed, using a psychometrically-based linguistic analysis tool,
the five big personality traits of software developers in the Apache httpd server mailing
list. The authors found that two developers responsible for the major Apache releases
had similar personalities and their personalities were different from other developers.
Bazelli, Hindle ¢ Stroulia (2013) analyzed questions and answers on stackoverflow.com to
determine the developer personality traits, using the Linguistic Inquiry and Word Count
(Pennebaker, Francis & Booth, 2001). The authors found that the top reputed authors were
more extroverted and expressed less negative emotions than authors of down voted posts.

Tourani, Jiang ¢ Adams (2014) evaluated the use of automatic sentiment analysis to
identify distress or happiness in a team of developers. They extracted sentiment values
from the mailing lists of two mature projects of the Apache software foundation, considering
developers and users. The authors found that an automatic sentiment analysis tool obtained
low precision on email messages (due to long size of the analyzed text) and that users and
developers express positive and negative sentiment on mailing lists.

Murgia et al. (2014b) analyzed whether issue reports carried any emotional information
about software development. The authors found that issue reports contain emotions
regarding design choices, maintenance activity or colleagues. Gdmez et al. (2012) performed
an experiment to evaluate whether the level of extraversion in a team influenced the final
quality of the software products obtained and the satisfaction perceived while this work
was being carried out. Results indicated that when forming work teams, project managers
should carry out a personality test in order to balance the amount of extraverted team
members with those who are not extraverted. This would permit the team members to feel
satisfied with the work carried out by the team without reducing the quality of the software
products developed.

Acuiia, Gomez & Juristo (2008), performed empirical research examining the work
climate within software development teams. The authors attempted to understand if team
climate (defined as the shared perceptions of team work procedures and practices) bore
any relation to software product quality. They found that high team vision preferences
and high participative safety perceptions of the team were significantly related to better
software. In a study conducted by Fagerholm et al. (2014), it was shown that software
teams engaged in a constant cycle of interpreting their performance. Thus, enhancing
performance experiences requires integration of communication, team spirit and team
identity into the development process.

Jongeling, Datta & Serebrenik (2015) studied whether the sentiment analysis tools agreed
with the sentiment recognized by human evaluators as well as with each other. Furthermore,
the authors evaluated the impact of the choice of a sentiment analysis tool on software
engineering studies by conducting a simple study of differences in issue resolution times
for positive, negative and neutral texts. The authors repeated the study for seven datasets
and different sentiment analysis tools and observed that the disagreement between the
tools can lead to contradictory conclusions.

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 7/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

Table 1 Selected Projects Statistics.

Project # of comments # of developers
HBase 91,016 951
Hadoop Common 61,958 1,243
Derby 52,668 675
Lucene Core 50,152 1,107
Hadoop HDFS 42,208 757
Cassandra 41,966 1,177
Solr 41,695 1,590
Hive 39,002 850
Hadoop Map/Reduce 34,793 875
Harmony 28,619 316
OFBiz 25,694 578
Infrastructure 25,439 1,362
Camel 24,109 908
ZooKeeper 16,672 495
GeoServer 17,424 705
Geronimo 18,017 499
Groovy 18,186 1,305
Hibernate ORM 23,575 4,037
JBoss 23,035 453
JRuby 22,233 1,523
Pig 21,662 549
Wicket 17,449 1,243
Tot 737,572 18,144

EXPERIMENTAL SETUP

Dataset

We built our dataset collecting data from the Apache Software Foundation Issue Tracking
system, JIRA (https://www.atlassian.com/software/jira). An Issue Tracking System (ITS) is
a repository used by software developers to support the software development process. It
supports corrective maintenance activity like Bug Tracking systems, along with other types
of maintenance requests. We mined the ITS of the Apache Software Foundation collecting
issues from October 2002 to December 2013. In order to create our dataset, since the focus
of our study was about the usefulness of Agile boards, we selected projects for which the
JIRA Agile board contained a significant amount of activity. Namely, we selected those
systems for which the Agile board contained more than 15,000 comments (in order to build
a time series with sufficient data) and there was a recorded monthly activity (i.e., developers
were active for every considered month). The JIRA dataset contains roughly 1,000 projects,
150 of which characterised by more than 1,000 comments. Table 1 shows the corpus of 22
projects selected for our analysis, highlighting the number of comments recorded for each
project and the number of developers involved.

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 8/35

https://peerj.com
https://www.atlassian.com/software/jira
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

1User’s names are reported as
<dev_name_a> for the sake of privacy.

Table 2 Examples of polite and impolite comments.

Comment

POLITE

Hey <dev_name_a>,

Would you be interested in contributing
a fix and a test case for this as well?
Thanks,

<dev_name_b>

<dev_name>, can you open a
new JIRA for those suggestions?
I’11 be happy to review.

<dev_name>, the latest patch isn’t applying
cleanly to trunk - could you resubmit it please?
Thanks.

<dev_name>,
Since you can reproduce, do you still want
the logs? I think I still have them if needed.

Why are you cloning tickets?
Don’t do that.

shouldnt it check for existence of
tarball even before it tries to allocate
and error out ???

<dev_name_a>, why no unit test?
<dev_name_b>, why didn’t you wait
for +1 from Hudson???

> this isn’t the forum to clarify
Why not? The question is whether
this is redundant with Cascading,
so comparisons are certainly relevant, no?

YES

YES

YES

YES

NO

NO

NO

NO

Comments politeness
Given some texts, the tool developed by Danescu-Niculescu-Mizil et al. (2013) calculates the

politeness of its sentences providing one of two possible labels: polite or impolite as result.
impolite. Table 2 shows some examples of polite and impolite comments as classified by
the tool.’

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73

9/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

Tcr Ta Ts Tcl

Figure 2 Example of timeline for JIRA issue.

We evaluated the percentage of polite comments per month considering all comments
posted in a certain month. For each comment we assigned a value according to the following
rules:

e Value of +1 for those comments marked as polite by the tool.
e Value of —1 for those comments marked as impolite.

Finally, we calculated the percentage of polite comments for a certain month. We
analyzed the politeness of about 700K comments.

Issue politeness
The next step was to infer the politeness of issues from the knowledge of comments
politeness. We grouped issues together as follows:

e we first divided comments in polite sets: polite, impolite;

e we divided issues in three sets: polite issues (commented only with polite comments),
impolite issues (commented only by impolite comments) and mixed issue (commented
with both polite and impolite comments).

For each issue we evaluated the politeness expressed in its comments and we then divided
issues in three groups: polite issues containing polite comments, impolite issues containing
impolite comments and mixed issues containing both polite and impolite comments.
Our dataset contains in total 174,871 issues, 5.3% (9,269) of the total were classified as
polite, 56.9% (99,501) classified as impolite, 37.8% (66,101) classified as mixed. For each
of this three groups of issues we evaluated the issue fixing time as the difference between
resolution and creation time. Figure 2 shows the typical issue timeline in JIRA:

e T represents the time when an issue is created.

e T represents the time when an issue is closed.

e T, represents the time when an issue is assigned to a developer.

e T is the time when a developer subscribes to an issue that has been assigned to them.

To infer the issue fixing time (abbreviated as IFT), we used the approach proposed by
Murgia et al. (2014a). We computed the time interval between the last time an issue had
been closed and the last time it had been subscribed to by an assignee.

Attractiveness
Our research focuses around the concepts developed by Yamashita et al. (2014) and
Yamashita et al. (2016) who introduced the concepts of magnetism and stickiness for

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 10/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

2We consider as active all developers who
posted/commented/resolved/modified
an issue during the observed time (from
dev_1to dev_10).

Project_1

| I | |
| | | I
| | | I
| dev 1 | dev_1 dev_2 | dev_1 | Active developer
I I dev 4 I dev_2 |
| i | - | |
I dev_3 | | dev_3 |
| dev_2 T dev_3 | New active developer
dev_5 I'in 2011
| | | I
dev_8

I I dev 6 | I i
I ey 5 | | dev_9 |

dev_4 - | dev_7 dev 10 Active developer in

P v_ @ 2011 andin 2012
2010 2011 2012

Figure 3 Example of Magnetism and Stickiness metrics computation in 2011.

a software project. A project is classified as Magnetic if it has the ability to attract new
developers over time. Stickiness is the ability of a project to keep its developers over time.
We measured these two metrics by considering the period of observation of one year.
Figure 3 shows an example of the evaluation of Magnetism and Stickiness metrics. In this
example, we were interested in calculating the value of Magnetism and Stickiness for 2011.
From 2010 to 2012, we had a total of 10 active’ developers. In 2011, there were seven active
developers and 2 of them (highlighted with black heads) were new. Only 3 (highlighted
with grey heads) of the seven active developers in 2011 were also active in 2012. We can
then calculate the Magnetism and Stickiness as follows:
e Magnetism is the fraction of new active developers during the observed time interval, in
our example 2/10 (dev_6 and dev_7 were active in 2011 but not in 2010).
e Stickiness is the fraction of active developers that were also active during next time
interval, in our example 3/7 (dev_1, dev_2, dev_3 were active in 2011 and in 2012).

