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ANALYSIS OF BOUNDARY-DOMAIN INTEGRAL
EQUATIONS BASED ON A NEW PARAMETRIX FOR

THE MIXED DIFFUSION BVP WITH VARIABLE
COEFFICIENT IN AN INTERIOR LIPSCHITZ

DOMAIN

S. E. MIKHAILOV AND C. F. PORTILLO

ABSTRACT. A mixed boundary value problem for the
partial differential equation of difusion in an inhomogeneous
medium in a Lipschitz domain is reduced to a system of di-
rect segregated parametrix-based Boundary-Domain Integral
Equations (BDIEs). We use a parametrix different from the
one employed in previous papers by Mikhailov (2002, 2006)
and Chkadua, Mikhailov, Natroshvili (2009). We prove the
equivalence between the original BVP and the corresponding
BDIE system. The invertibility and Fredholm properties of
the boundary-domain integral operators are also analysed.

1. Introduction. Boundary Domain Integral Equations (BDIEs)
associated with variable-coefficient PDEs were studied in [2] for a scalar
mixed elliptic BVP in bounded domains, [4] for the corresponding
problem in unbounded domains, [19] for the mixed problem for the
incompressible Stokes system in bounded domains, and [7] for a 2D
mixed elliptic problem in bounded domains. Further results on the
theory of BDIEs for BVPs with variable coefficient can be found in
[20, 13, 14, 15, 9, 3, 7, 1]. Let us note that these types of BVPs
model, for example, the heat transfer in inhomogeneous media or the
motion of a laminar fluid with variable viscosity.

The BDIE systems can be solved numerically after discretising them
e.g. by the collocation method, [17, 25, 26], which leads to the lin-
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ear algebraic systems with fully populated matrices. The method per-
formance is essentially improved by implementing hierarchical matrix
compression technique in conjunction with the adaptive cross approx-
imation procedure [9] and iterative methods, [27]. Another option
is to discretise the localised version of BDIEs, based on the localised
parametrices, which leads to systems of linear algebraic equations with
sparse matrices [18, 28, 25, 26].

In order to deduce a BDIE system for a BVP with variable coeffi-
cients, usually a parametrix (Levi function) strongly related with the
fundamental solution of the corresponding PDE with constant coeffi-
cients is employed. Using this relation, it is possible to establish further
relations between the surface and volume potential type operators for
the variable-coefficient case with their counterparts for the constant co-
efficient case, see, e.g. [2, Eq. (3.10)-(3.13)], [19, Eq. (34.10)-(34.16)].

For the scalar operator

Au(x) :=

3∑
i=1

∂

∂xi

(
a(x)

∂u(x)

∂xi

)
,(1)

a parametrics

P y(x, y) = P (x, y; a(y)) =
−1

4πa(y)|x− y|

has been employed in [2, 3, 4], where x is the integration variable in
the parametrix-based integral potentials. Note that the superscript in
P y(x, y) means that the parametrix is expressed in terms of the variable
coefficient at point y.

There are many different ways of constructing parametrices and
corresponding parametrix-based potentials and BDIEs, for the same
variable-coefficient PDE, and performance of the BDIE-based numeri-
cal methods essentially depends on the chosen parametrix. To optimise
the numerical method, it is beneficial to analyse the BDIEs based on
different parametrices. It appeared, however, that the corresponding
parametrix-based potentials and BDIEs cannot always be easily anal-
ysed. The main motivation of this paper is to extend the collection of
parametrices for which the analysis of the parametrix-based potentials
and BDIEs is tractable. This will then allow to chose the tractable
parametrices with more preferable properties, e.g., for numerical im-
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plementation. To this end, we employ in this paper the parametrix

P x(x, y) = P (x, y; a(x)) =
−1

4πa(x)|x− y|

for the same operator A defined by (1), where x is again the integration
variable in the parametrix-based integral potentials.

Different families of parametrices lead to different relations with
their counterparts for the constant coefficient case. For the paramet-
rices considered in this paper these relations are rather simple, which
makes it possible to obtain the mapping properties of the integral po-
tentials in Sobolev spaces and prove the equivalence between the BDIE
systems and the BVP. After studying the Fredholm properties of the
matrix operators which define the systems, their invertibility is proved,
which implies the uniqueness of the solution of the BDIE systems.

2. Preliminaries and the BVP. Let Ω = Ω+ be a bounded
simply connected open Lipschitz domain and Ω− := R3 \ Ω+ the
complementary (unbounded) domain. The Lipschitz boundary ∂Ω is
connected and closed. Furthermore, ∂Ω := ∂ΩN∪∂ΩD where both ∂ΩN
and ∂ΩD are non-empty, connected disjoint Lipschitz submanifolds of
∂Ω with a Lipschitz interface between them.

Let us consider the partial differential equation

(2) Au(x) :=

3∑
i=1

∂

∂xi

(
a(x)

∂u(x)

∂xi

)
= f(x), x ∈ Ω,

where the variable smooth coefficient a(x) ∈ C∞(Ω) is such that

0 < amin ≤ a(x) ≤ amax <∞, ∀x ∈ Ω,(3)

u(x) is an unknown function and f is a given function on Ω. It is easy
to see that if a ≡ 1 then, the operator A becomes the Laplace operator,
∆.

