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ABSTRACT Neuronal oscillatory phase and phase synchronization are two main aspects of neuronal
oscillation. Neurophysiological and computational studies have demonstrated that oscillatory phase for
individual neurons has quantifiable relationships with neuronal excitation and input stimulus. In order to
investigate the issue for neuronal groups, we constructed orientation columns by means of a spiking neural
network and introduced six network activity states, pre-stimulus and stimulus periods for comparison.
We proposed a new method of spike-LFP (Local Field Potential) phase based on vector addition of point
spike-LFP phases to represent oscillatory phase. We also proposed a PPCG (Pairwise Phase Consistency
for Group) method to quantify phase synchronization for neuronal groups. As illustrated in the simulation,
the characteristics of oscillatory phase and phase synchronization for neuronal groups were consistent with
the ones for individual neurons. Preferred orientations and stronger external inputs tended to result in smaller
and more concentrated oscillatory phases. No matter individual neurons or neuronal groups, the oscillatory
phase decreased monotonically as a function of neuronal excitation and input strength. More importantly,
neuronal groups had a competitive advantage over individual neurons, because they can achieve reliable
relationship quantification of oscillatory phase for all network activity states, even in weak oscillatory or
non-oscillatory states.

INDEX TERMS Neuronal oscillation, phase synchronization, spike-LFP phase, pairwise phase consistency
for group PPCG, neuronal coherence, neuronal assembly, spiking neural network.

I. INTRODUCTION
Neuronal oscillation and synchronization, with various
frequency bands, are ubiquitous phenomenon in several
cortical and subcortical areas, ranging from visual cor-
tex [1]–[3], motor cortex [4], prefrontal cortex [5]–[7],
hippocampus [7]–[9] and thalamus [1] to somatosensory
cortex [10], olfactory bulb [11] and amygdala [12]. They
have been observed in a wide range of species, including
insects [13], rodents [5], [11], [14], cats [15], non-human
primates [1], [2], [16] and humans [4], [17], which are sup-
posed to be associated with numerous cognitive functions,
such as feature representation [7], [11], [13], signal rout-
ing [1], [15], [18], selective attention [1], [2], [17], mem-
ory [7], [8], [16] and fear behavior [6], [12].

The associate editor coordinating the review of this manuscript and
approving it for publication was Chee Keong Kwoh.

Neuronal oscillatory phase, either for individual neu-
rons or neuronal groups, has been suggested to underlie
cognitive functions correlated with feature coding, informa-
tion routing and behavior performance. For feature coding,
a gamma cycle hypothesis advocates that stimulus property,
excitatory input and the amplitude of neuronal excitation can
be encoded into spike phases [19]. In visual cortex, spike
phase provides analog representation of naturalistic movie
stimuli [20] and neuronal excitation induced by stimulus
orientation [21]. Besides, oscillatory phase provides a coding
scheme for spatial location in hippocampus [22], olfactory
activation information in olfactory bulb [11], natural sound
stimulus in auditory cortex [23] and memorized objects in
prefrontal cortex [24]. In computational studies, stimulus
strength and excitatory inputs [25], as well as stimulus-
related information about input differences [26] can be
represented by gamma phases. With regard to information
routing, the relative phase in pulvinar can not only modulate
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cortical communication, but also determine the directionality
of the communication [1], [27]. In addition, the phase differ-
ence between neuronal circuits can be utilized to set up or
abolish information transfer [28]. With respect to behavior
performance, different oscillatory phases bring about distinct
behavior performance in the tasks of target detection [29]
and letter recognition [30]. Besides, food feeding behaviors
in mice can make hypothalamus neurons fire at distinct
phases [5].

The oscillatory phase can be represented by spike-LFP
(Local Field Potential) phase [21]. Whereas phase synchro-
nization, reflecting phase similarity and precision of neuronal
synchronization, can be quantified by a PPC (Pairwise Phase
Consistency) method [31], [32]. However, both the spike-
LFP phase and the PPC method are generally related to
individual neurons. The spike-LFP phase denotes the phase
for a spike time point of an individual neuron relative to its
surrounding LFP oscillations [32], hereinafter called point
spike-LFP phase. The PPC method is defined for measuring
the consistency of point spike-LFP phases across spikes of an
individual neuron [32].

For individual neurons, the oscillatory phase has been
suggested to have quantifiable relationships with neuronal
excitation and synaptic input. A gamma cycle hypothesis
proposes that stronger external inputs and larger amplitude
of excitation for a pyramidal neuron result in earlier spike
phases [19]. In visual cortex, the spike-LFP phase of an
individual neuron obtains lower values upon preferred ori-
entations and stronger neuronal activations [21]. In hip-
pocampus, when a rat moves into the place field of a given
neuron, the excitatory drive representing spatial information
is increased, which gives rise to earlier and earlier theta
phases [19], [22]. In a computationalmodel, a spike phase of a
single neuron shifts from the later to the earlier part in oscil-
latory cycle as the driving current is increased [25]. For an
individual neuron in another computational model, the phase
of its firing is decreased when the amplitude of the sinusoidal
input is increased [33]. In a simulation, the oscillatory phase
of individual neurons decreases monotonically as a function
of neuronal excitation and input strength for relatively strong
oscillations [34].

Individual neurons are commonly known to make
significant contributions to cognitive capacities, for instance,
encoding orientation features [35], spectrotemporal audi-
tory properties [36], and high-order substances in images
[37], [38]. However, the interconnectivity of individual neu-
rons, both locally and with long-range, is highly inclined
to population coding [38]. Besides, a unified perception of
an object generally needs to bind various disparate features
together [39], commonly under Gestalt psychophysical prin-
ciples [40], which tends to require involvement of multiple
individual neurons. Moreover, it also uncommon for an indi-
vidual neuron to be activated only by a single stimulus or
stimulus feature [38], [41].

Neuronal groups are sometimes referred to as neu-
ronal assemblies, which are supposed to provide a flexible

mechanism for cognitive processing. In visual cortex, high-
order stimulus properties are suggested to be represented by
oscillating neuronal assemblies [42]–[44]. In antennal lobe,
olfactory information is encoded by specific assemblies of
coherently oscillating neurons [13]. In hippocampus, each
moment in time is characterized by the activity of a particular
assembly of neurons [14]. In hypothalamus, food feeding
behavior is modulated by organization of functional neuronal
groups through gamma oscillations [5].

More specially, a variety of evidences indicate that neu-
ronal groups have a competitive advantage over individual
neurons in cognitive dynamics. In cat’s visual cortex, cooper-
ative synchronized assemblies support better orientation dis-
crimination than found in individual responses [45]. In rat’s
hippocampus, spatial distances are represented by temporal
correlation of place cell pairs, which could be induced by
independent neurons or cell assemblies. The temporal cor-
relation is stronger by cell assemblies than by independent
neurons [46]. In addition, a computational simulation and its
corresponding neurophysiological recording demonstrate the
coherence for multi-unit activity is larger than the one for
single-unit activity [47]. Another computational investigation
illustrates that a flexible routing of information is carried out
by means of neuronal populations rather than by individual
neurons, on account of individual neurons firing irregularly
and sensitive to Poisson-like noise [48].

