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Abstract

In this paper we revisit the integral functional of geometric Brownian motion

It =

∫ t

0
e−(µs+σWs)ds,

where µ ∈ R, σ > 0 and (Ws)s>0 is a standard Brownian motion.
Specifically, we calculate the Laplace transform in t of the cumulative distribution

function and of the probability density function of this functional.
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1. Introduction

Assume the canonical filtered probability space (Ω,F ,F, P) with filtration F =

(Ft)t>0 to satisfy the usual conditions. On this space consider a Brownian motion X =

(Xt)t>0 with drift µ ∈ R and volatility σ > 0, i.e.

Xt = µt + σWt,

where W = (Wt)t>0 is a standard Brownian motion.
We are going to study the integral functional of the corresponding geometrical

Brownian motion, namely for t ≥ 0 we are going to investigate

It =

∫ t

0
e−Xs ds =

∫ t

0
e−(µs+σWs)ds.

The law of the integral functional of geometric Brownian motion of type

A(µ)
t =

∫ t

0
e(2µs+2Ws)ds
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was studied by numerous authors. Alili (1995), Comtet et al.(1998) studied it in the
case µ = 0. For the case µ < 0 it was studied by Comtet and Monthus (1994,1996).
These functionals were also thoroughly studied by Yor (1992a, 1992b,1992c), Schep-
per et al.(1992), Carmona et al.(1997), Dufresne (2000,2001). In particular, Yor (see
1992a, Proposition 2) states that

P
(
A(µ)

t ∈ du |Wt + µt = x
)

=

√
2πt
u

exp
(

x2

2t
−

1
2u

(1 + e2x)
)
θex/u(t)du

where

θr(t) =
r
√

2π3t
exp

(
π2

2t

) ∫ ∞

0
exp

(
−

y2

2t

)
exp(−r cosh(y)) sinh(y) sin

(
πy
t

)
dy.

Dufresne (2000) obtained a series representation for the probability density function
of 2A(µ)

t involving generalised Laguerre polynomials and the moments of 2A(µ)
t . Yor

(1992c, Theorem 2) showed that

2A(µ)
τ
L
=

U
G
,

where τ is independent exponential random variable of the parameter λ, the variables
U and G are independent and distributed as Beta(1, aµ) and Gamma(bµ, 1) respectively,
with

aµ =
µ +

√
µ2 + 2λ
2

, bµ = aµ − µ.

Dufresne (2001) showed that the probability density function of 1/
(
2A(µ)

t

)
is given by

fµ(x, t) = e−µ
2t/2 pµ(x, t)

with

pµ(x, t) = 2−µ x−(µ+1)/2
∫ +∞

−∞

e−x cosh2(y) q(y, t) cos
(
π

2

(y
t
− µ

))
Hµ

(√
x sinh(y)

)
dy

where Hµ is a Hermite function and

q(y, t) =
eπ

2/(8t)−y2/(2t)

π
√

2t
cosh(y).

In more general setting related to Lévy processes, the following exponential inte-
gral functional was intensively studied∫ ∞

0
exp(−Xs−)dηs, (1)

where X = (Xt)t≥0 and η = (ηt)t≥0 are independent Lévy processes. The conditions for
finiteness of integral (1) were obtained by Erikson and Maller in [16]. The continuity
properties of the law of this integral were studied by Bertoin, Lindner, and Maller in [6].
The equations for the density (under the assumption of existence of smooth densities
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of these functionals) were provided by Bheme in [4], by Bheme and Lindner in [5],
and by Kuznetson, Pardo, and Savov in [18]. The properties of the functional Iτq killed
at independent exponential time τq for some parameter q > 0 were investigated in the
papers of Patie and Savov [20], and Prado, Rivero, Van Schaik [19].

For fixed time horizon, i.e. for It, in the Lévy setting for X and ηs = s, expressions
for the Mellin transform, the moments, and the PDE equation for the density were
obtained in Salminen, Vostrikova (2018, 2019) and Vostrikova (2018).

Such interest to the integral functionals of geometric Brownian motion, and, more
generally, to the integral functionals of Lévy processes, can be easily explained. These
functionals appear in many fields, for example in the study of self-similar Markov
processes via Lamperti transform, in the study of diffusions in random environment,
in mathematical statistics, in mathematical finance in the evaluation of Asian options,
and in the ruin theory. However, despite numerous studies, the distributions of It and
I∞ are only known for a limited number of cases (cf.[17]).