We will use the following function spaces in this paper (see e.g.
[11, 12] for more details). Let D′(Ω) be the Schwartz distribution
space; Hs(Ω) and Hs(∂Ω) with s ∈ R be the Bessel potential spaces;

and H̃s(Ω) be the space consisting of all the distributions of Hs(R3)
whose support belongs to the closed set Ω. The corresponding spaces
in Ω− are defined similarly. We will also need the following spaces
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on a boundary subset S1, H̃s(S1) := C∞0 (S1)
‖·‖Hs(R3) , which can be

characterized as H̃s(S1) = {g ∈ Hs(∂Ω) : supp(g) ⊂ S1}, while
Hs(S1) := {rS1

g : g ∈ Hs(∂Ω)}, where the notation rS1
g is used

for the restriction of the function g from ∂Ω to S1.

We will make use of the space

H1,0(Ω;A) := {u ∈ H1(Ω) : Au ∈ L2(Ω)},

(see e.g. [8, 5, 15]), which is a Hilbert space with the norm defined by

‖ u ‖2H1,0(Ω;A):=‖ u ‖
2
H1(Ω) + ‖ Au ‖2L2(Ω).

Traces and conormal derivatives. For a scalar function w ∈
Hs(Ω±), 1/2 < s, the traces γ±w ∈ Hs− 1

2 (∂Ω) on the Lipschitz bound-
ary ∂Ω are well defined. Moreover, if 1/2 < s < 3/2, the corresponding

trace operators γ± := γ±∂Ω : Hs(Ω±)→ Hs− 1
2 (∂Ω) are continuous (see,

e.g., [12, 15]).

For u ∈ Hs(Ω), s > 3/2, we can define on ∂Ω the conormal derivative
operator, T±, in the classical (trace) sense

T±u :=

3∑
i=1

a(x)γ±
(
∂u

∂xi

)
n±i (x),

where n+(x) is the exterior unit normal vector directed outwards from
the interior domain Ω at a point x ∈ ∂Ω. Similarly, n−(x) is the unit
normal vector directed inwards to the interior domain Ω at a point
x ∈ ∂Ω. Sometimes we will also use the notation T±x u or T±y u to
emphasise with respect to which variable we are differentiating.

Moreover, for any function u ∈ H1,0(Ω;A), the canonical conormal

derivative T±u ∈ H− 1
2 (Ω), is well defined [5, 12, 15],

(4) 〈T±u,w〉∂Ω := ±
∫

Ω±
[(γ−1ω)Au+E(u, γ−1w)]dx ∀w ∈ H 1

2 (∂Ω),

where γ−1 : H
1
2 (∂Ω) → H1(R3) is a continuous right inverse to the

trace operator whereas the function E is defined as

E(u, v)(x) :=

3∑
i=1

a(x)
∂u(x)

∂xi

∂v(x)

∂xi
,

and 〈 · , · 〉∂Ω represents the L2−based dual form on ∂Ω.



ANALYSIS OF BOUNDARY-DOMAIN INTEGRAL EQUATIONS 5

We aim to derive boundary-domain integral equation systems for
the following mixed boundary value problem. Given f ∈ L2(Ω),

φ0 ∈ H
1
2 (∂ΩD) and ψ0 ∈ H−

1
2 (∂ΩN ), we seek a function u ∈ H1(Ω)

such that

Au = f, in Ω;(5a)

r∂ΩD
γ+u = φ0, on ∂ΩD;(5b)

r∂ΩN
T+u = ψ0, on ∂ΩN ;(5c)

where equation (5a) is understood in the weak sense, the Dirichlet
condition (5b) is understood in the trace sense, the Neumann condition
(5c) is understood in the functional sense (4), r∂ΩD

and r∂ΩN
are

restrictions of the functions (or distributions) from ∂Ω to ∂ΩD and
∂ΩN , respectively.

By Lemma 3.4 of [5] (cf. also Theorem 3.9 in [15] for a more
general case), the first Green identity holds for any u ∈ H1,0(Ω;A)
and v ∈ H1(Ω):

(6) 〈T±u, γ+v〉∂Ω := ±
∫

Ω

[vAu+ E(u, v)]dx.

The following assertion is well known and can be proved, e.g., using
the Lax-Milgram lemma, cf. in [29, Theorem 4.11].

Theorem 2.1. If the coefficient a satisfies condition (3), then the
mixed problem (5) has one and only one solution in H1(Ω).

3. Parametrices and remainders. For the differential operator
A presented in (1), we define a parametrix (Levi function) P (x, y) as a
function of two (vector) variables x and y such that

(7) AxP (x, y) = δ(x− y) +R(x, y),

where the notation Ax indicates differentiating with respect to x, while
the function R(x, y) has at most weak singularity when x = y. For
a given operator A, the parametrix is not unique. For example, the
parametrix

P y(x, y) =
1

a(y)
P∆(x− y), x, y ∈ R3,
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was employed in [13, 2, 16], for the operator A defined in (1), where

P∆(x− y) =
−1

4π|x− y|

is the fundamental solution of the Laplace operator. The remainder
corresponding to the parametrix P y is

Ry(x, y) =

3∑
i=1

1

a(y)

∂a(x)

∂xi

∂

∂xi
P∆(x− y) , x, y ∈ R3.