In view of the facts above, despite the contributions of indi-
vidual neurons, the function of neuronal assemblies and the
superiority of neuronal groups have explicitly suggested that
group coding is inevitable and necessary [38]. However, thus
far, the point spike-LFP phase for oscillatory phase, the PPC
method for phase synchronization, and the relationship quan-
tification for oscillatory phase are primarily for individual
neurons. Therefore, how to represent oscillatory phase and
phase synchronization for neuronal groups? What are the
relationships of oscillatory phase with neuronal excitation
and input strength for neuronal groups? Do neuronal groups
still have an advantage over individual neurons?

The primary purpose of this paper was to investigate oscil-
latory phase and phase synchronization for neuronal groups,
and quantify the relationships of the oscillatory phase with
neuronal excitation and input strength (Fig. 1(a)). Impor-
tantly, we carried out a similar investigation for individual
neurons, drew comparisons between the two cases, and guar-
anteed whether the group case was superior to the individual
case or not. With regard to oscillatory phase, we proposed
a new spike-LFP phase method for individual neurons and
neuronal groups, which was based on vector addition of point
spike-LFP phases, as opposed to on the basis of averaging
the point spike-LFP phases directly. With respect to phase
synchronization, we proposed a PPCG (Pairwise Phase Con-
sistency for Group)method to quantify phase coincidence and
the strength of neuronal synchronization for neuronal groups.
As for individual neurons, we utilized a point-field PPC P̂2
measure [32], referred to here as PPC2 for short, which is a
refined version of the PPC approach [31].
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FIGURE 1. Model Overview and Network Framework. (a) Overview of computational model. Base on physiological
experiments and a simulation of orientation columns, we primarily investigate oscillatory phase and phase
synchronization, as well as relationships of the oscillatory phase with neuronal excitation and input strength for
both neuronal groups and individual neurons. Then we guarantee if neuronal groups have an advantage over
individual neurons in the relationship quantifications. (b) Framework of neuronal network. On the left side are
25 groups of Poisson neurons, and on the right side are 25 orientation columns, each of which is comprised of a
group of excitatory and inhibitory neurons. Black bars with different directions denote preferred orientations for the
relevant orientation columns. Red and blue arrows represent excitatory and inhibitory synaptic connectivity
respectively. (c) Matrix of connection weight within 25 orientation columns. Exc1-25 depicts excitatory neurons from
the 1st column to the 25th column, with Inh1-25 for the case of inhibitory neurons. A color bar indicates the weight
value of the synaptic connectivity. (d) Poisson rate of 25 Poisson groups.

The spike-LFP phase provided an indirect measurement
between neuronal output and neuronal input (Fig. 1(a)),
because an LFP signal was brought about by aggregated
synaptic activities of a pool of nearby neurons [32]. For
neuronal output, the neuronal excitation was characterized by
neuronal firing rate for both individual neurons and neuronal
groups. As for neuronal input, the input strength was modeled
by synaptic current power for individual neurons, as well
as LFP power and Poisson rate for neuronal groups. The
experimental simulation and subsequent theoretical analy-
sis were primarily carried out according to a physiological
experiment [21] and on the basis of orientation columns,
which were approximately constructed by a spike neural
network. Besides, in order to obtain independent and compar-
ative investigations, we introduced six network activity states

modulated by Gaussian noise [49], a pre-stimulus period with
no input stimulus, and a stimulus period with external input
of stimulus orientation. Furthermore, a time-resolved analysis
with a sliding window was also implemented for quantifying
the evolution of oscillatory phase across trial time.

The main contributions and findings of this work are sum-
marized as follows. Firstly, we proposed a new spike-LFP
phase method based on vector addition operation. It was
demonstrated in the simulation that the vector addition phase
was more appropriate than mean phase to characterize the
oscillatory phase. Besides, we also proposed a PPCGmethod
for measuring phase synchronization of neuronal groups.
Secondly, we confirmed the existence of gamma oscillations
in the neuronal network, in agreement with a series of elec-
trophysiological experiments [5], [15] and numerical models
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[26], [50]. Thirdly, the oscillatory phase and phase synchro-
nization for neuronal groups possessed similar properties
in comparison to the ones for individual neurons. Fourthly,
compatible with individual neurons, the oscillatory phase
for neuronal groups decreased monotonically with neuronal
excitation and input strength as well. It was consistent with
a number of physiological experiments [19], [21], [22] and
computational investigations [25], [33], [34]. Last and more
importantly, we confirmed that neuronal groups were greatly
superior to individual neurons in relationship quantifica-
tion of oscillatory phase with neuronal excitation and input
strength.

II. MATERIALS AND METHODS
A. NETWORK FRAMEWORK AND ORIENTATION
PREFERENCE
Cortical columns, an elaboration of excitatory-inhibitory cir-
cuits and fundamental units of cortical organization [51], are
not only critical for the emergence of neuronal oscillations
[52], but also more efficient than computation implemented
by the same number of neurons connected randomly [44],
[53]. Consequently, we simulated orientation columns in pri-
mary visual cortex by means of a spiking neuronal network
(Fig. 1(b)). The neuronal network encompassed two compart-
ments, the right of which were 25 orientation columns, and
the left were 25 Poisson groups, serving as LGN (Lateral
Geniculate Nucleus) and providing external thalamic spike
inputs to visual cortex. There were 2500 Poisson neurons in
total, 100 for each Poisson group. Each orientation column
was composed of two cuboids with the same color, index
number and orientation bar, representing 100 excitatory neu-
rons and 25 inhibitory neurons respectively. Altogether, there
were 3125 neurons within the 25 orientation columns, 80%
of which were excitatory neurons. The ratio of excitatory
neurons to inhibitory neurons was in accordance with physi-
ological and computational investigations [50], [54], [55].

Owing to orientation selectivity and bell-shape tuning
curve of firing rate with respect to orientation stimulus in
visual cortex [56], [57], we consecutively designated the
excitatory and inhibitory neurons in each of the 25 orien-
tation columns with a preferred orientation, with −π

/
2 +

π (i− 1)
/
25 for the ith column. Consequently, the preferred

orientations for the 1st and 25th columns were similar, which
elicited a ring topology of orientation preference across
columns. Similar analogous tuning curve is also observed
in head-direction cells of the postsubiculum [48]. Besides,
the neurons in 25 Poisson groupswere also appointedwith the
same preferred orientation as their corresponding orientation
columns so as to derive appropriate and reliable external input
of spike trains.

B. NEURON MODEL
All neurons throughout this paper were described by a
leaky integrate-and-fire neuronal model, modified from [58],
the membrane potential evolution of which obeyed the

following equation:

Cm
dV
dt
= −gL (V − Vrest)+ IAMPA + IGABA + Ibg

+Cmσn

√
2
τn
ξ (t) (1)

where Cm was a membrane capacitance, gL a membrane leak
conductance, and Ibg a constant background current, utilized
to maintain minimal neuronal activity and simulate spon-
taneous activity in cerebral cortex. The term ξ (t) denoted
a normalized Gaussian white noise [49], τn represented a
time constant of the Gaussian noise and σn was adopted to
regulate neuronal network activity state. When a membrane
potential V crossed a threshold potential Vthres, an action
potential was generated, which propagated to all its con-
nected neurons. Then the membrane potential was reset to a
resting potential Vrest and remained shunted for a refractory
period Tref . The synapses were conductance-based and the
synaptic currents were modulated by excitatory (AMPA) and
inhibitory (GABA) receptors, the dynamics of which were as
follows:

IAMPA = gAMPA (VE − V ) (2)

IGABA = gGABA (VI − V ) (3)

VE and VI were excitatory and inhibitory reversal potentials
respectively. Whenever a neuron received an action potential,
its conductance was increased accordingly, with gAMPA =
gAMPA + 1gAMPA for the excitatory synapse and gGABA =
gGABA+1gGABA for the inhibitory synapse correspondingly.
Both 1gAMPA and 1gGABA were determined by a connec-
tion weight to be elucidated in the next section. Otherwise,
the conductance of the neuron evolved according to the equa-
tions below:

dgAMPA
dt

= −
gAMPA
τAMPA

(4)

dgGABA
dt

= −
gGABA
τGABA

(5)

where τAMPA and τGABA were excitatory and inhibitory decay
time constants.