Data analysis

To perform statistical testing, filter the data and produce the visualisation of the results, we
used scikit-learn (http://scikit-learn.org/stable/) for RQ1, and the R projects for statistical
computing (R Development Core Team, 2014) for the other RQs. To facilitate replication of
our study, we have created a replication package (https://bitbucket.org/giuseppedestefanis/
peerjcs_replicationpackage) which contains the dataset, the tool used to detect politeness
and the R and Python scripts for performing the statistical analysis.

RESULTS

Does a relationship exist between politeness and issues fixing time?
Motivation. Murgia et al. (2014a) demonstrated the influence of maintenance type on the
issue fixing time, while Zhang, Gong ¢ Versteeg (2013) developed a prediction model for
bug fixing time for commercial software.

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 11/35

https://peerj.com
http://scikit-learn.org/stable/
https://bitbucket.org/giuseppedestefanis/peerjcs_replicationpackage
https://bitbucket.org/giuseppedestefanis/peerjcs_replicationpackage
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

In another study, Zhang et al. (2012) analyzed the interval between bug assignment and
the time when bug fixing starts (bugs are classified as a type of issue in JIRA). After a bug
being reported and assigned, some developers will immediately start fixing the bug while
others will start bug fixing after a long period. The authors explored the delays of developers
empirically analyzing three open source software systems. They studied factors affecting
bug fixing time along three dimensions (bug reports, source code involved in the fix and
code changes that are required to fix the bug) and compared such factors using logistic
regression models. The most influential factors on bug fixing appeared to be the severity
of a bug, its description and comments and operating system where a bug was found.
Hence, there are indeed many factors able to influence bugs fixing time and issues fixing
time; in this case, we were interested in finding out if politeness expressed by developers in
comments had an influence on issue fixing time.

To detect differences among the fixing time of polite, impolite and mixed issues, we used
the Kruskal-Wallis test. Such a test is non parametric and unpaired (Siegel, 1956; Kruskal
& Wallis, 1952; Weiss et al., 2007). The test can be used with no restrictions or hypotheses
on the statistical distribution of the sample populations. The test is suitable for comparing
differences among the medians of two or more populations when their distributions are
not gaussian. We grouped all the issues (by category) of all the projects contained in our
corpus and then we tested the null hypothesis Hy: the three distributions of issue fixing time
are equal for the three typologies of considered issues (polite, impolite, mixed). The outcome
of the Kruskal-Wallis test is a p-value p < 271¢ indicating that the three distributions are
statistically different. Figure 4 shows the box-plot of the issues fixing time for the three
groups of issues considered (polite, impolite and mixed) for all the issues analysed. The
issues fixing time is expressed in hours on a logarithmic scale. The median of the issue
fixing time for polite issues is shorter than that for impolite and mixed issues, while the
median for impolite issues is shorter than the one for mixed issues. Figure 4 also shows that
the percentage of impolite issues is the highest (56.9%), followed by mixed issues (37.7%)
and then polite issue (5.3%).

Figures 5 and 6 show the boxplots of the issue fixing time when considering single
projects. We considered the four projects (Hadoop HDEFS, Derby, Lucene-Core, Hadoop
Map/Reduce) with the highest number of comments in our corpus as examples. For
visualising the boxplots of Figs. 5 and 6, we grouped the issues by project and then by
category. The results obtained with all the issues grouped together (without distinguishing
for project) are confirmed also with these four examples. The median of the issues for polite
issues is lower than the other two medians, and also in this cases issues with mixed polite
and impolite comments have a longer issue fixing time than issues with impolite comments.

Findings. Issue fixing time for polite issues is shorter than issue fixing time for impolite and
mixed issues.

Does politeness among developers affect the attractiveness

of a project?

Motivation. Magnetism and Stickiness are two interesting metrics able to describe the
general health of a project; namely, if a project is able to attract new developers and to

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 12/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

3 Issure Fixing-Time[Hours] (174871 Issues)

T
i
|
i
i
|
|
|
|
|
)
I
|
|
|
1
|
i
|
|
|
|
i
|
i
i
1
|
i —_—t—
1

T
|
|
|
|
i
|
i
i
|
i
i
|
|
P
|
|
|
|
i
|
t
i
|
|
i
i

polite (5.3%) impolite (56.9%) polite_impolite (37.8%)

Figure 4 Box-plot of the fixing-time expressed in Hours. The number in parentheses next to issue
group indicates the percentage of issues.

HADOOP HDFS Issure Fixing-Time[Hours] (6989 Issues) 10 DERBY Issure Fixing-Time[Hours] (9305 Issues)
| ¥
: H
H ot ; ! !
i
i : 1 107
10 b
10 T ;
10* |
| | |
100] :
3 : :
polite (2.6%) impolite (52.1%) polite_impolite (45.3%) o polite (3.0%) impolite (53.0%) polite_impolite (44.0%)

Figure 5 Box-plot of the fixing-time expressed in Hours for single projects. The number in parentheses next to polite/impolite indicates the per-

centage of impolite and polite issues.

keep them over time we can then conclude that the project is healthy. On the other hand,
if a project is not magnetic and is not sticky we can conclude that the project is losing
developers and is not attracting new developers over time. Although there may be many
factors influencing magnetism and stickiness, we were interested in analysing the correlation
between politeness expressed by developers in their comments and these two metrics.

To detect if there was a direct correlation between magnetism and stickiness of a project
and politeness, we considered an observation time of one month. During this time interval

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 13/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

LT

-

LUCENE - CORE Issure Fixing-Time[Hours] (7802 Issues) 10° HADOOP MAP/REDUCE Issure Fixing-Time[Hours] (6191 Issues)

: T

polite (3.9%) impolite (53.2%)

polite_impolite (42.8%) e polite (3.6%) impolite (52.5%) polite_impolite (43.8%)

(a) Lucene-Core (b) Hadoop Map/Reduce

Figure 6 Box-plot of the fixing-time expressed in Hours for single projects. The number in parentheses next to polite/impolite indicates the per-

centage of impolite and polite issues.

we measured magnetism, stickiness and the percentage of polite comments. Since we
had no evidence that the politeness in the observed time could affect magnetism and
stickiness in the same time interval or in the following observation time, we evaluated a
cross-correlation coefficient. To study the cross correlation, we first studied the time series
for stationarity. A time series X, (¢t = 1,2...) is considered to be stationary if its statistical
properties (autocorrelation, variance, expectation) do not vary with time (Priestley, 1981;
Priestley, 1988; Hamilton, 1994). Time series stationarity is a condition required for
calculating the most common correlation coefficient. However, it is still possible to study
cross-correlation between time series which are not stationary (Kristoufek, 2014).

We used the R package fpp (https://cran.r-project.org/package=fpp) and we applied:

e Ljung-Box test (Box ¢ Pierce, 1970; Ljung ¢ Box, 1978): this test for stationarity
confirms independence of increments, where rejection of the null hypothesis Hy indicates
stationarity (the null hypothesis Hy is that the data are non-stationary);

e Augmented Dickey-Fuller (ADF) ¢-statistic test (Said & Dickey, 1984; Diebold &
Rudebusch, 1991; Banerjee et al., 1993): in the Augmented Dickey-Fuller (ADF) ¢-statistic
test the null hypothesis Hy is that the data are non-stationary (small p-values (e.g., less
than 0.05) suggest that the time-series is stationary).

e Kwiatkowski-Phillips—Schmidt—Shin test (KPSS) (Kwiatkowski et al., 1992): this test
reverses the hypotheses, hence the null-hypothesis Hy is that the time-series is stationary.
Small p-values (e.g., less than 0.05) suggest that the time-series is not stationary.

