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Abstract: In this paper, the flow stress curves of YQ450NQR1 low carbon (wt. 0.12%) vanadium micro-alloyed 

YQ450NQR1 steel are obtained by conducting isothermal compression tests using Gleeble-1500 thermal 

simulation machine covering the temperature range of 1143K-1433K. To better describe the complex and abrupt 

deformation during the hot rolling process of the “Z-shaped” YQ450NQR1 products used for train beams, three 

deformation strain rates (1s-1, 10 s-1 and 30s-1) are selected to study the hot deformation behavior. On this basis, a 

constitutive model considering deformation activation energy is established from the experimental stress-strain 

data. The model is further validated against multiple sets of hot compression test data and shows a good accuracy 

between predicted and tested flow stress with a correlation coefficient of 0.988 and an average error of 8.4%, 

which indicates the accuracy and reliability of the constitutive model for YQ450NQR1 steel. 
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1. Introduction 

YQ450NQR1 is a type of low carbon micro-alloyed steel, which is widely used in production of train beams. 

Microstructures and high temperature mechanical properties as well as the fracture mechanism concerning this 

type steel have been widely studied. For example, Dou et al. [1] have studied the micro-segregation behavior of 

solute elements and internal crack susceptibility of this steel in the continuous casting process, on this basis, the 

secondary phase precipitation behavior under various cooling rate in steel solidification process are analyzed [2-4]. 

However, few researchers have paid attention to the hot deformation behavior of low carbon micro-alloyed steel 

in casting and rolling process. For curved continuous casting machine, high temperature deformation occurs at the 

bending/straightening position after secondary cooling. It is widely accepted that improper deformation during 

casting would lead to serious billet surface cracks [5-9]. Moreover, for the hot rolling process of YQ450NQR1 steel, 

the bloom with a cross-section size of 360mm×450mm is rolled into the “Z-shape” beam with a thickness of 10mm 

[10], two of piece of them are later welded together to form the final train beam (Fig.1). Since the deformation 

process of YQ450NQR1 steel from continuous casting bloom to hot rolled beam is complex, it is necessary to 

include a wide range of deformation parameters for research.  

 

Figure. 1. Shape and size of “Z-shape” beam 

 

Considering above facts, the main objective of this paper is to study the hot deformation behavior of YQ450NQR1 

steel and establishing a reliable constitutive model to evaluate and predict the effect of process parameters on high-

temperature flow behavior in casting/rolling process. To achieve this goal, isothermal hot compression tests are 

conducted over a wide range of strain-rates and temperatures. The experimental data are then used to formulate a 

mathematical relationship concerning temperature, strain rate and stress. Based on that, the constitutive model is 

validated against experimental results.  

2. Experiments 

The sample for hot compression test (ϕ8mm×15mm) is machined from YQ450NQR1 steel. Table 1 shows its 

chemical compositions. Gleeble 1500 thermal simulation machine is used for experiment.  
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Table 1 Chemical compositions of YQ450NQR1 steel (wt %) 

 

Steel C Si Mn P S V N Fe 

YQ450NQR1 0.12 0.45 1.26 0.02 0.01 0.12 0.013 Bal. 

 

As is shown in Fig. 2, the sample is first pre-heated to 1373 K at 20 K/s and then heated to 1573 K at 10 K/s, after 

which the sample temperature is kept constant for 180 seconds to guarantee solute elements distribution are 

homogenized. The sample is then cooled to the deformation temperature with a cooling rate of 3 K/s. The tests are 

performed under temperatures of 1143K, 1173K, 1203K, 1233K, 1293K, 1338K, 1383K and 1433K. The tested 

strain rates are 1s-1, 10s-1, 30s-1 and the total deformation amount is 60%. 

 

Figure.2 Schematic diagram of the experimental heat cycle 

 

3. Results 

Various flow stress curves of YQ450NQR1 micro-alloyed steel at different strain rates are shown in Fig. 3 (a)-(c). 

