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Abstract 

Novel PVA hydrogel nanocomposites, symmetric three-dimension (3D) printed poly(vinyl) 

alcohol (PVA) hydrogels and asymmetric 3D printed PVA/poly(lactic) acid (PLA)-graphene 

(G) nanocomposites have been prepared and characterised in detail using Fourier transform IR 

(FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential 

scanning calorimetry (DSC) and Raman spectroscopy. The aim was to produce new 

nanomaterials in part by fused deposition modelling (FDM) and to evaluate them as:  

(i) Personal sensors for sensing of (a) pollutants (e.g. NO/NO2, SO2, VOCs/PAHs and 

particulates) in the atmosphere that might adversely affect human health. With 

improved response time, sensitivity, selectivity, recovery time and stability and an 

improved low cost spatial and temporal resolution (b) oil that pollutes water and soil. 

(ii) Localised sensors for CO2 that could be fine-tuned by water and monoethanolamine 

(MEA) incorporation to provide feedback on process efficiency affecting global 

warming and breathing efficiency. 

(iii) Coatings for improved adsorption-cooling of Al-clad building surfaces, lowering 

power consumption for air conditioning. 

(iv) Coatings for improved electrochromic displays. 

Practical applications of such materials are remote patient monitoring through real-time breath 

analysis, synthetic sweating surfaces for residential and industrial buildings, wearable sensors 

connected to the IoT and solar reactive glass.  

0.045mmol of CO2 produced a conductance change in a hydrogel in 4s for a 3D printed PVA 

hydrogel with on-board H2O; 1-1.5s slower than a quadrupole mass spectrometer (RGA). It 

could be that hydrogel sensors form an inexpensive method for breathing analysis and remote 

patient monitoring; tailoring for SO2 or NO2 detection remains to be seen. 3D printed PLA/G 

is unlikely to compete with vapour-deposited metal electrodes for detection of oil-in-water. 

Infra-red thermography (IRT) showed that novel hydrogel coatings exhibited a larger cooling 

effect (-13K when H2O swollen, -10K when MEA swollen and -11.8K when H2O swollen  

asymmetric sample) than previously (SPIE) for over 4000s on a construction-type Al substrate 

and even a 2.6K cooling with PVA hydrogel/Al substrate over a 25h period.  

“Real-world” IRT was also conducted with PVA-MxOy nanocomposite hydrogels and revealed 

that the species of MxOy affects the thermal signature of the gel differently when viewed against 

a background. More importantly, reversible electrochromic responses in novel WO3/PVA 

hydrogels (with and without additional salt) seen in <1s, open the possibility of colour 

switchable cool coatings for buildings. Addition of various salts enabled initial tuning of colour 

to be achieved. 
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1. Introduction 

1.1 Aims and Objectives 

The aims of this work were as follows: 

• Develop PVA hydrogels through physical and chemical crosslinking methods, 

investigating the effects of swelling, degree of crosslinking and environmental 

conditions and characterising these using SEM, TGA, DSC, FTIR, IR thermography 

and gravimmetry. 

• Synthesise functional MxOy NPs (WO3) and Au via sol-gel and microwave methods 

that could be incorporated into the hydrogel matrix where they could be characterised 

for dispersion and electrochromism. 

• Produce PVA/PVAc hydrogels and thin films with various organic solvents and assess 

drying rates therein. 

• Using a 3D printer, produce gas sensor substrates using PVA, PLA and PLA containing 

graphene including a mixture of these materials for asymmetric layered devices, that 

could be assessed for hydrogel forming tendencies, incorporation, and operation for gas 

sensing. 

• Utilise the desirable structural properties of PVA to produce thin films and hydrogels 

incorporating different functional NPs which could tune the emissivity (ε) of a surface. 

Characterisation and testing of these materials in laboratory and real-world settings. 

The author returns to consider the extent to which these aims were successfully achieved in 

section 7. 

