
 

A Hierarchical Multi-Resolution Agent Based Modeling 
and Simulation Framework for Household Electricity 
Demand Profile 

Imran Mahmood1,2, Quair-tul-ain2, Hasan Arshad Nasir2, Fahad Javed2 and José A. Aguado3 

1 Department of Computer Science, College of Engineering Design and Physical Sciences, Brunel University, Kingston 

Lane, Uxbridge, London, UB8 3PH, UK  

 
2 Center for Research in Modeling and Simulation (CRIMSON), School of Electrical Engineering and Computer Science 

(SEECS), National University of Sciences and Technology (NUST), Islamabad, Pakistan 

 
3 Department of Electrical Engineering, Universidad de Malaga, Malaga Spain 

  

* Correspondence: imran.mahmood@seecs.edu.pk  

 

Abstract: Analyzing demand behavior of end consumers is pivotal in long term energy planning. Various models 

exist for simulating household load profiles to cater different purposes. A macroscopic viewpoint necessitates 

modeling of a large-scale population at an aggregate level, whereas a microscopic perspective requires to 

measure loads at the granular level, pertinent to the individual device of a household. Both aspects have 

lucrative benefits, thus ignites the need to combine them into a modeling framework to allow model scalability 

and flexibility, and to analyze the domestic electricity consumption at different resolutions. In this applied 

research, we propose a multi-resolution Agent based Modeling and Simulation framework for the estimation of 

domestic electricity consumption. Our proposed framework simulates per minute electricity consumption by 

combining the large neighborhoods, behavior of household individuals, their interactions with the electrical 

appliances, their sociological habits and the effects of exogenous conditions such as weather and seasons. In 

comparison with the existing energy models, our framework uniquely provides a hierarchical, multi-scale, multi-

resolution implementation using a multi-layer architecture. This allows the modelers a flexibility to model large-

scale neighborhoods at one end, without the loss of expressiveness in modeling microscopic details of 

individuals’ activities at house level and energy consumption at the appliance level, at the other end. The validity 

of our framework is demonstrated using a case study of 264 houses. A validated ABMS framework will support: 

(i)Effective energy planning; (ii) Estimation of the future energy demand; (iii) and the Analysis of the complex 

dynamic behaviour of the consumers.  

Keywords: Agent based Modeling and Simulation; Multi-resolution modeling; Electricity Demand Profiles; 

Electricity consumption behaviour; Urban Electricity Use; Occupancy Patterns; Electricity Appliances; Model 

Validation 

 

1. Nomenclature 

𝐏𝐬𝐭𝐚𝐫𝐭      Starting probability of an appliance 

A Appliance 

∆𝐭𝐜𝐨𝐦𝐩   Computational Timestamp  

𝐡             Hour 

𝐏𝐡𝐨𝐮𝐫      Hourly probability of an appliance 

𝐟              Mean daily starting frequency of each Appliance 

𝐝             Day of Week 

𝐏𝐬𝐭𝐞𝐩      Step size of the scaling factor that scales the probabilities according to ∆𝒕𝒄𝒐𝒎𝒑 

𝐏𝐬𝐚𝐭         Saturation probability of the appliances 
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𝐄𝐀           Total energy of an appliance during 24 hours 

𝐏𝐨𝐰𝐞𝐫𝐀  Power rating of appliance 

𝐍𝐫𝐚𝐧𝐝   Random number generated for uniform probability distribution U(0,1) 

𝐏𝑫𝒆𝒗𝒊𝒄𝒆𝑶𝒏𝒕
     Device usage probability at the time t      

h Total number of houses 

k Total number of devices in house 

t Time stamp 

i Loop variable for houses  

j Loop variable for appliances 

At Actual Energy Consumption at timestamp t 

Ft Predicated Energy Consumption at timestamp t  

n Total number of Observations 

2. Introduction 

The continuous rise in the rate of population growth and rapid urbanization are the key causes to severe 

power crisis, especially in a developing country. Frequent blackouts lasting for hours, power failures, inadequate 

expansion of installed capacity, inefficiencies in power transmission, line losses, among others are the most 

ominous signs of these energy crisis. As per World Energy Council, the average household electricity 

consumption in different countries lies between 570 -11,879 kWh/year. Due to its prominence, the household 

consumer sector is gaining an increasing attention of the research community, with impetus for greater efficiency, 

control and transparency, through demand response management, IoT technologies, smart grid infrastructure and 

renewable integration. In the developing world, this interest is even more pronounced (1). To meet the current 

load requirements and cope with the future rising demand of electricity, development of sustainable policies 

through proper planning is becoming highly desirable, yet increasingly challenging. In order to meet long-term 

targets for a sustainable, efficient, affordable and low carbon energy system, a descriptive study of the energy 

consumption dynamics at a country scale is inevitably necessary (2) (3). The descriptive view helps reveal insights 

and analyze synthetic demand profiles over time. This allows the stakeholders and the decision makes to observe 

the dynamic behavior of different consumer sectors in the country, and assist them in the effective decision making 

in the integrated energy planning of a country. 

 

 

Figure 1: Mean electricity % consumption in Pakistan 
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The predictable and repetitive patterns of hourly electricity demand and historic load curves of major consumer 

sectors, such as: (i) Domestic (ii) Industrial (iii) Commercial and (iv) Agricultural, are fundamentals to explore. 

Particularly, the domestic sector, which tends to be extremely volatile, unpredictable, and highly dynamic (3). 

Household electricity usage is mainly influenced by lifestyles, socio-demographics, economic policies, electric 

appliances, building characteristics, weather conditions, residential heating and cooling technologies, and many 

others (4). Therefore, household load forecasting is considered to be quite complex in nature (5). The mean 

electricity percent sale in Pakistan of different consumer classes is shown in Figure 1. It is evident from the figure 

that the major consumer class is domestic which constitutes more than 40% of the total electricity sale, and is 

increasing yearly (6). We therefore position the focus of this paper on the domestic consumers.  

Energy system modelling serves as the basis for making strategic decisions, where a significant driving factor 

in the energy system dynamics is the electricity demand, commonly obtained using empirical datasets and through 

the simulation of energy consumption processes. Majority of the models focus on the annual consumption by 

simply scaling the historic load curve. Consequently, they disregard the dynamic evolution of consumption 

patterns of short timescales, that are vital for studying the balance of demand and supply (7). A standard load 

profile is a representative curve that is used to predict the estimated demand for specific consumers, obtained from 

measurements. Synthetic (or simulated) load profiles, on the other hand, are based on representative samples and 

the heterogeneous dynamic behavior of the specific consumers, consumer groups or appliances. It is obtained 

from statistical analysis or bottom up simulation models (8). It is desirable to deploy a dynamic electricity demand 

model to investigate the behavioral dynamics of the energy system under varying conditions, at short time scales, 

and with consumers having complex heterogeneous behavior. All of that cannot be easily be described by simply 

aggregating the individual entities (9).  