When strain rate is fixed, the stress first increases with strain and then reach a steady state, which is a common 

sign of elastic-plastic deformation. As the test temperature increases, i.e. 1433K, the stress in the final deformation 

stage would undergo a decrease owing to the softening of materials at elevated temperatures. With the increase in 

strain rate, the stress at certain temperature rises and the high temperature softening behavior disappears.  
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Figure.3 The stress-strain curves of YQ450NQR1 steel bloom at various strain rates 

 

According to relative research proposed by other researchers [11-13], the typical flow stress for metals would 

experience three stages, which is work hardening, dynamic recovery and dynamic recrystallization. With variable 

strain rate and test temperature, the specific curve shapes would change accordingly. The nature in that is because 

lower strain rate would offer longer time for the occurrence of dynamic recovery and dynamic recrystallization. 

While higher deformation temperatures bring more energy regarding grain boundary slip/dislocation as well as 

voids motion [14-17].  

4. Discussion 

4.1 Constitutive analysis 

4.1.1. Establishment of constitutive equation 

Hot deformation of metals is usually activated by thermal phenomenon, which could be described via relevant 

thermodynamic parameters. In the process of metal thermal deformation, flow stress σ is mainly dependent on 

strain rate 𝜀̇ and deformation temperature T. The effects of strain rate 𝜀̇ and deformation temperature T on flow 

stress σ could typically be described by the following kinetic equations[18]. 

At lower deformation state (ασ < 0.8), the relation between flow stress and strain rate could be described in form 

of Eq. (1). 

𝜀̇ = 𝐴1𝜎
𝑛1                                                                                                                           (1) 

 

At higher deformation state (ασ > 1.8), the relation between flow stress and strain rate could be described in form 

of Eq. (2).  

𝜀̇ = 𝐴2𝑒𝑥𝑝⁡(𝛽𝜎)                                                                                                                 (2) 

 

In a later study, some researchers [19-21] considered the influence of thermal deformation activation energy Q as 

well as temperature T. And the relation between flow stress and strain rate could be described in form of Eq. (3).   

𝜀̇ = 𝐴[𝑠𝑖𝑛ℎ⁡(𝛼𝜎)]𝑛𝑒𝑥𝑝⁡(−𝑄 𝑅𝑇⁄ )                                                                                     (3) 
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As is proved by many experimental results [22-25], Eq. (3) could describe the relation between flow stress and strain 

rate efficiently at both low stress and high stress conditions.  

In Eq. (1)-(3), 𝐴1,𝐴2, A, n1, n, α, 𝛽 are material constants which is not dependent on test temperatures but material 

properties, among which the values of α, 𝛽 and n1 are related by Eq. (4) as follows [21]. 

𝛼 =
𝛽

𝑛1
                                                                                                                                (4) 

 

Q is activation energy for hot deformation process, which mainly describes the correlation between work hardening 

and dynamic softening, KJ/mol. 

    T is deformation temperature, K. 

    R is universal gas constant with a value of 8.314 J/(mol·K),  

In 1944, Zener and Hollomon[22] conducted a series of isothermal deformation tests for metals, after which they 

have been able to verify that strain rate and deformation temperature determines the interrelation between stress 

and strain. They described it as Zener–Hollomon coefficient, as is shown as Eq. (5) 

 

𝑍 = 𝜀̇𝑒𝑥𝑝⁡(𝑄 𝑅𝑇⁄ )                                                                                                             (5) 

 

Combining Eq. 4 and Eq.5, it could be noticed that once the values for A, n, α⁡and Q are settled, the flow stress 

under any condition could be solved accordingly, which is a crucial factor for the designing and optimization of 

materials processing technology. 

In order to determine for materials constant for YQ45ONQR1 steel in this study, the β and n1 values should be 

known first, then⁡𝛼⁡value could be calculated by Eq. 4.  

