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Abstract: Using the apparatus of traditional differential geometry, the transport theorem is derived 
for the general case of a M-dimensional domain moving in a N-dimensional space, £M N . The 
interesting concepts of curvatures and normals are illustrated with well-known examples of lines, 
surfaces and volumes. The special cases where either the space or the moving subdomain are 
material are discussed. Then, the transport at hypersurfaces of discontinuity is considered. Finally, 
the general local balance equations for continuum of arbitrary dimensions with discontinuities are 
derived. 
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1. Introduction 

The transport theorem is a fundamental theorem used in formulating the basic conservation and 
balance laws in continuum mechanics (mass, momentum, and energy), which are adopted from 
classical mechanics and thermodynamics where the system approach is normally followed. 
Analogous to the classical Reynolds transport in continuum mechanics, the surface transport theorem 
is essential in the study of thin films undergoing large deformations, in epitaxial growth and in the 
study of phase boundary evolution. It is also important in the modeling of a singular surface which 
carries a certain structure of its own as it migrates. There is a vast literature on transport theorem and 
many references can be found in [1–3]. 

Betounes formulated and proved the general transport theorem associated with the motion of 
an arbitrary p -dimensional submanifold in a n -dimensional semi-Riemannian manifold [4]. He 
used the language and notation of modern differential geometry on manifolds e.g., [5,6], which is 
inconvenient for engineering and physics applications. Here, we formulate and prove the theorem 
using the language and concepts of traditional differential geometry and tensor calculus (e.g., [7,8]). 
Moreover, we apply the transport theorem to hypersurfaces of discontinuities and discuss the 
applications in continuum mechanics. 

Petryk and Mroz derived the expressions for the first- and second-time derivatives of integrals 
and functionals defined on volume and surface domains which vary in time [9]. Their result is more 
general then the classical transport theorem as it pertains to piecewise regular surfaces and contains 
the edge terms. Cermelli et al. proved a transport theorem for smooth surfaces which evolve with 
time in Euclidean space, expressed in terms of the parameter-independent derivatives [10]. Recently, 
Sequin et al. extended the 3D transport theorem to rough domains of integration [11]. 

The need for the transport theorem arises in different contexts and consequently requires 
different derivation methods. The space-time approach [12] was used in [13] to derive the transport 
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theorem for moving surface in a moving 3D region. A general transport theorem for moving surfaces 
based on the theory of generalized derivatives in n-dimensional space is presented in [14]. 

Two interesting attempts to present a unified approach to the topic of continuum mechanics on 
arbitrarily moving domains are given in [15,16]. They point out that it is desirable to formulate the 
transport theorem in a single unified way by using the classical approach expressed in terms of 
standards quantities from differential geometry and explicitly displaying the features that are 
common to all submanifolds, regardless of their finite dimensions. 

This paper is organized as follows: In Sections 2 and 3, we consider geometry and kinematics in 
higher dimensions with special emphasis on the definitions of curvature and normals. Section 4 
contains the derivation of the generalized transport theorem. In Section 5, we illustrate the concepts 
with well-known examples of lines, surfaces and volumes. In Section 6, we consider dependence of 
parametrization, i.e., on the choice of coordinates. In Sections 7–9, we consider the cases where the 
space and/or the moving subdomain are material in the sense of material in continuum mechanics. 
In Section 10, we consider a moving domain with hypersurfaces of discontinuity. Finally, in Section 
11, we use the transport theorem to formulate the general local balance equations for continuum of 
arbitrary dimensions with discontinuities. 

2. Geometry of ( ) ÍM NV t V  

Here and throughout , ,i j k  assume values 1  to N , the Greek letters a , b , g , d , L ¸ D  
and G  assume values from 1  to M ; r , s  range from 1  to 1-M , and p , t  range from 1  
to -N M . The range and the summation convention will apply unless stated otherwise. 

Consider a N-dimensional Riemannian space NV  with positive definite metric tensor mng , for 

an allowable coordinate system kx , 1, 2,..,=k N . We shall denote a typical point in NV  by ( )kxx

. Vectors 

¶
=

¶
k kx

xg   

represent the basis in NV . The reciprocal basis kg is defined by d⋅ =k k
j jg g , , 1, 2,...,=j k N . 

Let MV  be a subspace of NV , i.e., ÍM NV V . Further, we assume that the Riemannian subspace 

MV  changes it position continuously with respect to time t  in NV . We emphasize it by writing 

( )MV t . Let  ( 1,2,..., )a a=u M  be its intrinsic coordinate system: 

( ) :MV t   ( , )=x x u t , (1) 

where  or  au u  we denote a typical point of ( )MV t . It is possible to rewrite in component form, i.e., 

( , )a=k kx x u t , rank
a

æ ö¶ ÷ç ÷ç =÷ç ÷ç ÷ç¶è ø

kx M
u

. (2) 

Equivalently, 

( )( ) :     ( , ) 0,     1,2,...,p p= = -k
MV t f x t N M , (3) 

where 

( )
rank

pæ ö¶ ÷ç ÷ç = -÷ç ÷ç ÷ç ¶è øk
f N M
x

. (4) 

To illustrate dual representations (2) and (3), consider the representations of 1( )V t  in 3E . The 
family of curves in 3E , given in the parametric form 

1 ( )cos=x a t u ,  2 ( )sin=x a t u , 3 ( )sin 2=x b t u ,  
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may be represented as the intersection of circular cylinders: 

(1) 1 2 1 2 2 2 2( , ; ) ( ) ( ) ( ) 0= + - =f x x t x x a t ,  

and as hyperbolic paraboloids: 
(2) 1 2 3 1 2 3

2
( )( , , ; ) 0

( )
= - =
b tf x x x t x x x
a t

.  

Each of the two representations has advantages and further we shall make use of both. While 
the representation (2) provides a convenient description of kinematics of ( )MV t , it is dependent on 
parametrization. On the other hand, the representation (3) is independent of parameterization, i.e., 
independent of the choice of intrinsic coordinate system au . It means that any transformation of 
intrinsic coordinate systems: 

( , )u u U ta a L= ,         ( , ) 0uJ U t
U

a
L

L
¶

= ¹
¶

,  

does not change the representation (3). Consequently, the vectors ( )grad ,   1,2,...,p p= -f N M , are 

independent of parameterization au . Moreover, they are linearly independent because of (4), and 
may be taken as the base in -N MV , the complement of ( )MV t  in NV . 

Consider a different parametrization U  such that ( , )= tu u U . Then, 

( ) :    ( , ) ( ( , ), )= =
MV t t t tx x U x u U . (5) 

From this, we have: 
u
U

a

G aG
¶

¶
A = a ,  

where 

( , )g
a a a

æ ö¶ ¶ ÷ç ÷ç= = ÷ç ÷ç ÷ç¶ ¶è ø

x ixu t
u u

a  and ( , )
ixU t

U U
xD

G G G

æ ö¶ ¶ ÷ç ÷ç= = ÷ç ÷ç ÷ç¶ ¶è ø
A 

 
  

are the basis vectors of ( )MV t  with respect to coordinate systems au  and U G , respectively. 