Modeling and simulation enable us to replicate a real-world system for risk-free dynamic experiments, which 

are otherwise impossible, dangerous or costly and time consuming. ABM is a paradigm meant for simulating the 

actions and interactions of autonomous agents, abstracting both individual or collective entities, with a view to 

assessing their effects on the system as a whole (10). Applications of ABM provide abstraction of real systems, 

at a microscopic level to model and explore complex behavior over time (11). Microscopic models help in 

simulating real-world problems with higher resolution, as these consider granular details, that can produce minor 

deviations from the actual result if not considered (12). An ABM is the composition of individual agents and 

environment. Each agent individually assesses its situation and makes decision on basis of certain set of rules. 

Every agent has its own goals and have some knowledge processing abilities. The emergent behavior resulted 

from the individual behaviors and interactions between these agents affects the aggregated level of the total 

system. ABM technique is used by many researchers as suitable approach for complex socio-technical problems; 

particularly to study the wholesale electricity markets (13).  However, recently the framework is used for 

modeling of smart grid scenarios such as demand response strategies, distributed generation, integration of 

renewable technologies and energy storage (13). 

In this paper, we focus on the application of the ABM paradigm to model the energy consumption of a typical 

region in an urban area of a country and using a hierarchical, multi-scale, multi-resolution agent-based modeling 

and simulation framework. There are several advantages associated with the properties of our proposed 

framework:  

(i) Hierarchical: Complexity usually takes the form of a hierarchy, where a complex system is composed of 

interrelated subsystems that have their own subsystems, until the lowest elementary level is reached. The 

architecture of a complex system is a function of its components and their hierarchic relationships. The main 

advantage of hierarchical modeling is the reduction of complexity through the logical decomposition (14). We 

conceptualize the electricity consumption sector as a decomposable hierarchic structure, which is composed of 

different entity types: Neighborhood, House, Occupants, Appliances. Each of these entity types are linked with 

each other in a hierarchal relationship. The details of our proposed hierarchy are given in section 4;  

(ii) Multiscale: In Modeling & Simulation, multiscale modeling refers to the simultaneous use of different 

scales to describe a system of time and/or space. The key advance of this approach is the flexibility our framework 

allows in running the simulator at varied scales (15). It can be configured to run on minute, hour, day, week, 

month or year basis and allows the coverage of any spatial region from a single street to as large as a city or 

province, depending on the computational power of the platform.  
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(iii) Multiresolution: In modeling, resolution model refers to the level of details captured in the process of 

abstraction while conceptualizing the real system. The greater details lead to higher resolution of the model. In 

ABM, resolution plays an important role as it brings a tradeoff between higher level of details and the ability to 

populate a large number of agents. A multi-resolution modeling framework accommodates different levels of 

details of different interacting entities simultaneously within the same framework.  

Our proposed framework uses a multi-layered architecture to support multi-resolution modeling at a time, 

including (a) Macro-level: to model a scalable population of households; (b) Meso-level: to model different 

groups of occupants and their sociological features; and (c) Micro level: to model individual appliances and their 

energy consumption behaviour at a granular level. Our proposed framework offers a flexibility of modeling large 

scale neighborhoods at one end, without the loss of expressiveness in modeling microscopic details of individuals’ 

activities at house level and energy consumption at the appliance level, on the other end. In our proposed 

framework, the challenges of spatio-temporal resolution, stochastic nature of consumer’s behavior, integration of 

complex human behavior and sociologic factors, interdisciplinary modeling and scalability are covered, through 

a hierarchical, multi-scale, multiresolution implementation. It also utilizes the stochastic superimposition of 

different exogenous influencing factors such as weather, seasonality and the device usage pattern. The aggregated 

load of all the devices for each hour is compared with the actual load. The simulation results of hourly coefficient 

of variation of the root mean square error CV(RMSE) are within the 30% threshold as defined in ASHRAE 

Guidelines (16). 

In the absence of smart meters in Pakistan, it is quite difficult to estimate the dynamic daily electricity 

demand in the domestic sector. Our approach presents a dynamic simulator which estimates the load profile of a 

domestic neighborhood based on an initial model configuration and different input parameters. We provide a 

‘proof of concept’ using NUST university housing data and demonstrate its usefulness. Such simulator with 

customizable settings is currently not available to the local industry and hence is taken as a valuable artifact for 

academic, industrial and governmental use. This paper presents the foundations of the work in progress and we 

are working to extend our simulator to deal with the main challenges of forecasting load profiles. At one hand, 

the simulator will help the power sector in dealing with problems related to the grid e.g., evaluating network 

overloading, minimizing associated blackouts and alleviating power thefts; It serves as a tool to evaluate the 

effectiveness of optimization techniques, in demand response and micro-grids to solve the aforementioned issues 

of the power sector. The utility of this tool becomes highly demanding due to the unavailability of smart meters 

and the means to accurately measure consumption, in developing countries. While on the other hand, our 

contributions directly address problems related to complex system modeling e.g., multi-scale issues, 

heterogeneous model coupling and model validation. They further ignite impetus to explore solutions for high 

performance, scalability, distributed simulations. 

The rest of the paper is organized as follows: Section 2 presents a review of the related work. Section 3 

describe the proposed framework. Section 4 describes the simulation procedure. Section 5 presents the analysis 

and discussion of the results. Section 6 provides a comparison of our framework with the state of the art. Section 

7 provides conclusions and future work.  

3. Literature Review  

The research on the simulation of the household electricity demand profiles are studied in detail by many 

researches. However, selection of methodology greatly depends upon the purpose of the study. Grandjean, et al.   

(17) reviewed and analyzed twelve different domestic load curve models and categorized them into two main 

types: (i) Top down and (ii) Bottom up. Top down models are based on macroeconomic principles and techniques. 

The input data for these types of the models are generally Gross Domestic Products (GDP), current population 

and future population growth trends, unemployment rates and many other factors. The main purpose of these types 

of models is to study the energy taxes; effect of different economic scenarios on energy and environment; 

consequences of macroeconomic changes in the energy system; and general equilibrium effects. Bottom up 

models, on the other hand, compute the electricity demand from individual consumption of electric appliances 

installed in homes by combining factors like weather, human behavior and dwelling characteristics. Following 

sub-sections provide a discussion on different existing frameworks, grouped into different categories:  
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3.1. Statistical Models 

Notable contributions on the development and analyses of bottom-up models are proposed by: Paatero and 

Lund (7), Boßmann and Staffell (9), Kremers (10), Grandjean, et al. (17), Richardson, et al. (18), Henunis and 

Dekenah (19), Chuan and Ukil (20), Fisher, et al. (21), Wagner, et al. (22) and Bizzozero, et al. (23). In most of 

these contributions, statistical, probabilistic, empirical and Time-of-Use (ToU) approaches are used to simulate 

the household electricity load profiles. However, these models require complex input factors, fixed pre-defined 

set of appliances and are mostly limited on the number of households simulated. Furthermore, the effect of weather 

on usage of electric appliances is only modeled on rudimentary basis. Richardson, et al. (18) presents a model that 

is publicly available. Version 1 of the model simulates only one house at one time while Version 2 can simulate 

multiple number of houses but requires complex inputs like solar thermal system configurations, PV system 

configuration and building thermal model parameters. Chuan and Ukil (20) developed bottom-up modeling for 

Singapore by extending the model developed by Paatero and Lund (7) for 1 – 5 rooms flat. However, the load 

curve of one day for every type of the flat is generated and then multiplied by 30 to get the average monthly 

consumption so that the effect of different days on electricity consumption is taken in average. Moreover, the 

effect of temperature on electricity consumption is not considered at all. Fisher, et al. (21) developed a bottom-up 

stochastic model synPRO, with high time resolution of 10 seconds for German households, however, the model 

is not publicly available.  