1.2 Context 

Society is increasingly becoming concerned with how atmospheric pollutants affect human 

health and quality of life [1].  The negative effects of short [2] and long-term [3] exposure to 

indoor [4, 5] and outdoor pollutants [6] such as carbon monoxide (CO) [7], sulphur dioxide 

(SO2) [8] and nitrogen dioxide (NO2) [9] have been studied in depth. Additionally, more 

attention is now being given to volatile organic compounds (VOCs) [10, 11], polycyclic 

aromatic hydrocarbons (PAHs) [12], particulate matter (PM), and fine particulate matter 

(PM2.5) where the aerodynamic diameter is less than 2.5µm [13] which is thought to have a 

detrimental effect on human health [14]. Health complaints from exposure include (but are not 

limited to) respiratory problems [15, 16] and disease [17], premature births [18], impaired 
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cognitive function [19, 20], increased stroke risk [21] and in some cases premature death [22]. 

The World Health Organisation (WHO) reported in 2014 that one in eight premature deaths 

are attributable to air pollution [23]. 

Air pollutants arise from a wide range of sources. Indoor pollutants can originate as a result of 

cooking, smoking, heating, and lighting and additionally household cleaning products [24-26]. 

Building and furnishing materials may also contribute to the quality of air [27]. It has even 

been reported that newly built dwellings contain a vast array of VOCs prior to being occupied 

[28]. This is particularly concerning, as it is estimated that people in developed countries spend 

up to 90% of their time indoors, either at home or at work [29]. 

Outdoor pollutants are primarily linked to the combustion of fossil fuels [30, 31] for 

transportation, power generation and industrial use. Pollutants are not only detrimental to 

human health but have the potential to cause an increase in the global temperature through the 

greenhouse effect. Greenhouse gases are: H2O, CO2, CH4, N2O, O3, CFCs and HFCs. The 

mechanism and potential consequences of this temperature rise are extremely well documented 

[32], if not unequivocally accepted by some politicians [33]. 

Pollutants can be particularly problematic in built up areas such as cities where concentrations 

of these species accumulate. Areas of high pollutant concentration caused by poor street design 

and lack of air exchange have been termed pollutant or street canyons [34]. This phenomenon 

is perpetuated by high population density, the effect of building entrapment, automotive traffic, 

and lack of green spaces. This can lead to the phenomenon of sick building syndrome (SBS) 

[35, 36]. SBS was considered so important that NASA investigated ways to remove or reduce 

the problem, given that perhaps the ultimate example of an enclosed space is a spacecraft [37]. 

The approach taken by NASA was to investigate plants which are able to remove atmospheric 

pollutants. Other areas where SBS and pollutant levels, (specifically CO2) is being realised is 

in the cabin of vehicles. This is particularly problematic when concentrations rise to levels 

which may impair cognitive function. Guidelines established by WHO, state that permissible 

levels of CO2 in enclosed spaces should not exceed 1000ppm [38], although the American 

Conference of Governmental Industrial Hygienist (ACGIH) set the threshold limit value (TLV) 

at 5000ppm (in 1946). Regardless, some studies have revealed that when air is recirculated 

inside a car, CO2 levels can reach 3000ppm [39], which could affect concentration levels of 

the driver. 



3 
 

Occupationally, CO2 levels have also found to be hazardous, even fatal to human health. Scott, 

et al. cite numerous examples of where acute and chronic exposure, as well as CO2 build-up in 

enclosed spaces have resulted in fatal outcomes [40]. Links have also been made with the 

quality of outdoor air and how it affects indoor air quality (IAQ) [41]. It has also been suggested 

that there may be a synergy between various atmospheric pollutants, further exacerbating the 

effects on human health [42]. Current limits on pollutant levels set by WHO are: 

Table 1 – WHO guidelines on safe exposure levels to a range of atmospheric pollutants hourly, daily or 

annually. PM is composed of numerous compounds and exact ppb levels cannot be given as one sample may 

differ from another, therefore a mean value is given [43]. 