Moreover, since ( , )akx u t  in (2) satisfies (3), it follows that: 

( )
( )grad 0

p
p

aa
¶ ¶

= ⋅ =
¶ ¶

k

k
f x f
x u

a , (6) 

whence we conclude that ( )grad pf  are orthogonal to aa , and hence to any vector in ( )MV t . They 

are also orthogonal to covariant base vectors aa  in ( )MV t defined through the relations 
a a

b bd⋅ =a a . Since the set of vectors aa  and ( )grad pf  are linearly independent, they may be taken 

as the base vectors of the space NV . It is important to notice that unit vectors 
( ) ( ) ( )grad gradp p p=n f f   

are also independent of parameterization. Moreover, from (8), it follows that: 

( ) 0p
a⋅ =n a . (7) 

Further, we make use of vectors ( )pn , reciprocal to ( )pn  in -N MV , defined by: 

( )
( )

p p
s sd⋅ =n n , , 1,....,p s= -N M .  

Here, ( )pn  and ( )pn  are both orthogonal to ( )MV t , but neither set need not be orthonormal. In 

-N MV , we may consider ( )pn  (or ( )pn ) as non-holonomic basis. Let 

( ) ( )pt p t= ⋅n n n ,     pt tp=n n ,   det( ) 0pt ¹n .  
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Then, upon defining ( ) ( )p t pt⋅ =nn n , it follows that: 

pt p
ts sd=n n ,  ( )

( )
t

p pt= nn n ,   ( )
( )

p pt
t= nn n .  

Coefficients ptn  and ptn  may be used as a tool for raising and lowering indices for the 

quantities defined in the above defined non-holonomic basis. Note that ptn  do not depend on 
parameterization of ( )MV t , and neither do the coefficients tsn , nor vectors ( )pn . 

Then, vectors kg  at the points x of ( )MV t  may be decomposed as: 

( )
( ), a p

a p= + nk k kx ng a ;  ,a aa
¶

= = ⋅
¶

k
k kxx

u
g a ,  ( ) ( )p p= ⋅nk kn g .  

This relation is of crucial importance for decomposition of any tensor quantity defined on ( )MV t into 
tangent components in ( )MV t  and normal components in -N MV . 

We will often make use of the relation between metric tensors of ( )MV t  defined in two 

coordinate systems au  and UL , i.e., the relation 

( , )
k l

kl
x x u uA U t g a
U U U U

g d
G

LD gdD D L D
¶ ¶ ¶ ¶

= =
¶ ¶ ¶ ¶

 
. (8) 

Then, 

2( , )A A U t J aL == ,       ( , ) det( ) 0A U t AL
GD= > . (9) 

The metric tensor ( )aba t  and the volume element ( ) ( )Mdv t of ( )MV t  are given by the expressions 

( )ab a b
¶ ¶

=
¶ ¶

k l

kl
x xa t g
u u

,    ( ) det( ) 0ab= >a t a ,   1 2
( ) ( )( ) ( )t=M Mdv t a d t ,  

where ( ) ( )( ) at =M ad t d u  is the extension [8]. 

3. Kinematics of ( ) ÍM NV t V  

Making use of (3), we obtain: 
( )

( )grad 0
p

p¶
+ ⋅

¶
f f
t

v = ,  

where d dt=v x . By d dt  we denote the time derivative along a =u const . Note that: 

( )
( ) ( )

( )
1

grad

p
p p

p

¶
= ⋅ =-

¶
fV
tf

v n , (10) 

represents the scalar-normal velocity in ( )pn  direction which is independent of parameterization. 
Then, we can write: 

( ) ( )
( ) tan ( )

a p p
a p p= + = +v V Vv a n v n , (11) 

where 

tan
a

a= vv a   

denotes the component of v  in ( )MV t . This notation for vectors in ( )MV t is used throughout the 
paper. Obviously, it is dependent on parameterization since aa are. 

Note that ( )
( )

p
pnV  is independent of parameterization, so that v  depends on 

parameterizations only through tanv . This property of tanv is very important for writing various 
forms of transport theorem. 
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We will consider the coordinate system AU  as a convected system in ( )MV t . In continuum 
mechanics, the terms material or Lagrangian coordinates are used for convected coordinates, since 
the material particles can be labeled by these coordinates and, as such, they do not change their values 
during the motion of the material body. Note that, for a moving non-material domain, the choice of 
convected coordinates is arbitrary. However, once chosen, they remain fixed. The final result-the 
transport theorem-will be expressed in terms independent of the choice of coordinates. 

At any time t , we consider the relation 

( , )u u U ta a L= ,      ( , ) 0uJ U t
U

a
L

L
¶

= ¹
¶

,  

as the coordinate transformation between the convected coordinate system UL  and intrinsic 
coordinate system au . Further, we consider 

¶
=

¶



t
xV   

as the velocity of ( )Î MV tx  in NV  along the path of convected coordinates UL , i.e., U CL L= , 

where CL  are some constants. Generally, we denote by d dt  the time derivative of any quantity 

( , )U tLT , while keeping U CL L= . Of course, 

( , ) ( , )U t U t
t t

L Ld
d

¶
=

¶
T T .  

In particular: d d = ¶ ¶ t tx x . 
From (5), we obtain the relation between velocities v  and V  of the point ( )Î MV tx : 

a a

aa
d
d

¶ ¶ ¶ ¶
= = = + = +

¶ ¶ ¶¶

 d u u
t t dt t tu
x x x xV v a . (12) 

From (12), (10), and (7), we conclude that: 

( )
( ) ( ) ( )

( )
1V

grad

p
p p p

p

¶
= ⋅ = ⋅ =-

¶
f
tf

V n nv , (13) 

thus proving that the scalar-normal velocity in ( )pn  direction is independent of parameterization. 
Instead of (13), a more compact representation is given by: 

( )
( ) tan tanV ;    

a
p a

p a

æ ö¶ ÷ç ÷ç= + = + ÷ç ÷ç ¶ ÷çè ø
n uv

t
V V V a . (14) 

Alternatively, 

tan ;        u UV V v
t u

a L
L L a

L a

æ ö¶ ¶÷ç ÷ç= = + ÷ç ÷ç ¶ ÷ç ¶è ø
V Α .  

We may also write: 
( )( )

( ) tan ( )V ;      V V tp
p p pt= + =n nV V .  

In particular, for the hypersurface ( 1= -M N ): 11
11 1= =n n , and (1)

(1)V V= . 

4. Generalized Transport Theorem in NV  

Let ( , )j tx be defined on ( )MR t . We want to calculate 

( )
( )

( , )d
j

d ò
M

M
R t

t dv
t

x   



Mathematics 2020, 8, 899 6 of 21 

 

along the path of convected coordinates UL . Since ( ) ( )a a
ud u d U
U

a
a L

L
¶

=
¶

, then according to [8] (p. 