C. SYNAPTIC CONNECTIVITY
Topographic specificity, functional specificity, together with
cell-type specificity constitute the major determinants of
cortical connectivity [59], [60]. The synaptic connections
between Poisson groups and their corresponding orientation
columns were one-to-one and feedforward, with constant and
identical connection weightWf (Fig. 1(b)). The probability of
the synaptic connection was ε = 20%. The feedforward con-
nectivity established a wild and initial orientation preference,
on the basis of feedforward models proposing that orientation
selectivity is simply generated by thalamic inputs from LGN
to visual cortex [59], [60].

The connection weight between interconnected neu-
rons within 25 orientation columns depended on feature
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discrepancy of preferred orientation between presynaptic and
postsynaptic neurons.

Wij = Weβ[cos (2(θpre−θpost))−1] (6)

where θpre and θpost represented the preferred orientations for
the presynaptic and postsynaptic neurons respectively. The
parameterW had four variables:WEE ,WEI ,WIE ,WII , denot-
ing basic connection weights from excitatory to excitatory,
excitatory to inhibitory, inhibitory to excitatory, inhibitory to
inhibitory neurons respectively. Besides, the probability of
the recurrent synaptic connection was also ε = 20%. Partic-
ularly, in order to obtain an appropriate excitatory-inhibitory
balance in the neuronal network, WIE was configured with a
larger value than WEI on account of relatively small number
of inhibitory neurons [50], [61], [62]. It has been proposed
by feedback and recurrent models that orientation selectivity
is amplified by excitatory intracortical interconnections and
inhibitory interactions [56], [63]. Accordingly, the recurrent
connectivity within the 25 orientation columns in our simu-
lation reinforced the orientation preference.

As illustrated Fig. 1(c) was a matrix of connection weight
within 25 orientation columns obtained in our simulation.
The matrix consisted of four main compartments or matrices,
representing connection weights from inhibitory (Inh1-25)
to excitatory (Exc1-25), inhibitory to inhibitory, excitatory
to excitatory, excitatory to inhibitory neurons respectively.
For small matrices along four diagonal lines of the four
main compartments, the connection weights obtained the
highest values because neurons within an orientation column
possessed the same orientation preference. For small matri-
ces nearby the four diagonal lines, the connection weights
derived the secondly highest values due to similar orien-
tation preference. As for other small matrices, the con-
nection weights decayed substantially. This distribution of
connection weights was primarily attributable to the increas-
ing difference of orientation preference and uprising distance
between orientation columns. It was in tune with the evidence
that the probability of synaptic connectivity declines expo-
nentially with the distance between neurons or regions [50],
[64]. Besides, the synaptic connection weights were kept
constant in this simulation for simplicity of network design
and efficiency of computation. However, we could equally
acquire similar neuronal activities and network dynamics in
the case of varying synaptic connection strengths.

D. SIMULATION AND DATA RECORDING
In our simulation, there were six network activity states,
which were brought about by six levels of Gaussian white
noise (state1 (σn = 0.5 mV), state2 (σn = 1.0 mV), state3
(σn = 1.5 mV), state4 (σn = 2.0 mV), state5 (σn =
2.5 mV) and state6 (σn = 3.0 mV)) [65]–[67]. However,
we could equivalently obtain the network activity states by
other categories of noise or by other parameters such as
synaptic time constant, synaptic strength or periodic external
input [48]. We conducted 20 trials for each network activity
state, and ultimately derived 120 trials in total for the whole

simulation. For each trial, there were a 500 ms pre-stimulus
period and a 1500 ms stimulus period. During pre-stimulus
period, only Poisson spike inputs with a lower rate Fbg and a
constant background current Ibg were delivered to the neu-
ronal network so as to maintain minimal neuronal activity
and simulate the spontaneous activity in cerebral cortex [68].
During stimulus period, we continuously imported a constant
stimulus orientation, with a degree of −π/50, to simulate
drifting gratings in electrophysiological experiments. Typi-
cally, the orientation of input stimulus was identical to the
preferred orientation of the 13th orientation column.

From bottom to top in Fig. 2(a) was the distribution
of 25 orientation columns consecutively. For each column,
we selected 20 nearby excitatory neurons and recorded their
spike times, excitatory synaptic currents IAMPA, inhibitory
synaptic currents IGABA, as well as their background currents
Ibg for 120 trials of all six network activity states. It corre-
sponded to a microelectrode recording site in electrophysi-
ological experiments. Besides, it also satisfied the minimal
size requirement of a cell assembly (101-102 neurons) [38].
Every 20 excitatory individual neurons constituted a neuronal
group, which meanwhile gave rise to an LFP channel. Over-
all, there were 500 individual neurons, 25 neuronal groups, 25
LFP channels and 25 simulation sites recorded in this simu-
lation. The spike sample frequency was 10000 Hz, and the
sample frequency for LFP and synaptic current was 1000 Hz.
In addition, if not mentioned otherwise, the recording data
of the first 120 ms and 250 ms for pre-stimulus and stimu-
lus periods was discarded owing to response onset transient
effect [21].

Additionally, a Python based simulator for spiking neural
network, named Brian [69], was utilized in our simulation
for column network construction, experiment simulation and
data recording. The simulation adopted a Euler integration
method, with a time step of 0.1 ms. Besides, a MATLAB
toolbox, namely FieldTrip [70], and its Spike package [21]
were employed for subsequent theoretical computation and
spectral analysis. Moreover, the relevant statistical analysis
was carried out with the help of SPSS and EXCEL. Further-
more, all parameters encountered in this paper were config-
ured according to Table 1.

TABLE 1. Default parameter configuration.
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FIGURE 2. Simulation Overall and Computations of Spike-LFP Phase and PPCG. (a) Simulation overall. In each
orientation column, there is a neuronal group, composed of 20 excitatory individual neurons, which meanwhile
bring about an LFP channel. The red rectangles are sliding windows for time-resolved analysis. (b) Computations of
spike-LFP phase, PPCG and PPC2. A point spike-LFP phase θk,m,n, depicted by an arrow, corresponds to a spike of
a given neuron. The spike-LFP phase is computed based on vector addition of point spike-LFP phases across trials
and neurons. The spike-LFP phase and PPC2 for an individual neuron are based on the point spike-LFP phases
within a green rectangle. The spike- LFP phase and PPCG for a neuronal group are on the basis of the point
spike-LFP phases within a red rectangle. (c) Illustration of PPCG Method. There are point spike-LFP phases from
3 neurons and 3 trials in a neuronal group. They are represented by arrows and duplicated on the x-axis and y-axis.
The PPCG method is based on dot product operation of pairs of the point spike-LFP phases. The dot product of a
point spike-LFP phase with itself always equals one and therefore is ignored in the PPCG computation, which is
represented by diagonal squares with red patterns.