Assuming the inter-relation curves between ln[sinh(ασ)] and ln𝜀̇⁡are reasonably close to linear and parallel to each 

other, the 𝛼 value could be calculated accordingly [23].  

By assuming that activation energy Q is not dependent on deformation temperature T in the calculation region, the 

following Eq. (6)-(8) could be obtained by taking natural logarithm of Eq. (1), Eq. (2) and Eq.(3), respectively. 

𝑙𝑛𝜀̇ = 𝑙𝑛𝐴1 + 𝑛1𝑙𝑛𝜎                                                                                                            (6) 

𝑙𝑛𝜀̇ = 𝑙𝑛𝐴2 + 𝛽𝜎                                                                                                                 (7)  

 

𝑙𝑛𝜀̇ = 𝑙𝑛𝐴 −
𝑄

𝑅𝑇
+ 𝑛𝑙𝑛[sinh⁡(𝛼𝜎)]                                                                                      (8) 

 

Using the hot deformation tests curves from Fig. 3 and implementing the flow stress and strain data into Eq. (6)-

(8). The relationship between⁡𝑙𝑛𝜀̇⁡and 𝑙𝑛𝜎⁡is obtained as Fig. 4. In the next step, the 𝑙𝑛𝜀̇⁡~𝜎 curves are calculated 

as Fig. 5. Obviously both data set show a linear relationship, and the slopes of Eq. (6) and Eq. (7) are the values 
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of n1 and β. Taking linear regression for Eq. (6) and Eq. (7) and averaging the fitted slopes, we obtain that n1 = 

8.65592 and β= 0.06644. Consequently, the value of 𝛼 is determined by Eq. (4), which is 0.00768. 

 
Figure.4 lnε̇⁡~lnσ⁡relation⁡curve 

 

 
Figure.5 𝑙𝑛𝜀̇⁡~𝜎⁡⁡𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛⁡curve 

 

On this basis, Eq. (9) is obtained by taking partial derivatives for Eq. (3). 

𝑄 = 𝑅 {
𝜕𝑙𝑛𝜀̇

𝜕𝑙𝑛⁡[𝑠𝑖𝑛ℎ⁡(𝛼𝜎)]
}
𝑇
{
𝜕𝑙𝑛⁡[𝑠𝑖𝑛ℎ⁡(𝛼𝜎)]

𝜕(1000 𝑇⁄ )
}
𝜀̇
                                                                                (9) 

 

Here we define 𝑄1 = {
𝜕𝑙𝑛𝜀̇

𝜕𝑙𝑛⁡[𝑠𝑖𝑛ℎ⁡(𝛼𝜎)]
}
𝑇
which is slope of the ln[sinh(ασ)] ~ ln𝜀̇⁡linear curve at fixed deformation 

temperature. Then we define 𝑄2= {
𝜕𝑙𝑛⁡[𝑠𝑖𝑛ℎ⁡(𝛼𝜎)]

𝜕(1000 𝑇⁄ )
}
𝜀̇
which is the slope of 1000 𝑇⁄ ~ ln[sinh(ασ)] linear curve under 

fixed strain rate. lnA −
𝑄

𝑅𝑇
⁡is the intercept of the ln[sinh(ασ)] ~ ln𝜀̇ linear curve considering Eq. (8). 