262): 

( ) ( ) ( ) ( )d = = =M M a av ad a d u A d Ua Lt . (15) 

Next, making use of (5), we write: 

( )( , ) ( , ), , ( , )( )t t t t tj j j= =x x u U U .  

Thus, in view of this and (15) we have: 

( ) ( ) ( )
( )

( , ) ( ) a ad d j
j j j

d d
é ù¶ ¶
ê ú= = +
ê ú¶ ¶ë û

ò ò ò
 

M M M

M a a
R t R R

t dv A d U A A d U
t t t t

x , (16) 

where MR  is defined with respect to convected coordinates UL , and therefore the integration with 

respect to UL is independent of t . Now, we show in Appendix A, that: 

( )( )
V tan ( )

1 1 div V
22 M

AAA AA A K
t t tA

VLD pLD
p

¶¶ ¶
= = = -

¶ ¶ ¶
, (17) 

where 

V tandiv V , V ,
M

A aV LD ab
L D a b= = ,  

and 

( ) )(K ALDp LD pW= ,  

where )(LD pW  is defined in Appendix A. 

The geometric meaning of ( )pK  is evident from 

( ) ( )
( ) ( ) ( ) ( ) ( )D

M MV t V tK
U u
p pL a

p p pL a

¶ ¶
=- ⋅ = - =- ⋅ = -

¶ ¶
A a

n n
n niv div , (18) 

which is independent of parameterization. Further, 

( )

M

( )
( )

( ) ( )
V( ) tan

( )

( , ) ( , ) grad grad V V

V , V grad Grad V  ,

t t
t t t t

t t n

x V n

n V

L p
L p

L p p
L p

p

d j j
j j j j

d
j j j

j j j

¶ ¶ ¶
= = + ⋅ = + ⋅ +

¶ ¶ ¶
¶ ¶ ¶

= + + ⋅ = + ⋅ +
¶ ¶ ¶

U A

  

where 

MVGrad , L
Lj j= A  and ( )

( )
grad p

p

j
j

¶
= ⋅

¶
n

n
.  

The expression 

( )

( )
V p

p

j j
j

¶ ¶
= +

¶ ¶



t n
  

represents the normal time derivative of j  following convected ( )MV t . Clearly, j


 is independent 
of parameterization. 

Remark 1. To justify its name, we write ( )
( )V p
pn  in a unique compact invariant form as: 

( )
n ( )V V p

p=n n ,  
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where n  is a unit vector orthogonal to ( )MR t . Then, we have: 

( ) ( ) ( ) ( )
n ( ) ( )V V V V Vp r p r

p r pr= ⋅ =n n n ,  

and ( )
( ) nV Vp
p=n n . Accordingly, we have simple expression for V : tan nV= +V V n . Since tan 0⋅ =V n

, we have nV = ⋅V n , which is of the form of classical expression for the scalar normal-velocity of the surface 
evolving in three dimensional Euclidean space. Then: 

( ) ( )
( ) n

( )
V V grad V gradp p

p
p

j j j j
j j j

¶ ¶ ¶ ¶
= + = + ⋅ = + ⋅

¶ ¶ ¶ ¶
n n



t t tn
.  

The case 3=N  has been discussed previously in [10,15]. 

Remark 2. Making use of 
a

a ¶

¶

u
U

G
G

a = A , it easy to see that: 

M MM MV VV ( ) tan V ( ) tanGrad , = , grad ,         Div divt tV Va
aj j j jG

G= = =A a .  

Therefore, 

M MV Vtan tan( , ) ( , ) Grad gradd
j j j j j j

d
¶

= = + ⋅ = + ⋅
¶

x V V
  t t

t t
U . (19) 

After substituting (18) and (19) into (16), we obtain: 

( )

( )

M M

M M

( )
( )

( )
V Vtan ( ) ( )

( )
tan V ( ) V ( ) tan ( ) ( )

( )

( , )

Grad Div V

grad div V  .

M

M

M

M
R t

R

t t M
R t

t dv
t

K A d U

K dv

V V

V V

p a
p b

p
p

d
j

d

j j j

j j j

é ùæ ö÷çê ú= + ⋅ + -÷ç ÷çê úè øë û

é ùæ ö÷çê ú= + ⋅ + -÷ç ÷çê úè øë û

ò

ò

ò

x






tan   

However, 

M M Mtan V ( ) V ( ) V ( )grad div div ( )j j j⋅ + =V V Vt t ttan tan ,  

so that 

M
( )

( ) ( ) V ( ) tan ( )
( ) ( )

( , ) V div ( )p
p

d
j j j j

d

é ùæ ö÷çê ú= - +÷ç ÷çê úè øë û
ò ò



M M

M t M
R t R t

t dv K dv
t

x V . (20) 

Further, using divergence theorem we obtain (when the boundary consists of “material” points 
defined by convected coordinates, see Appendix B): 

( )
( ) ( ) ( ) tan ( 1) ( 1)

( ) ( ) ( )
( , ) V p

p
d

j j j j
d - -

¶

æ ö÷ç= - + ⋅÷ç ÷çè øò ò ò


M M M

M M M M
R t R t R t

t dv K dv dv
t

x V ν , (21) 

where ( 1)-Mν  is normal to ( )¶ MR t  but tangent to ( )MR t . The scalar normal velocity of 

( ) ( )¶ ÌM MR t R t , 

tan ( 1)Vn -= ⋅ MV ν ,  

is intrinsic to the motion of ( )¶ MR t . (See [10] for the case 3=N ). Finally, the transport theorem with 
respect to convective coordinate reads: 
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( )
( ) ( ) ( ) ( 1)

( ) ( ) ( )
( , ) V Vp

p n
d

j j j j
d -

¶

æ ö÷ç= - +÷ç ÷çè øò ò ò


M M M

M M M
R t R t R t

t dv K dv dv
t

x  (22) 

We emphasize that the first integral is intrinsic to ( )MR t , while the second integral is intrinsic with 
respect to ( )¶ MR t . Since the first integral on the right-hand side of (22) is invariant to any 

parameterization we may equally apply it for parameters au . In this case, the scalar normal velocity 
of ( )¶ MR t with respect to parameters au , i.e., ( 1)( ) -¶ ⋅

M MR t νv  needs to be used (Appendix B). Then, 

we write the generalized transport theorem with respect to non-convective coordinates au  in the 
form: 

( )
( ) ( ) ( ) ( 1) ( 1)( )

( ) ( ) ( )
( , ) V p

p
d

j j j j
d - -¶

¶

æ ö÷ç= - + ⋅÷ç ÷çè øò ò ò


M

M M M

M M M MR t
R t R t R t

t dv K dv dv
t

x νv  (23) 

5. Examples 

In this section, we consider familiar special cases and motivate the subsequent analysis of 
material domains and propagating discontinuity fronts. The section ends with the analysis of the 
capillary flow problem, which encompasses many of the special cases.  

In all the cases below, the transport theorems holds also for the coordinates au , i.e., (22), when 
we substitute td d  with d dt  and tanVn = ⋅ ⋅V Vν ν= , with ( 1)( ) -¶ ⋅

M MR t νv , as defined in 

Appendix B. 