We decided to proceed using the results obtained from the three tests used for checking
stationarity of a time series and then consider the worst case scenario (e.g., even if only one
test out of three indicated rejection of the hypothesis of stationarity for a given time series,
we considered that time series as non stationary). The results of the three tests are shown
in Table 3. The cells in grey indicate that the p-value for the corresponding test is below 5%
(our cutoff for significance), thus we infer in these cases that the test indicates stationarity

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 14/35

https://peerj.com
https://cran.r-project.org/package=fpp
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

Table 3 P-value results for stationarity tests (Ljung—Box, Augmented Dickey-Fuller, KPSS).

Project Politeness Magnetism Stickiness

HBase 0.01 0.9765 0.0285 0.266 0.156 -
Hadoop C. 0.59 0.044 0.0677 RO .01
Derby 0.01 0.19 0.049 - 0.094 0.01
Lucene C. - 0.017 0.38 0.08 0.01 0.48 0.01
Hadoop HDFS PO 0.79 0067 NoI o.01 0.093 0.30 0.036
Cassandra 0.25 _- 0.57 0.18 RO 0.099 0.387 0.01
Solr 0.31 0.01 ORGSR 1.615¢-07 RO .01
Hive 0.113 0.01 0.335 0.32 0.01 0.28 0.01
Hadoop MR 0.4 0.01 0.06 0.01 0.92 0.012
Harmony 0.01 - 0.23 0.01
OFBiz 0.01 0.91 0.09 0.01
Infrastructure . _— 0.53 0.01
Camel 000097 0.01 0.79 PSS 036 0.01
ZooKeeper 0.14 0.046 0.26 0.398 0.17 0.01
GeoServer _ 0.01 _ 0.011
Geronimo 0.32 PO 054 0.078 0.01
Groovy 0.047 0.14 0.01
Hibernate ORM - 0.063 0.016 0.15 0.033
JBoss 0.36 PO N 053 0.01
JRuby 0.67 0.29 0.02 0.074 0.01
Pig 7056505 .12 0.02 0.59 0.45 0.01
Wicket 0.084 0.064 0.33 0.018

(on the contrary, cells in white indicate that the p-value for the corresponding test is above

5%). For example, for the percentage of polite comments time series of HBase (row 1, first

three cells), we have that the first two tests (Box-Ljung and Augmented Dickey-Fuller)

suggest stationarity, while the third test (KPSS) rejects the hypothesis of stationarity.

For the majority of the cases, the tests provides discordant results. Only for Magnetism

for Infrastructure (row 12) and GeoServer (row 15) there is agreement among the three

tests. Thus, we considered all the time series in Table 3, except for the cases mentioned

before, being not stationary. Table 4 shows the results obtained applying the algorithm
illustrated in Kristoufek (2014) (http://stats.stackexchange.com/questions/149799/code-
for-detrended-cross-correlation-in-r). For the majority of the cases there is a weak positive

correlation between politeness and Magnetism (14 projects out 22) and politeness and

Stickiness (13 projects out 22).

We also calculated the cross correlation (using the ccf function in R) after applying

time series differencing to transform time series that were not stationary in Table 3 into

stationary. The D differencing operator applied to a time series k is to create a new series
k, whose value at time ¢ is the difference between k(¢ +t;) and k(). This method is useful

for removing cycles and trends.

Destefanis et al. (2016), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.73

15/35

https://peerj.com
http://stats.stackexchange.com/questions/149799/code-for-detrended-cross-correlation-in-r
http://stats.stackexchange.com/questions/149799/code-for-detrended-cross-correlation-in-r
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

Table 4 Cross-Correlation for not stationary series.

Project Politeness-Magnetism Politeness-Stickiness
HBase 0.131 —0.096
Hadoop Common 0.024 0.018
Derby —0.0018 0.0147
Lucene Core 0.32 0.137
Hadoop HDFS —0.08 0.104
Cassandra 0.296 —0.136
Solr —0.169 0.0018
Hive 0.305 0.184
Hadoop Map/Reduce —0.047 0.052
Harmony 0.21 0.026
OFBiz 0.11 0.097
Infrastructure —0.025 0.292
Camel 0.115 0.013
ZooKeeper —0.19 —0.11
GeoServer 0.22 —0.13
Geronimo 0.23 0.27
Groovy 0.013 —0.22
Hibernate ORM 0.02 —0.1
JBoss —0.26 —0.2
JRuby —0.12 —0.06
Pig 0.26 0.14
Wicket 0.016 —0.14

Lucene-(Core Lucene-Core (Stationary)

(a) (b)

Magnetism
0 60
Magnetism
o

Figure 7 Differencing Time-series.

As an example, Fig. 7A shows the Magnetism time-series for Lucene Core. From Table 3,
row 4, we can see that the time series is not stationary, since all the three test failed in
proving stationarity. By applying the differencing operator (first differencing), we obtain
the new time-series in Fig. 7B.

The new time-series in Fig. 7B is stationary; all the three tests provide the same
indication for stationarity (Box-Ljung: p — value = 1.4e — 13, Augmented Dickey-Fuller:

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 16/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

(a) Percentage of Polite Comment ts VS Magnetism (b) Percentage of Polite Comments VS Stikiness

s-C
0 o

nnnnnnnnnnnn

Figure 8 Cross-Correlation—Lucene Core.

p—value =0.01, KPSS: p—value = 0.1) and the plot appears roughly horizontal (the visual
inspection is a practical rule of thumb which can help when evaluating a time-series for
stationarity). If the time-series under study are stationary, it is possible to calculate the
cross correlation. The cross correlation function (ccf) is defined as the set of correlations
(height of the vertical line segments in Fig. 8) between two time series x; + h and y; for
lags h=0,£1,%2,.... A negative value for h represents a correlation between the x-series
at a time before ¢ and the y-series at time t. For example, if the lag h = —1, then the
cross correlation value would give the correlation between x; — 1 and y;. On the contrary,
negative lines correspond to anti-correlated events.

The ccf helps to identify lags of x; that could be predictors of the y, series.
e When h < 0 (left side of plots in Figs. 8A and 8B), x leads y.
e When h > 0 (right side of plots in Figs. 8A and 8B), y leads x.

Table 5 shows the maximum value of the cross-correlation coefficient between the
percentage of polite comments and Magnetism and the percentage of polite comments
and Stickiness and the lag (or lags) in which the maximum value occurs. The values are
calculated using the R function ccf .

A negative lag x means that the current values of Stickiness are likely to be higher, if x
month before the percentage of polite comments was higher. On the other hand, a positive
lag z means that a current higher percentage of polite comments is linked with higher
Magnetism z months later. For both Magnetism and Stickiness, we observe that a positive
maximum correlation exists.

The difference sin lags presented in Table 5 could be explained looking at the composition
of our corpus. We selected the projects with a higher number of comments from JIRA,
regardless of domain, history and/or programming language used. Additionally, there are
systems which are younger than others and, as a consequence, the time series may have
different lengths.

Findings. Magnetism and Stickiness are positively correlated with the percentage of polite
comments.

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 17/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

Table 5 Politeness vs Magnet and Sticky Cross-Correlation Coefficient.

Project Pol Vs Mag Lag Pol Vs Stick Lag
HBase 0.378 —-1,7 0.418 6
Hadoop Common 0.283 =5 0.203 5
Derby 0.181 15 0.185 -1
Lucene Core 0.31 —6 0.243 —11
Hadoop HDFS 0.3 0 0.32 -1
Cassandra 0.414 5 0.315 2
Solr 0.33 —4 0.23 12
Hive 0.4 —14 0.3 —13
Hadoop Map/Reduce 0.35 3 0.35 3
Harmony 0.3) 0.35 1
OFBiz 0.25 14 0.22 —11
Infrastructure 0.17 4 0.26 —11
Camel 0.28 —12 0.26 —14,-2,7
ZooKeeper 0.41 6 0.27 —2
GeoServer 0.3 0 0.2 —5,—1
Geronimo 0.32 0 0.24 0
Groovy 0.2 3 0.21 2
JBoss 0.3 8 0.43 5
Hibernate ORM 0.23 1 0.18 -3
JRuby 0.25 10 0.2 —10
Pig 0.38 11 0.17 7,9
Wicket 0.3 —13 0.27 11

Does the percentage of polite comments vary over time?

Motivation. Politeness has an influence on the productivity of a team (Ortu et al., 2015b;
Ortu et al., 2015a; Ortu et al., 2015¢). Thus, it is interesting to understand if there are periods
of time in which the level of politeness decreases (potentially affecting the productivity of
a team).