 Exposure levels (µm/m3) Exposure levels (ppb) 

PM2.5 10 (annual mean) 25 (24h mean) n/a* n/a* 

PM10 20 (annual mean) 50 (24h mean) n/a* n/a* 

NO2 40 (annual mean) 200 (1h mean) 21.2 (annual mean) 106.4 (1h mean) 

SO2 20 (24h mean) 500 (10min mean) 7.6 (24h mean) 191.1 (10min mean) 

CO2 1000ppm 

*PM is made up of a variety of compounds, therefore calculating ppb levels accurately is not possible. 

PM is a general term applied to particles ranging in size. PM2.5 refers to the particles in a cubic 

metre of air with an average diameter less than or equal to 2.5µm; this is known as fine 

particulate matter. PM10 refers to particles in a cubic metre of air with an average particle 

diameter of less than or equal to 10µm.  

It is therefore clear that effective solutions must be implemented in order to reduce the risk to 

public health. The solution may be thought of as two-fold. 

Firstly, effective detection and monitoring of pollutant species must be achieved through 

rapidly responding, highly sensitive gas sensing materials, enabling users to be quickly notified 

when concentrations rise above acceptable limits. Industrial quality wearable gas sensors exist, 

but these are cumbersome, power consuming, standalone devices primarily used by people 

expecting a certain level of exposure, linked to the environment they are working in. Wireless 

gas sensors are not yet the norm; however attitudes are changing in industry, with the benefits 

of wirelessly networked gas sensors becoming realised [44]. This change in attitude could 

encourage greater attention being given to the development of smaller, lower powered wireless 

devices which may be used by the general public. 
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Exciting developments are happening with the “Internet of Things” (IoT) with some estimating 

that up to 7 trillion devices may be connected by 2025 [45]. The IoT is a general term given to 

a range of devices (electronic and mechanical) connected via the internet. Advances are being 

made in the type and variety of devices which may be included, with sensors making up a 

significant percentage of connected devices [46]. Currently, advanced devices may give an 

indication on air quality; however, this is often comprised of data downloaded from the internet 

rather than live location-specific measurements. 

Early attempts have been made to develop wireless, chemically sensing devices [47]. However, 

these are not combined with clothing or an aesthetically pleasing medium. It is therefore clear 

that there is a need for small, low powered, highly sensitive and rapidly responding gas sensors 

which may form part of the IoT and are aesthetically pleasing, in order that consumers will 

want to buy them. 

Secondly, an overall reduction in the volume of pollutants produced from anthropogenic 

sources is necessary. Newer technology for building design should be embraced [48], reducing 

the heating and cooling demands of industrial and residential buildings [49], implementing 

more efficient uses of energy [50], non-fossil fuelled modes of transportation and making 

greater use of renewable energy sources [51]. 

When combined these two approaches give both short and long-term advantages to public 

health. Short term advantages would be better understanding of the dynamics of air pollutants 

and their effects by widespread, reliable data collection. This would enable spatial and temporal 

distribution of pollutants to be mapped, which would enable policymakers to take more 

informed action to tackle this problem [52]. This combined with notifications to the user of 

what type and concentrations of pollutants they have been exposed to could aid in diagnosing 

health complaints earlier, potentially making them more treatable. The general public are 

becoming more engaged with the health effects of pollutants and there is a genuine demand for 

more detail to be obtained. Longer term advantages would be improved building and 

transportation design linked with better urban planning and a more widespread ability to reduce 

harmful atmospheric pollutants.  
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1.3 Current Gas Sensor Technologies 

1.3.1 Background 

Gas sensors with different properties and applications have been developed over many years. 

Current sensors technologies are based upon: electrochemical, thermal conductivity, catalytic 

combustion, infrared absorption, solid electrolyte, metal oxide semiconductor and 

paramagnetic changes [53]. These technologies may be divided into two categories: sensing 

via variation in electrical properties and sensing based on variation of other measurable 

properties [54]. 