Applying the experimental data of YQ450NQR1 hot deformation tests and combining Eq.(4), Eq. (8) and Eq. (9), 

the ln[sinh(ασ)] ~ ln𝜀̇⁡and 1000 𝑇⁄ ~ ln[sinh(ασ)] linear curve sets are obtained as Fig. 6 and Fig. 7. 
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Figure.6 ln[sinh(ασ)] ~ ln𝜀̇⁡𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛⁡curve 

 

 
Figure.7 1000 𝑇⁄ ~⁡𝑙𝑛[𝑠𝑖𝑛ℎ(𝛼𝜎)]⁡⁡𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛⁡curve 

 

By applying linear regression, averaging slopes of Fig. 6 and Fig. 7, we obtain n=Q1={
𝜕𝑙𝑛𝜀̇

𝜕𝑙𝑛⁡[𝑠𝑖𝑛ℎ⁡(𝛼𝜎)]
}
𝑇
= 6.49330, 

𝑄2= {
𝜕𝑙𝑛⁡[𝑠𝑖𝑛ℎ⁡(𝛼𝜎)]

𝜕(1000 𝑇⁄ )
}
𝜀̇
= 5.05561, Q = 272.93 KJ mol-1. According to Eq. (8), the average value for ln𝐴 −

𝑄

𝑇
 is -

3.83. Furthermore, lnA values under different temperatures are determined on the basis of Q, R and T values. The 

mean value for lnA is 22.52 hence the value of A is 6.03×109. 

Solution for values of 𝛼, n, Q and lnA are repeated using data under various strain condition (𝜀 = 0.14, 0.2, 0.27, 

0.35, 0.42, 0.5, 0.57). The relationships between the calculated materials constant values and true strains are shown 

in Fig. 8. A fifth order polynomial fitting curve is found to be consistent with the influence of strain on material 

constants showing good correlations. The results display agreement with previous related research such as those 

from Li et al. [24] and Silva et al. [25].  
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Figure. 8 The relationship between the n, α, Q and lnA values vs true strains 

 

And the final polynominal relationships regarding n, 𝛼, Q, lnA and strain are shown as Eq. (10)-(13), respectively. 

The fitting coefficients in above equations are listed in Table 2. 

𝑛 = 𝑛1 + 𝑛2𝜀 + 𝑛3𝜀
2 + 𝑛4𝜀

3 + 𝑛5𝜀
4 + 𝑛6𝜀

5                                                                 (10) 

𝛼 = 𝛼1 + 𝛼2𝜀 + 𝛼3𝜀
2 + 𝛼4𝜀

3 + 𝛼5𝜀
4 + 𝛼6𝜀

5                                                                (11) 

𝑄 = 𝑄1 + 𝑄2𝜀 + 𝑄3𝜀
2 +𝑄4𝜀

3 +𝑄5𝜀
4 +𝑄6𝜀

5                                                               (12) 

𝑙𝑛𝐴 = 𝐴1 + 𝐴2𝜀 + 𝐴3𝜀
2 +𝐴4𝜀

3 + 𝐴5𝜀
4 +𝐴6𝜀

5                                                            (13) 

 

Table 2 Coefficients of the polynomial functions 

α A n Q 

𝛼1=0.0109 A1= 23.593 n1= 7.7362 Q1= 189.54 

𝛼2= - 0.0358 A2= 68.302 n2= - 16.153 Q2= 993.72 

𝛼3= 0.1254 A3= 776.07 n3= 79.725 Q3= - 3326.7 

𝛼4= - 0.2761 A4= - 3164.4 n4= - 253.25 Q4= 2845.6 

𝛼5= 0.3495 A5= 5668.9 n5= 437.92 Q5= 6373.5 

𝛼6= -0.1849 A6= -3703.8 n6= -294.74 Q6= -9221.6 
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Combining Eq. (3) and (5), we obtain Eq. (14), 

 

(
𝑍

𝐴
)

1

𝑛
= sinh⁡(𝛼𝜎)                                                                                                               (14) 

 

Hence, flow stress could be expressed in Zenner–Hollomon form (Eq. (15)) based on Eq. (3), Eq. (5) and Eq. (14). 