In this paper, for the same operatorA, we will use another parametrix,

P (x, y) := P x(x, y) =
1

a(x)
P∆(x− y), x, y ∈ R3,(8)

which leads to the corresponding remainder

R(x, y) = Rx(x, y) = −
3∑
i=1

∂

∂xi

(
1

a(x)

∂a(x)

∂xi
P∆(x, y)

)
(9)

= −
3∑
i=1

∂

∂xi

(
∂ ln a(x)

∂xi
P∆(x, y)

)
, x, y ∈ R3.

Note that if the variable coefficient a is smooth enough, then

Rx(x, y), Ry(x, y) ∈ O(|x− y|−2) as x→ y,

i.e., both remainders Rx and Ry are indeed weakly singular.

4. Volume and surface potentials. For the function ρ defined
on a domain Ω+ ⊂ Rn, e.g., ρ ∈ D(Ω), the volume parametrix-based
Newton-type potential and the remainder potential are respectively
defined, for y ∈ R3, as

Pρ(y) := 〈P (·, y), ρ〉Ω =

∫
Ω

P (x, y)ρ(x) dx

Rρ(y) := 〈R(·, y), ρ〉Ω =

∫
Ω

R(x, y)ρ(x) dx.
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From definitions (8), (9), the operators P and R can be expressed in
terms of the Newtonian potential associated with the Laplace operator,

Pρ = P∆

(ρ
a

)
,(10)

Rρ = ∇ · [P∆(ρ∇ ln a)]− P∆(ρ∆ ln a).(11)

Relations (10) and (11) can be used to determine the operators P and
R also for more general spaces for ρ and to obtain, similar to [16,
Theorem 3.2], the following mapping properties of the parametrix-
based volume operators from the well-known (see, e.g., [5]) properties
of the Newtonian potential associated with the Laplace equation.

Theorem 4.1. Let s ∈ R. Then, the following operators are continu-
ous,

P : H̃s(Ω)→ Hs+2(Ω), s ∈ R,(12)

P : Hs(Ω)→ Hs+2(Ω), −1

2
< s <

1

2
,(13)

P : L2(Ω)→ H2,0(Ω;A),(14)

R : H̃s(Ω)→ Hs+1(Ω), s ∈ R,(15)

R : Hs(Ω)→ Hs+1(Ω), −1

2
< s <

1

2
,(16)

R : H1(Ω)→ H1,0(Ω;A).(17)

Moreover, for 1
2 < s < 3

2 , the following operators are compact,

R : Hs(Ω)→ Hs(Ω),

rS1
γ+R : Hs(Ω)→ Hs− 1

2 (S1),

rS1T
+R : Hs(Ω)→ Hs− 3

2 (S1).

The parametrix-based single layer and double layer surface poten-
tials are defined for y ∈ R3 : y /∈ ∂Ω, as

V ρ(y) := −
∫
∂Ω

P (x, y)ρ(x) dS(x),

Wρ(y) := −
∫
∂Ω

T+
x P (x, y)ρ(x) dS(x).
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Due to (8), the operators V and W can also be expressed in terms the
surface potentials and operators associated with the Laplace operator,

V ρ = V∆

(ρ
a

)
,(18)

Wρ = W∆ρ− V∆

(
ρ
∂ ln a

∂n

)
,(19)

We will use relations (18) and (19) to determine the operators V and
W also for more general spaces for ρ and, using the corresponding
properties for the layer potentials based on a fundamental solution, on
Lipschitz domains (see, e.g., [5]), to obtain, similar to [16, Theorem
3.5], the following mapping and jump properties in Theorems 4.2 and
4.3.

Theorem 4.2. Let Ω be a bounded Lipschitz domain. The following
operators are continuous if 1

2 < s < 3
2 ,

µV : Hs− 3
2 (∂Ω)→ Hs(Rn), ∀ µ ∈ D(Rn);(20)

rΩW : Hs− 1
2 (∂Ω)→ Hs(Ω);(21)

µ rΩ−W : Hs− 1
2 (∂Ω)→ Hs(Ω−), ∀ µ ∈ D(Rn);(22)

rΩV : H−
1
2 (∂Ω)→ H1,0(Ω;A);(23)

µ rΩ−V : H−
1
2 (∂Ω)→ H1,0(Ω−;A), ∀ µ ∈ D(Rn);(24)

rΩW : H
1
2 (∂Ω)→ H1,0(Ω;A);(25)

µ rΩ−W : H
1
2 (∂Ω)→ H1,0(Ω−;A), ∀ µ ∈ D(Rn);(26)

γ±V : Hs− 3
2 (∂Ω)→ Hs− 1

2 (∂Ω);(27)

γ±W : Hs− 1
2 (∂Ω)→ Hs− 1

2 (∂Ω);(28)

T±V : Hs− 3
2 (∂Ω)→ Hs− 3

2 (∂Ω);(29)

T±W : Hs− 1
2 (∂Ω)→ Hs− 3

2 (∂Ω).(30)

Theorem 4.3. Let ∂Ω be a compact Lipschitz boundary, 1
2 < s < 3

2 ,

ϕ ∈ Hs− 1
2 (∂Ω) and ψ ∈ Hs− 3

2 (∂Ω). Then

γ+V ψ − γ−V ψ = 0, γ+Wϕ− γ−Wϕ = −ϕ;(31)

T+V ψ − T−V ψ = ψ, T+Wϕ− T−Wϕ = −(∂na)ϕ.(32)
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Note that the second equation in (32) implies that unlike for the
classical harmonic potential, the conormal derivative of the parametrix-
based double layer potential has a jump.