The main results of this paper are the two explicit expressions (see Theorem 1 and
Corollary 2). The first explicit expression is for the Laplace transform of the cumulative
distribution function of the integral functional of geometric Brownian motion. The
second is for the Laplace transform of the probability density function of the integral
functional of geometric Brownian motion. To our knowledge these results are new.

We proceed in the following way. Firstly we provide the equation for the prob-
ability density of the exponential integral functional of additive processes with fixed
time horizon. This result allows us to derive the equation for the probability density
function of It, and to write the equation for its cumulative probability function together
with boundary conditions (see Proposition 1). Finally, we derive the equation for the
Laplace transform of the tail distribution function of It, relate it to the Kummer equa-
tion and solve it explicitly. In Corollary 1 we provide the expressions for the Laplace
transform of the cumulative function of It. In Corollary 2 we provide the expression
for the Laplace transform of the probability density function of It.

2. Laplace transform for the cumulative distribution function

Denote by pt(x), t > 0, x > 0 the probability density function of It with respect to
Lebesgue measure, and let

F(t, y) = P(It ≤ y) =

∫ y

0
pt(x)dx

be the cumulative distribution function of It. Combining Proposition 2, Proposition 3
and Corollary 2 from [23] we get the following proposition.

Proposition 1. The law of It has a density with respect to Lebesgue measure , and the
map (t, x) → pt(x) is of class C∞(]0, t],R+,∗). Moreover, the cumulative distribution
function F(t, y) of It satisfies the following PDE

∂

∂t
F(t, y)) =

1
2
σ2 ∂

∂y
(y2 ∂

∂y
F(t, y)) − (ay + 1)

∂

∂y
F(t, y) (2)

where a = 1
2σ

2 − µ,
with boundary conditions F(t, 0) = 0, limy→+∞ F(t, y) = 1.
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For t > 0 and y ≥ 0 define complementary cumulative distribution function F̄

F̄(t, y) = 1 − F(t, y) (3)

with Laplace transform for λ > 0

P(y, λ) =

∫ ∞

0
e−λt F̄(t, y)dt. (4)

Consider a confluent hypergeometric function of the first kind (Kummer’s function)
defined as

M(a, b, z) =

∞∑
n=0

(a)nzn

(b)n n!
(5)

where (a)n is a Pochhammer symbol, (a)0 = 1, (a)n = a(a + 1)(a + 2) · · · (a + n− 1) and
the same for (b)n.

Theorem 1. The Laplace transform P(y, λ) of F̄ satisfies the following differential
equation

1
2
σ2y2P′′yy + (by − 1)P′y − λP = 0

with boundary conditions

P(0, λ) =
1
λ
,, lim

y→+∞
P(y, λ) = 0,

or solving it explicitly

P(y, λ) =
1
λ

(
2

yσ2

)k Γ
(
1 − 2µ

σ2 + k
)

Γ
(
1 − 2µ

σ2 + 2k
) M

(
k, 1 −

2µ
σ2 + 2k,−

2
yσ2

)
, (6)

where k =
µ+
√
µ2+2λσ2

σ2 .

Proof: We divide our proof into three parts: firstly we reduce our equation to
Kummer’s equation and find a general solution, then we adjust this general solution to
the boundary conditions.
1) General solution of equation (2).
From (2) and (3) we get

−
∂

∂t
F̄(t, y) = −

1
2
σ2 ∂

∂y

(
y2 ∂

∂y
F̄(t, y)

)
+ (ay + 1)

∂

∂y
F̄(t, y), (7)

F̄(t, 0) = 1, (8)
lim
y→∞

F̄(t, y) = 0, (9)

where a = −µ + σ2

2 .
Expanding the derivative operation and substituting a = −µ + σ2

2 we can rewrite (7) as

∂

∂t
F̄(t, y) =

1
2
σ2y2 ∂

2

∂y2 F̄(t, y) + (by − 1)
∂

∂y
F̄(t, y), (10)
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where b = µ + σ2

2 .
By taking the Laplace transform of (10) and using (4), we rewrite (10) as

1
2
σ2y2P′′yy + (by − 1) P′y − λP = 0 (11)

From (8) and from (9) we find the boundary conditions for (P(y, λ))y≥0,λ>0:

P(0, λ) =

∫ ∞

0
e−λt F̄(t, 0)dt =

∫ ∞

0
e−λtdt =

1
λ
, (12)

lim
y→∞

P(y, λ) =

∫ ∞

0
e−λt

(
lim
y→∞

F̄(t, y)
)

dt = 0. (13)

Next, the equation (11) can be transformed into

1
2
σ2ξu′′ξξ +

(
ξ +

σ2

2
− µ + σ2k

)
u′ξ + ku = 0. (14)

by setting y = ξ−1, P = ξku, where k is a root of σ2

2 k2 − µk − λ = 0, i.e.

k =
µ ±

√
µ2 + 2λσ2

σ2 , (15)

(see eq. 2.1.2.179 from [24]).
Equation (14) is of type 2.1.2.108 in [24] and has a solution

u(ξ) = J
(
k, 1 −

2µ
σ2 + 2k,−

2ξ
σ2

)
, (16)

where J(a, b; x) is any solution of the confluent hypergeometric equation

xy′′xx + (b − x)y′x − ay = 0

known as Kummer’s equation. It is well known there are two fundamental solutions
of this equation, namely Kummer’s function (confluent hypergeometric function of the
first order) defined by (5) and Tricomi’s function (confluent hypergeometric function
of the second order) defined as

U(a, b, z) =
π

sin(πb)

(
M(a, b, z)

Γ(1 + a − b)Γ(b)
− z1−b M(1 + a − b, 2 − b, z)

Γ(a)Γ(2 − b)

)
.

Therefore, the general solution of the initial problem can be rewritten as

P(y, λ) = c1y−k M
(
k, 1 −

2µ
σ2 + 2k,−

2
yσ2

)
+ c2y−kU

(
k, 1 −

2µ
σ2 + 2k,−

2
yσ2

)
, (17)

where c1 and c2 are some real constants.
2) Choice of k and c2 via boundary condition limy→∞ P(y, λ) = 0.

Note, that there are only two cases for k: k > 0 if we take the sign + in (15), or k < 0 if
we take the sign − in (15). Indeed, as λ > 0 we have

k =
µ +

√
µ2 + 2λσ2

σ2 > 0,
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and

k =
µ −

√
µ2 + 2λσ2

σ2 < 0.

In fact only k > 0 is suitable for our purposes, as both independent solutions explode
at +∞ if k < 0. Moreover, if k > 0, only the first independent solution is suitable, as
the second independent solution also explodes at +∞. Let us see it in more detail.

According to formula 13.5.5, 13.5.10 and 13.5.12 from [1] for a ∈ R and b < 1 and z
small

M(a, b, z) = 1, as z→ 0,

U(a, b, z) =


Γ(1−b)

Γ(1+a−b) + O
(
|z|1−b

)
, for 0 < b < 1,

1
Γ(1+a) + O (|z| ln(|z|) , for b = 0,

Γ(1−b)
Γ(1+a−b) + O (|z|) , for b < 0.

Therefore, for k =
µ−
√
µ2+2λσ2

σ2 < 0 we have

1 −
2µ
σ2 + 2k = 1 −

2
σ2

√
µ2 + 2λσ2 < 1,

and subsequently

lim
y→∞

(
y−k M

(
k, 1 −

2µ
σ2 + 2k,−

2
yσ2

))
= ∞,

lim
y→∞

(
y−kU

(
k, 1 −

2µ
σ2 + 2k,−

2
yσ2

))
= ∞.

In such a way we know, that for k < 0 both independent solutions explode, and there-
fore c1 and c2 should be equal to 0.

It is easy to check if condition limy→∞ P(y, t) = 0 is satisfied for k > 0. Indeed, in

this case k =
µ+
√
µ2+2λσ2

σ2 , and

1 −
2µ
σ2 + 2k = 1 +

2
σ2

√
µ2 + 2λσ2 > 1.