We calculated the level of politeness for any given issue and then plotted the
percentage of polite comments per month grouping issues per project. For each project
considered in this study, the percentage of polite comments over time can be seen as
time series, hence we performed tests for randomness and seasonality to understand
the nature of politeness time series. A time series is considered random if it consists of
independent values from the same distribution. We used the Bartels test (Bartels, 1982)
for studying randomness (Brockwell & Davis, 2006) and the results from the Augmented
Dickey-Fuller test and KPSS test from ‘Does politeness among developers affect the
attractiveness of a project?” for studying seasonality. We used the R package randtest
(https://cran.r-project.org/web/packages/randtests/randtests.pdf) and we applied:

e Bartels test: in this test, the null hypothesis Hy of randomness is tested against non
randomness.

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 18/35

https://peerj.com
https://cran.r-project.org/web/packages/randtests/randtests.pdf
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

Table 6 Randomness and seasonality test results for Politeness.

Project

Randomness Seasonality

HBase

Hadoop Common
Derby

Lucene Core
Hadoop HDFS
Cassandra

Solr

Hive

Hadoop Map/Reduce
Harmony
OFBiz
Infrastructure
Camel
ZooKeeper
GeoServer
Geronimo
Groovy
Hibernate ORM
JBoss

JRuby

Pig

Wicket

Bartels-rank p-value Aug. D-F p-value KPSS
0.0006529

3.362e-06 0.59

6.824e-08

0.008213

1.622¢-06 0.79 0.09

0.0026
1.044e-09 0.113
0.0004533
0.001998
0.0003783
0.02888
2.951e-06

0.0008848

0.00025
0.000384

0.29
1.957e-05 0.12

For studying the seasonality of the percentage of polite comments time series, we
considered the results (from ‘Does politeness among developers affect the attractiveness of

a project?’) of the following tests:

e Augmented Dickey Fuller test: the null hypothesis Hy is that the data are non-stationary

and non-seasonal;

o Kwiatkowski-Phillips—Schmidt—Shin (KPSS) test: the null hypothesis Hy is that the data
are stationary and non-seasonal.

The results of the tests are shown in Table 6.

For randomness, the cells in grey indicate that the p-value for the corresponding test
is higher than 5% (our cutoff for significance), thus we infer in these cases that the test
indicates randomness (null hypothesis Hy of randomness). On the contrary, cells in white
indicate that the p-value for the corresponding test is lower than 5%. In the majority of
the cases (16 out 22), the percentage of polite comments time series were not random. For
seasonality, the cells in grey indicate that the p-value for the corresponding test is less than

5% (our cutoff for significance), thus we infer in these cases that the test rejects the null

hypothesis Hy of non-seasonality.

Destefanis et al. (2016), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.73 19/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

Table 6 shows that for the Augmented Dickey Fuller test, 12 projects (HBase, Derby,
Lucene Core, Cassandra, Harmony, OFBiz, Infrastructure, Camel, GeoServer, Geronimo,
Groovy, JBoss) have a percentage of polite comments time series which presents seasonality,
while 10 time series are not seasonal. For the KPSS test, the null hypothesis of non-
seasonality is rejected for 16 time series (out of 22).

Itis interesting to note that there are variations in the percentage of polite comments over
time. This is by no means a representation of a time dynamics, but simply the representation
of random variation of the percentage of polite comments over time. Cassandra and OFBiz
present seasonality (Table 6) and Fig. 9 shows the seasonal component determined using
the stl function (https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stL.html) in R. In
Cassandra, Fig. 9(A), and OFbiz, Fig. 9(B), we see how the percentage of polite comments
decreases for some time interval and increases for some others. It is also possible to analyse
the percentage of polite comments trend, while for Cassandra the trend is increasing
starting from the year 2011, for OFBiz the trend is decreasing.

Findings. The percentage of polite comments does vary over time and in some cases it
changes from lower percentage of polite comments to higher percentage of polite comments
from two consecutive observation intervals. This fact could be related to the composition
of our corpus. We considered only open source systems, hence there are no strict
deadlines or particular busy days (such as Fridays, as suggested by Sliwerski, Zimmermann ¢
Zeller (2005)).

How does politeness vary with respect to JIRA maintenance types
and issue priorities?

Motivation. Understanding which typology of issue attracts more impolite comments
could help both managers and developers better understand the development process
and take action to better manage the distribution of issues within development
teams. A classification of the type of issues, is provided on the JIRA wiki (https:
//cwiki.apache.org/confluence/display/FLUME/Classification+of+JIRA+Issues). The

following list gives a brief introduction:

e Bug: this type of issue indicates a defect in the source code, such as logic errors,
out-of-memory errors, memory leaks and run-time errors. Any failure of the product to
perform as expected and any other unexpected or unwanted behaviour can be registered
as type Bug.

e SubTask: this type of issue indicates that a task must be completed as an element of
a larger and more complex task. Subtask issues are useful for dividing a parent issue
into a number of smaller tasks, more manageable units that can be assigned and tracked
separately.

e Task: this type of issue indicates a task that it is compulsory to complete.

e Improvement: this type of issue indicates an improvement or enhancement to an
existing feature of the system.

e New Feature: this type of issue indicates a new feature of the product yet to be developed.

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 20/35

https://peerj.com
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stl.html
https://cwiki.apache.org/confluence/display/FLUME/Classification+of+JIRA+Issues
https://cwiki.apache.org/confluence/display/FLUME/Classification+of+JIRA+Issues
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

8
2
8
o £
53 0
5
g
8
© 3
3
Mt 8
- g
g
g .
g g
2 g
g
@]
Hlo=
3
b af s
S
- €
2 g
£
g
3
%
2 Ui o
° S
.
5
. g
S | “\“ ‘\ ‘ \M ‘ ‘H ‘\\\“\ ol g
s l ‘\\ H FTTTTI ‘\ \Uo
£
[
.
z
time
(a) Cassandra
.
3
S
: [
T o
-
2
3
8
- g
g
g
g
3 8
3 &
]
© T
o
g
- _
g
2
o 8
B
. i
g
5
g
: | A i | ol
5
El g b b Wil I bl
g T T T I
e -
z
.
N
g
2008 2010 2012 2014
time

(b) OfBiz

Figure 9 Time series decomposition.

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 21/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

Table 7 Maintenance statistics.

Type IMPOLITE POLITE
Bug 201,359 163,489
Sub-task 24,333 22,909
Task 19,379 14,442
Improvement 90,477 90,564
New Feature 33,640 39,538
Wish 2573 2681
Test 3788 3270
New JIRA Project 172 210
Brainstorming 98 172
Umbrella 87 144

Table 8 Priority statistics.

Priotity IMPOLITE POLITE
Blocker 20,657 19,049
Critical 21,517 19,410
Major 241,012 219,841
Minor 82,892 71,905
Optional 105 52
Trivial 12,009 8,479

e Wish: this type of issue is used to track general wishlist items, which could be classified
as new features or improvements for the system under development.

e Test: this type of issue can be used to track a new unit or integration test.

e New JIRA Project: this type of issue indicates the request for a new JIRA project to be
set up.

e Brainstorming: this type of issue is more suitable for items in their early stage of
formation not yet mature enough to be labelled as a Task or New Feature. It provides a
bucket where thoughts and ideas from interested parties can be recorded as the discussion
and exchange of ideas progresses. Once a resolution is made, a Task can be created with
all the details defined during the brainstorming phase.

e Umbrella: this type of issue is an overarching type comprised of one or more sub-tasks.

Tables 7 and 8 provide information about the absolute number of issues (maintenance
e priority) in our corpus.

To detect the level of politeness for each category of issue, we grouped the issue comments
for type of maintenance and priority.

To justify claims such as “issues of type A tend to have more polite comments than
issues of type B”, we used the multiple contrast test procedure (Konietschke, Hothorn ¢
Brunner, 2012) using a 5% error rate. Instead of following a classical two-step approach
in which a global null hypothesis is tested to begin with, and as a second step multiple

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 22/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

Table 9 Maintenance—significant results.