Sensors may be graded on their effectiveness based on various performance criteria [55]: 

• Response time – the time taken for a signal to be generated above background level by 

the sensor once the concentration of gas has reached the minimum sensitivity level. 

• Selectivity – the ability of the sensor to detect a specific gas or mixture. 

• Sensitivity – the minimum concentration of gas that a sensor can detect, this can be 

stated as parts per million (ppm) or parts per billion (ppb). It may also be given as a 

ratio of change in resistances: Ra/Rg for reducing gases and Rg/Ra for oxidising gases 

where Ra is the resistance of the gas sensor in a reference gas (normally air) and Rg the 

resistance sensor in the target gas. Sensitivity (S) is calculated as (Ra-Rg)/Ra x 100. 

• Recovery time – the time taken for the sensor to return to its original baseline state once 

the gas concentration has returned to pre-exposure levels. 

• Stability – this property is two-fold. Firstly, stability is the ability of the sensor to 

produce reliable results for a fixed period of time. Secondly, the ability of the sensor to 

produce reliable results when exposed to a variety of different environments: 

temperature, humidity, shock, acidic/alkaline environments. 

A further consideration is the susceptibility of a sensor to “cross-sensitivity”. This is where a 

gas different to that of the target species is present and can interfere or inhibit the function of 

the sensor. Three types of interference are possible: 

1. Positive -  the sensor responds to the target gas and the foreign species. This may 

indicate to the user that the target gas is present when in fact it is not or that it is present 

in greater quantities than is true. 

2. Negative – the sensor does not respond accurately to the target gas, instead indicating 

that there is none present, or that it is present in smaller quantities than is true. 
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3. Inhibition – the sensor does not respond at all, as the foreign species blocks/inhibits the 

sensor which can take hours/days to recover to baseline levels, if at all. 

Based on these criteria, the ideal sensor would be one which has a rapid response time, is highly 

selective, exceptionally sensitive down to ppb or ppt level, has a fast recovery time and has a 

long service life (exceedingly stable). By using nano-engineering, it is envisioned that smaller 

size and lower power consumption devices can be produced which encompass all of the 

performance criteria listed. 

1.3.2 Electrochemical Sensors with Liquid Electrolytes 

Electrochemical gas sensors are a mature technology with the first being developed in the latter 

half of the 20th century [56]. This type of sensor measures electrical current at an electrode 

where the target gas is oxidised or reduced. From this, the concentration of the gas may be 

calculated as the signal generated is proportional to the concentration of gas present. 

Electrochemical gas sensors can comprise of two, three and occasionally four electrodes sealed 

in an electrolyte solution (commonly an aqueous solution of strong acids or bases). 

Electrochemical reactions take place at the working electrode with subsequent reactions 

occurring at the counter electrode to balance the system, resulting in an overall redox reaction. 

A signal is generated between the two electrodes, proportional to the concentration of species 

present. The reference electrode is kept at a constant voltage in order to maintain a fixed voltage 

on the working electrode. 

 

Figure 1 – Schematic diagram of a three-electrode electrochemical sensor, showing working, reference and 

counter electrodes [57]. 

Electrochemical gas sensors are commonly used in air quality monitoring, where they may 

detect: CO, NO2, SO2, ozone (O3) and nitrogen monoxide/nitric oxide (NO) [58]. Hydrogen 
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(H2) is also detectable using this type of sensor [59]. Environmental analysis may be performed 

using electrochemical sensors. Recent work on 2D nanomaterial-based sensors have yielded 

promising results for detecting heavy metal ions, organic compounds, pesticides, bacteria and 

antibiotics [60]. More specific uses for this type of sensor are for drug detection. Diclofenac 

can be detected using Au-Pt bimetallic NPs and multi-walled carbon nanotubes (MWCNTs) 

[61]. Sensitive detection of acetaminophen has also been reported using a phosphorus-doped 

graphene-based electrode [62]. Although an established technology, there is still much interest 

in this type of sensor, owing to the potential developments of nanocomposite electrodes and 

the advantages in performance this could bring [63]. 