5.1. 3D Domain Moving in 3D Space 

3M N= = , 0=K  and (0)V 0= . Let 3 ( ) ( )R t V t= , 3 ( ) ( )R t V t¶ = ¶ , (3)dV dV=  and 

(2)dV da= . Then, from (22): 

( ) ( ) ( )
( , ) V

V t V t V t

d t dV dV da
dt t n

j
j j

¶

¶
= +

¶ò ò òx ,  

where tanVn = ⋅V ν ; ν  is unit vector in ( )V t  orthogonal to ( )V t¶  [1,10,12,13].   
On the other hand, the familiar form of the transport theorem for the material body V t( )  and 

the material field ( , )tF x  given per unit mass [ ( , ) ( , ) ( , )t t tj r F=x x x  where ( , )tr x  is mass density], 
reads: 

( ) ( ) ( )
( , )

V t V t V t

d dt dV dV dV
dt dt t

F
j rF r

¶
= =

¶ò ò òx . (24) 

The volume V t( )  in (24) is the material volume and the motion of the each material point , t( )xv is 
fully defined as the motion of point mass , t dVr( )x . 

5.2. Surface Moving in 3D Space 

2 ;  3M N= = . Let: 2 ( ) ( )=R t A t  with unit normal n , (1) ( )A tK K= = - ndiv . Then, from (22), 

with (1) =dv ds , we have: 

( ) ( ) ( )
( , ) gradn

A t A t A t

d t dA V VK dA V ds
dt t n

j
j j j j

¶

æ ö¶ ÷ç= + ⋅ - +÷ç ÷çè ø¶ò ò òx n  , (25) 

5.3. Line Moving in a 3D Space 

1=M , 2- =N M . Let 1 2( ) ( )s t s s s< <  be the arc length. Equivalently, the intersection of 

surfaces ( ) ( )pS t : ( ) ( , ) 0p =kf x t , 1,2,p=  defines ( )s t . We denote by ( )pn  and 
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1( ) ( ) ( )p p= - R tK div n  the unit normal to ( ) ( )pS t  and its total curvature. ( )V p  is defined through 

(13). Then, from (22), we have: 
2
1

( ) ( )
( ) ( )

( ) ( )
( , ) grad V s

s
s t s t

d t ds K ds V
dt t

p p
p p n

j
j j j j

æ ö¶ ÷ç= + ⋅ - +÷ç ÷çè ø¶ò òx n V .  

5.4. Closed Line Moving in a 3D Space 

Define the unit tangent, normal, and binormal, ,   and ,t m b  in the standard way, the curvature 

k  ( ( )
( )K p
p k=n m ) and ( )

n ( )V V m bV Vn np
p= =( + )m b . Then: 

, gradm b m
s t s t

d t ds V V V ds
dt t

j
j j j k

( ) ( )

æ ö¶ ÷ç( ) = +( + )⋅ - ÷ç ÷çè ø¶ò òx m b  .  

As a special case, we compute the change of the total line energy arising from the line energy 
density , constanttj s( )º =x : 

m
s t s t

d ds V ds
dt

( ) ( )

=-ò ò s s k . (26) 

In anticipation of the next example, we establish the relationship between the normal line 
velocity mV m  and one of the surfaces. Let the surface with the normal 2( )n  be a material surface, 

moving with the velocity (2)w . The line then glides on this surface with the velocity 2νx ( )  relative 
to the surface (2). The unit normal-tangent vectors point outside the respective surfaces: 

1 1 2 2;     ν ν( ) ( ) ( ) ( )=- ´ = ´n t n t .  

The normal component of the line velocity the normal-tangent component relative to the surface (1) 
are then: 

2 2 1;     VmV
(2) ( ) (2) ( ) ( )é ù é ù= + ⋅ = + ⋅ê ú ê úë û ë ûνν ν νx xw m w . (27) 

5.5. Interface Energies for Liquid Drop on a Solid Surface 

The free liquid–gas interface ( )a t  has the unit normal 1( )n  pointing outside the liquid and 

interface energy g . The drop slides on the solid (rigid) surface ( )A t  with the unit normal 2( )n
pointing inside the solid and outside the liquid. The difference between solid-liquid and solid-gas 
interface energies is Dg . The velocities of two surfaces are denoted 2 and (1) ( )w w . The total interface 
energy can be written as: 

a t A t
da dAG g Dg

( ) ( )

= +ò ò .  

The rate of change of the 1st integral is given by (25). The boundary of the 2nd domain A t¶ ( )  
now represents the line of discontinuity, so that the rate of change of the 2nd integral is 

( )A t s t

d dA ds
dt

Dg Dgx
( )

=ò ò . (28) 

Then, from (25) and (28): 

1 1 2 1

( ) ( ) ( )a t s t s t

d Kda ds ds
dt

( ) ( ) (2) ( ) ( )é ù=- ⋅ + + ⋅ +ê úë ûò ò ò 
G

g g x Dg xw n w ν ν , (29) 
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where K  is twice the mean curvature of the surface a t( ) . 

5.6. Capillary Flow 

We consider an incompressible liquid flowing over a rigid solid and the surrounded by a gas 
with negligible viscosity and mass density, so that, without loss of generality, we assume the uniform 
vanishing pressure in the gas. The motion of the solid surface (2)w  is prescribed and the triple line 
glides on the solid surface with the relative velocity 2( )xv . 

The total energy of the system can be written as the sum of the bulk energy (kinetic + 
gravitational potential), the interface energies and the line energy: 

1
2

V t a t A t s t
E dV da dA ds

( ) ( ) ( ) ( )

é ù= ⋅ + ( ) + + +ê úë ûò ò ò òr ry g Dg sxv v ,   

where y( )x  is the gravitational potential. Although the liquid–gas interface is not a material surface, 
the normal component of its velocity is identical to corresponding component of the material velocity 
of the fluid: 

1 1 1( ) ( ) ( )⋅ = ⋅w n nv .  

Using (24), (26), (27) and (29), the rate of change of the total energy is 

1

2 1 2 1

grad

,

v t a t

s t s t

dE d dv K da
dt dt

ds ds

( )

( ) ( )

( ) ( ) ( ) (2) ( )

( ) ( )

é ù
ê ú= + ⋅ - ⋅
ê úë û

é ù+ ⋅ + - ⋅ + ⋅ê úë û

ò ò

ò ò 

r y g

g Dg sk x g

n

ν ν ν m w ν

v
v v

 (30) 

where we have taken into account that for the rigid body motion (2)w : 

0
s t

dsk (2)

( )

⋅ =ò w m .  

The last term in (30) is the correction arising from the rigid body motion of the whole assembly. To 
illustrate that point, consider a uniform translation .const(2) =w  The last term in (30) is then: 

1 1

s t a t

ds K da(2) ( ) (2) ( )

( ) ( )

⋅ = ⋅ò òg gw ν w n .  