Pair Lower Upper p-value

Improvement—Bug 0.009 0.029 9.067173e-04
New Feature—Bug 0.042 0.077 9.409836e-06
New Feature—Improvement 0.023 0.059 2.411054e-04
Task—Improvement —0.085 —0.048 5.512420e-06
Sub-task—New Feature —0.071 —0.028 2.764748e—04
Task—New Feature —0.132 —0.083 1.791890e-07
Test—New Feature —0.083 —0.007 2.128063e-02
Wish—New Feature —0.116 —0.024 4.615626e-03
Task—Sub-task —0.081 —0.036 1.468676e—04
Test—Task 0.025 0.101 2.563559e—03

comparisons are used to test sub-hypotheses related to each pair of groups, to answer our
research question, we used the Tukey’s test (Tukey, 1949) which is a single-step multiple
comparison procedure and statistical test.

To visualize the results obtained from the multiple contrast test procedure, we used
the T~ -graph presented by Vasilescu et al. (2014a). This visual comparison of multiple
distributions using T~-graphs provides an immediate understanding of groups located
in higher positions in the graph, i.e., issue categories with higher politeness, while groups
located in lower positions in the graph are related to issue categories with lower politeness.
Other studies related to the application of T-graphs can be found in Vasilescu, Filkov &
Serebrenik (2013) and Vasilescu et al. (2014b).

The approach used to build a T~ -graph is the following (cf. Vasilescu et al. (2014a)):

e for each pair of groups it is necessary to analyse the 95% confidence interval to test if
the corresponding null sub-hypothesis can be rejected;

o Ifthe lower boundary of the interval is greater than zero for groups A and B, we conclude
that the metric value is higher in A than in B;

e If the upper boundary of the interval is less than zero for groups A and B, we conclude
that the metric value is lower in A than in B;

e If the lower boundary of the interval is less than zero and the upper boundary is greater
than zero, we conclude that the data does not provide enough evidence to reject the null
hypothesis.

e based on the results of the comparisons we construct the graph with nodes being groups
and containing edges (A, B) if the metric value is higher in A than in B.

The result of the multiple contrast test procedure are presented in Tables 9 and 10.
We used the mctp function for the Tukey’s test, from the nparcomp R package
(https://cran.r-project.org/web/packages/nparcomp/nparcomp.pdf) to obtain the tables.
Table 9 summarises the significant results which we used to build a T~ -graph. For the
category Brainstorming, the upper boundary of the interval is less than zero and the upper
boundary is greater than zero. In this situation the data does not provide enough evidence

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 23/35

https://peerj.com
https://cran.r-project.org/web/packages/nparcomp/nparcomp.pdf
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

New Feature

e Na

Test Sub-Task Improvement Wish

e

Figure 10 T~ -graph for issue maintenance.

Table 10 Issue priority classification.

Pair Lower Upper p-value
Critical—Blocker —0.018 0.022 0.997
Major—Blocker —0.070 —0.042 0
Minor—Blocker —0.093 —0.065 0
Trivial—Blocker —0.149 —0.113 0
Major—Critical —0.073 —0.043 0
Minor—Ciritical —0.097 —0.066 0
Trivial—Critical —0.152 —0.115 0
Minor—Major —0.030 —0.016 0
Trivial—Major —0.088 —0.062 0
Trivial—Minor —0.066 —0.039 0

and we cannot conclude that, for example, Brainstorming issue are more (or less) polite
the Bug issues. Same thing happens for the category Umbrella and New JIRA Project.

Figure 10 shows the T~ -graph resulting from the values in Table 9. The category
New Feature is more polite than Test, Sub-task, Improvement and Wish; Test, Sub-task and
Improvement are more polite than Task; Improvement are more polite than Bug. Issues with
maintenance Bug are related to defects and software failures. This category presents the
lower politeness. Issues with maintenance New Feature are proposals made by developers
and it is interesting to see that when proposing something new, developers tend to be more
polite. Issues on JIRA are also classified considering the level of priority, as Major, Minor,
Blocker (e.g., an issue which blocks development and/or testing work), Critical and Trivial.

Table 10 shows the results of the multiple contrast test procedure for the different groups
of issue priority. Figure 11 shows the associated T~ -graph.

Blocker and Critical issues are more polite than Major, Minor and Trivial issues. Major
issues are more polite than Minor and Trivial, while Minor are more polite than Trivial.
Trivial issues are characterised by lower politeness.

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 24/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

Blocker Critical

Major

Minor

\4

Trivial

Figure 11 T~ -graph for issue Priority.

Findings. Comments related to issues with maintenance Bug, priority Minor and Trivial,
tended to have a lower politeness. Issues with maintenance New Feature, priority Blocker and
Critical, tended to have a higher politeness.

DISCUSSION

Software development, as well as other fields, is an activity organised around team-
based environments. The implementation of team structures is not simple and does not
necessarily result in success, because it is not enough just to put people together in teams
and to presume that everybody knows or agrees on what to do (Allen ¢ Hecht, 2004). People
working together apply different personal assumptions and interpretations to their work
tasks (Keyton ¢ Beck, 2008). Hence, conflicts within teams are possible. Conflicts affect
teams’ productivity and team leaders are certainly interested in knowing how to prevent,

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 25/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

avoid, or, in the worst case, manage conflicts which might occur. In this paper, we presented
an analysis about the links between politeness and productivity of developers involved in
a project. Politeness is a factor that certainly helps in diminishing conflict and friction
between people. The findings of this study contribute in highlighting the importance and
the impact of the psychological state of a developer on the software production process.

We started the paper by proposing that politeness information mined from software
repositories like issue repositories could offer a way to investigate productivity during
the software development process. We showed that issue fixing time for polite issues was
shorter than issue fixing time for impolite and mixed-issues. This result matches common
sense; if someone is asked to accomplish a task in a polite way, there is higher possibility
for a relaxed collaboration and faster results. On the other hand, impolite requests can
easily generate discomfort, stress and burnout, often negatively impacting the actual time
taken to complete a given task. Surprisingly, mixed issues (commented with both polite
and impolite comments) presented longer fixing time than impolite issues. The mixed
interaction ‘polite-impolite’ between developers could explain this fact. Ortu et al. (2016)
showed that when in the presence of impolite or negative comments, the probability of
the next comment being impolite or negative was 13% and 25%, respectively. Hence part
of the longer time could be spent in trying to shift the exchange of comments toward a
(more) polite level. For example, in a small study of a single project with two deadlines
(Guzman, 2013b), the authors find that, as deadlines came closer, more and longer emails
were exchanged with higher emotional intensity. The lower fixing time for impolite issues
(compared to the fixing time of mixed issues) could also be related to the fact that developers
(especially newcomers) being addressed with impolite comments can react faster because
they feel emotionally pushed and want to show (to the community) that they are able to
accomplish a task.

As a second point, we showed that a positive correlation existed between the percentage
of polite comments and Magnetism and Stickiness of a project. For each project in the
corpus, we first calculated the percentage of polite comments per month and the value
of Magnetism and Stickiness, generating three time series. We studied each time series
for stationarity and then performed correlation analysis. We found that the percentage of
polite comments is, for the majority of the project in our corpus, positive correlated with
Magnetism and Stickiness. However, we need to point out that the first cross correlation
analysis performed for the non-stationary series presented weak correlation values (< 0.5).
Higher correlation values were found after the cross correlation analysis of the stationary
series (after differencing). The attractiveness of a project is indeed a complex phenomenon
and there are different confounding factors (fame and importance of the project could
be perceived also as a status-symbol, e.g., being part of the Linux developers community)
of which politeness among developers can be part of. Further analysis on a larger corpus
of projects are required. Our findings highlight the fact that politeness might be a factor
affecting the attractiveness of a project.

Third, we found that the percentage of polite comments over time was (for the majority
of the projects in our corpus) seasonal and not random. This is an interesting (and
somewhat expected) fact that could help managers and developers in better understanding

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 26/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

the development process. Further experiments are required to better analyse the links
between seasonality and deadlines that developers face during the development phases.
Higher workload could lead to lower politeness, while normal activities can be linked with
higher politeness.