1.3.3 Thermal Conductivity Sensors 

Thermal conductivity sensors work by sensing changes in the thermal conductivity of a gas 

stream by use of a reference gas. Two resistively heated wires are situated in separate chambers 

and exposed to a thermally conductive stream of gas giving a stable, known resistance value. 

When the target gas species enters the stream, it is able to diffuse into one chamber causing the 

temperature of the wire to change. This is due to the reference gas being unable to maintain the 

temperature of the wire due to a change in thermal conductivity of the mixture. This also causes 

a resistance change which may be measured with respect to a reference chamber via a 

Wheatstone bridge. 

 

Figure 2 – Schematic diagram of a thermal conductivity sensor, also referred to as a katharometer [64]. 

This type of sensor has been in existence for a century [65] and has been shown to respond to 

a range of gases, including: CO2, H2, nitrogen (N2), helium (He) and argon (Ar) [66]. Widely 
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used in gas chromatography [67], hydrogen safety [68], natural gas analysis may also be 

conducted with thermal conductivity sensors [69]. Other sectors which have benefited from 

this technology include automotive [70]. 

1.3.3.1 Wheatstone Bridge 

Many sensors and analytical devices utilise a Wheatstone bridge. This is an electrical circuit 

designed to measure an unknown resistance extremely accurately. It utilises two legs of a 

bridge circuit, one with known resistances and a second with an unknown aspect. 

 

Figure 3 – Circuit diagram of a Wheatstone bridge, where Ru is an unknown resistance, R2 and R3 are equal 

value resistors and Rv is a variable resistor. Vi is a voltage applied and V0 a measured null point voltage [71]. 

The variable resistor Rv is adjusted until the circuit is balanced, i.e. V0 = 0. When this is true, 

resistances follow the relationship in Equation 1. 

𝑅3

𝑅𝑢
=  

𝑅2

𝑅𝑣
 

Equation 1 – Relationship between 𝑅𝑣, 𝑅𝑢, 𝑅2 and 𝑅3. 

Equation 1 may be rearranged so that 𝑅𝑢 becomes the subject, shown in Equation 2. 

𝑅𝑢 =  
𝑅3𝑅𝑣

𝑅2
 

Equation 2 – Rearrangement of Equation 1 to make 𝑅𝑢 the subject. 

This type of arrangement is common in analytical devices which rely on resistance 

measurements to determine the concentration of a species. Wheatstone bridges may be found 
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in: piezoresistive sensors [72], pressure sensors [73] and thermal flow sensors [74] to give some 

examples. 

1.3.4 Catalytic Combustion Sensor (Pellistor) 

This type of sensor consists of two elements joined by a Wheatstone bridge circuit and variable 

resistor. One element is inactive and referred to as the compensator (reference) element. The 

second element is known as the detector element. The detector element contains a catalyst bead 

(often rhodium) which promotes gas combustion in the presence of oxygen causing a rise in 

temperature above a baseline T at which the catalyst (e.g. Pt/Al2O3) is active. This increase 

changes the resistance of the circuit and therefore produces an imbalance, which is output as a 

voltage signal. The signal is then proportional to the concentration of gas present. 

 

Figure 4 – Schematic diagram of a catalytic combustion sensor, also referred to as a pellistor [57]. 

This type of sensor requires oxygen to be present in order that combustion may occur. Gases 

which may be detected using this sensor include: H2, hydrocarbons and a range of VOCs [75, 

76], which may be relevant to the problem of sick building syndrome [77]. Reliable detection 

of methane is also achieved via this method [78]. An example of a commercially available 

pellistor based sensor is Crowcon T4 portable multigas detector. 