The continuity of operators (27)-(30) in Theorem 4.2 and the first
relation in (31) imply the following assertion.

Corollary 4.4. Let ∂Ω be a compact Lipschitz boundary, 1
2 < s < 3

2 .
The following operators are continuous.

V := γ+V = γ−V : Hs− 3
2 (∂Ω)→ Hs− 1

2 (∂Ω);(33)

W :=
1

2
(γ+W + γ−W ) : Hs− 1

2 (∂Ω)→ Hs− 1
2 (∂Ω);(34)

W ′ :=
1

2
(T+V + T−V ) : Hs− 3

2 (∂Ω)→ Hs− 3
2 (∂Ω);(35)

L :=
1

2
(T+W + T−W ) : Hs− 1

2 (∂Ω)→ Hs− 3
2 (∂Ω).(36)

When the boundary and the density ρ are smooth enough, the
boundary operators defined in Corollary 4.4 correspond to the bound-
ary integral (pseudodifferential) operators of direct surface values of the
single layer potential, the double layer potential W, and the co-normal
derivatives of the single layer potential W ′ and of the double layer po-
tential, and to the hyper-singular operator, see [2, Eq. (3.6)-(3.8)] for
the parametrix-based potentials on smooth domains, particularly,

Vρ(y) := −
∫
∂Ω

P (x, y)ρ(x) dS(x),

Wρ(y) := −
∫
∂Ω

TxP (x, y)ρ(x) dS(x),

W ′ρ(y) := −
∫
∂Ω

TyP (x, y)ρ(x) dS(x),

for y ∈ ∂Ω. See also [12, Theorems 7.3, 7.4] about integral representa-
tions on Lipschitz domains of the boundary operators associated with
the layer potentials, based on fundamental solutions.

Employing definitions (33)-(36), the jump properties (31)-(32) can
be re-written as follows.
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Theorem 4.5. For ψ ∈ Hs− 3
2 (∂Ω), and ϕ ∈ Hs− 1

2 (∂Ω), 1
2 < s < 3

2 ,

γ±V ψ = Vψ, γ±Wϕ = ∓1

2
ϕ+Wϕ;(37)

T±V ψ = ±1

2
ψ +W ′ψ, T±Wϕ = ∓1

2
(∂νa)ϕ+ Lϕ.(38)

By Corollary 4.4 and relations (18)-(19), the operators V,W,W ′ and
L can be expressed in terms of their counterparts (provided with the
subscript ∆) associated with the Laplace operator,

Vρ = V∆

(ρ
a

)
,(39)

Wρ =W∆ρ− V∆

(
ρ
∂ ln a

∂n

)
,(40)

W ′ρ = aW ′∆
(ρ
a

)
,(41)

Lρ = aL∆ρ− aW ′∆
(
ρ
∂ ln a

∂n

)
.(42)

Furthermore, by the Liapunov-Tauber theorem (see [5, Lemma 4.1] for
the Lipschitz domains), L∆ρ = T+

∆W∆ρ = T−∆W∆ρ.

Theorem 4.6. Let S1 be a non-empty simply connected subset of the
Lipschitz surface ∂Ω with a Lipschitz boundary curve and condition (3)
hold. Then, the operators

V : H−
1
2 (∂Ω)→ H

1
2 (∂Ω),(43)

rS1
V : H̃−

1
2 (S1)→ H

1
2 (S1)(44)

are continuously invertible.

Proof. We first remark that

〈V∆ψ,ψ〉∂Ω ≥ c‖ψ‖H−1/2(∂Ω), ∀ψ ∈ H−1/2(∂Ω),(45)

see e.g. [12, Corollary 8.13]. This evidently gives also

〈V∆ψ,ψ〉∂Ω ≥ c‖ψ‖H̃−1/2(S1), ∀ψ ∈ H̃−1/2(S1).(46)

By the Lax-Milgram lemma, ellipticity estimates (45), (46) and conti-

nuity of operators V∆ : H−
1
2 (∂Ω) → H

1
2 (∂Ω) and V∆ : H̃−1/2(S1) →
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H
1
2 (S1) imply that these operators are continuously invertible. Re-

lation (18) gives Vg = V∆g
∗, where g∗ = g/a, which leads to the

invertibility of operators (43) and (44). �

Let us denote

L̂ρ := aL∆ρ.(47)

Then by (42) and (38), we have,

T±Wρ = ∓1

2
(∂νa)ρ+ L̂ρ− aW ′∆

(
ρ
∂ ln a

∂n

)
.(48)

Theorem 4.7. Let S1 be a non-empty simply connected subset of the
Lipschitz surface ∂Ω with a Lipschitz boundary curve and condition (3)
hold. Then, the operator

rS1L̂ : H̃
1
2 (S1)→ H−

1
2 (S1),(49)

is invertible whilst the operators

rS1
(T±W − L̂) : H̃

1
2 (S1)→ H−

1
2 (S1)(50)

are compact.