Fourth, we studied how politeness varied with respect to JIRA maintenance types and
issue priorities. Again, the results match common sense. Bug issues Maintenance were
those with lower politeness. When something is broken and needs to be fixed, the situation
is less attractive and could generate impolite reactions. On the contrary, New Feature issues
Maintenance were the ones with higher politeness; those kind of issues indicate a new
feature yet to be developed, hence, there might be higher enthusiasm among developers
(a developer can be the first one who started working for a New feature; the level of
freedom felt for the task can be higher leading to higher politeness) when dealing with such
issues. Regarding issue Priority, Critical and Blocker issues were the categories with higher
politeness, while Trivial issues were those characterised by lower politeness. Again, this
is what one would expect, since critical issues are both important and challenging, while
trivial issues might be related to minor programming mistakes and/or poor knowledge of
programming practices

Knowing when lower politeness will occur can help managers in taking actions aimed at
keeping the general mood high and relaxed, lowering and preventing conflicts, obtaining
higher productivity as a result. The results presented in this study can be also helpful when
defining a team of developers. Knowing the profile (from a politeness point of view) of the
developers can provide hints for creating balanced teams. A JIRA plug-in able to present
the politeness level of the communication flow in a graphical way (e.g., cockpit view) could
help both developers and managers in constantly monitoring the general mood of the
developers working for a company or for a project (in the case of open source collaboration
paradigm).

THREATS TO VALIDITY

Threats to external validity correspond to the generalisation of our results (Campbell ¢
Stanley, 1963). In this study, we analysed comments from issue reports from 22 open
source projects. Our results cannot be representative of all environments or programming
languages, we considered only open-source systems and this could affect the generality of the
study. Commercial software is usually developed using different platforms and technologies,
by developers with different knowledge and background, with strict deadlines and cost
limitations. Replication of this work on other open source systems and on commercial
projects are needed to confirm our findings. Also, the politeness tool can be subject to bias
due the domain used to train the machine learning classifier.

Threats to internal validity concern confounding factors that can influence the obtained
results. Based on empirical evidence, we suppose a relationship between the emotional state
of developers and what they write in issue reports (Pang ¢ Lee, 2008). Since the main goal
of developer communication is the sharing of information, the consequence of removing or
camouflaging emotions may make comments less meaningful and cause misunderstanding.

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 27/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

This work is focused on sentences written by developers for developers. To illustrate the
influence of these comments, it is important to understand the language used by developers.
We believe that the tool used for measuring politeness Danescu-Niculescu-Mizil et al. (2013)
is valid in the software engineering domain, since the developers also used requests posted
on Stack Overflow to train the classifier. The comments used in this study were collected
over an extended period from developers unaware of being monitored. For this reason, we
are confident that the emotions we analyzed were genuine. We do not claim any causality
between politeness and the issue resolution time, but we built an explanatory model to
understand the characteristics of issues with short and long fixing time. Confounds could
have affected validity of the results for RQ1 about lower issue fixing time for polite and
mixed issues. The number of developers involved in discussing issues might differ, as
well as severity and complexity of an issue under analysis. Another threat to validity is
related to classification of JIRA issue types. As highlighted by Herzig, Just ¢ Zeller (2013)
the categorisation of issue reports is dependent on the perspective of the observer. This fact
could affect the results obtained for research question 4.

Threats to construct validity focus on how accurately the observations describe the
phenomena of interest. The detection of emotions from issue reports presents difficulties
due to vagueness and subjectivity. The politeness measures are approximated and cannot
perfectly identify the precise context, given the challenges of natural language and subtle
phenomena like sarcasm.

CONCLUSIONS AND FUTURE WORK

Software engineers have been trying to measure software to gain quantitative insights into
its properties and quality since its inception. In this paper, we present the results about
politeness and attractiveness on 22 open-source software projects developed using the
Agile board of the JIRA repository. Our results show that the level of politeness in the
communication process among developers does have an effect on both the time required
to fix issues and the attractiveness of the project to both active and potential developers.
The more polite developers were, the less time it took to fix an issue. In the majority of
cases, the more the developers wanted to be part of project, the more they were willing to
continue working on the project over time. This work is a starting point and further research
on a larger number of projects is needed to validate our findings especially, considering
proprietary software developed by companies, different programming languages and
different dimension. The development of proprietary software follows different dynamics
(e.g., strict deadlines and given budget) and this fact could lead to different results. We
started the development of an application which will be able to automatically analyse all
the comments on a issue tracking systems (as we have done for this paper) and will provide
reports and data to managers, team-leaders and/or developers interested in understanding
the health of a project from a “mood” point of view. The takeaway message is that politeness
can only have a positive effect on a project and on the development process.

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 28/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers for their valuable comments
and suggestions to improve the quality of the paper.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The research presented in this paper was partly funded by the Engineering and Physical
Sciences Research Council (EPSRC) of the UK under grant ref: EP/M024083/1. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Engineering and Physical Sciences Research Council (EPSRC): EP/M024083/1.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Giuseppe Destefanis, Marco Ortu and Steve Counsell conceived and designed
the experiments, performed the experiments, analyzed the data, contributed
reagents/materials/analysis tools, wrote the paper, prepared figures and/or tables,
performed the computation work, reviewed drafts of the paper.

e Stephen Swift performed the experiments, analyzed the data, contributed reagents/ma-
terials/analysis tools, performed the computation work, reviewed drafts of the paper.

e Michele Marchesi contributed reagents/materials/analysis tools, reviewed drafts of the
paper.

e Roberto Tonelli performed the experiments, contributed reagents/materials/analysis
tools, performed the computation work, reviewed drafts of the paper.

Data Availability
The following information was supplied regarding data availability:

We used a public dataset available at http://openscience.us/repo/social-analysis/social-
aspects.html, and all the scripts we prepared (along with the raw data) can be found at
BitBucket: https://bitbucket.org/giuseppedestefanis/peerjcs_replicationpackage/

REFERENCES

Acuna ST, Gémez M, Juristo N. 2008. Towards understanding the relationship between
team climate and software quality—a quasi-experimental study. Empirical Software
Engineering 13(4):401-434 DOI 10.1007/s10664-008-9074-8.

Destefanis et al. (2016), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.73 29/35

https://peerj.com
http://openscience.us/repo/social-analysis/social-aspects.html
http://openscience.us/repo/social-analysis/social-aspects.html
https://bitbucket.org/giuseppedestefanis/peerjcs_replicationpackage/
http://dx.doi.org/10.1007/s10664-008-9074-8
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

Allen NJ, Hecht TD. 2004. The ‘romance of teams’: toward an understanding of its
psychological underpinnings and implications. Journal of Occupational and Orga-
nizational Psychology 77(4):439-461 DOI 10.1348/0963179042596469.

Amabile T, Barsade SG, Mueller JS, Staw BM. 2005. Affect and creativity at work.
Administrative Science Quarterly 50(3):367—403 DOI 10.2189/asqu.2005.50.3.367.

Banerjee A, Dolado JJ, Galbraith JW, Hendry D, et al. 1993. Co-integration, error
correction, and the econometric analysis of non-stationary data. OUP Catalogue.

Bartels R. 1982. The rank version of von neumann’s ratio test for randomness. Journal of
the American Statistical Association 77(377):40-46
DOI 10.1080/01621459.1982.10477764.

Bazelli B, Hindle A, Stroulia E. 2013. On the personality traits of Stack Overflow users.
In: Software Maintenance (ICSM), 2013 29th IEEE International Conference on.
Piscataway: IEEE, 460—463.

Beck K, Beedle M, Van Bennekum A, Cockburn A, Cunningham W, Fowler M,
Grenning J, Highsmith J, Hunt A, Jeffries R, Kern J. 2001. Manifesto for agile
software development. Available at http:// www.agilemanifesto.org.

Box GE, Pierce DA. 1970. Distribution of residual autocorrelations in autoregressive-
integrated moving average time series models. Journal of the American statistical
Association 65(332):1509—1526 DOI 10.1080/01621459.1970.10481180.

Brief AP, Weiss HM. 2002. Organizational behavior: affect in the workplace. Annual
Review of Psychology 53(1):279-307 DOI 10.1146/annurev.psych.53.100901.135156.

Brockwell PJ, Davis RA. 2006. Introduction to time series and forecasting. New York:
Springer Science & Business Media.

Campbell DT, Stanley JC. 1963. Experimental and quasi-experimental designs for
generalized causal inference. Boston: Houghton Mifflin.

Capretz LF. 2003. Personality types in software engineering. International Journal of
Human-Computer Studies 58(2):207-214 DOI 10.1016/51071-5819(02)00137-4.

Cockburn A, Highsmith J. 2001. Agile software development: the people factor.
Computer 11:131-133.

Curtis B, Krasner H, Iscoe N. 1988. A field study of the software design process for large
systems. Communications of the ACM 31(11):1268-1287 DOI 10.1145/50087.50089.

Danescu-Niculescu-Mizil C, Sudhof M, Jurafsky D, Leskovec J, Potts C. 2013. A com-
putational approach to politeness with application to social factors. In: Proceedings of
ACL.