The liquid–gas surface contribution in (30) (for pure translation of the solid substrate) can then be 
written as: 

1

a t

K da( ) (2)

( )

- ⋅( - )ò g n wv .  

The energy balance requires that the total power input P  be equal to the sum of the rate of total 
energy and dissipation rate D . We include the incompressibility condition, div 0( ) =v , with the 
Lagrange multiplier field p  which is recognized as the pressure in the fluid: 

div
A t v t

dEP dA D p dv
dt

( ) ( )

= ⋅ = + - ( )ò òT v v , (31) 

where T  represents the traction vector exerted by the solid on the liquid. We assume, without loss 
of generality, that the pressure in the (inviscid) gas vanishes, so that the traction on ( )a t  vanishes. 

The flow at the re-entrant corner where the two surfaces intersect is singular (Taylor 1960). 
Within the sharp interface model the typical solution is to allow slip in some vicinity of the triple line 
[17]. Thus, at the solid surface we allow for slip, but not separation/penetration: 
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2 0( ) (2)⋅( - )=n wv . (32) 

The dissipation includes viscous dissipation in the bulk and the dissipation at the triple line: 

: grad
v t s t

dv Q ds
( ) ( )

= ( ) +ò òτ  x=  v , (33) 

where τ  is the viscous stress (deviatoric for incompressible fluid: tr 0τ( )= ) and Q  is the power 
conjugate of the triple line glide. Although we allow the slip at the solid surface, the dissipation (33) 
does not include this slip, owing to the choice of the external power input: ⋅T v . Had we represented 
the external power as 2( )⋅T w , the slip dissipation would have to be included. We will shortly see that 
the triple line dissipation is necessary if the experimentally observed difference between advancing 
and receding triple lines is to be described. The 2nd law of thermodynamics for isothermal processes 
reduces to the requirement that dissipation be positive. Assuming that the constitutive law for the 
fluid satisfies this requirement on its own (as it does for Newtonian fluids), it follows that the triple 
line force Q  must have the same sign as the triple line glide x . The simplest linear constitutive law 
is    0Q C Cx= ( > ) . 

Upon substitution of (30) and (33) into (31) and some manipulation, we obtain the power balance 
equation: 

2

1 1

2 1 2 1

τ

grad div τ τ

.

A t

v t a t

s t s t

p dA

d p dv p K da
dt

Q ds ds

r r y g

g Dg sk x g

( )

( )

( ) ( )

( ) ( )

( ) ( ) ( ) (2) ( )

( ) ( )

é ù- ⋅( - ) ⋅ê úë û

é ù é ùê ú= + - ( - ) ⋅ + ⋅( - )- ⋅ê úë ûê úë û

é ù+ ⋅ + - ⋅ + + ⋅ê úë û

ò

ò ò

ò ò

n I

I n I n

ν ν ν m w ν

T v

v
v v

 

 
(34) 

 

The simplest method for deriving the strong form of governing equations is to formulate the 
weak form directly via the Principle of virtual power (PVP) [18,19]. Application of the PVP yields the 
following governing equations and boundary conditions: 

• The natural boundary condition on ( )A t : 

2T τ p( )= ⋅( - )n I .  

• The governing (Cauchy) equations of motion in v t( ) : 

grad div τ 0d p
dt

r r y+ - ( - )=
v I .  

• The capillary jump in normal stress across ( )a t : τ p Kg- =I I . The deviatoric nature of the 
viscous stress τ  then implies that on ( )a t : 

τ 0;   p Kg= =- .  

The sign in the pressure jump condition is the consequence of the choice of 1( )n  as outward normal 
to the liquid surface. 
• The contact angle condition: cos cos 0Qg q Dg sk b+ + + = ; with the contact angle q : 

2 1 cosν ν q( ) ( )⋅ = ; and the angle between the line normal and inside tangent 2( )(- )ν : 
2 cosν b( )- ⋅ =m . This condition can be written with reference to the equilibrium contact angle: 

0 0
coscos cos ;         cosQ Dg sk b

g q q q
g

+
= ( - ) =- . (35) 
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In relation to (35) we note that, in the absence of line energy ( 0s = ), the equilibrium contact angle 
satisfies the standard condition 

/ /
0cos solid gas solid liquidg gDg
q

g g

-
=- = .  

Moreover, from (35) for the advancing contact line 

00 0Qx q q>  >  > .  

Conversely, for the receding contact line the contact angle is smaller than the equilibrium contact 
angle. This is consistent with experimental observations [20]. Moreover, failure to include the triple 
line dissipation implies that the contact angle is always equal to the equilibrium one [21], which is in 
direct contradiction to experimental results. 

Finally, we note that to complete the formulation, a definition of the slip constitutive law on 
( )A t  is needed. This is beyond the scope of the current paper. We only note that such definition will 

not change any of the derived equations. 

6. Transport Theorem Depending on Parametrization 

In some cases, it is useful to use transport theorem in terms depending on parameterization. This 
can be done simply if we substitute (19), now written as: 

tan( , ) gradd
j j j

d
= + ⋅x V



MVt
t

  

into (20). It is convenient to put it in more familiar form: 

( )
( )

( )
tan tan ( ) ( ) ( )

( )

( , )

( , ) rad iv V

M

M M

M

M
R t

V V t M
R t

t dv
t

t K dv
t

V V p
p

d
j

d

dj
j j j

d
é ù
ê ú= - ⋅ + -
ê úë û

ò

ò

x

x
g d

  

However: ( )tan ( ) ( ) tan ( ) tangrad div divj j j- ⋅ + =V V V
M M MV t V t V t , so that 

( )( )
( ) ( ) ( ) ( )

( ) ( )
( , ) div V p

p
d d

j j j
d d

é ù
ê ú= + -
ê úë û

ò ò V
M

M M

M V t M
R t R t

t dv K dv
t t

x   

Further, 

( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( )

V V div div V grad V

div V .

p p p p
p p p p

p
p

- = = - ⋅ =

=

M M M

M

V t V t V t

V t

K n n n

n
  

Hence, ( )( ) ( )
( ) tan ( ) ( ) tan ( ) ( )div V div V divp p

p p- = + =V V V
M M MV t V t V tK n , so that 

( ) ( ) ( )
( ) ( )

( , )( , ) divd dj
j j

d d
é ù
ê ú= +
ê úë û

ò ò V
M

M M

M V t M
R t R t

tt dv dv
t t

xx .  

7. Migrating ( )MV t  in N-Dimensional Fluid 

The transport relation given by (23) permits us to consider several particular cases of importance 
in continuum mechanics in a unified way. We consider N-dimensional fluid in analogy to 3-
dimensional fluid. First, we denote by ( , )w x t the velocity of the fluid. We may write it as: 

( )
( )W p
p= +w n wtan ,  
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where 

wa
a=wtan a .  

Then, = -wrv v  represent is the relative velocities of motion of ( )MV t with respect to the fluid. We 
may decompose it as: 

( ) ( )
( ) tan(V )p p
p= - - + -w n wr W tanv v = v .  