Proof. Taking into account the invertibility of the operator

rS1
L∆ : H̃

1
2 (S1)→ H−

1
2 (S1)

(see e.g. [29, Eq. (6.39)] together with the Lax-Milgram lemma), (47)
implies the invertibility of operator (49).

Now we remark that by (48) and the continuity of operator (35), the
operator

rS1(T±W − L̂) : H̃−
1
2 (S1)→ H−

1
2 (S1)

is continuous. Then, the Rellich compact embedding theorem implies
the compactness of operators (50). �

5. Third Green identities and integral relations. In this sec-
tion we provide the results similar to the ones in [16] but for our,
different, parametrix (8).

Let u, v ∈ H1,0(Ω;A). Subtracting from the first Green identity
(6) its counterpart with the swapped u and v, we arrive at the second
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Green identity, see e.g. [12],

(51)

∫
Ω

[uAv − v Au] dx = 〈u, T+v〉∂Ω − 〈v, T+u〉∂Ω.

Taking now v(x) := P (x, y), and applying (51) to the domain Ω outside
of a small vicinity of y, we obtain by the standard limiting procedures
(see [24]) the third Green identity for any function u ∈ H1,0(Ω;A),

(52) u+Ru− V T+u+Wγ+u = PAu in Ω.

If u ∈ H1,0(Ω;A) is a solution of the partial differential equation
(5a), then, from (52) we obtain

(53) u+Ru− V T+u+Wγ+u = Pf in Ω.

Taking into account the mapping and jump properties of the potentials
from Theorems 4.1, 4.2 and 4.5, we can calculate the traces of both
sides of (53),

1

2
γ+u+ γ+Ru− VT+u+Wγ+u = γ+Pf on ∂Ω.(54)

For some function u and distributions f , Ψ and Φ, we consider a
more general, indirect integral relation associated with the third Green
identity (53),

(55) u+Ru− VΨ +WΦ = Pf in Ω.

Lemma 5.1. Let u ∈ H1(Ω), f ∈ L2(Ω), Ψ ∈ H−
1
2 (∂Ω) and

Φ ∈ H 1
2 (∂Ω) satisfy the relation (55). Then u belongs to H1,0(Ω, A),

it solves the equation

(56) Au = f in Ω

and the following identity holds true,

(57) V (Ψ− T+u)−W (Φ− γ+u) = 0 in Ω.

Proof. Since all the potentials in (55) belong to H1,0(Ω;A) due to
the continuity of operators (14), (17), (23) and (25) in Theorems 4.1
and 4.2, equation (55) implies that u ∈ H1,0(Ω;A) as well.
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Hence, the third Green identity (52) is valid for the function u, and
we proceed by subtracting (52) from (55) to obtain

(58) W (γ+u− Φ)− V (T+u−Ψ) = P(Au− f) in Ω.

Let us apply the Laplace operator to both sides of (58) taking into
account relations (10), (18) and (19). Then, we obtain Au − f = 0
in Ω, i.e., u solves (56). Finally, substituting (56) into (58), we prove
(57). �

Lemma 5.2. Let Ψ∗ ∈ H− 1
2 (∂Ω). If

(59) VΨ∗ = 0 in Ω,

then Ψ∗ = 0 on ∂Ω.

Proof. Taking the trace of (59) gives VΨ∗ = 0 on ∂Ω, which implies
the result due to the invertibility of operator (43) in Theorem 4.6. �

6. BDIE system for the mixed problem. We aim to obtain a
segregated boundary-domain integral equation system for the mixed
BVP (5). To this end, let f ∈ L2(Ω) and the functions Φ0 ∈ H

1
2 (∂Ω)

and Ψ0 ∈ H−
1
2 (∂Ω) be respective continuations of the given boundary

data φ0 ∈ H
1
2 (∂ΩD) and ψ0 ∈ H−

1
2 (∂ΩN ) to the whole ∂Ω, i.e.,

r∂ΩD
Φ0 = φ0, r∂ΩN

Ψ0 = ψ0. Let us now represent

(60) γ+u = Φ0 + φ, T+u = Ψ0 + ψ, on ∂Ω,

where φ ∈ H̃
1
2 (∂ΩN ) and ψ ∈ H̃−

1
2 (∂ΩD) are unknown boundary

functions, which we will further consider as formally independent
(segregated) of u in Ω.

To obtain one of the possible boundary-domain integral equation
systems we employ equation (53) in the domain Ω, and equation (54)
on ∂Ω, substituting there relations (60). Consequently, we obtain the
BDIE system (M12) of two equations

u+Ru− V ψ +Wφ = F0 in Ω,(61a)

1

2
φ+ γ+Ru− Vψ +Wφ = γ+F0 − Φ0 on ∂Ω,(61b)
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for three unknown functions, u, ψ and φ. Here

(62) F0 = Pf + VΨ0 −WΦ0.

We remark that F0 belongs to the space H1(Ω) due to the mapping
properties of the surface and volume potentials, see Theorems 4.1 and
4.2.

Theorem 6.1. Let f ∈ L2(Ω). Let Φ0 ∈ H
1
2 (∂Ω) and Ψ0 ∈ H−

1
2 (∂Ω)

be some fixed extensions of φ0 ∈ H
1
2 (∂ΩD) and ψ0 ∈ H−

1
2 (∂ΩN )

respectively.