E. INPUT STRENGTH
1) POISSON RATE
The Poisson rate Prate was primarily determined by the fea-
ture difference between the preferred orientation θpref of a
Poisson neuron and the stimulus orientation θstim imported in
the simulation, with the equation inspired from [48].

Prate =
[
cos

(
2
(
θpref − θstim

))
+ 1

]
Fmax (7)

where Fmax represented a maximal rate. The distribution
of the Poisson rate for 25 Poisson groups was portrayed
in Fig. 1(d). The 13th Poisson group obtained the highest
Poisson rate because its preferred orientation was identical
to the input stimulus orientation.

2) SYNAPTIC CURRENT POWER
For an excitatory neuron, we described the synaptic current
Icurrent as the sum of excitatory synaptic current IAMPA and
constant background current Ibg.

Icurrent = IAMPA + Ibg (8)

Powercurrent =

∑M
m=1

{
10× log10 [pwelch (Icurrent)]

}
M

(9)

Both the parameter IAMPA and Ibg were the excitatory
inputs for the excitatory neuron. The synaptic current power
Powercurrent , for individual neurons, was quantified by a
method ofWelch’s power spectral density estimate, theMAT-
LAB function of which was denoted by the term pwelch.
A default Hamming window was used to obtain eight seg-
ments of Icurrent , and with a default overlap between the
segments. The parameter M = 20 was the trial number in
a network activity state.

3) LFP POWER
We formulated LFP data as the sum of absolute values of
excitatory synaptic current IAMPA, inhibitory synaptic current
IGABA and constant background current Ibg acting upon a
group of nearby excitatory neurons [71], with Equation (10)
modified from [50], [62].

LFP = R
[∑N

n=1

(
|IAMPA| + |IGABA| +

∣∣Ibg∣∣)] (10)
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PowerLFP =

∑M
m=1

{
10× log10 [pwelch (LFP)]

}
M

(11)

The term R represented the resistance of a typical micro-
electrode in electrophysiological experiments. The parameter
IAMPA accounted for both the external thalamic current from
Poisson spike train and excitatory recurrent synaptic current
within the 25 orientation columns. Whereas IGABA merely
manifested inhibitory recurrent synaptic current within the
25 columns. The termN = 20 expressed the neuronal number
in a neuronal group, which satisfied the lower bound on the
size of cell assemblies [38]. The LFP signal was bandpass
filtered with 0.7-170 Hz. The LFP power PowerLFP, for
neuronal groups, was also achieved by virtue of the Welch’s
power method. We adopted a default Hamming window to
derive eight segments of LFP signals and with a default
overlap between the segments. The parameter M described
the trial number in a network activity state and equaled 20.

F. NEURONAL EXCITATION
The neuronal excitation is quantified by neuronal firing rate
for both individual neurons and neuronal groups. We defined
Nm,n as the spike count of the nth neuron in the mth trial,
n ∈ {1, · · · ,N }, m ∈ {1, · · · ,M}, where N = 20 was the
neuronal number in a neuronal group, and M = 20 the trial
number in a network activity state.

FRateidv =

∑M
m=1 Nm,n
MTdur

(12)

FRategp =

∑N
n=1

∑M
m=1 Nm,n

NMTdur
(13)

where FRateidv and FRategp denoted the neuronal firing rates
for an individual neuron and a neuronal group respectively.
The term Tdur described a duration in a trial, with 500 ms for
pre-stimulus period, and 1500 ms for stimulus period.

G. SPIKE-LFP PHASE
For a spike of a given neuron, 24 LFP segments from other
24 orientation columns were cut out, except the one within
the same column. The center of each segment was aligned
with the spike time. The length of LFP segment was varied
for different frequencies, with five cycles per frequency. Each
LFP segment was multiplied by a Hanning window. Then
we implemented Discrete Fourier Transform and obtained the
spike-triggered LFP spectrum Xi (f ) for a certain frequency,
through Equation (14) [21].

Xi (f ) =
∑T

t
w (t) xi (t) e−2π jft (14)

X̄i (f ) =
1
24

∑24

s=1

X si (f )∣∣X si (f )∣∣ (15)

2i = angle
(
X̄i (f )

)
(16)

where xi (t) was the time series of an LFP segment centered
around the ith spike, and w (t) was the Hanning window.
We averaged the outcomes across the 24 LFP channels by
means of Equation (15) [21], through which the magnitude

of the spike-triggered LFP spectrum was normalized and
ignored. The term X si (f ) manifested the spike-triggered LFP
spectrum for the sth LFP channel relative to the ith spike of
the given neuron. Then a point spike-LFP phase 2i could be
easily acquired by Equation (16), where the term angle was a
MATLAB function for computing the phase angle of complex
data.

The term X̄i (f ) was a complex number. Then it was cat-
egorized into X̄k,m,n (f ) according to its neuronal number
and trial number, where n ∈ {1, · · · ,N }, m ∈ {1, · · · ,M},
k ∈

{
1, · · · ,Nm,n

}
. N = 20 was the neuronal number in a

neuronal group,M = 20 the trial number in a network activity
state, Nm,n the spike count of the nth neuron in the mth trial.
The spike-LFP phase for an individual neuron 2idv and the
spike-LFP phase for a neuronal group2gp could be precisely
established by virtue of Equations (17) and (18) respectively.

2idv = angle

(∑M
m=1

∑Nm,n
k=1 X̄k,m,n (f )∑M
m=1 Nm,n

)
(17)

2gp = angle

(∑N
n=1

∑M
m=1

∑Nm,n
k=1 X̄k,m,n (f )∑N

n=1
∑M

m=1 Nm,n

)
(18)

Importantly, the spike-LFP phase for individual neurons
and neuronal groups in this paper was based on vector addi-
tion of point spike-LFP phases, instead of on the basis of aver-
aging the point spike-LFP phases directly. For the spike-LFP
phase of an individual neuron, the vector addition operation
was performed for the point spike-LFP phases within a green
rectangle in Fig. 2(b). Whereas the point spike-LFP phases
within a red rectangle were used for computing the spike-LFP
phase of a neuronal group.

H. PAIRWISE PHASE CONSISTENCY FOR GROUP PPCG
For an individual neuron, we adopted a PPC2 method [32] to
quantify phase consistency or phase synchronization, which
depended on the point spike-LFP phases within a green rect-
angle in Fig. 2(b). On the basis of the PPC method [31], [32],
we proposed a new method of pairwise phase consistency for
group, referred to here as PPCG, to measure the precision of
phase synchronization for neuronal groups.

First of all, a point spike-LFP phase 2i was classified into
2k,m,n according to its neuronal number and trial number,
wherein n ∈ {1, · · · ,N }, with N = 20 representing the
neuronal number in a neuronal group, m ∈ {1, · · · ,M}, with
M = 20 describing the trial number in a network activity
state, and k ∈

{
1, · · · ,Nm,n

}
, with Nm,n denoting the spike

count of the nth neuron in themth trial. Then we defined a vec-
tor of Uk,m,n ≡

(
cos

(
2k,m,n

)
, sin

(
2k,m,n

))
to represent the

point spike-LFP phase2k,m,n. Ultimately, the PPCG method
was defined by Equation (19) (As shown at the bottom of
the next page). The symbol · was an operator of dot product.
The term M was defined as

{
m ∈ {1, · · · ,M} ;Nm,n > 0

}
,

in which |M| was the trial number with at least one spike.
L =

∑N
n=1

∑M
m=1 Nm,n embodied the total spike number

within a neuronal group. The computation of PPCG was
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based on the point spike-LFP phases within a red rectangle in
Fig. 2(b). Besides, the sextuple summation in the PPCG equa-
tion implemented the dot product of all pairs of point spike-
LFP phases across neurons and trials within a neuronal group
except the one with itself. As visible in Fig. 2(c), the diagonal
squares with red patterns, indicating combinations of a point
spike-LFP phase with itself, were ignored in the dot product
computation. Because the dot product of a point spike-LFP
phase with itself always equaled one and did not contribute
to the PPCG statistic, whichwas eliminated by the subtraction
of L.