3.2. Temperature in Electricity Consumption 

There exists a strong correlation between electricity consumption, type of the day, seasonal and daily mean 

temperature. Ali, et al. (24) used time series technique to forecast the values of electricity consumption up to 2020 

for Pakistan and confirmed that a strong correlation between extreme temperatures and electricity consumption 

exists. Amara, et al. (25) developed a forecasting model by combining non-parametric model and time series 

analysis to analyze the relationship between household electricity demand and temperature. Pruckner, et al. (3) 

developed a hybrid model by combining the Discrete Event and System Dynamics Simulation Methodology to 

predict country scale electricity demand profiles and classified it on the basis of four seasons, workdays, week 

days, and holidays.  However, these models do not represent the household consumption by considering the 

electricity appliances installed in the houses and dwelling characteristics 

3.3. Data Driven Models 

With the advent of Smart Grid and Home Energy Management Systems, there are many open data sources 

like MIT Reference Energy Disaggregation Data Set (REDD), Electricity Consumption and Occupancy Data Set 

(ECO) and Dutch Residential Energy Data Set (DRED) from which circuit level energy consumption profile of 

household can be established. Shiraz et al. (26) used MIT REDD dataset to identify hourly power consumption 

patterns of different appliances. L. Stankovic et al. (27) used smart meter data to infer the domestic electricity 

consumption by applying the techniques of Individual Appliance Monitors (IAM), Non-Intrusive Appliance Load 

Monitoring (NILM) and activity ontologies using surveys and interview data. Ahmed, et al. (28) combined the 

NILM techniques with Artificial Neural Network (ANN) for short term household load forecasting. Coelho, et al. 

(29) developed a self-adaptive fuzzy model for microgrid and large grids. Similarly, Danladi et al. (30) developed 

a long-term forecasting model on basis of fuzzy logic, however the focus of both researchers was not the domestic 

use but long-term demand forecasting. Giasemidis, et al. (31) used genetic algorithm technique to model the 

residential consumers demand behavior on low voltage networks wherein unmonitored residential consumers are 

assigned the same load curve as the monitored residential consumers. Razaa and Khosravic (32) reviewed the 

Artificial Intelligence and Hybrid Artificial Neural Network (ANN) techniques for load forecasting in 

combination with fuzzy logic, expert system, genetic algorithm and support vector machines. However, these 

models can only forecast the total energy use and are much difficult to apply in demand response scenarios. 

Various simulators have been proposed to resolve this issue including US department of energy’s EnergyPlus (21) 

to Paatero and Lund’s (7) bottom-up model. However, what the authors have observed is that the models in general 

are either structural and environment, as is the case of EnergyPlus, or socio-anthropologic as is the case of Paatero 

model. One of the reasons for this divergence is due to the modeling techniques that are used.  Mathematical 

models tend to model structure and environmental data better and probabilistic models tend to model social 

behavior appropriately.  However, what is required is a strategy which can incorporate both the structural-
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environmental and socio-anthropological aspects within the simulation element. Though very effective, data 

driven models are dependent on consumer data.  With the drastic increase in use of smart meters and advances 

in the NILM techniques, gathering this data is possible wherever the relevant technology and the data is available. 

However, smart meters are not universally available. In regions where smart meters are not available or their data 

is not provided due to legal or privacy concerns then the application of the aforementioned techniques will be 

difficult to implement. In comparison the proposed model can be generated from different sources and 

stereotypical behavior of different socio-demographic households.   

3.4. Agent Based Models  

  Gonzalo, et al. (33) used agent-based simulation approach by dividing the London urban area into zones 

using socio demographic parameters. For each zone a heterogenous group of agents are generated with occupancy 

profile to simulate the hourly electricity consumption for heat-pumps, electric vehicles and residential energy. 

The focus of Gonzalo, et al. model was electric vehicles and the right residential use was represented as an 

aggregate in total electricity consumption. M. Zheng, et al. (34) developed an agent-based stochastic appliance 

level demand model to randomly generate demand profiles for a single representative household of the U.S and 

then developed dispatch strategies according to available demand response tariffs to evaluate the economic 

viability of various available storage technologies using a simulation-based approach. Wang, et al. (35) proposed 

a multiagent system framework for study of household electricity consumption under varying price schemes. The 

case study discussed simulations of a single household with the single type of occupancy pattern under four 

demand response strategies. Elie, et al. (36) proposed strategies for the sustainable building performance by 

representing the occupants of building as agents and their thermal comfort. The focus of the proposed model is 

the integration of human activity with building performance. Zhang, et al. (37) used an agent-based model to study 

the electricity consumption in an office building. Lin, et al. (38) proposed an agent-based model to study the office 

building electricity consumption under a tiered price mechanism. Haiyang, et al. (39) used multi-agent system 

modeling and simulation to study electric vehicle penetration rates and their charging patterns to investigate smart 

charging strategies. Philipp et al. (15) reviewed the use of agent-based modeling and simulation approach in 

context of the smart electricity grids and markets.  

3.5. Models with Occupancy Patterns 

The other important factor of household electricity consumption is the occupancy patterns of the households. 

The households with no children or where working couple lives consumes less electricity than a household with 

children and older people living at home. Different occupant behavior models were reviewed on the basis of size, 

resolution and complexity (40). Household occupancy and activity patterns using non-homogeneous Markov-

chains were introduced by Richardson, et el. (18) and Widén and Wäckelgård (41). Aerts, et al. (42) developed a 

probabilistic three-state occupancy model at 10 mins resolution which consists of absent, at home and awake or 

asleep states. Similarly, Mckenna, et el. (43) developed a four-state occupancy model which consists of occupancy 

state (1=”at home” and 0= not at home”) and activity state (1 =” active”, 0 = “not active”). Flett and Kelly et al. 

(44) developed a domestic occupancy model at a one minute resolution, and introduced multiple occupant 

behaviors, type of day (weekday or weekend), related adults as single entity and higher order markov-chains, for 

the duration of the activity. Marshall, et el. (45) used three different occupant classes i.e. Working Family, 

Working Couple and Daytime-present couple to represent the occupancy patterns in UK Households. University 

of Southampton (UoS) (46) reviewed 52 documents on the occupancy patterns, out of which 16 studies were 

related to the UK; domestic occupancy patterns identified in these studies were Short Occupancy A, Short 

Occupancy B, Partial Occupancy, Home Stay A, Home Stay B.   