(i) If some u ∈ H1(Ω) solves the BVP (5), then the triple

(u, ψ, φ)> ∈ H1(Ω)× H̃− 1
2 (∂ΩD)× H̃ 1

2 (∂ΩN ) where

(63) φ = γ+u− Φ0, ψ = T+u−Ψ0 on ∂Ω,

solves the BDIE system (M12).

(ii) If a triple (u, ψ, φ)> ∈ H1(Ω)× H̃− 1
2 (∂ΩD)× H̃ 1

2 (∂ΩN ) solves
the BDIE system then u solves the BVP and the functions ψ, φ
satisfy (63).

(iii) System (M12) is uniquely solvable.

Proof. First, let us prove item (i). Let u ∈ H1(Ω) be a solution of
the boundary value problem (5), which implies that u ∈ H1,0(Ω, A),
and let φ, ψ be defined by (63). Then, due to (5b) and (5c), we have

(ψ, φ) ∈ H̃− 1
2 (∂ΩD)× H̃ 1

2 (∂ΩN ).

Then, it immediately follows from the third Green identities (53)
and (54) that the triple (u, φ, ψ) solves BDIE system M12.

Let us prove now item (ii). Let the triple

(u, ψ, φ)> ∈ H1(Ω)× H̃− 1
2 (∂ΩD)× H̃ 1

2 (∂ΩN )

solve the BDIE system. Taking the trace of equation (61a) and
subtracting it from equation (69), we obtain the first relation in (63).
Now, restricting it to ∂ΩD, and taking into account that φ vanishes
there as suppφ ⊂ ∂ΩN , we obtain that φ0 = Φ0 = γ+u on ∂ΩD and,
consequently, the Dirichlet condition (5b) of the BVP is satisfied.

We proceed by implementing Lemma 5.1 to the first equation, (61a),
of system (M12), with Ψ = ψ + Ψ0 and Φ = φ+ Φ0. This implies that
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u belongs to H1,0(Ω, A), it is a solution of equation (5a) and also the
following equality holds,

V (Ψ0 + ψ − T+u)−W (Φ0 + φ− γ+u) = 0 in Ω.

By virtue of the first relation in (63), the second term of the previous
equation vanishes. Hence,

V (Ψ0 + ψ − T+u) = 0 in Ω.

Now, by virtue of Lemma 5.2 we obtain the second relation in (63).
Since ψ vanishes on ∂ΩN and Ψ0 = ψ0 on ∂ΩN , the second relation in
(63) implies that u satisfies the Neumann condition (5c).

Item (iii) immediately follows from the uniqueness of the solution
of the mixed boundary value problem, cf. Theorem 2.1, since the
zero right-hand side fo the corresponding homogeneous BDIE can be
considered as given by f = 0, Ψ0 = 0 and Φ0 = 0, cf. (62). �

BDIE system (61a)-(69) can be written in the matrix notation as

(64) M12X = F12,

where X represents the vector containing the unknowns of the system,

X = (u, ψ, φ)> ∈ H1(Ω)× H̃− 1
2 (∂ΩD)× H̃ 1

2 (∂ΩN ,

the right hand side vector is

F12 := [F0, γ
+F0 − Φ0]> ∈ H1(Ω)×H 1

2 (∂Ω),

and the matrix operator M12 is

(65) M12 =

[
I +R −V W

γ+R −V 1

2
I +W

]
.

Theorem 6.2. The operator

M12 : H1,0(Ω)× H̃− 1
2 (∂ΩD)× H̃ 1

2 (∂ΩN )→ H1,0(Ω)×H 1
2 (∂Ω)(66)

is continuous and continuously invertible.

Proof. The continuity of operator (66) is implied by the mapping
properties of the operators involved in matrix (65).
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To prove invertibility of operator (66), let us consider BDIE system
(64) with an arbitrary right hand side

F̃ = {F̃1, F̃2}> ∈ H1, 0(Ω; ∆)×H 1
2 (∂Ω).

From Lemma 7.4 in the Appendix, we obtain the representation

F̃1 = P f∗ + V Ψ∗ −W Φ∗ in Ω,

F̃2 = γ+F12
∗1 − Φ∗ on ∂Ω

where the triple

(67) (f∗,Ψ∗,Φ∗)
> = C̃∗ F̃ ∈ L2(Ω)×H− 1

2 (∂Ω)×H 1
2 (∂Ω)

is unique and the operator

(68) C̃∗ : H1, 0(Ω; ∆)×H 1
2 (∂Ω)→ L2(Ω)×H− 1

2 (∂Ω)×H 1
2 (∂Ω)

is linear and continuous.

Applying the equivalence from Theorem 6.1 with

f = f∗, Ψ0 = Ψ∗, Φ0 = Φ∗, ψ0 = r
∂NΩ

Ψ0, ϕ0 = r
∂DΩ

Φ0,

we obtain that the system M12 is uniquely solvable and its solution is

u = (ADN )−1(f∗, r∂DΩ
Φ∗, r∂NΩ

Ψ∗)
>, ψ = T+

a u−Ψ∗, φ = γ+u−Φ∗

while r
∂ΩN

ψ = 0, r
∂ΩD

φ = 0. Here (ADN )−1 is the continuous inverse

operator to the left-hand-side operator of the mixed BVP (5),

ADN : H1,0(Ω; ∆)→ L2(Ω)×H 1
2 (∂DΩ)×H− 1

2 (∂NΩ).