III. RESULTS
A. NETWORK ACTIVITY AND POWER SPECTRUM
During stimulus period, the spike raster of Poisson (Pois)
neurons had a higher spike density in its middle region
(Fig. 3(a)), compatible with the distribution of Poisson rate
across Poisson groups (Fig. 1(d)). The instantaneous firing
activities of both excitatory (Exc) and inhibitory (Inh) neu-
ronal populations exhibited robust oscillation and collective
rhythmogenesis, while their individual neurons discharged
sparsely and irregularly at lower rates (Fig. 3(a1)). This
characteristic of irregular spiking at individual neuronal level
and rhythmic oscillation at group level are generally observed
in vivo [3] and computational studies [48], [50]. Besides,
the inhibitory neurons, with relatively sparse spike raster and
small number, compensated themselves with strong synaptic
conductance to obtain excitatory-inhibitory balance in the
neuronal network [50].

In addition to oscillatory activities in spike raster, there
were also rhythmic oscillations observed in LFP signal for
neuronal groups Fig. 3(b, c1) and in synaptic current sig-
nal for individual neurons (Fig. 3(c2)). The two types of
oscillatory signals varied in phase across trial time and
were also consistent with their corresponding spike raster,
all within gamma band frequency. Moreover, the oscillation
phenomenon was also encountered in neuronal firing rate
signal for individual neurons, however, at a much lower
frequency (Fig. 3(c3)). Experiments with pharmacological
and optogenetic manipulation of interneurons as well as
computational simulations have demonstrated that GABA
receptor mediated synaptic inhibition and recurrent interac-
tion between excitatory and inhibitory neurons are respon-
sible for generating neuronal oscillations [19], [38], [44],
[72]. When we gradually increased the parameter σn of
Gaussian white noise, the network activity state switched
from robust oscillation to weak oscillation or non-oscillation
(Fig. 3(a)).

As demonstrated in Fig. 3(a1, b), it seems as if there existed
a time sequence for both oscillatory spike raster and LFP

signals across different orientation columns during stimulus
period. The oscillation of spike raster emerged firstly in the
13th orientation column, and then appeared in the two-side
columns successively. Similar phenomenon was encountered
in the LFP signals as well, with the 13th, the 7th and the 1st

LFP signals fluctuating roughly in succession. In addition,
it has been observed that neurons are more likely to spike
near the troughs of LFP oscillations because of the minimal
inhibition during this interval [50]. Consequently, the time
sequences of oscillatory spike raster and LFP signals, along
with the specificity of spike occurrence may lay the foun-
dation for producing various oscillatory phases and diverse
strengths of phase synchronization.

For spectral analysis, the appearances of synaptic cur-
rent power and LFP power were consistent with a num-
ber of experimental and simulating evidences (Fig. 3(d))
[26], [50], [67], [73]. Besides, it has been recognized that
the frequency of oscillations can be modulated by several
parameters, including inhibitory decay time constant [50],
[62], [74], stimulus contrast [26], [62], [75] and strength of
excitatory and inhibitory inputs [44]. The variation of the
stimulus contrast can be achieved by modulating the rate
of external spike train [62], [71]. Owing to various Poisson
rates for different orientation columns and diverse σn values
for different network activity states, there existed a certain
degree of shifts in peak frequency of both synaptic current
power and LFP power across orientation columns, network
activity states and trial periods (Fig. 3(d, e)). Furthermore,
it has been established in a physiological experiment that
gamma coherence can occur despite large changes in fre-
quency, and neuronal communication does not require a fixed
frequency [73]. Another experimental evidence indicates that
phase coherence between LFP signals obtains the largest
value close to the peak frequency of spectral power [52], [62].
Consequently, the subsequent quantifications of spike-LFP
phase, PPC2 and PPCG values, as well as synaptic current
power and LFP power were based on the peak frequencies
of LFP power for different orientation columns, as illustrated
in Fig. 3(e).

B. SPIKE-LFP PHASE
During pre-stimulus period in state1, spike-LFP phases were
considerably similar across both individual neurons and neu-
ronal groups (Fig. 4(a, b)). They were comparatively con-
sistent and highly concentrated in each orientation column
(Fig. 4(c)). From state1 to state6 during this period, the spike-
LFP phases shifted and scattered more and more extensively,
especially for individual neurons in state6.

During stimulus period in state1, spike-LFP phases
for individual neurons from middle orientation columns,

PPCG =

[∑N
n=1

∑N
t=1

∑
m∈M

∑
s∈M

∑Nm,n
k=1

∑Ns,t
i=1

(
Uk,m,n·U i,s,t

)]
− L

L (L − 1)
(19)
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FIGURE 3. Neuronal Activity and Power Spectrum. (a) Spike raster of all neurons in a 200 ms interval in state1 (a1) and state5 (a2) during stimulus
period. Pois denotes Poisson neuron, Exc excitatory neuron and Inh inhibitory neuron. (b) Three LFP signals from the 1st, the 7th, the 13th
orientation columns in a 200 ms interval in state4 during stimulus period. LFP1 denotes a LFP signal from the 1st orientation column. (c) Neuronal
signals from the 5th orientation column in state4 during stimulus period, including a LFP signal (c1), synaptic current signals (c2) and a neuronal
firing rate signal (c3). E neuron81 represents the 81th excitatory neuron. Excitatory neurons between 81 and 100 belong to the 5th orientation
column, with the E neuron91 in the middle of the column. (d) Synaptic current power (d1 and d2) and LFP power (d3 and d4) in six network activity
states during pre-stimulus and stimulus periods. (e) Peak frequencies of LFP power spectra for 25 orientation columns in six network activity states
during pre-stimulus period (e1) and stimulus period (e2).

especially the 13th column, were not only smaller (Fig. 4(a)),
but also more concentrated (Fig. 4(c)). Whereas the ones
from leftward and rightward columns increased gradually
and became increasingly scattered. The spike-LFP phases for
neuronal groups possessed a similar tuning curve (Fig. 4(b)).
From state1 to state6 during this period, the spike-LFP phases
for individual neurons fluctuated more and more vigorously,
especially for two-side columns, whereas the ones for neu-
ronal groups became increasingly similar across orientation
columns.