3.6. Model Validation 

In the domain of electricity consumption different researches have proposed different measures to validate 

the simulated results with the actual load profiles.  Fisher et al. (47) used correlation analysis and mean relative 

error. The former refers to a method of statistical evaluation to study the strength of a relationship between two 

numerically measured, continuous variables, while the latter deals with the validation technique, where for each 

entry a Mean Relative Error (MRE) is computed to calculate the goodness of fit. Shiraki, et al. (48) used Root 

Mean Square Error (RMSE) and Mean Absolute Error (MAE). RMSE is calculated by (i) squaring the residuals, 
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which is the difference between the actual values and the simulated values; (ii) averaging the squares, and (iii) 

taking the square root. MAE is the average horizontal or vertical distance between two continuous variables of 

paired observations. Javed, et al. (4) used the three measures in validation: precision, accuracy and stability. 

Precision is the measure of closeness of the forecasts with the actual load. Accuracy is the measure of how many 

correct forecasts are made. Hong, et al. (49) and Glasgo, et al. (50) referred different standards such as Federal  

Energy Management Program (FEMP) , International Performance Measurement and Verification Protocol 

(IPMVP)  and American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)  used 

worldwide. Glasgo, et al. used ASHRAE Guideline 14 for Co-efficient of Variance of the Root Mean Square Error 

CV(RMSE) and relative annual error as reference value for comparison of Energy Plus Simulation and Actual 

Pecan Street Home Data collected using energy audit and home owner survey records. As per ASHRAE Guideline 

14; a model is considered calibrated if hourly CV(RMSE) is less than 30% and monthly CV(RMSE) is less than 

10%. 

3.7. Demand Response and Microgrids 

Dehkordi et al., (51) propose a distributed noise resilient secondary control to regulate voltage and frequency 

of an islanded inverter-interfaced microgrid that includes several distributed generation units. Afshari et al., (52) 

presents a fault-tolerant control algorithm for the voltage and frequency regulation of autonomous microgrids with 

different faulty conditions. Such conditions include time-varying bias faults, under the switching of unreliable 

networks. In addition to these disturbances, Baghaee et al., (53), (54), (55), (56) propose methods to regulate some 

larger signal disturbances caused by short circuits, line outages, heavy motor startings etc. using a fuzzy logic 

controller. Kumar et al., (57) present the energy efficiency evaluation of a commercial building with strategic 

energy auditing and demand-side management (DSM) under different environmental conditions. Baghaee et al., 

(58) propose an improved decentralized hierarchical control scheme to provide nonlinear power sharing and 

voltage harmonic compensation of multi-DER (distributed energy resources) microgrids with nonlinear and 

sensitive loads. Baghaee et al., (59), (60), (61) propose different solutions to improve signal stability and power-

sharing of hybrid AC/DC microgrids. These contributions and the references therein provide a broad class of 

control problems in power systems. 

The simulator proposed in this paper not only provides a platform to simulate power consumption at house 

and community levels, however, it also provides basis to evaluate different control strategies where consumption 

is not empiricaly measured. The control strategies are used to secure power system, avoid network overloading, 

minimize generation – consumption gaps etc. The strategies are formulated in demand response and microgrid 

frameworks, in the literature, to achieve the said objectives. The following account gives an overview of different 

control problems which can be evaluated / implemented (even in the communities which lack smart meters) with 

the help of the proposed simulator.  

3.8. Comparison with the State of the Art  

In this section we present a feature wise comparison of different existing ABM and non-ABM frameworks, 

we also compare them with our proposed framework as shown in Table 1. Key parameters selected for the 

comparison rubric are described as follows: 

 

• Model Resolution: It specifies the level of details covered by the model. We divide the resolution 

into three categories: Macro, Meso or Micro level.  

• Model Scale: It specifies the size of the data e.g., no. of entities covered.  

• Hierarchical: It specifies whether the model is monolithic or hierarchical. If it is hierarchical, to 

what extent. 

• Forecast range: It specifies the horizon of the model i.e., the short term, medium, or long-term 

forecast. 

• Exogenous Variables: This criterion suggests if the model is sensitive to external variables, if so 

which ones.  
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Table 1: Feature wise comparison of different existing ABM and non-ABM frameworks 

Model 

Type 
Source 

Model Resolution 
Model Scale Hierarchical 

Forecast 

Range 
Exogenous 
Variables Macro 

Level 

Meso 

Level 

Micro 

Level 

Non-

ABM 

Paatero and 
Lund (7) 

   
Large  
10,000 households 

Two -level  

Houses- 

Appliances 

Medium 
Term 

Social factors, 
Weather  

I. Richardson et 

al (18) 
   Configurable 

Two -level  

Houses- 

Appliances 

Medium Term  

Chuan and Ukil 

(20) 
   

Medium  

323 houses 

Three -level  

Houses- Type of 

Houses -  

Appliances 

Medium Term  

Fischer (47)    
Small  

100  

Three -level  

Houses- Type of 

Houses -  

Appliances 

Medium Term Seasonal Patterns 

Wagner (22)    
Large  

10,000 households 

Two -level  

Houses- 

Appliances 

Medium Term 

Season, Type of 

the day: 

Weekend/Week 

Day  

Bizzozero (23)    
Medium  

200 

Two -level  

Houses- 

Appliances 

Medium Term 

Season, Type of 

the day: 

Weekend/Week 

Day 

Ahmed. F. 

Ebrahim (28) 
   

Small  

1 Household 
 Short Term  

Danladi Ali (30)    Not applicable  Medium Term 
Temperature and 

Humidity  

Georgios 

Giasemidis (31) 
   Small  Medium Term  

Pruckner et. al 

(3) 
   Country Scale   Long Term 

Weather, Type of 

the day: 

Weekend/Week 

Day 

Vitor N. Coelho 

(29) 
   Not applicable  Short Term 

Temperature  

 

ABM 

Bustos Turu 

(33) 
   Large 

 

 
Short Term 

Indoor and 

Outdoor 

Temperature  

Zheng et al (34)    
Small  

1 Household 

 

 
Medium Term Season 

Wang et al (35)    
Small  

1 Household 

Two -level  

Houses- 

Appliances 

Short Term 

Weather and 

Building Physical 

Structure 

Elie Azar et. al 

(36) 
   

Medium  

500 Occupants 

Two -level  

Buildings- 

Occupants 

Short Term 

Temperature and 

Building 

Structure 

Tao Zhang (37)    
Small 

 

Two -level  

Building- 

Occupants 

Short Term   

Haiyang Lin 

(39) 
   

Small 

 

 

Two -level  

Building- 

Occupants 

Short Term   

Our Proposed 

Work 
   

Medium  

246 Households; 

Scalable to large 

population 

Three levels:  

Neighborhood, 

House, 

Occupants, 

Appliances 

Configurable  

Hourly 

Temperature, 

Season, Type of 

the day: 

Weekend/Week 

Day 

 

It is evident from the above comparison that none of the existing frameworks support multi-resolution 

modeling at Macro, Meso and Micro levels, altogether. Our propose framework offers multiple resolutions, 

simultaneously i.e., it supports aggregate level modeling of the neighborhoods showing houses as a population of 

agents; (b) Group level abstraction of occupants’ behaviour in each house at meso level where the individuals of 

a house use a common occupancy profile and exhibit the consumption behaviour accordingly; (c) Individual 

behaviour of electricity appliances at micro-level where different appliances in each house behave independently 

using state-charts.  
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Our modeling approach is partially inspired from the works (4) and (20). However, our simulator 

implementation is completely done from the scratch using Anylogic platform. Our choice of using Anylogic 

Simulation software is unique, because is supports multi-method hybrid modeling. Our proposed framework is 

one of the few frameworks in the list that support large scale population. Scalability however is subjected to the 

computing power and the execution environment. In future we plan to transform our implementation into a cloud 

based distributed simulation platform for support a very large-scale population i.e., up to the country scale. In 

terms of hierarchy our proposed framework provides a multi-level Hierarchical abstraction of the real system 

including: neighborhood, houses, occupants and appliances. This Hierarchical distribution helps in gaining the 

insight of the system by applying grouped behavioural patterns. Our proposed framework provides a configurable 

simulation horizon. We currently use a forecast range of 1 year. Our framework can easily be interfaced with a 

number of external exogenous variables, to study their sensitivity in the consumption behaviour. 