1.3.5 Nondispersive Infrared Absorption Sensors 

Nondispersive infrared absorption sensors (NDIR) work on the principle that VOCs undergo 

characteristic absorption in the IR band of the electromagnetic spectrum. An IR source of light 

located at one end of a sensor cell is aimed linearly at a detector located at the opposite end. In 

a perfect vacuum all IR light would reach the detector. However, when target gases enter the 

cell they absorb radiation at wavelengths specific to their composition, thus satisfying the Beer-
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Lambert law (Equation 3), where 𝐼 is the beam intensity at the detector, 𝐼0 is the initial beam 

intensity, 𝑘 is the absorption coefficient, 𝐶 the gas concentration and 𝐿 the optical path length 

(sample cell length). This reduces the amount of light able to reach the detector. This difference 

may be output as an electrical signal. The decrease in IR light intensity is proportional to the 

concentration of gases present. An optical filter controls the selectivity of the sensor by only 

allowing light of certain wavelengths to pass to the detector. 

𝐼 = 𝐼0 𝑥 exp (−𝑘𝐶𝐿) 

Equation 3 – Beer-Lambert law 

It is possible to include a reference cell to this type of sensor. A non-absorbent gas, commonly 

nitrogen fills a second cell and IR light passes through as in the first. The signal measured is 

the difference between the measurement and reference cells. 

 

Figure 5 – Schematic diagram of a typical NDIR gas sensor including a reference cell. The part marked 

“chopper” is an optical device to improve the signal to noise ratio of the device [79]. 

This type of sensor may be used to detect CO2 [80], which is particularly useful in breath 

analysis [81, 82]. Other detectable species are: ethanol [83], ethylene [84], hydrocarbon 

analysis [85] and additionally CH4 and CO [86]. 

1.3.6 Solid Electrolyte Sensor 

This type of detector has been around for many years, with commercialisation starting in the 

1970’s [87]. However, this is still an active area of research, fuelled by the ever-present demand 

for more sensitive, better selective and faster responding gas sensors.  

A solid electrolyte detector employs a material with ionic conducting properties. These 

properties can be classified to include amperometric, potentiometric or conductometric 

measurements. These types of detectors work on a similar principle, which is that the material 
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is sensitive to the presence of gases. One of the earliest sensors of this type is yttria-stabilised 

zirconia (YSZ) which has been used in car lambda (λ) or air/fuel (A/F) sensors for decades 

[88]. 

In an YSZ sensor zirconium ions may be replaced with yttrium ions which have a lower 

valency. This enables oxide ion vacancies (□) to be generated. As temperature rises, it is 

possible for oxide ions (O2-) to be transported through the structure, thus increasing the ionic 

(electrical) conductivity which may increase exponentially with temperature. The YSZ 

component is situated between two platinum electrodes with oxygen moving through the 

electrolyte structure in ionic form to the side with the lowest partial pressure. In doing so, up 

to four electrons may be transported from the platinum electrode. This is a cathodic process. 

The reverse may happen on the other side of the sensor: an anodic process.  

 

Figure 6 – Schematic diagram of a Nernst-type solid electrolyte detector [89]. 

The equilibrium voltage may be calculated by the Nernst equation (Equation 4), where 𝐸 is the 

equilibrium voltage of the cell, 𝐸𝑜the standard electrode potential, 𝑅 the molar gas constant, 𝑇 

the temperature, 𝑧 the number of moles of electrons transferred (per mole of reaction) and 𝐹 

the Faraday constant. Values in the square brackets are concentrations of ions:  

𝐸 = 𝐸𝑜 −  
𝑅𝑇

𝑧𝐹
 ln

[𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑓𝑜𝑟𝑚]

[𝑜𝑥𝑖𝑑𝑖𝑠𝑒𝑑 𝑓𝑜𝑟𝑚]
 

Equation 4 – Nernst equation, used to calculate the equilibrium voltage of an electrolyte cell.  