Diebold FX, Rudebusch GD. 1991. On the power of Dickey-Fuller tests against fractional
alternatives. Economics Letters 35(2):155—-160 DOI 10.1016/0165-1765(91)90163-F.

Ehlers J. 2015. Socialness in the recruiting of software engineers. In: Proceedings of the
12th ACM international conference on computing frontiers. New York: ACM, 33.

Erez A, Isen AM. 2002. The influence of positive affect on the components of expectancy
motivation. Journal of Applied Psychology 87(6):1055—-1067
DOI 10.1037/0021-9010.87.6.1055.

Fagerholm F, Ikonen M, Kettunen P, Miinch J, Roto V, Abrahamsson P. 2014. How do
software developers experience team performance in lean and agile environments?

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 30/35

https://peerj.com
http://dx.doi.org/10.1348/0963179042596469
http://dx.doi.org/10.2189/asqu.2005.50.3.367
http://dx.doi.org/10.1080/01621459.1982.10477764
http://www.agilemanifesto.org
http://dx.doi.org/10.1080/01621459.1970.10481180
http://dx.doi.org/10.1146/annurev.psych.53.100901.135156
http://dx.doi.org/10.1016/S1071-5819(02)00137-4
http://dx.doi.org/10.1145/50087.50089
http://dx.doi.org/10.1016/0165-1765(91)90163-F
http://dx.doi.org/10.1037/0021-9010.87.6.1055
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

In: Proceedings of the 18th international conference on evaluation and assessment in
software engineering. New York: ACM, 7.

Feldt R, Torkar R, Angelis L, Samuelsson M. 2008. Towards individualized software
engineering: empirical studies should collect psychometrics. In: Proceedings of
the 2008 international workshop on Cooperative and human aspects of software
engineering. New York: ACM, 49-52.

Garcia D, Zanetti MS, Schweitzer F. 2013. The role of emotions in contributors activity:
a case study on the Gentoo community. In: Cloud and green computing (CGC), 2013
third international conference on. Piscataway: IEEE, 410-417.

Gomez MN, Acuiia ST, Genero M, Cruz-Lemus JA. 2012. How does the extraversion
of software development teams influence team satisfaction and software quality?

A controlled experiment. International Journal of Human Capital and Information
Technology Professionals (ITHCITP) 3(4):11-24 DOI 10.4018/jhcitp.2012100102.
Graziotin D, Wang X, Abrahamsson P. 2014. Happy software developers solve problems
better: psychological measurements in empirical software engineering. Peer] 2:e289

DOI 10.7717/peerj.289.

Graziotin D, Wang X, Abrahamsson P. 2015. How do you feel, developer? An explana-
tory theory of the impact of affects on programming performance. Peer] Computer
Science 1:¢18 DOI 10.7717/peerj-cs.18.

Guzman E. 2013a. Visualizing emotions in software development projects. In: 2013 Ist
IEEE working conference on software visualization—proceedings of VISSOFT 2013.
Piscataway: IEEE, 1-4.

Guzman E. 2013b. Visualizing emotions in software projects. In: Software visualization
(VISSOFT), 2013 first IEEE working conference on. Piscataway: IEEE, 1-4.

Guzman E, Az6car D, Li Y. 2014. Sentiment analysis of commit comments in GitHub: an
empirical study. In: Proceedings of the 11th Working Conference on Mining Software
Repositories—MSR 2014. New York: ACM Press, 352—-355.

Guzman E, Bruegge B. 2013. Towards emotional awareness in software development
teams. In: Proceedings of the 2013 9th joint meeting on foundations of software
engineering. New York: ACM Press, 671-674.

Hamilton JD. 1994. Time series analysis, vol. 2. Princeton university press Princeton.

Herzig K, Just S, Zeller A. 2013. It’s not a bug, it’s a feature: how misclassification
impacts bug prediction. In: Proceedings of the 2013 international conference on
software engineering. Piscataway: IEEE Press, 392—401.

Jongeling R, Datta S, Serebrenik A. 2015. Choosing your weapons: on sentiment analysis
tools for software engineering research. In: Software maintenance and evolution
(ICSME), 2015 IEEE international conference on. Piscataway: IEEE, 531-535.

Kaluzniacky E. 2004. Managing psychological factors in information systems work: an
orientation to emotional intelligence. Hershey: IGI Global.

Keyton J, Beck SJ. 2008. Team attributes, processes, and values: a pedagogical framework.
Business Communication Quarterly 71(4):488-504 DOI 10.1177/1080569908325863.

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 31/35

https://peerj.com
http://dx.doi.org/10.4018/jhcitp.2012100102
http://dx.doi.org/10.7717/peerj.289
http://dx.doi.org/10.7717/peerj.289
http://dx.doi.org/10.7717/peerj-cs.18
http://dx.doi.org/10.1177/1080569908325863
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

Konietschke F, Hothorn LA, Brunner E. 2012. Rank-based multiple test procedures
and simultaneous confidence intervals. Electronic Journal of Statistics 6:738-759
DOI 10.1214/12-EJS691.

Kramer ADI, Guillory JE, Hancock JT. 2014. Experimental evidence of massive-scale
emotional contagion through social networks. Proceedings of the National Academy of
Sciences of the United States of America 111(24):8788-8790
DOI10.1073/pnas.1320040111.

Kristoufek L. 2014. Measuring correlations between non-stationary series with DCCA
coefficient. Physica A: Statistical Mechanics and its Applications 402:291-298
DOI 10.1016/j.physa.2014.01.058.

Kruskal WH, Wallis WA. 1952. Use of ranks in one-criterion variance analysis. Journal of
the American statistical Association 47(260):583—621
DOI10.1080/01621459.1952.10483441.

Kwiatkowski D, Phillips PC, Schmidt P, Shin Y. 1992. Testing the null hypothesis of
stationarity against the alternative of a unit root: how sure are we that economic time
series have a unit root? Journal of econometrics 54(1):159-178
DOI10.1016/0304-4076(92)90104-Y.

Ljung GM, Box GE. 1978. On a measure of lack of fit in time series models. Biometrika
65(2):297-303 DOI 10.1093/biomet/65.2.297.

Miner AG, Glomb TM. 2010. State mood, task performance, and behavior at work: a
within-persons approach. Organizational Behavior and Human Decision Processes
112(1):43-57 DOI 10.1016/j.0bhdp.2009.11.009.

Murgia A, Concas G, Tonelli R, Ortu M, Demeyer S, Marchesi M. 2014a. On the
influence of maintenance activity types on the issue resolution time. In: Proceedings
of the 10th international conference on predictive models in software engineering. New
York: ACM, 12-21.

Murgia A, Tourani P, Adams B, Ortu M. 2014b. Do developers feel emotions? an
exploratory analysis of emotions in software artifacts. In: Proceedings of the 11th
working conference on mining software repositories. New York: ACM, 262-271.

Novielli N, Calefato F, Lanubile F. 2014. Towards discovering the role of emotions in
Stack Overflow. In: Proceedings of the 6th international workshop on social software
engineering. New York: ACM, 33-36.

Ortu M, Adams B, Destefanis G, Tourani P, Marchesi M, Tonelli R. 2015a. Are
bullies more productive? Empirical study of affectiveness vs. issue fixing time. In:
Proceedings of the 12th working conference on mining software repositories, MSR 2015.

Ortu M, Destefanis G, Counsell S, Swift S, Tonelli R, Marchesi M. 2016. Arsonists
or firefighters? Affectiveness in agile software development. In: Agile processes,
in software engineering, and extreme programming. Berlin Heidelberg: Springer
International Publishing, 144-155.

Ortu M, Destefanis G, Kassab M, Counsell S, Marchesi M, Tonelli R. 2015b. Would
you mind fixing this issue? an empirical analysis of politeness and attractiveness in
software developed using agile boards. In: Agile processes, in software engineering,

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 32/35

https://peerj.com
http://dx.doi.org/10.1214/12-EJS691
http://dx.doi.org/10.1214/12-EJS691
http://dx.doi.org/10.1073/pnas.1320040111
http://dx.doi.org/10.1016/j.physa.2014.01.058
http://dx.doi.org/10.1016/j.physa.2014.01.058
http://dx.doi.org/10.1080/01621459.1952.10483441
http://dx.doi.org/10.1016/0304-4076(92)90104-Y
http://dx.doi.org/10.1093/biomet/65.2.297
http://dx.doi.org/10.1016/j.obhdp.2009.11.009
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

and extreme programming. Berlin Heidelberg: Springer International Publishing,
129-140.