4. Proposed Framework  

In this section we discuss our proposed Agent-based Modeling and Simulation framework. It is based on the 

foundational work on the key characteristics for assessing energy usage proposed by Arshad, et el. Our framework 

is designed using three-layer architecture: (i) Neighborhood layer; (ii) Social Layer and (iii) Appliances Layer. 

Each of these layers are connected in a hierarchical fashion as shown in Figure 2.   

 

Figure 2: Hierarchical Multi-Resolution Agent Based Modeling and Simulation Framework 

The neighborhood layer populates a collection of ‘house agents’ with parameters such as: Geo-location, 

number of houses, types of houses (e.g., villas or apartments), areas, size, number of beds. This population of 

houses forms a residential area that dynamically consume electricity overtime. It interacts with environment e.g., 

weather and external modules e.g., Transmission Grid and Power Supply modules.  

The social layer (or Occupancy Layer) populates ‘Occupant Agents’, which are a group of individuals in a 

house, with sociological factors such as age groups, family types and living style, occupancy patterns and energy 

consumption behaviour. The agents in this layer interacts with the upper (neighborhood) layer for inputs e.g., 

temperature and with lower (appliance) layer for outputs e.g., triggers to switch on/off a device, while it provides 

a central role in computing the occupancy of individuals overtime.  

The appliance layer populates ‘Appliance Agents’, with parameters: device types, device usage, power rating 

and their dependence with respect to the weather. This layer models the appliance behaviour at microscopic level, 

and interacts with upper layers for simulating steady or intermittent load overtime. The interactions, the flow of 

cause-effect and the feedbacks are illustrated in Figure 3. These interactions are modeled using input parameters, 

state-charts, table functions, stochastic probabilities and logical reasoning. The emergence of all the households 
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in use, their electrical appliances and their combination with the exogenous variables like weather, seasons and 

sociological factors provide estimations for the energy consumption of a typical urban neighborhood at a selected 

time resolution, ranging from minutes to years. The proposed framework generates the load curve for a given 

number of houses on a 24 hours scale, for a period of a year so that the seasonal variations can also be taken into 

account. 

 

Figure 3 Agent Interaction Diagram 

 

Figure 4: Elements of the proposed framework 

Our framework is hierarchical, multi-resolution, multi-scale, dynamic, agent-based implementation. It is 

hierarchical because it is divided into three layers as shown in Figure 2, where agents in different layers are 

connected with each layer in a hierarchical fashion. It is multi-resolution because it allows the users to model, 

analyze and forecast the electricity consumption of domestic sector at: (a) macro-level, (b) meso-level and (c) 

micro-level, at the same time. At macro-level it allows modeling of a scalable population of households at local, 

regional or country scale. At meso-level it allows behaviour modeling of different groups of occupants and their 

sociological features. At micro-level it allows modeling of individual appliances and their energy consumption. 

A block diagram of the proposed framework is shown in Figure 4, which shows different elements and the entities 

of the ABM model. Our framework uses a built-in database, to import input data, thus allowing flexibility to the 

users to model and run the simulation on different datasets, therefore it is dynamic and can easily be used to study 

any type of population of any region. It uses an underlying Anylogic Simulation engine for computing the next 

step of the simulation, based on the time resolution selected by the user.  
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4.1. Exogenous Variables  

We initially define weather, seasonal variations and vacations factors as exogenous variables as examples to 

show how they affect different layers of our framework in terms of energy consumption. Due to the strong 

influence of the human behavior on the use of domestic electricity appliances, the consumption pattern of the 

household electricity consumption is observed to be very dynamic. Even two households with similar 

configurations will show different load curves. We divide the household electricity consumption into two types: 

(i) User-independent consumption or base load which constitutes the perpetual use of fridge and freezers; and (ii) 

User-dependent, which is related to the occupant activities like cooking, washing and cooling or heating 

requirements.  The occupant activities are further divided into temperature dependent and temperature 

independent appliances. Users may incorporate more variables to incorporate demographic, econometric and 

sociologic parameters in order to study their influence, and therefore can benefit from our open-ended 

implementation.   

4.2.  Household Profiles  

Household electricity consumption is influenced by socio-economic indicators like dwelling types, 

household income, appliance holdings, power ratings, number of occupants, among many others (62). Electricity 

consumption is also highly correlated with the area of the floor (63). Larger floor areas will have more lighting 

requirements and is linked with high income groups i.e., the ones with more ownership of the electrical appliances. 

In our proposed framework, the houses are divided into four types as listed in Table 2. The profiles are used in 

the initial configuration of the house-agent population. The model can be extended for any number of bedrooms 

and with any income groups. 

Table 2: House Profiles 

No House Profile No. of Bed Area (sqft) 

1. House Profile 1 1 550 - 750 

2. House Profile 2 2 950 – 1700 

3. 
House Profile 3 3 2700 

4. House Profile 4 4 3549 

4.3. Occupancy Patterns 

The occupancy patterns include the number of people residing in the household, their age groups, gender, 

vocation, and the probability of their occupancy within the house during the 24 hours period. In proposed model 

we implemented a two-state occupancy i.e., ‘at-home’ and ‘not at home’, and propose four types of occupancy 

patterns listed in Table 3: 

Table 3: Occupancy Patterns 

No Occupancy Pattern Description 

1. 
WC Working Couple: This pattern represents the population which remains absent 

from the house mostly from 8:00 a.m. to 4:00 p.m. 

2. 

WCC Working Couple with Children: This pattern represents the household 

population which has lower probability of occupancy at home from 8:00 a.m. to 

4:00 p.m. 

3. 

HS1 Home Stay 1: This pattern represents the household where occupants remain 

present in house most of the time e.g., families with school going children and 

older people. 

4. 