The preferred orientations for the middle columns were
equal or similar to the orientation of input stimulus, which
gave rise to stronger external Poisson inputs and higher
neuronal excitations for these columns. However, the two-
side columns with divergent preferred orientations came up
with smaller Poisson inputs and lower neuronal excitations.
The spike-LFP phase depended on the level of neuronal
excitation which, in turn, relied primarily on input strength
and orientation preference, with stronger input strength

leading to smaller oscillatory phase. It was highly consis-
tent with a gamma cycle hypothesis [19], a theta-phase
precession phenomenon [22], a gamma-phase shifting study
[21], and other computational investigations [25], [33].
Besides, stronger external input was more likely to constrain
the spike times to a certain interval of LFP oscillations,
thereby resulting in more concentrated spike-LFP phases in
the middle columns. Furthermore, it has been recognized
that neuronal oscillation is framed by synchronized inhibitory
interneurons [19]. Owing to the largest Poisson input and
strong synaptic connectivity, the rhythmic synchronization
of inhibitory neurons emerged firstly in the 13th orientation
column, and then in the leftward and rightward columns
consecutively. Consequently, it appears as if there existed a
time sequence of synchronized inhibitions and LFP oscil-
lations for 25 orientation columns, which might provide a
reasonable account for the generation of spike-LFP phases
in sequence for both individual neurons and neuronal groups
across orientation columns during stimulus period.
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FIGURE 4. Spike-LFP Phase. (a) Spike-LFP phases of 500 individual neurons in six network activity states during pre-stimulus and stimulus
periods. (b) Similar to (a), but for spike-LFP phases of 25 neuronal groups. (c) Spike-LFP phases in polar coordinates, with one column for an
orientation column and one row for a network activity state. There are 21 spike-LFP phases in each polar coordinates. 20 spike-LFP phases
are for individual neurons, with orange bars for stimulus period and blue bars for pre-stimulus period. A green bar denotes a spike-LFP
phase for a neuronal group. (d) Box plot of point spike-LFP phases for 25 neuronal groups in state1 during stimulus period. (e) Comparison
of different phases. Vector addition phase is utilized to represent the spike-LFP phase in this paper. Mean phase and median phase are
statistics of point spike-LFP phases for 25 neuronal groups.

The spike-LFP phase for individual neurons and neuronal
groups in this paper was computed by means of vector addi-
tion of point spike-LFP phases, instead of averaging the point
spike-LFP phases directly. The spike-LFP phase through vec-
tor addition operation was referred to here as vector addi-
tion phase, whereas the one through averaging method was
denoted as mean phase. We also obtained median phase
from the point spike-LFP phases for comparison (Fig. 4(e)).
As demonstrated in Fig. 4(d) was a box plot of point spike-
LFP phases for 25 neuronal groups across 20 trials in
state1 during stimulus period. For two-side neuronal groups,
the median phase was roughly similar to the mean phase.
As for middle neuronal groups, there were wide divergences

between the median phase and the mean phase. Besides,
the interquartile ranges (IQR) for the middle groups were
comparatively large, and the median phase was much closer
to the first quartiles (Q1), meaning that the majority of the
point spike-LFP phases in the middle groups tended to have
smaller values. Take the 13th neuronal group for instance,
the relevant statistics were as follows: mean phase: −56.7◦,
median phase:−117.9◦, vector addition phase:−151.0◦, Q1:
−149.5◦, IQR: 106.5◦. It was noticed that the median phase
was closer to the vector addition phase than to the mean
phase. For comparison of all neuronal groups, we utilized a
Euclidean distance method to quantify their distances, with
DV = 128.3, DM = 156.3, and DV < DM . The term
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FIGURE 5. PPC2 and PPCG. PPC2 (left panel) for individual neurons and
PPCG (right panel) for neuronal groups in state1 during pre-stimulus
period (upper panel) and stimulus period (lower panel).

DV represented the Euclidean distance between the vector
addition phase and the median phase, and DM denoted the
one between the mean phase and the median phase. It implied
that, in comparison to the mean phase, the vector addition
phase was closer to the median phase and therefore more
suitable for representing oscillatory phase.

C. PAIRWISE PHASE CONSISTENCY
In this section, phase synchronization was quantified by a
PPCG method for neuronal groups and by a PPC2 method
for individual neurons. Only the outcome of state1 was
exhibited (Fig. 5). The quantification of phase synchroniza-
tion was thought to provide a mechanistic substrate for
implementing cortical communication through CTC (Com-
munication through Coherence) hypothesis [76], [77]. Dur-
ing pre-stimulus period, 25 neuronal groups came up with
extremely low and similar PPCG values, so it was with
500 individual neurons with PPC2 values. During stimulus
period, the majority of both neuronal groups and individ-
ual neurons from middle orientation columns obtained com-
paratively larger PPCG or PPC2 values, which decreased
in two-side columns. It was compatible with physiological
experiments that neurons in cortical columns rhythmically
synchronized their spike activities upon congruent stimuli
[44], [78] and columns coding for related features oscil-
late with zero phase lag [19], [79]. Besides, the PPCG and
PPC2 with higher values were roughly between 55 Hz and
100 Hz, belonging to the range of gamma frequency band.
It suggested that gamma oscillations existed in the neuronal
network, in agreement with a number of physiological exper-
iments [15], [21], [73] and numerical studies [50], [68].

Owing to mutual and reciprocal connectivity within 25 ori-
entation columns, the middle orientation columns, as a target
network, received synaptic inputs from their corresponding
Poisson groups, the middle columns themselves and two-side
columns. The middle columns, with larger Poisson inputs and
strong synaptic connectivity, were more coherence than the

two-side columns, which prohibited the two-side columns
from being noticed by the target network [80]. Besides,
the synaptic inhibition and the balanced excitation and inhi-
bition in the middle columns greatly decreased the resistance
of neuron membrane and therefore increased the leakiness
of target neurons [33], [80]. Consequently, neurons in the
middle orientation columns were more likely to act as coin-
cidence detectors [33], [72], more vulnerable to synchronous
inputs, and therefore had higher probability to obtain larger
PPCG and PPC2 values.

D. RELATIONSHIP BETWEEN OSCILLATORY PHASE AND
NEURONAL EXCITATION
In this section, we primarily investigated the relationship
between spike-LFP phase and neuronal excitation, quanti-
fied by neuronal firing rate, for both individual neurons and
neuronal groups. During pre-stimulus period in each net-
work activity state, the distribution of firing rate for neuronal
groups was roughly similar, in spite of a certain degree of
variations (Fig. 6(b)). Whereas the one for individual neurons
varied considerably, nevertheless similar across orientation
columns (Fig. 6(a)). During stimulus period in each net-
work activity state, owing to comparatively larger density of
spike raster in middle orientation columns (Fig. 3(a)), both
individual neurons and neuronal groups from these columns
came up with stronger neuronal excitation and hence larger
firing rates, which decreased gradually towards leftward and
rightward columns. From state1 to state6, the firing rates for
individual neurons and neuronal groups became compara-
tively larger and larger. In particular, the firing rate tuning
curves during stimulus period were not only consistent with
the Poisson rate of 25 Poisson groups (Fig. 1(d)), but also in
line with the evidence that neuronal firing rate in visual cortex
is sensitive to orientation stimulus [56], [60].

Typically, the firing rate was a linear predictor variable,
whereas the spike-LFP phase was a circular variable. There-
fore, their relationship cannot be investigated appropriately
by means of a standard linear regression model, which can
only minimize linear errors rather than circular errors. Con-
sequently, we utilized a linear-circular regression model with
an arctangent link function, which could map linear predictor
variables to circular ones. The equation of the regression
model, revised from [21], was as follows:

θi = µ+ α tan−1 (βYi + b)+ εi (20)

where the term θi denoted a spike-LFP phase and Yi
represented a neuronal firing rate for the ith individual neu-
ron or the ith neuronal group. εi obeyed a von Mises distribu-
tion [81]. The parameter β was the coefficient of regression
slope that we attempted to estimate.