Thus according to formula 13.5.5 - 13.5.8 in [1] for a ∈ R and b > 1 and z small

M(a, b, z) = 1, as z→ 0,

U(a, b, z) =


Γ(b−1)

Γ(a) z1−b + O
(
|z|b−2

)
, for b > 2,

Γ(b−1)
Γ(a) z1−b + O (ln(|z|)) , for b = 2,

Γ(b−1)
Γ(a) z1−b + O (|1|) , for 1 < b < 2,
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we can write

lim
y→∞

(
y−k M

(
k, 1 −

2µ
σ2 + 2k,−

2
yσ2

))
= lim

y→∞

(
y−k M

(
k, 1 +

2
σ2

√
µ2 + 2λσ2,−

2
yσ2

))
= 0,

lim
y→∞

(
y−kU

(
k, 1 −

2µ
σ2 + 2k,−

2
yσ2

))
= lim

y→∞

(
y−kU

(
k, 1 +

2
σ2

√
µ2 + 2λσ2,−

2
yσ2

))

= lim
y→∞

y−k
(

1
y

)− 2
σ2

√
µ2+2λσ2

 = lim
y→∞

(
y
−µ+
√
µ2+2λσ2

σ2

)
= ∞.

In other words only the first independent solution satisfies boundary condition limλ→∞ P(y, λ) =

0 when k > 0, and consequently c2 should be equal to 0.
3)Boundary condition P(0, λ) = 1/λ.
According to 13.5.1 in [1] for large |z| and fixed a and b

M(a, b, z)
Γ(b)

=
eiπaz−a

Γ(b − a)

R−1∑
n=0

(a)n(1 + a − b)n

n!
(−z)−n + O

(
|z|−R

)
+

ezza−b

Γ(a)

 s−1∑
0

(b − a)n(1 − a)n

n!
z−n + O

(
|z|−s) .

Therefore taking R = 1 and s = 1

lim
y→0

(
y−k M

(
k, 1 −

2µ
σ2 + 2k,−

2
yσ2

))
=

(
σ2

2

)k Γ
(
1 − 2µ

σ2 + 2k
)

Γ
(
1 − 2µ

σ2 + k
)

Finally we get

P(0, λ) = c1

(
σ2

2

)k Γ
(
1 − 2µ

σ2 + 2k
)

Γ
(
1 − 2µ

σ2 + k
) =

1
λ
, (18)

and, subsequently,

c1 =
1
λ

(
σ2

2

)−k Γ
(
1 − 2µ

σ2 + k
)

Γ
(
1 − 2µ

σ2 + 2k
) , (19)

where k =
µ+
√
µ2+2λσ2

σ2 , and (6) is proved. 2

Corollary 1. The Laplace transform F̂(y, λ) of the cumulative function Ft(y) of It at
λ > 0 is given by :

F̂(y, λ) =
1
λ

1 −
(
y
σ2

2

)−k Γ
(
1 − 2µ

σ2 + k
)

Γ
(
1 − 2µ

σ2 + 2k
) M

(
k, 1 −

2µ
σ2 + 2k,−

2
yσ2

) ,
where k =

µ+
√
µ2+2λσ2

σ2 .

Proof: The result follows directly from the definition of F̄ and Theorem 1 since
F̂(y, λ) = 1

λ
− P(y, λ). 2
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Corollary 2. The Laplace transform p̂(y, λ) of the probability density pt(y) of It at
λ > 0 is equal to :

p̂(y, λ) =
1
λ

(
y
σ2

2

)−k Γ
(
1 − 2µ

σ2 + k
)

Γ
(
1 − 2µ

σ2 + 2k
) {

k
yk+1 M

(
k, 1 −

2µ
σ2 + 2k,−

2
yσ2

)

−
2k

σ2 yk+2(1 − 2µ
σ2 + 2k)

M
(
k + 1, 2 −

2µ
σ2 + 2k,−

2
yσ2

) ,
where k =

µ+
√
µ2+2λσ2

σ2 .

Proof: We take the derivative w.r.t. y in the expression of the Laplace transform
F̂(y, λ) of F and use 13.4.8 from [1]

d
dz

M(a, b, z) =
a
b

M(a + 1, b + 1, z). 2

Let us denote by P(y, z), z ∈ C, the extension of the function P(y, λ), λ > 0, con-
structed in the usual way. Then, since P(y, z) is analytic function on the half-plan with
Re(z) > 0, the inverse Laplace transform can be calculated by the Bromwich-Mellin
formula, namely

1 − F(t, y) =
1

2πi

∫ λ−i∞

λ−i∞
eztP(y, z)dz

with any λ > 0. The similar formula is valid for the inversion of the Laplace transform
p̂(y, λ) of the density pt(y).
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