Representation (67), and continuity of operator (68) complete the proof
of invertibility. �

In the particular case a(x) = 1 at x ∈ Ω, (2) becomes the classical
Laplace equation, R = 0, and BDIE system (61) splits into the
Boundary Integral Equation (BIE),

1

2
φ− V∆ψ +W∆φ = γ+F∆0 − Φ0 on ∂Ω,(69)

where F∆0 = Pf + V∆Ψ0 −W∆Φ0, and the representation formula for
u in terms of ϕ and ψ,

u = F0 + V∆ ψ −W∆ ϕ in Ω.(70)
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Then Theorem 6.1 leads to the following assertion.

Corollary 6.3. Let a = 1 in Ω, f ∈ L2(Ω), and let Φ0 ∈ H
1
2 (∂Ω)

and Ψ0 ∈ H−
1
2 (∂Ω) be some extensions of ϕ0 ∈ H

1
2 (∂ΩD) and

ψ0 ∈ H−
1
2 (∂ΩN ), respectively.

(i) If some u ∈ H1(Ω) solves mixed BVP (5) in Ω, then the solution

is unique, the couple (ψ,ϕ) ∈ H̃−
1
2 (∂ΩD) × H̃ 1

2 (∂ΩN ) given by (63)
solves BIE (69), and u satisfies (70).

(ii) If a couple (ψ,ϕ) ∈ H̃−
1
2 (∂ΩD) × H̃ 1

2 (∂ΩN ) solves BIE (69),
then u given by (70) solves BVP (5) and equations (63) hold. Moreover,

BIE (69) is uniquely solvable in H̃−
1
2 (∂ΩD)× H̃ 1

2 (∂ΩN ).

BIE (69) can be rewritten in the form

(71) M̂12
∆ Û∆ = F̂12

∆ ,

where Û>∆ := (ψ,ϕ) ∈ H̃− 1
2 (∂ΩD)× H̃ 1

2 (∂ΩN ),

(72) M̂12
∆ :=

[
−V∆,

(1

2
I +W∆

)]
, F̂12

∆ := γ+F∆0 − Φ0.

Theorem 6.4. The operator

M̂12
∆ : H̃−

1
2 (∂ΩD)× H̃ 1

2 (∂ΩN )→ H−
1
2 (∂Ω)(73)

is continuous and continuously invertible.

Proof. The continuity of operator (73) is implied by the mapping

properties of the operators involved in the matrix M̂12
∆ .

A solution of BIE (71) with an arbitrary F̂12
∆ ∈ H

1
2 (∂Ω) is delivered

by the couple (ψ,ϕ) satisfying the extended system

(74) M12
∆ U = F12

∆0,

where U = (u, ψ, ϕ)>, F12
∆0 = (0, F̂12

∆ )>, and

(75) M12
∆ :=

[
I −V∆ W∆

0 −V∆
1

2
I + W∆

]
.
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The operator

M12
∆ : H1,0(Ω)× H̃− 1

2 (∂ΩD)× H̃ 1
2 (∂ΩN )→ H1,0(Ω)×H 1

2 (∂Ω)

has a continuous inverse due to Theorem 6.2 for a = 1. Consequently,
operator (73) has a right continuous inverse, which is also a two-side
inverse due to the injectivity of operator (73) implied by Corollary
6.3. �

Now we prove the counterpart of Theorem 6.2 in wider spaces.

Theorem 6.5. The operator

M12 : H1(Ω)× H̃− 1
2 (∂ΩD)× H̃ 1

2 (∂ΩN )→ H1(Ω)×H 1
2 (∂Ω).(76)

is continuous and continuously invertible.

Proof. The continuity of operator (76) is implied by the mapping
properties of the operators involved in matrix (65).

Let now M12
0 be the matrix operator defined by

M12
0 :=

[
I −V W∆

0 −V 1

2
I +W∆

]
.

The operator

M12
0 : H1(Ω)× H̃− 1

2 (∂ΩD)× H̃ 1
2 (∂ΩN )→ H1(Ω)×H 1

2 (∂Ω).(77)

is also continuous due to the mapping properties of the operators
involved.

Let us prove that operator (77) is invertible. First we remark that
due to relation (39) its second line operator can be presented as

M12
02(ψ,ϕ)> = −Vψ + (

1

2
I + W∆)φ =M12

∆ diag(
1

a
, 1)(ψ,ϕ)>.

Then the continuous invertibility of operator (73) in Theorem 6.4 and
condition (3) for the coefficient a imply that the operator

M̂12
02 = [−V, 1

2
I + W∆] : H̃−

1
2 (∂ΩD)× H̃ 1

2 (∂ΩN )→ H−
1
2 (∂Ω)



ANALYSIS OF BOUNDARY-DOMAIN INTEGRAL EQUATIONS 19

is invertible. Due to the block-triangular structure of operator M12
0

and obvious invertibility of the identity operator, I, in H1(Ω), this, in
turn immediately implies invertibility of operator (77).