This type of detector is therefore known as a Nernst-type oxygen sensor. Other forms of solid 

electrolyte detectors work in a similar manner. Gases which are commonly detected using this 

method are NOx [90], O2 [91] which may be based on materials such as La0.8Sr0.2Ga0.8Mg0.2O3-

δ, [92] and NH3 which can be based on a variety of materials, including: (Al0.2Zr0.8)4/3.8NbP3O12 

[93], Ce0.8Gd0.2O1.9 [94] and even polymeric materials such as polyaniline (PANI) [95]. H2 
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sensors have also been reported based on composite electrolytes [96]. Trace gas analysis has 

been achieved from coulometric solid electrolyte sensors [97]. 

1.3.7 Semiconductor Metal Oxide Sensor 

Semiconductor Metal Oxide (SMO) Sensors are arguably the most studied of all gas sensor 

types due to their low cost and flexibility [98]. The gas sensing characteristics of 

semiconductors was first discovered in 1931 by P. Brauer when it was noticed that adsorption 

of water vapour affected the resistance of Cu2O. Early SMO sensors were based on ZnO and 

SnO2 thin films [99]. The performance of SMO sensors is largely dependent on the structure of 

the metal oxide and thus nanostructured materials bring exciting new prospects to this area 

[100]. 

SMO sensors may be split into two categories: n-type metal oxides and p-type metal oxides. 

Examples of n-type are: SnO2 [101], ZnO [102], WO3 [103], and TiO2 [104] and p-type 

examples are: NiO [105], CuO [106], Cr2O3 [107] and Co3O4 [108]. Both types of sensor are 

chemiresistive; with changes in electrical resistance being observed when a target analyte is 

introduced. Research on n-type semiconductor gas sensors is by far the dominant area.  

 

Figure 7 – Adsorption of oxygen to form an EDL in (a) n-type and a HAL in (b) p-type oxide semiconductors 

resulting in electrical core-shell layers [109]. 
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The mechanism for sensing begins with adsorption of oxygen onto the surface of the oxide 

semiconductor in order that an electrical core-shell layer may be formed. In n-type examples 

this oxygen is ionised (dependent on temperature) to form O2
-, O2- and O- as a result of electrons 

being taken near the surface of the semiconductor. Formation of a resistive electron depletion 

layer (EDL) and an n-type semiconducting region can then occur. In a p-type oxide, oxygen 

anions are adsorbed which results in a hole accumulation layer (HAL) forming near the 

material surface (Figure 7). 

The mechanism by which each type of semiconductor conducts is different. In n-type oxides 

the resistive shell to shell contacts determine the resistance. When a reducing gas is introduced 

to the oxide, oxygen anions oxidise the gas. Electrons which are left over are injected back into 

the semiconducting core resulting in a decrease in resistance proportional to the concentration 

of gas present. 

 

Figure 8 – (a) mechanism of gas sensing in an n-type SMO and (b) the equivalent circuit [109]. 

In p-type systems, parallel paths exist across the resistive core and along the semiconducting 

shell. There is competition between these two routes. When a reducing gas is oxidised, 

electrons are injected back into the material resulting in a reduction in the concentration of 

holes in the shell layer causing resistance to increase. There is also a consideration that if the 

oxide semiconductor particles are bigger than double the HAL thickness, the change in 

concentration of holes won’t significantly alter the resistivity between particles contacts. It has 

been suggested by [110] that owing to the similar morphologies and that most conduction in p-
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type oxides occurs along the semiconducting shells, the response of p-type semiconductor gas 

sensors (Sp) is equal to the square root of n-type semiconductor gas sensors (Sn): 

𝑆𝑝 =  √𝑆𝑛 

Equation 5 – relationship of gas sensing response between p-type and n-type SMO gas sensors. 

Because of this relationship, development of highly sensitive p-type SMO gas sensors is 

challenging, perhaps partially explaining why n-type have received greater attention. 

1.3.8 Paramagnetic Sensors 

This type of sensor relies on the magnetic effects of oxygen, and thus is used for O2 detection. 