HS2 Home Stay 2: This pattern represents the household where occupants remain 

present in the house most of the time e.g., families with house wife, infants, 

children and older people. Only few of the members go out for work  
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4.4. Electrical Appliances Usage Patterns  

We consider a set of daily life electrical appliances in our proposed framework as shown in Table 4. The 

electricity consumption, for each electrical appliance, is calculated using a mathematical model, initially proposed 

by (7): 

𝐏𝐬𝐭𝐚𝐫𝐭(𝐀 , ∆𝐭𝐜𝐨𝐦𝐩, 𝐡) = 𝐏𝐡𝐨𝐮𝐫 (𝐀, 𝐡) ×  𝐟(𝐀 , 𝐝)  ×  𝐏𝐬𝐭𝐞𝐩(∆𝐭𝐜𝐨𝐦𝐩)  ×  𝐏𝐬𝐚𝐭(𝐀) (1) 

Equation 1: Mathematical Model 

Each electrical appliance is assumed to be switched on using a starting probability (𝑷𝒔𝒕𝒂𝒓𝒕), during the 24 

hours period. In above mathematical model, (𝑷𝒔𝒕𝒂𝒓𝒕) is calculated on basis of three variables: A is representing 

the appliance,  ∆𝒕𝒄𝒐𝒎𝒑 is the computational timestamp, h is hour of the day. 𝑷𝒉𝒐𝒖𝒓 is the hourly probability 

factor of each appliance,  𝒇 is the mean daily starting frequency of each appliance, d is the day of the week, 𝑷𝒔𝒕𝒆𝒑 

is the step size of the scaling factor that scales the probabilities according to ∆𝒕𝒄𝒐𝒎𝒑, 𝑷𝒔𝒂𝒕(𝑨) is the saturation 

probability of the appliances. The mathematical model was extended by Chuan and Ukil (20) for the determination 

of starting probability of different appliances for 1 to 4 rooms. Furthermore, the weekday and weekend starting 

probabilities for appliances mentioned at Sr. No 6-7 and 10 of Table 4 are interpolated. The nominal wattage 

rating is taken from the local sources. The average time per cycle for each appliance is based on theoretical 

estimations. A time cycle is the duration for which an appliance remains turned on.  When the appliance cycle 

time is reached, it will be turned off and model starts to re-evaluate the on/off status of the appliance for the next 

cycle. We use nominal wattage and the time cycles for the appliances listed in Table 4 (1, 6-8 and 10-11). Later 

in this paper, Figure 11 shows the starting probability for each hour during the day for type 3 houses. These 

probability tables are built based on daily life patterns obtained from the observational site, discussed later in this 

paper.  

Table 4: Electricity Appliances with Wattage and Cycles 

No Electrical Device Nominal Wattage (W)/hr Time per Cycle (min) 

1. Lights 25 30 

2. Fans 70 30 

3. Iron 1000 30 

4. Refrigerator 110 12 

5. Freezer 200 12 

6. Washing Machine 500 90 

7. TV 100 - 300 90 

8. Computer 80 60 

9. Air Conditioner 1500 120 

10. Oven 1500 5 

11. Misc. load 1500 60 

4.5. Weather Dependent Appliances 

In our proposed model we included temperature as an exogenous variable as it directly affects the appliance 

usage. In this paper, households of countries with extreme temperatures in summer, are considered, which require 

air conditioning and other cooling appliances for domestic needs. Similarly, it is assumed that the temperature in 

winter remains moderate and therefore electricity usage for heating appliances, central heating, or water heating 

is negligible.  In many studies, a high correlation is established between electricity consumption and weather 

variables like temperature, humidity, rainfall and solar radiations. In our proposed framework, a simple linear 

function between the temperature and probability usage of fans and air conditioners is adopted from Tsuji (64) 

and Shiraki (48). The temperature dependent probability of appliance usage is 0% at temperature Ta and 100% at 

Temperature Tb. The temperature dependent probability of fan usage reaches 0% if temperature is below 24o C 

(Ta) and reaches to 100% if temperature is greater or equal to 28o C (Tb). The temperature dependent probability 

of air conditioner usages reaches 0% if temperature is below 28o C (Ta) and reaches to 100% if temperature is 

greater or equal to 46o C (Tb) as shown in Figure 5. The proposed model can be extended for any type of the 

temperature dependent appliances. A similar model can be applied for the humidity and rainfall. Furthermore, 
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instead of linear function any other function can be used to describe the usage behavior of the Fans and Air 

Conditioners. 

  
Figure 5: Temperature Dependence (a) AC Usage probability (b) Fan Usage probability 

4.6. Simulation procedure 

In this section we describe the implementation of the proposed ABM model in AnyLogic 8.2.4 University 

Edition, using ABM libraries. A flowchart of this procedure is shown in Figure 6. In order to compute electricity 

consumption per minute, we created a neighborhood agent consisting of  four (4) agents representing the house 

types as listed in Table 2 and eleven (11) types of electrical appliance agents as listed in Table 4. The number of 

the electrical appliances vary for the different types of houses. An initial population of the house agents is 

dynamically created. This procedure is configurable through user inputs.  

The behaviour of appliance agents is encapsulated 

within the house agent. The house agent evaluates the 

occupancy over time. If the house is occupied, it may 

switch on or off the appliances using conditional 

transitions shown in Figure 12. Using the probability 

distributions, assigned to each appliance. All these agents 

are encapsulated within neighborhood agent; hence the 

hierarchy is formed.  The neighborhood agents aggregate 

the domestic consumption of the houses within and is 

designed to interact with external modules e.g., 

Transmission Grid and Power distribution to study 

variations of domestic load, and for demand side 

management or demand response management.  

4.6.1. Behaviour of Neighborhood Agent 

Neighborhood agents are modeled to initialize the 

simulation data and instantiate household population 

agents. It is also used to perform energy consumption 

calculations. Figure 7 shows the structure of the 

neighborhood agent using the symbols used in Anylogic 

Simulation Software 
Figure 6: Flow Chart for Model Initializations 
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Figure 7:  Neighborhood Agent 

 

Figure 8 : Occupancy Profiles during week days and weekends 

4.6.2. Behavior of Household Agent 

A household is an agent that is instantiated within a neighborhood agent and is initialized dynamically using 

the input data obtained from the house table of the database. The main purpose of this agent is to manage the 

occupancy of its occupants using a specified occupancy profile and the occupancy state-chart as shown in Figure 

9. When the simulation starts, the occupants are initialized in the available occupant variable and their number 

increases or decreases due to the ‘recheck’ transition that occurs periodically and based on the occupancy profiles, 

computes the new occupancy. The occupancy behavior of household’s agents listed in Table 3 is implemented 

by using table functions shown in Figure 8. Table functions are elements from the Anylogic toolbox and are used 

to define complex non-linear relationships which cannot be described in standard functions. The table functions 

can take discrete values as input and can be made continuous by interpolation and/or extrapolation. The profiles 

use different variants of these table functions to distinguish between the weekdays, weekends, national holidays 

and seasonal vacations. In this paper we consider both weekdays and weekends. Our framework allows user inputs 

for adding or editing the occupancy profiles and allows dynamic analysis of the effects of different occupancy 

behavior on the energy consumption at runtime. In each household agent a set of appliance agents are dynamically 

populated using the input data obtained from the appliance table of the database. 
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Figure 9: Household Agent 

4.6.3. Behavior of Electrical Appliance Agent 

The proposed simulation framework is configured at a per minute resolution and the control structure of the 

simulation is implemented using events. All electrical appliance agents respond to time-out triggered events in 

cyclic fashion. The recurrence time of the events for these appliances are set using time cycles listed in Table 4. 