Further, the operators

V : H−
1
2 (∂Ω)→ H1(Ω) and V : H−

1
2 (∂Ω)→ H

1
2 (∂Ω)

are continuous by Theorem 4.2 and Corollary 4.4. Hence, the operators

V : H̃
1
2 (∂ΩN )→ H1(Ω) and V : H̃

1
2 (∂ΩN )→ H

1
2 (∂Ω) are compact by

the Rellich embedding Theorem. The operator R : H1(Ω)→ H1(Ω) is
also compact by Theorem 4.1. These compactness properties together
with representations (19) and (40) imply that the operator (77) is a
compact perturbation of the operator (76), which implies its Fredholm
property with index one.

Finally, the Fredholm property and the injectivity of operatorM12,
following from item (iii) of Theorem 6.1, imply the continuous invert-
ibility of operator (76). �

7. Appendix.

We provide first a simplified version of Lemma 5.5 in [14]. It was
proved there for domains with infinitely smooth boundaries but the
proof works word-for-word for the Lipschitz domains as well.

Lemma 7.1. For any function F0 ∈ H1,0(Ω; ∆), there exists a unique

couple (f∆,Ψ∆) = C0F0 ∈ L2(Ω)×H− 1
2 (∂Ω) such that

F0 = P∆f∆ + V∆Ψ∆ in Ω,(78)

and C0 : H1,0(Ω; ∆)→ L2(Ω)×H− 1
2 (∂Ω) is a linear bounded operator.

Employing Lemma 7.1 for F0 = F1 + W∆F2 ∈ H1,0(Ω; ∆), we can
easily prove the following assertion (cf. Corollary B.1 in [1].)

Lemma 7.2. For any couple (F1,F2)> ∈ H1,0(Ω; ∆)×H 1
2 (∂Ω) there

exists a unique triple

(f∆,Ψ∆,Φ∆)> = C1 (F1,F2)> ∈ L2(Ω)×H− 1
2 (∂Ω)×H 1

2 (∂Ω)
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such that

F1 = P∆ f∆ + V∆ Ψ∆ −W∆ Φ∆ in Ω,

F2 = Φ∆ on ∂Ω.

Moreover, the operator

C1 : H1, 0(Ω; ∆)×H 1
2 (∂Ω)→ L2(Ω)×H− 1

2 (∂Ω)×H 1
2 (∂Ω)

is linear and continuous.

Employing now Lemma 7.2 for F1 = F̃1 ∈ H1,0(Ω; ∆) and F2 =

γ+F̃1 − F̃2 ∈ H
1
2 (∂Ω), we get the next assertion.

Lemma 7.3. For any couple (F̃1, F̃2)> ∈ H1,0(Ω; ∆)×H 1
2 (∂Ω) there

exists a unique triple

(f∆,Ψ∆,Φ∆)> = C̃1 (F̃1, F̃2)> ∈ L2(Ω)×H− 1
2 (∂Ω)×H 1

2 (∂Ω)

such that

F̃1 = P∆ f∆ + V∆ Ψ∆ −W∆ Φ∆ in Ω,

F̃2 = γ+F̃1 − Φ∆ on ∂Ω.

Moreover, the operator

C̃1 : H1, 0(Ω; ∆)×H 1
2 (∂Ω)→ L2(Ω)×H− 1

2 (∂Ω)×H 1
2 (∂Ω)

is linear and continuous.

Finally, writing f∗ = af∆, Φ∗ = Φ∆, Ψ∗ = aΨ∆ − aΦ∆
∂ ln a
∂n , where

f∆, Φ∆ and Ψ∆ are the functions and distributions in Lemma 7.3, it
implies the following statement if we take into account relations (10),
(18) and (19).

Lemma 7.4. For any couple (F̃1, F̃2)> ∈ H1,0(Ω; ∆)×H 1
2 (∂Ω) there

exists a unique triple

(f∗,Ψ∗,Φ∗)
> = C̃∗ (F̃1, F̃2)> ∈ L2(Ω)×H− 1

2 (∂Ω)×H 1
2 (∂Ω)

such that

F̃1 = P f∗ + V Ψ∗ −W Φ∗ in Ω,



ANALYSIS OF BOUNDARY-DOMAIN INTEGRAL EQUATIONS 21

F̃2 = γ+F̃1 − Φ∗ on ∂Ω.

Moreover, the operator

C̃∗ : H1, 0(Ω; ∆)×H 1
2 (∂Ω)→ L2(Ω)×H− 1

2 (∂Ω)×H 1
2 (∂Ω)

is linear and continuous.

Conclusions. A new parametrix for the diffusion equation in a
continuously non-homogeneous medium (with variable coefficient) with
a Lipschitz boundary has been analysed in this paper. Mapping
properties of the corresponding parametrix-based surface and volume
potentials have been shown in corresponding Sobolev spaces.

A BDIE system, based on a new parametrix, for the original BVP
has been obtained. The equivalence between the BDIE system and the
BVP has been shown along with the invertibility of the matrix operator
defining the BDIE system.

Analogous results could be obtain for exterior domains following an
approach similar to the one in [4].

A generalisation to less smooth coefficients and more general PDE
right-hand sides can also be considered following [16]. Moreover, these
results can be generalised to Bessov spaces as in [3].

Analysing BDIEs for different parametrices, i.e., depending on the
variable coefficient a(x) or a(y), is crucial to understanding the analysis
of BDIEs derived with parametrices that depend on the variable coef-
ficient a(x) and a(y) at the same time, as it is the case for the Stokes
system (see [19, 22, 23]).
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