Now, looking at the transport theorem the only term which may be influenced by motion of the fluid 
is ( 1)( ) -¶ ⋅ MMR t nv . For definiteness we write: 

( )¶= -w
Mr R tv v   and   ( 1)( ) -¶ = ⋅ M

M

mig
rR tV nv ,  

for the relative velocities of motion and normal migrational velocity of ( )¶ MR t with respect to the 
fluid. Then, since ( 1)( ) 0p -⋅ =n Mn , 

( 1) ( 1) ( 1)( )( ) - - -¶¶ = ⋅ = ⋅ - ⋅wM M MMM

mig
r R tR tV tann n nv v ,  

and hence: 

( 1) ( 1)( ) ( )- -¶ ¶⋅ = + ⋅wM MM M

mig
R t R tV tann nv   

Upon substituting this into (23), we obtain: 

( )

( )
( )

( )
( ) ( ) ( 1) ( 1)( )

( ) ( )

( , )

V .p
p

j

j j j - -¶
¶

=

æ ö÷ç - + + ⋅÷ç ÷çè ø

ò

ò ò w


M

M
M M

M
R t

mig
M M MR t

R t R t

d t dv
dt

K dv V dvtan n

x

  

Next, we use the divergence theorem, in the form 

( 1) ( 1) ( ) ( )
( ) ( )

( )j j- -
¶

⋅ =ò òw w
M

M M

M M t M
R t R t

dv dvtan V tandivn , 
 

to obtain the transport theorem for migrating ( )MV t in the fluid, in the form 

( )
( )

( )
( ) ( ) ( 1)( )

( ) ( )

( , )

V ( ) .

M

M M
M M

M
R t

mig
V M MR t

R t R t

d t dv
dt

K dv V dvwp
p

j

j j j j -¶
¶

æ ö÷ç= - + +÷ç ÷çè ø

ò

ò ò

x



tandiv

 (36) 

8. Migrating Normal Time Derivative ( )MV t  in the Fluid 

The normal time derivative of j  following the convected ( )MV t  

( )

( )
V p

p

j j
j

¶ ¶
= +

¶ ¶



t n
  

has to be modified for the migration ( )MV t  through the fluid. We start from (36), rewritten as: 

( )
( )

( )
( ) ( ) ( ) ( ) ( )( )

( ) ( )

( , )

V grad div .p
p

j

j j j j j ¶
¶

=

æ ö÷ç - + ⋅ + +÷ç ÷çè ø

ò

ò òw w


M

M M M
M M

M
R t

mig
V t V t M MR t

R t R t

d t dv
dt

K dv V dvtan tan

x

  

Taking into account: 
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( )( ) ( )
, , , ( ) ( )

( )
grad = grada p p

a p
p

j
j j j j

¶
¶ = + = +

¶
n n

M
k k k

k k V tx n
n

g a ,  

it follows: ( )grad gradj j⋅ = ⋅w w
MV t tan tan  (since ( ) 0p ⋅ =n wtan ). Therefore, 

( )

( )
( )

( )

( )
( )

grad V grad

grad V grad  ,

p

p

p
p

j j
j j j

j j
j j

¶ ¶
+ ⋅ = + + ⋅ =

¶ ¶

¶ ¶
= + ⋅ + = + ⋅

¶ ¶

w w

n w



MV t t

t t

tan tan

tan

n

V
  

where 

( )
( )V p
p +n wtanV =   

represents the migrational normal velocity for ( )MV t  computed relative to the fluid. Indeed, relative 
to the fluid: 

( ) ( )
( )(V )p p
p- = -w nwV .  

Define the normal time derivative of ( , )j tx  following ( )MV t  and corresponding to the 
migrational normal velocity field V : 

( )grad gradj
j j j jÅ ¶

= + ⋅ = + ⋅
¶

w


MV tt tanV .  

The corresponding transport theorem reads: 

( )

( )
( )

( )
( ) ( ) ( 1)( )

( ) ( )

( , )

V div .
M

M M
M M

M
R t

mig
V M MR t

R t R t

d t dv
dt

K dv V dvwp
p

j

j j j jÅ
-¶

¶

= - + +

ò

ò ò

x

tan

  

9. Material ( )MV t  in N-Dimensional Fluid 

Assume that ( )MV t  is material, i.e., convected with the fluid (in analogy with material domains 
of 3 or fewer dimensions). Then, fluid velocity w  is the material velocity for ( )MV t , i.e., V =w , the 

migrational normal velocity field for ( )MV t coincides with the fluid velocity, ( )
( )V p
p +w n wtan= , 

( ),d
j j

d
Å=x t

t
, ( ) 0¶ =

M

mig
R tV . Then, transport theorem reads: 

( )
( ) ( ) ( ) tan ( )

( ) ( )

( , )( , ) ( ) divp
p

d dj
j j j

d d
é ù
ê ú= - ⋅ +
ê úë û

ò ò w n w
M

M M

M V t M
R t R t

tt dv K dv
t t

xx .  

Then, we note that: 

( ) ( )

( )

( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

( ) grad ( ) ( ) ,

p
p p

p

p p p
p p p

- ⋅ = ⋅ =

⋅ - ⋅ ⋅ = ⋅

w n w n

w n n n w n w n n
M

M MV tM

V t

V t V t

K div

= div div

n
  

so that: 

( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( )p p
p p

é ù- ⋅ + = ⋅ + =ê úë û
w n w w n n w w

M M MV t V t V tK tan tandiv div div .  

Therefore, the transport theorem becomes: 
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( ) ( ) ( )
( ) ( )

( , ) ( , ) divd d
j j j

d d
é ù
ê ú= +
ê úë û

ò ò w
M

M M

M V t M
R t R t

t dv t dv
t t

x x .  

As a special case, we consider ( )MV t  is material but ( )MR t  is not. Then, ( ) 0¶ ¹
M

mig
R tV , and, 

( ) ( ) ( ) ( 1)( )
( ) ( ) ( )

( , )( , ) divj
j j j -¶

¶

é ù
ê ú= + +
ê úë û

ò ò òw
M M

M M M

mig
M V t M MR t

R t R t R t

d d tt dv dv V dv
dt dt

xx .  

10. Surfaces of Discontinuity 

Examples of such singular surfaces are the interfaces within heterogeneous media, shock waves 
in gases, vortex sheets in fluids separating a main stream from the dead water, and cracks in solids. 
Moving surfaces of discontinuity are often related to waves. In these cases, the transport theorem has 
to be modified in order to include the influence of surfaces of discontinuity ( )tS  on 

( )
( , )d

j
d ò
v t

t dv
t

x .  

We generalize the transport theorem for the integral 

( )
( )

( , )d
j

d ò
M

M
R t

t dv
t

x   

to a region ( )MR t  containing a hypersurface 1( )-M tS  across which ( , )j tx  may suffer a jump 
discontinuity. 