Ortu M, Destefanis G, Kassab M, Marchesi M. 2015¢c. Measuring and understanding the
effectiveness of jira developers communities. In: Proceedings of the 6th International
Workshop on Emerging Trends in Software Metrics, WETSoM 2015.

Ortu M, Destefanis G, Murgia A, Marchesi M, Tonelli R, Adams B. 2015d. The JIRA
repository dataset: understanding social aspects of software development. In:
Proceedings of the 11th international conference on predictive models and data analytics
in software engineering. New York: ACM, 1.

Pang B, Lee L. 2008. Opinion mining and sentiment analysis. Foundations and Trends in
Information Retrieval 2(1-2):1-135 DOT 10.1561/1500000011.

Panichella S, Di Sorbo A, Guzman E, Visaggio CA, Canfora G, Gall HC. 2015. How can
I improve my app? Classifying user reviews for software maintenance and evolution.
In: Software maintenance and evolution (ICSME), 2015 IEEE international conference
on. Piscataway: IEEE, 281-290.

Pennebaker JW, Francis ME, Booth R]J. 2001. Linguistic inquiry and word count: Liwc
2001. Mahway: Lawrence Erlbaum Associates 71:2001.

Perry T. 2008. Drifting toward invisibility: the transition to the electronic task board. In:
Agile, 2008. AGILE 08. Conference. Piscataway: IEEE, 496-500.

Pletea D, Vasilescu B, Serebrenik A. 2014. Security and emotion: sentiment analysis
of security discussions on GitHub. In: Proceedings of the 11th working conference on
mining software repositories. New York: ACM, 348-351.

Priestley MB. 1981. Spectral analysis and time series. San Diego: Academic Press.

Priestley MB. 1988. Non-linear and non-stationary time series analysis. Amsterda:
Elsevier.

R Development Core Team. 2014. R: a language and environment for statistical comput-
ing. Vienna: the R Foundation for Statistical Computing. Available at http:// www.R-
project.org/.

Rigby PC, Hassan AE. 2007. What can OSS mailing lists tell us? A preliminary psycho-
metric text analysis of the Apache developer mailing list. In: Proceedings of the fourth
international workshop on mining software repositories. Piscataway: IEEE Computer
Society, 23.

Roberts JA, Hann I-H, Slaughter SA. 2006. Understanding the motivations, participa-
tion, and performance of open source software developers: a longitudinal study of
the Apache projects. Management Science 52(7):984-999
DOI 10.1287/mnsc.1060.0554.

Rousinopoulos A-I, Robles G, Gonzilez-Barahona JM. 2014. Sentiment analysis
of free/open source developers: preliminary findings from a case study. Revista
Eletronica de Sistemas de Informagdo 13(2):1677-3071 DOI 10.5329/RESI.

Said SE, Dickey DA. 1984. Testing for unit roots in autoregressive-moving average
models of unknown order. Biometrika 71(3):599-607 DOI 10.1093/biomet/71.3.599.

Siegel S. 1956. Nonparametric statistics for the behavioral sciences. New York: McGraw-
Hill.

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 33/35

https://peerj.com
http://dx.doi.org/10.1561/1500000011
http://www.R-project.org/
http://www.R-project.org/
http://dx.doi.org/10.1287/mnsc.1060.0554
http://dx.doi.org/10.5329/RESI
http://dx.doi.org/10.1093/biomet/71.3.599
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

Sliwerski J, Zimmermann T, Zeller A. 2005. Don’t program on Fridays! How to locate
fix-inducing changes. In: Proceedings of the 7th workshop software reengineering .
Available at http:// thomas- zimmermann.com/ publications/ files/ sliwerski-wsr-2005.
pdf

Steinmacher I, Conte TU, Gerosa M, Redmiles D. 2015. Social barriers faced by
newcomers placing their first contribution in open source software projects. In:
Proceedings of the 18th ACM conference on computer supported cooperative work ¢
social computing. New York: ACM, 1-13.

Tan S, Howard-Jones P. 2014. Rude or polite: do personality and emotion in an artificial
pedagogical agent affect task performance? In: 2014 global conference on teaching and
learning with technology (CTLT 2014). 41.

Tourani P, Jiang Y, Adams B. 2014. Monitoring sentiment in open source mailing
lists: exploratory study on the Apache ecosystem. In: Proceedings of 24th annual
international conference on computer science and software engineering. Armonk: IBM
Corporation, 34—44. Available at http:// mcis.soccerlab.polymtl.ca/ publications/ 2014/
casconl4.pdf .

Tsay J, Dabbish L, Herbsleb J. 2014. Let’s talk about it: evaluating contributions through
discussion in GitHub. In: Proceedings of the 22nd ACM SIGSOFT international
symposium on foundations of software engineering. New York: ACM, 144-154.

Tukey JW. 1949. Comparing individual means in the analysis of variance. Biometrics
5(2):99-114 DOI 10.2307/3001913.

Vasilescu B, Filkov V, Serebrenik A. 2013. Stack overflow and GitHub: associations
between software development and crowdsourced knowledge. In: Social computing
(SocialCom), 2013 international conference on. Piscataway: IEEE, 188—-195.

Vasilescu B, Serebrenik A, Goeminne M, Mens T. 2014a. On the variation and special-
isation of workload—a case study of the Gnome ecosystem community. Empirical
Software Engineering 19(4):955-1008 DOI 10.1007/510664-013-9244-1.

Vasilescu B, Serebrenik A, Mens T, Van den Brand MG]J, Pek E. 2014b. How healthy are
software engineering conferences? Science of Computer Programming 89:251-272
DOI 10.1016/j.scic0.2014.01.016.

VersionOne. 2013. 8th Annual State of Agile Survey report. San Francisco: VersionOne.
Available at https:// www.versionone.com/ pdf/ 2013-state- of-agile-survey.pdf .

Weiss C, Premraj R, Zimmermann T, Zeller A. 2007. How long will it take to fix
this bug? In: Proceedings of the fourth international workshop on mining software
repositories. Piscataway: IEEE Computer Society, 1.

Winschiers H, Paterson B. 2004. Sustainable software development. In: Proceedings of the
2004 annual research conference of the South African Institute of Computer Scientists
and Information Technologists on IT research in developing countries. South African
Institute for Computer Scientists and Information Technologists, 274-278.

Yamashita K, Kamei Y, McIntosh S, Hassan AE, Ubayashi N. 2016. Magnet or
sticky? Measuring project characteristics from the perspective of developer
attraction and retention. Journal of Information Processing 24(2):339-348
DOI 10.2197/ipsjjip.24.339.

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 34/35

https://peerj.com
http://thomas-zimmermann.com/publications/files/sliwerski-wsr-2005.pdf
http://thomas-zimmermann.com/publications/files/sliwerski-wsr-2005.pdf
http://mcis.soccerlab.polymtl.ca/publications/2014/cascon14.pdf
http://mcis.soccerlab.polymtl.ca/publications/2014/cascon14.pdf
http://dx.doi.org/10.2307/3001913
http://dx.doi.org/10.1007/s10664-013-9244-1
http://dx.doi.org/10.1016/j.scico.2014.01.016
http://dx.doi.org/10.1016/j.scico.2014.01.016
https://www.versionone.com/pdf/2013-state-of-agile-survey.pdf
http://dx.doi.org/10.2197/ipsjjip.24.339
http://dx.doi.org/10.2197/ipsjjip.24.339
http://dx.doi.org/10.7717/peerj-cs.73

PeerJ Computer Science

Yamashita K, McIntosh S, Kamei Y, Ubayashi N. 2014. Magnet or sticky? An OSS
project-by-project typology. In: Proceedings of the 11th working conference on mining
software repositories. New York: ACM, 344-347.

Zhang H, Gong L, Versteeg S. 2013. Predicting bug-fixing time: an empirical study of
commercial software projects. In: Proceedings of the 2013 international conference on
software engineering. Piscataway: IEEE Press, 1042—1051.

Zhang F, Khomh F, Zou Y, Hassan AE. 2012. An empirical study on factors impacting
bug fixing time. In: 2012 19th working conference on reverse engineering (WCRE).
Piscataway: IEEE, 225-234.

Destefanis et al. (2016), Peerd Comput. Sci., DOI 10.7717/peerj-cs.73 35/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.73