A flow chart for the behaviour of a device agent is shown in Figure 10. The electrical appliances agents are 

modeled as passive agents i.e., they possess event-driven reactive behavior.  Since the appliance agents are 

populated under the hierarchy of different house agents, therefore, a unique behavior pattern for the use of each 

appliance agent is created using table the functions. For every appliance agent, a state chart is created which will 

indicate the on and off status and electricity consumption of the appliance according to the states. This behaviour 

can be extended using additional states e.g., ‘stand by’ in the case of TV. The transition from ‘Off’ to ‘On’ state 

is initially dependent on the occupancy profile of the household agent. If an occupant is present in the house, a 

randomly generated number using a Uniform(0,1) distribution, is compared with the device usage probability at 

the corresponding time defined by the table function, shown in Figure 11. If the generated number falls within 
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the probability usage value, the device agent will transit from 

‘Off’ to ‘On’ state as shown in Figure 12. And the 

corresponding wattage will be added in the electricity 

consumption, i.e., when an agent is switched on, its power 

will be contributed in the total power of the house agent. The 

device will remain turned on until the time cycle of the agent 

is reached, after which the state-machine will recheck the 

number of occupants in the house. The higher usage 

probability will result in more likely chance for the device to 

be switched on. Due to the use of uniform distribution, it is 

likely that not all the agents e.g., all the lights in the house 

will switch on at once, at a particular time, which makes the 

model stochastic. The power ratings are instantiated as global 

constants, so that changes in the entire framework can be 

easily applied. The variability of the power rating is not 

considered and will be dealt with in the future work. 

 

 

 

 

 
Figure 11 :  Electrical Appliances Usage for Type3 House 

 

 

Figure 12: Appliance Agent 
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Figure 10: Behaviour of Agents 
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4.6.4. Electricity Consumption Calculations 

In the proposed framework, the appliance agents are classified into three types: (i) The continuous appliances 

that run constantly independent of the occupancy profile e.g., refrigerators and freezers; (ii) The appliances that 

are temperature dependent with on / off states, heavily dependent upon the rise and the fall of the temperature, 

along with occupancy profile, e.g., fans and air conditioners; and (iii) The appliances that are only dependent upon 

the occupancy profiles and type of the day i.e., weekday or weekend. The ‘per minute’ energy consumption for 

every appliance agent is calculated which is then aggregated for every house and then for all houses using the 

following equation: 

𝐸𝐴 = ∑ (∑ ( ∑ {
𝑁𝑟𝑎𝑛𝑑 < 𝐷𝑒𝑣𝑖𝑐𝑒𝑂𝑛𝑃𝑟𝑜𝑏𝑡      𝑃𝑜𝑤𝑒𝑟𝐴

𝑒𝑙𝑠𝑒                                                        0

24ℎ𝑟𝑠

𝑡=1

)

𝑘

𝑗=1

)

ℎ

𝑖=1

 (2) 

Equation 2: Electricity Consumption 

Where 𝐸𝐴  is the total energy of an appliance during the 24 hours period and is the sum of the electricity 

consumed by that device during its ‘On’ state. 𝑃𝑜𝑤𝑒𝑟𝐴 is the power rating used for the appliance 𝐸𝐴.  𝑁𝑟𝑎𝑛𝑑 is 

the random number generated using uniform probability distribution U (0,1) and 𝐷𝑒𝑣𝑖𝑐𝑒𝑂𝑛𝑃𝑟𝑜𝑏𝑡  is the device 

usage probability at the time t. ‘k’ represents the total number of devices in a house and h represents the total 

number of houses used in the simulation scenario.  

5. Model Validation and Results 

In this section we present a case study conducted on the housing area of the campus of National University 

of Sciences and Technology (NUST), Islamabad, Pakistan. The purpose of this case study was to compare and 

evaluate the simulation behaviour of our proposed framework with real-world data.  

5.1. Data Collection and Analysis 

We collected actual load data from the electric supply company for 264 domestic consumers, for four 

different seasons and compared it with the simulation results. The actual load data is for the duration of one year 

from July, 2016 to June, 2017 at a resolution of fifteen-minutes. The mean season wise load is shown in Figure 

13. It can be noticed that consumption in winter is minimum because the fans and ACs are completely switched 

off. And the thermostats of the fridge and freezers are lowered. In fall, there is a partial use of fans. In spring, 

there is a greater use of fans and partial use of ACs. In summer, both fans and ACs are extensively used however, 

the collected data does not reflect this, as expected. It was identified that most of the population goes out for 

vacation in summer.  

 
Figure 13: Average daily load for different seasons (kWh) 
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The box plot of the complete year in Figure 14. is showing a clear trend that consumption at the time from 

8:00 a.m. to 3:00 p.m. is lower as compared to other time. The lower consumption at these times can be clearly 

associated with the working residents. We also examined the correlation between temperature and electricity 

consumption. Figure 15 shows the scatter plot for the temperature and load in MW, showing an increase in 

temperature leads to more electricity consumption. The p-value analysis with co-efficient = 0.37 also confirms 

the correlation, indicating a positive linear trend.  

 

 
Figure 14: Box Plot of daily consumption (1-year data) 

 

Figure 15: Temperature vs Load in MW (MWh) 

5.2. Simulation Experiment 

We ran a simulation experiment of a neighborhood of 264 houses that consists of 7 houses of four bedrooms, 

51 houses of three bedrooms, 142 houses of two bedroom, and 64 houses of one bedroom. The number of houses 

and other parameters like number of bedrooms, number of occupants, occupancy patterns and electrical appliances 

present in the house are initialized in database at the start of the simulation. We ran a simulation experiment of 5 

iterations for a year and the average result of the simulated consumption was compared with the actual 

consumption. The appliance wise hourly consumption for a day is shown in Figure 16. It can be seen that the 

lights, fans and fridge have prominent consumptions. The total consumption and actual consumption are 

represented in blue and red line respectively. Mean hourly temperature of the year is also illustrated. It can be 

seen from the Figure 16 that our simulator underestimates the consumption between the period from 12:00 AM 

to 8:00 AM in the morning, as compared to the actual consumption. Whereas it overestimates the consumption 

between 6:00 PM to 11:00 AM in the evening. This deviation is due to the sensitivity of the appliance usage 

probability tables on the model, and can be adjusted by the user by calibration.  

A comparison of season wise appliance level consumption is shown in Figure 17. The season wise 

simulations for the whole year was run and the comparison of mean simulated load and actual load are shown in 

Figure 18: Season wise hourly consumption (a) Fall (b) Spring (c) Summer and (d) Winter. 
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Figure 16: Appliance level Hourly Consumption of 264 Households 

 

Figure 17: Season Wise Consumption at appliance level 
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Figure 18: Season wise hourly consumption (a) Fall (b) Spring (c) Summer and (d) Winter. 
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5.3. Model Validation and Results  

It is quite difficult to perform the validation of Agent Based Models (ABM), because: (i) ABM are 

decentralized with no central control; (ii) ABM undergo bottom-up development of the individual entities; and 

(ii) The behavior in ABM are modeled in different hierarchical layers, e.g., in our case: Neighborhoods → Houses 

& Persons → Appliances. When the ABM is executed, a population of replicated agents is initialized and they 

interact with each other, where we can observe the emergent effect of all the interactions of different entities. 