Definition 1. An oriented smooth surface 1( )-M tS  in a region ( )MR t  is called a singular hypersurface 
relative to a field ( , )j tx  defined on ( )MR t , if ( , )j tx  is smooth in 1\ -M MR S and suffers a jump 
discontinuity across 1( )-M tS . The jump of ( , )j tx is defined as: 

j j j+ -= -   

where j
+

 and j
-

 are the limits from the two sides of 1( )-M tS , in the sub-regions of ( )MR t  designated as 
( )+

MR t  and ( )-
MR t . 

Let 1( ) : ( , ) 0ac- =M t u tS . Denote by ( 1)-Mm  its outward unit normal and by ω velocity of its 

points. Then, ( 1)mw -= ⋅ Mmω  is the normal speed of 1( )-M tS  positive when pointing into ( )+
MR t . 

Upon applying (21) to the two regions ( )+
MR t  and ( )-

MR t , bounded by 1( )-M tS , and, respectively, 

by ( )+¶ MR t and ( )-¶ MR t , we write the transport theorem as: 

 
1

( )
( ) ( ) ( )

( ) ( )

tan ( 1) ( 1) ( 1) ( 1)
( ) ( )

( , ) V

,

p
p

d
j j j

d

j j
-

- - - -
¶

æ ö÷ç= - ÷ç ÷çè ø

+ ⋅ - ⋅

ò ò

ò ò



M M

M M

M M
R t R t

M M M M
R t t

t dv K dv
t

dv dv
S

n m

x

ωV
  

or, using the Green–Gauss theorem, as: 
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( )
1

( )
( ) ( ) ( ) ( )

( ) ( )

( 1) ( 1)
( )

( , ) V div ( )

                                .

p
p

d
j j j j

d

j
-

- -

æ ö÷ç= - + ÷ç ÷çè ø

+ - ⋅

ò ò

ò



   

M

M M

M

M V t M
R t R t

M M
t

t dv K dv
t

dv
S

m

x V

V ω
 (37) 

11. General Balance Laws 

The basic laws of mechanics in 3D can all be expressed, in general, in the following form, 

t t tP P P

d dv da dv
dt y yy s

¶

= ⋅ +ò ò ònF  (38) 

for any bounded regular subregion P  of the body B , and the vector field n , the outward unit 
normal to the boundary of the region tP  in the current configuration. The quantities y  and ys  are 

tensor fields of order m , and yF  is a tensor field of order 1+m . 

The relation (38) − the general balance of y in integral form − asserts that the rate of increase of 
the quantity y in a part P of a body is affected by the inflow of y  through the boundary of P and 
the production of y  within P . yF  is the flux of y , and ys  is the source of y . In general, the 

source ys  may include external and internal sources. 

We state general balance laws for ( ) ÍM NR t V  containing a hypersurface 1( )-M tS  across 
which ( , )j tx  may suffer a jump discontinuity. Inspired by the above balance law, we write: 

( ) ( ) ( 1) ( )
( ) ( ) ( )

( , ) j j
d

j s
d ¶ -

¶

= ⋅ +ò ò òM

M M M

M R t M M
R t R t R t

t dv dv dv
t

x nF , (39) 

where ( )¶ MR tn is the outward unit normal to the boundary ¶ MR  of MR , while jF  and js  are the 

flux and the source of j . 
From (39), we can obtain the local balance equation at a regular point, as well at a singular point. 

First, we apply the Green–Gauss theorem to the first integral on the right side of (39): 

1

( ) ( 1)
( )

( ) ( ) ( 1) ( 1)
( ) ( )

div .

j

j j

-

¶ -
¶

- -

⋅ =

+ ⋅

ò

ò ò    

M

M

M

M M

R t M
R t

V t M M M
R t t

dv

dv dv
S

m

nF

F F
 (40) 

Then, after substituting (40) and (37) into (39) we obtain: 

 
1

1

( )
( ) ( ) ( ) ( 1) ( 1)

( ) ( )

( ) ( ) ( 1) ( 1) ( )
( ) ( ) ( )

V div ( ) ( )

div ,

p
p

j j j

j j j j

s
-

-

- -

- -

æ ö÷ç - + + - ⋅÷ç ÷çè ø

= + ⋅ +

ò ò

ò ò ò



   

M

M M

M

M M M

V t M M M
R t t

V t M M M M
R t t R t

K dv dv

dv dv dv

S

S

m

m

V V ω

F F
  

and then, 

1

( )
( ) ( ) ( )

( )

( 1) ( 1)
( )

V div ( )

( ) 0.

p
p j j

j

j j j s

j
-

- -

æ ö÷ç - + - - ÷ç ÷çè ø

+ - - ⋅ =

ò

ò



   

M

M

M

V t M
R t

M M
t

K dv

dv
S

m

V

V ω

F

F
  

Finally, following the standard procedure, the local balance law reads: 
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( )
( ) ( )V div ( ) 0    in ( )p
p j jj j j s- + - - =



MV t MK R tV F ,  

with the jump condition: 

( 1) 1( ) 0    on ( )jj - -- - ⋅ =    M M tm SV ω F  on ( )1-M tS .  

12. Summary and Discussion 

To formulate the transport theorem, we define the elements of geometry and kinematics of a M-
dimensional domain ( )MR t  moving in a N-dimensional space NV  ( )£M N  which are 
independent of parametrization, i.e., independent of the choice of the choice of coordinates intrinsic 
to ( )MV t . The geometry is characterized by -N M  normals ( )pn , which—together with the 
arbitrary basis in ( )MR t —form a basis in NV . The relevant components of the curvature of ( )MR t  

are characterized by the mean curvature normal [4] ( ( )
( )

p
p=n KK n , where ( ) ( ) ( )p p=-

MV tK div n . The 

geometry of the boundary of ( )MR t , denoted ¶ MR , is characterized by the unit vector ( 1)-Mn , 

which is orthogonal to ¶ MR , but tangent to ( )MR t . 

Regarding the kinematics of ( )MR t , only the normal velocity, ( )
( )= V p
pnnV  is independent of 

parametrization. The motion of the boundary is characterized by a single scalar component – the 
scalar normal velocity tan ( 1)Vn -= ⋅ MV ν . The final component is the normal time derivative 

independent of parametrization: 

( , )jj j¶= + ⋅
¶



k

k
n

x

x t grad
t

V .  

The transport theorem can then be written as: 

( ) ( ) ( 1)
( ) ( ) ( )

( , ) ( ) Vnj j j j -
¶

= - ⋅ +ò ò ò


M M M

M n M M
R t R t R t

d t dv dv dv
dt

x V K .  

The transport theorem has been applied to the moving N-dimensional fluid with a migrating 
subdomain ( )MR t , non-material and material, as well as to the moving surfaces of discontinuity. 
Finally, the general form of balance laws for N-dimensional continuum is formulated. 
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Funding: S.Dj.M was funded in part by NASA grant NNX17AB52G. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

To derive (17), we begin with 

1
2

LDLD ¶¶
=

¶ ¶

A
A AA

t t
, (A1) 

where LD L
DG Gd=A A . It is convenient to write (8) as LD G D= ⋅A A A . Then: 

( ) L
LD L D

L D D D LL D

¶ ¶¶ ¶ ¶¶
= ⋅ = ⋅ + ⋅ = ⋅ + ⋅

¶ ¶ ¶ ¶ ¶ ¶

A
t t t t U U

V VA AA A A A A A  (A2) 

where, according to (12), we have 
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G
G G G

¶ ¶ ¶ ¶ ¶ ¶
= = =

¶ ¶ ¶¶ ¶ ¶

x x 

t t tU U U
A V .  