With regard to individual neurons, we firstly quantified the
relationships for all 500 individual neurons. Only two regres-
sion curves with sliding slopes in state1 and state2 could
be estimated (Fig. 6(c)). According to Table 2, the esti-
mated regression coefficient β {−8.212, −0.427} for the
two curves were negative. Unfortunately, the R squared,
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FIGURE 6. Relationship between Oscillatory Phase and Neuronal Excitation. (a) Neuronal firing rates for 500 individual neurons in
state1, state3 and state6 during pre-stimulus and stimulus periods. (b) Neuronal firing rates for 25 neuronal groups in six network
activity states during prestimulus and stimulus periods. (c) Relationships between spike-LFP phase and neuronal firing rate for all
500 individual neurons in six network activity states. (d) Similar to (c), but for individual neurons with lower PPC2 values (Not all the
500 individual neurons). (e) Relationships between spike-LFP phase and neuronal firing rate for 25 neuronal groups in six network
activity states.

a goodness-of-fit statistic measure, acquired considerably
lower values {0.323, 0.293}, which indicated large differ-
ences between the observed data and the fitted regression
curves. From state3 to state 6, the spike-LFP phases were
increasingly scattered and no obvious relationships could be
evaluated.

Thenwemeasured the relationships by selecting individual
neurons with lower PPC2 values, under the thresholds {0.19,
0.18, 0.12, 0.03, 0.01, 0.005} for six network activity states

respectively. Because neurons with lower PPC2 values were
supposed to have more varying spike-LFP phases, shifting
more randomly as opposed to being constrained to certain
intervals in oscillatory cycles, therefore more appropriate for
quantifying the relationships. Accordingly, we could quan-
tify the relationships for more network activity states and
finally established three regression curves for states from
state1 to state3 (Fig. 6(d)). The R squared values were {0.575,
0.562, 0.468} (Table 2), which was to a certain extent better
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TABLE 2. Parameter estimate for relationships between spike-LFP phase and neuronal excitation.

TABLE 3. Parameter estimate for relationships between spike-LFP phase and input strength.

than the case of all 500 individual neurons illustrated above
(Fig. 6(c)). Besides, the regression coefficients β {−0.432,
−0.627, −1.449} for the three curves were all negative as
well. From state4 to state6, there is no apparent relationships
available on account of more and more distributed spike-LFP
phases.

As distinct from individual neurons with regression esti-
mation available for only two or three network activity states,
we could implement regression analysis of neuronal groups
for all six network activity states (Fig. 6(e)). Based on Table 2,
the R squared values were {0.909, 0.946, 0.910, 0.482,
0.656, 0.700}, significantly larger than the ones for individ-
ual neurons, indicating excellent model fittings and reliable
relationship quantifications. Similar to individual neurons,
we obtained the regression coefficient β with all negative val-
ues ({−0.860, −0.284, −0.391, −3.144, −1.485, −1.087}).
Consequently, no matter individual neurons or neuronal
groups, the oscillatory phase decreased monotonically as
a function of neuronal firing rate and neuronal excitation,
in good accordance with several evidences, including a theta-
phase precession phenomenon [22], a gamma cycle hypothe-
sis [19], a gamma-phase shifting experiment [21], and other
numerical simulations [25], [33], [34]. More importantly, it is
reasonable to conclude that neuronal groups have a compet-
itive advantage over individual neurons to quantify the rela-
tionship between oscillatory phase and neuronal excitation.

E. RELATIONSHIP BETWEEN OSCILLATORY PHASE AND
INPUT STRENGTH
In this section, we mainly explored the relationship between
spike-LFP phase and input strength, characterized by synap-
tic current power for individual neurons, as well as LFP
power and Poisson rate for neuronal groups. During pre-
stimulus period in each network activity state, the synaptic

current power and the LFP power were considerably flat
and similar across orientation columns as a consequence of
identical Poisson rate Fbg of external input and the same
background current Ibg (Fig. 7(a, b)). During stimulus period
in each network activity state, both the synaptic current power
and the LFP power from middle orientation columns gained
larger values, which declined progressively towards two-side
columns. From state1 to state6, the synaptic current power
and the LFP power became increasingly smaller. Once again,
tuning curves of the synaptic current power and the LFP
power not only confirmed orientation selectivity in visual
cortex [56], [60], but also coincided with the distribution of
Poisson rate for 25 Poisson groups determined previously
(Fig. 1(d)).

Similarly, the synaptic current power, the LFP power and
the Poisson rate were all linear predictor variables, however
the spike-LFP phase was a circular variable. In consequence,
we adopted a linear-circular regression model to measure
the relationship as well, by way of Equation (20). Unlike
the parameter configuration in the previous section, we cus-
tomized the term α = 2 at first. The parameter Yi depicted a
synaptic current power for the ith individual neuron, an LFP
power or a Poisson rate for the ith neuronal group.

With respect to individual neurons, we simply formu-
lated the relationship between the spike-LFP phase and
the synaptic current power for all 500 individual neurons
(Fig. 7(c)). Three regression curves with sliding slopes were
determined for states from state1 to state3, the regression
coefficients of which were all negative referring to Table 3 (β
{−0.205, −0.196, −0.205}). Their corresponding statistics
of R squared {0.786, 0.733, 0.649} were moderate, meaning
that a more or less medium fitting of scattered data with
the regression curves. From state4 to state6, the analytical
relationships were no longer available as a consequence of
increasingly dispersed spike-LFP phases.
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FIGURE 7. Relationship between Oscillatory Phase and Input Strength. (a) Synaptic current power for 500 individual neurons in state1,
state3 and state6 during pre-stimulus and stimulus periods. (b) LFP power for 25 neuronal groups in six network activity states during
pre-stimulus and stimulus periods. (c) Relationships between spike-LFP phase and synaptic current power for 500 individual neurons
in six network activity states. (d) Relationships between spike-LFP phase and LFP power for 25 neuronal groups in six network
activity states. (e) Relationships between spike-LFP phase and Poisson rate for 25 neuronal groups in six network activity states.

As far as neuronal groups were concerned, we could char-
acterize the relationships of the spike-LFP phase with the
LFP power and the Poisson rate for all six network activity
states (Fig. 7(d, e)). Far more important was the outcome
of considerably large values of R squared, {0.934, 0.931,
0.929, 0.414, 0.616, 0.620} for LFP power case and {0.956,
0.960, 0.942, 0.428, 0.632, 0.646} for Poisson rate case.
It was infinitely superior to the case of individual neurons.
Besides, on the basis of Table 3, the regression coefficients
β for both LFP power and Poisson rate were all negative,
consistent with the ones for the synaptic current power of
individual neurons. It explicitly meant that the oscillatory

phase decreased monotonically with input strength, in good
agreement with a number of physiological experiments [19],
[21], [22] and computational investigations [25], [33], [34].
In view of the relationship quantifications above, neuronal
groups are supposed to be more suitable than individual neu-
rons to measure the relationship between oscillatory phase
and input strength.

F. TIME-RESOLVED ANALYSIS
In this section, we carried out a time-resolved analysis of
spike-LFP phases for both individual neurons and neuronal
groups with a sliding window, depicted by red rectangles
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FIGURE 8. Time-resolved Analysis of Spike-LFP Phase. (a) Evolution of spike-LFP phases for 500 individual neurons across trial time in six network
activity states. For each network state, the trial time consists of a 0.5 s pre-stimulus period and a 1.5 s stimulus period. (b) Similar to (a), but for the
evolution of spike-LFP phases for 25 neuronal groups.

in Fig. 2(a). The width of the sliding window was 75 ms and
the moving step was 10 ms. The analysis was performed for
the whole trial time, without discarding the beginning part of
recorded data for pre-stimulus and stimulus periods.