Therefore, the aggregated results of the entities, rather than their individual results, are matched with the statistical 

effect of the whole system. The results of Mean Absolute Deviation (MAD), Root Mean Square Error (RMSE) 

Mean Absolute Percentage Error (MAPE%) and Co-efficient of Variance of the Root Mean Square Error  

CV(RMSE)  are calculated by using Equation 3 - 5. The results are showing that the mean percentage error of 

the four seasons lies in the range of 17% to 29 %, however, all the seasons are meeting the ASHRAE’s tolerance 

of 30% CV(RMSE) for hourly values. 

 

𝑴𝑨𝑫 =  
∑ |𝐴𝑡 −  𝐹𝑡|𝑛

𝑡=1

𝑛
 

Equation 3: Mean Absolute Deviation (MAD)   

𝑹𝑴𝑺𝑬 = √
∑ (𝐴𝑡 −  𝐹𝑡)2𝑛

𝑡=1

𝑛
 

Equation 4: Root Mean Square Error (RMSE) 

𝑴𝑨𝑷𝑬 =  
∑ |

𝐴𝑡 −  𝐹𝑡

𝐴𝑡
|  𝑛

𝑡=1

𝑛
 × 100 

Equation 5: Mean Absolute Percentage Error (MAPE) 

𝑪𝑽(𝑹𝑴𝑺𝑬) =
√∑ (𝐴𝑡 −  𝐹𝑡)2𝑛

𝑡=1
𝑛 − 1

∑ 𝐴𝑡
𝑛
𝑡=1

𝑛

 × 100 

Equation 6: Co-efficient of Variance for Root Mean Square Error CV(RMSE) 

Table 5: Validation Results 

Season MAD RMSE MAPE % CV(RMSE) % 

Fall 30.11 37.26 18.26 22.55 

Winter 24.873 34.763 17.98 24.92 

Spring 39.61 50.09 20.56 25.76 

Summer 49.13 54.46 28.16 29.37 
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6. Analysis and Discussion 

The simulation results show that the model is correctly representing the actual site under observation (i.e., 

NUST Housing), as the deviation from the actual data in each season is within 30% and is acceptable as per the 

ASHRAE’s criteria. The modelling exercise has provided us various insights which correlate with the real social 

behavior of the community under study. For instance, it can be observed from the simulations of all seasons that 

there is relatively less consumption during the morning period, and higher during evenings and nights. This 

reflects the behaviour commonly observed in the working-class community of Pakistan, since the model reflects 

a typical neighborhood in an urban area of the capital city of Pakistan. The proposed framework is fully capable 

to model communities where the consumption can be more during the day time, where there is always a parent / 

grandparent(s) at home or there is a joint family setup. Similarly, discrepancies in the simulation results are also 

explicable with the social behaviour. For example, we can observe from Figure 18 that, in the fall season, 

simulation has the least deviation. Whereas, simulation in the Summer season is showing highest deviation. This 

can be explained as follows: The simulated consumption is higher in summer because of the modeled behaviour, 

whereas the real data reflects less consumption because most of the families in the selected site travel during 

summer vacations. Moreover, the energy consumption is directly proportional to the increase in temperature, 

hence Spring and Summer seasons have higher energy consumption as compared to Winter and Fall, which is due 

to the tropical climate of Pakistan. That is why, we did not consider heating devices in colder seasons because the 

use of electricity for heating in winter is not common, and gas is mostly used instead.  

In the light of the above discussion, and our experience in using our framework to simulate electricity 

consumption of an observed site (NUST housing), we assert that our approach is useful to synthesize household 

electricity demand profiles. The framework has a huge utility for the developing countries like Pakistan, because 

such countries lack the infrastructure of smart meters, especially in the residential sector.  Therefore, the 

framework provides a low-cost solution to estimate power demand and provide decision support to the utility 

companies for effective energy planning. Furthermore, the researcher’s community in the area of smart grids in 

Pakistan is in an immense need of such frameworks, due to the unavailability of the real data, to carry their 

research in developing control and management schemes for the future grids in Pakistan. For instance, to simulate 

the effectiveness of demand response in Pakistan, one needs multiple realizations of power demand, e.g., to 

completely formulate a power optimization problem. As there is an unavailability of actual consumption data, 

either physical models, as proposed in this paper, or data-based models constructed through such physical models 

can be used. 

7. Summary, Conclusion and Future Work 

In this paper, we proposed an agent-based modeling and simulation framework for the estimation of per 

minute electricity consumption of domestic consumers. We developed a hierarchical, multi-resolution, multi-

scale, dynamic, agent-based bottom-up model which calculates the per minute electricity consumption of a given 

number of households, by accumulating the consumption of major electrical appliances in the household.  We 

currently implemented twelve (12) different types of appliances for four (4) different types of houses, with four 

(4) types of occupancy patterns. However, the framework is open-ended, and allows the users to: (i) add any 

number of appliances; (ii) modify types of houses with different configurations; and (iii) provides mechanism to 

add/modify occupancy patterns. We also incorporated different exogenous variables such as: temperature, 

seasonal variations and the type of the days i.e., weekdays and weekends. We presented a case study of 264 

domestic consumers using the data of the housing area of the campus, to compare and evaluate the season-wise 

simulation behaviour of our proposed framework with the real-world data. The results exhibited a mean absolute 

percentage error of 17 to 29%, and comply with the ASHRAE’s tolerance of 30% CV(RMSE). A correctly 

implemented and validated, agent-based simulation framework will support in: (i) Estimation of the future energy 

demands over a long-range future; (ii) Analysis of the underlying complex dynamic behaviour of the population 

in different conditions; (iii) Behavioral analysis to promote responsible use of energy by incorporating necessary 

policies; (iv) Effective planning of the production resources and taking effective decisions for mix strategy 

electricity generation; and (v) Devising effective demand response strategies to curtail peaking events and to 

minimize blackouts.  
In future, we plan to perform a thorough validation of our simulator, at the appliance level using Pakistan 

Residential Electricity Consumption Dataset (PRECON) (65), to study the model stochastic and parameter 
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sensitivity and to apply optimization techniques to achieve the minimum CV(RMSE) values.  Our proposed 

framework is scale-able and can be configured for a sizeable number of houses to build larger neighborhoods, but 

requires high performance distributed simulation platforms, therefore we intend to deploy our simulator on a 

disturbed simulation platform for high performance and scalability. Furthermore, we also aim to extend our 

framework for other sectors including: commercial, industrial and agricultural, and integrate all these sectors to 

form a country-scale energy consumption model. Lastly, we plan to utilize the model for the implementation of 

the demand response strategies. The challenge includes the lack of communication and smart meter infrastructure 

on a scale that can actually contribute to nationwide problems, such as network overloading, blackouts etc. In this 

regard, the proposed modelling provides the best available insight on the consumption patterns, with an analysis 

on how and where flexibility can be exploited for demand side management.   
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