Thus, 

D D
DL L L

¶ ¶ ⋅ ¶
⋅ = - ⋅

¶ ¶ ¶U U U

V V A A
A V  (A3) 

Next, 

( )
( )

D p
G LD pL

G
W

DL

ì ü¶ ï ïï ï= +í ýï ï¶ ï ïî þU

A
A n  (A4) 

and 

VD D⋅ =V A . (A5) 

Formally, we may write (A4) as 

( )
( ), p

D L LD pW=A n   

where 

( ) ( )LD DLp pW W= .  

here, ( )LD pW  are the components of symmetric 2nd order tensor for each value of p  [22]. 

Alternatively: ( )
( ), p

D L pLDW=A n , where ( )
( )

p pt
t LDLDW W= n . 

Next, we calculate (A3) and obtain 

( ) ( )
( ) ( )

V
V V V , VD p p

D D D LLD LDp pL L

G
W W

DL

¶ ì ü¶ ï ïï ï⋅ = - - = -í ýï ï¶ ¶ ï ïî þU U

V
A ,  

where we have made use of (A4) and (A5). Therefore (A2) is given by 

( )
( )V , V , 2V pLD

D L L D LD pW+
¶

= -
¶
A
t

.  

Finally, 

( )( )
V tan ( )

1 1 div V
22

LD pLD
p

¶¶ ¶
= = = -

¶ ¶ ¶
V

M

AAA AA A K
t t tA

.  

Next, we use (A4) and obtain 

( )
( )( )

pD
p DLD p L L

W
¶¶

= ⋅ = - ⋅
¶ ¶U U

A
A

n
n .  

Hence, 

( ) ( )
( )

( )
( ) ( ) ( ) ( )     D  ,

p pLD LD L
p DLD p L L

pa
p pa

W
¶ ¶

= =- ⋅ =- ⋅ =
¶ ¶

¶
=- =- ⋅ =-

¶M MV t V t

K A A
U U

u
iv div

A A

a

n n

n
n n

  

which is independent of parameterization. 

Appendix B. Elements of Geometry and Kinematics of ( )¶ MR t  

So far, we have considered some elements of geometry and kinematics of ( )MV t . Now we let 
( )MR t  be a finite region in ( )MV t , bounded by the closed ( 1)-M space ( )¶ MR t . We first consider 
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some elements of geometry and kinematics of ( )¶ MR t  whose “material” points are defined by 
convected coordinates. Its parametric equations in convected coordinates are 

( )L L rx=U U    or    ( ) 0LF =U .  

Then, GradF  and its unit normal, 

( 1)
F
F-M

Grad
Grad

m = ,  

are independent of any parametrization of rx in ( )¶ MR t . Note that the unit vector ( 1)-Mm  is in 

( )MR t  and orthogonal to ( )¶ MR t . In view of (5) the same boundary ( )¶ MR t  is defined in ( )NV t  
by ( ( ), )=  tx x U x . Then, 

¶ ¶
= =

¶ ¶

 

t t
x x

V
x

,  

so that 

( 1) ( 1)- -
¶

⋅ = ⋅
¶


M Mt

m m
x

V
x

  

at the points of ( )¶ MR t  defined by (A1). From (14), having in mind that ( )
( 1) 0p

-⋅ =Mmn , this can 

be written, as 

( 1) tan ( 1)- -
¶

⋅ = ⋅
¶


M Mt

m m
x

V
x

,  

which is independent of any parametrization of rx . It represents the speed of propagation of 
( )¶ MR t  while its vector of displacement is given by 

( )( ) ( 1) ( 1) ( 1) ( 1)¶ - - - -Ä
æ ö¶ ¶÷ç ÷ç= ⋅ =÷ç ÷ç ÷¶ ¶è ø

 

MR t M M M Mt t
m m m m

x xV
x x

.  

When the coordinate system au  that is not convected, determination of the speed of movement 
of the border is more complex. Then, 

( ) : ( , ),    rank 1,    1,..., 1
a

a a r
r

x r
x

æ ö¶ ÷ç ÷ç¶ = = - = -÷ç ÷ç ÷ç¶è ø
M

uR t u u t M M  (A6) 

or 

( )( ) : , 0ay¶ =MR t u t . (A7) 

Moreover, ( )yMR tgrad  is vector in ( )MR t  normal to ( )¶ MR t , which is independent of the 

choice of coordinates rx  intrinsic to ( )¶ MR t . The same holds for its unit vector 

( )
( 1)

( )

y

y
-

M

M

R t
M

R t

grad

grad
n =   

Let ( , )a a r=u u c t  be the path of point ( )au u  in ( )MR t  when 
r rx = c . Then 

r r

a

a
x =

¶
¶ c

u
t

a   

represents the velocity of points of the path. From (A6) and (A7) we obtain 
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( ) 0
rx

y y
¶ ¶

+ ⋅ =
¶ ¶

u
MR tt t

grad   

whence, in view of (19), 

( 1) ( )rx

y
y-

¶ ¶
⋅ =-

¶¶
u

MM R ttt
gradn   

The expression 

( )1rx
-

¶
⋅

¶
u

Mt
n   

is the speed of propagation of ( )¶ MR t  in ( )MR t . It is clearly independent of any parameterization 

with respect to intrinsic coordinates rx . Its displacement vector ( )¶ MR tv  is given by 

( ) ( ) ( 1) ( 1) ( 1)rx
¶ ¶ - - -

æ ö÷ç¶ ÷ç ÷= = ⋅ç ÷ç ÷¶ç ÷çè ø

u
M MR t R t M M Mt

n n nv v .  

Thus far, we have considered the kinematics of ( )¶ MR t  as a subspace of ( )MR t . Now, upon 
substitution of (18) into (1), we obtain representation of ( )¶ MR t  in NV : 

( , ) ( , ),a a rxé ù= ê úë û
x = x xu t u t t .  

Then, 

( ) r r r r r

a

ax x x
¶

= =

¶ ¶ ¶ ¶ ¶
= = + =

¶ ¶ ¶ ¶¶

x x x uv +
MR t c c

u
t t t tu

v   

represents the velocity of the points of the paths r rx = c  in 
N
V . Hence, 

( 1) ( 1) ( )( ) - - ¶¶ ⋅ = ⋅ +v
MM M M R tR t n n vv   

From (13), we have ( 1) tan ( 1)- -⋅ = ⋅M Mn nv v . Then, since ( ) ( 1) 0p -⋅ =n Mn , we have 

( 1) tan ( 1) ( )( ) v- - ¶¶ ⋅ = ⋅ +
MM M M R tR t n nvv .  
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