From state1 to state3 during pre-stimulus period, spike-
LFP phases were comparatively similar across individual
neurons and neuronal groups (Fig. 8). Besides, the spike-LFP
phases in two-side orientation columns attained relatively
higher values at the beginning of pre-stimulus period. The
reason was that the beginning interval was to a certain extent
influenced by orientation stimulus and neuronal activities
of previous stimulus period. From state4 to state6 during
this period, the spike-LFP phases shifted more and more
vigorously.

From state1 to state3 during stimulus period, several find-
ings can be implied from Fig. 8. Firstly, the evolution of
spike-LFP phases for neuronal groups was to a great extent
similar to the one for individual neurons. However, there
were a number of fluctuations in middle orientation columns
for individual neurons, sometimes with large spike-LFP
phases. Whereas the spike-LFP phases for neuronal groups
in the middle columns were extremely stable, with few out-
liers. Because individual neurons fired irregularly and were
more easily dominated by Poisson-like noise [48]. Secondly,
the evolution of spike-LFP phases for both neuronal groups
and individual neurons at most time points was consistent
with the distribution of spike-LFP phase determined previ-
ously, with large values in two-side columns and small values
in middle columns. Thirdly, the spike-LFP phases for both
neuronal groups and individual neurons were roughly simi-
lar across orientation columns at the beginning of stimulus
period as a consequence of stimulus onset transient effect
[3], [21]. Fourthly, in spite of receiving a constant orientation
of input stimulus, there still existed variations in spike-LFP

phase across trial time. From state4 to state6, the spike-LFP
phases were more and more similar across individual neu-
rons. However, there were still discrepancies between middle
columns and two-side columns for neuronal groups, slightly
better than the case of individual neurons.

IV. CONCLUSION AND DISCUSSION
In this paper, we primarily investigated oscillatory phase
and phase synchronization, as well as relationships of the
oscillatory phase with neuronal excitation and input strength
for neuronal groups. For comparison, we investigated the
same issues for individual neurons and then drew a parallel
between the two cases to check if the group case was better
than the individual case. Based on an electrophysiological
study [21], we constructed 25 columns by a spiking neural
network to simulate orientation columns in visual cortex,
with 25 Poisson groups mimicking LGN and supplying tha-
lamocortical inputs. All neurons throughout this paper were
described by a leaky integrate-and-fire model and assigned
with a preferred orientation according to the column number.
For independent and comparative analyses, we introduced a
pre-stimulus period and a stimulus period, as well as six net-
work activity states regulated by Gaussian white noise. Other
categories of neuronal models and noises can be adopted in
this study, which does not qualitatively affect the results of
the simulation. Besides, we also implemented a time-resolved
analysis with a sliding window to measure the variation of
oscillatory phase across trial time.

To quantify oscillatory phase for neuronal groups and indi-
vidual neurons, we proposed a new method of spike-LFP
phase based on vector addition of point spike-LFP phases
across neurons and trials, instead of on the basis of averag-
ing the point spike-LFP phases directly. To measure phase
synchronization, we proposed a PPCG approach for neuronal
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groups and adopted a PPC2 method for individual neurons.
The neuronal excitation was represented by neuronal fir-
ing rate for both neuronal groups and individual neurons.
Whereas the input strength was described by synaptic current
power for individual neurons, along with LFP power and
Poisson rate for neuronal groups.

There were several outcomes derived from the investiga-
tion. Firstly, gamma band oscillations existed in the neu-
ronal network, supported by the frequencies of spike raster,
LFP and synaptic current oscillations, the peak frequencies
of LFP power and synaptic current power, as well as the
significant regions of PPC2 and PPCG. It was in line with
a wide range of physiological experiments [3], [5], [15] and
computational models [26], [50]. Secondly, the properties
of oscillatory phase and phase synchronization for neuronal
groups were compatible with the ones for individual neurons.
Thirdly, the vector addition phase was more suitable than
the mean phase for representing oscillatory phase because
of its closer to median phase. Fourthly, preferred orientation
and stronger external input would give rise to smaller and
more concentrated oscillatory phases. Besides, the oscillatory
phase decreased monotonically as a function of neuronal
excitation and input strength for both individual neurons and
neuronal groups. It was in good agreement with a gamma
cycle hypothesis [19], a theta-phase precession experiment
[22], a gamma-phase shifting study [21] and other com-
putational investigations [25], [33], [34]. Lastly, neuronal
groups had a competitive advantage over individual neurons
to measure the relationships of oscillatory phase with neu-
ronal excitation and input strength. Because neuronal groups
can establish reliable relationship quantifications for all six
network activity states, whereas individual neurons can only
measure the relationships for robust oscillatory states.

We have already explored this issue in a previous paper
[34], which however is primarily for individual neurons. The
major differences between the two studies are as follows.
Firstly, in this paper, we proposed a PPCG method of phase
synchronization for neuronal groups, which was simply mea-
sured by a mean PPC2 value averaged across individual neu-
rons within a neuronal group in the previous paper. Secondly,
we proposed a new spike-LFP phase method on the basis of
vector addition of point spike-LFP phases in this simulation,
and further elaborated the superiority of the vector addition
phase. Thirdly, the relationship quantifications of oscillatory
phase in the previous study were mainly for individual neu-
rons, and with medium or even poor fitting effects. Whereas
the relationship quantifications of oscillatory phase in the
current study were for both individual neurons and neuronal
groups, with neuronal groups having a considerable advan-
tage over individual neurons. Furthermore, we also demon-
strated phase synchronization and a time-resolved analysis
for neuronal groups in this simulation.

Although our study was consistent with several physi-
ological and computational investigations about the rela-
tionship between oscillatory phase and external input [21],
[25], [33], there still exist a few discrepancies. Firstly,

these investigations are primarily for individual neurons,
whereas the ones in this paper are for both individ-
ual neurons and neuronal groups. A gamma-phase shift-
ing study was carried out for individual neurons, which
were isolated from MUA (Multiunit Activity) signals [21].
A phase-shifting computational study was implemented for
periodically driven individual neurons at first and then for
hyper-columns [25]. An information-transmission compu-
tational study was completely for individual neurons [33].
Secondly, the representations of oscillatory phase in these
investigations are heterogeneous. The gamma-phase shift-
ing study utilized a point spike-LFP phase relative to the
spike time point, obtained through spectrum computation
and within frequency domain [21]. The phase in the phase-
shifting study was a relative phase, defined relative to an
underlying oscillation, within time domain [25]. The phase
in the information-transmission study was determined rel-
ative to the input sinusoidal signals directly, again within
time domain [33]. However, in our simulation, the spike-LFP
phase was computed approximately according to a physiolog-
ical experiment procedure [21] and within frequency domain.

For future investigation, the PPCG method is supposed to
be further explored to guarantee if it is biased by different
number of spikes, neurons and trials. Besides, we would
explore the relationship of phase synchronization with neu-
ronal excitation and input strength for neuronal groups, and
check if the group case is superior to the individual case.
Furthermore, in view of the reliable findings of spike-LFP
phase and PPCG for neuronal groups, we would investigate
and further propose a feasible computational model for a
cognitive function of object-based attention [17], [82], with
object information coded by the spike-LFP phase of neuronal
groups and selective attention flexibly coordinated by the
PPCG method.
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