σ =
1

𝛼
𝑙𝑛 {(

𝑍

𝐴
)

1

𝑛
+ [(

𝑍

𝐴
)

2

𝑛
+ 1]

1

2

} =
1

𝛼
𝑙𝑛 {(

𝜀̇exp⁡(𝑄 𝑅𝑇⁄ )

𝐴
)

1

𝑛
+ [(

𝜀̇exp⁡(𝑄 𝑅𝑇⁄ )

𝐴
)

2

𝑛
+ 1]

1

2

}           (15) 

 

Within the experimental strain⁡𝜀 range of 0-0.6, the stress value could be determined at certain condition with Eq. 

(15).  

4.1.2. Validation of constitutive model 

In order to validate the model prediction precision, 200 groups of tensile tests with 7 levels of strain (𝜀 = 0.15, 

0.20, 0.25, 0.35, 0.40, 0.50, 0.58) are carried out and the experimental stress-strain relationships are obtained. In 

the meantime, the tensile tests are modelled using the constitutive model established above. Finally, the stress-

strian relationships between experiments and modelling are further compared. Fig. 9 shows the correspondence 

between prediction and experiments regarding flow stress. 

 

 
Figure. 9 Comparisons of predicted values and actual values under different deformation conditions 
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As is seen in Fig. 9, the constitutive equation for YQ450NQR1 steel shows good prediction accuracy under most 

of the test conditions. However, Some variation occurs at work hardening regions in flow curves, which has also 

been reported by relevant researchers such as Cai et al. [26] and Lin et al. [27]. The reason for this variation owns to 

the fact that Eq. (1) is only applicable to low stress conditions while n1 value under high stress conditions are 

obtained based on that, which furthers affects the values of α and Q as well as the accuracy of Eq. (15). 

Furthermore, the stability of the constitutive equation for YQ450NQR1 steel is tested using correlation coefficient 

(R, Eq. (16)) and average absolute relative error (AARE, Eq. (17)).  

R =
∑ (𝜎𝑒𝑥𝑝

𝑖 −𝜎̅𝑒𝑥𝑝)(𝜎𝑝
𝑖−𝜎̅𝑝)

𝑖=𝑁
𝑖=1

√∑ (𝜎𝑒𝑥𝑝
𝑖 −𝜎̅𝑒𝑥𝑝)

2 ∑ (𝜎𝑝
𝑖 −𝜎̅𝑝)

2𝑖=𝑁
𝑖=1

𝑖=𝑁
𝑖=1

                                                                                       (16) 

    

AARE =
1

𝑁
∑ |

𝜎𝑒𝑥𝑝
𝑖 −𝜎𝑝

𝑖

𝜎𝑒𝑥𝑝
𝑖 |𝑖=𝑁

𝑖=1 × 100%                                                                                      (17) 

 

Fig. 10 shows the correspondence between prediction and experiments. The calculated R value is 0.988 and AARE 

value is 8.40%, meaning the established constitutive equation for YQ450NQR1 steel is reliable in flow stress 

prediction in the strain range of 0-0.6. 

 
Figure. 10 Comparison between predicted and experimental data 

5. Conclusions 

In this work, the hot deformation behavior of low carbon vanadium micro-alloyed YQ450NQR1 steel is researched 

by performing thermal tests under the condition of temperatures range 1143K-1433K, strain rate of 1s-1, 10s-1, 30s-

1and maximum strain of 0.6. On this basis, a constitutive equation for flow stress prediction is established 

combining experimental data and mathematical solution. The correlation coefficient and the average absolute 

relative error are 0.988% and 8.40%, respectively. Thus, the established constitutive model shows good 

correspondence with experimental data and proves to be helpful in the designing of hot rolling process for 

YQ450NQR1 steel. The research work carried out in this paper offers the theoratical foundation for study of 
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thermal plastic deformation behavior for the low carbon vanadium micro-alloyed with complex shape and 

significacnt deformation. In the future work, the established  model will be further addressed and applied in the 

modelling of steel rolling process using finite element method, based on which, the optimization of rolling process 

parameters (rolling temperatures, deformation extent, strain rate etc.) will be discussed and carried out.  
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