O2 is one of very few paramagnetic gases, meaning that it is attracted to a magnetic field, as 

opposed to most gases which show diamagnetic properties, i.e. they are repelled from a 

magnetic field. Paramagnetism is a temperature-dependent process and may repel O2 at high 

temperatures. 

In a typical sensor, the displacement body is arranged asymmetrically in a magnetic field 

generated by the field concentrators. When oxygen is introduced, it is attracted to and  

concentrates in the magnetic field, exerting a force on the displacement body. This results in 

the displacement body rotating, which may be detected using a light source, mirror and 

photodetector. A current is applied to the compensation coil to return the displacement body to 

its original position. The current required to do this is proportional to the oxygen concentration 

present. The main components of this type of sensor are shown in Figure 9. 

 

Figure 9 – Schematic diagram of a typical paramagnetic oxygen sensor [111]. 
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Sensors of this type are normally used in industrial applications due to their reliability and 

maintenance free operation. Once constructed, no further calibration is required due to the 

absence of a chemical reaction. 

Oxygen is the predominant gas detected using this technology; however there are differences 

in the design of sensors used [112, 113]. The Servomex OxyDetect is an example of a 

commercially available paramagnetic oxygen sensor. 

1.3.9 Particulate Matter Sensing 

With PM being recognised as a significant health concern, effective and reliable monitoring of 

concentration levels is essential. Various methods exist to achieve this, with perhaps the most 

simplistic being to collect particles via a filter, then use gravimetry to calculate weight 

differences. This is a type of direct measurement although more elegant and accurate solutions 

exist.  

A tapered element oscillating microbalance (TEOM) is an internationally accepted method for 

measuring PM10 and PM2.5 [114]. This device consists of an inlet of specific size drawing in 

particles via a vacuum pump. The particles travel to a flow splitter where the PM enters a filter 

connected to a vibrating glass tube. As PM is deposited on the tube the mass change causes the 

frequency of vibration to decrease. The frequency change is proportional to the mass of PM in 

the tube. Limitations of this method are susceptible to large temperature changes and 

mechanical noise.  

Other methods used for monitoring particulate concentrations approved by the department for 

environment, food and rural affairs (DEFRA) are: β-attenuation analysers and optical analysers 

[115]. 

β-attenuation analysers (BAM) are widely used for detection of PM10 and PM2.5. β-rays from 

a radioactive source (typically 14C or 85Kr) are directed at a detector which gives a baseline 

reading. Positioned between the source and detector is a filter onto which the PM is deposited. 

Particles on the filter attenuate the β-rays by absorbing some of the energy passing through. 

The change in energy reaching the detector is proportional to the mass of particles on the filter. 

Optical analysers are based on the interaction between light (laser, IR or visible) and airborne 

PM. Light of known luminescence is shone at a detector. The intensity loss between the source 

and detector is attributable to particles scattering or absorbing the beam prior to detection. This 

is a type of indirect particle detector. 
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Overall, detection of PM10 and PM2.5 with current technology requires either the physical 

collection of material or a stabilised light source and sensitive detector. A method which differs 

from the above and is not used by DEFRA is electrostatic precipitation which involves charging 

the particles then measuring the current they carry. Because of the way PM is monitored, it is 

unlikely the materials used in this work will be suitable for PM detection. 

1.3.10 Summary of Sensor Types 

A range of previous and current gas sensor technologies has been reviewed. It is evident that 

some areas, although well established, will continue to benefit from further research, 

particularly with materials in the nanoscale: notably, sensors relying on solid state structures: 

catalytic combustion sensors, solid electrolyte sensors and semiconductor metal oxide sensors. 

These types of sensors have in the past employed bulk materials; however the tide is now 

turning with the majority of new publications listing materials in the nano- scale due to their 

superior performance. These may either be nanoparticles [116], nanowires [117], nanotubes 

[118], nanorods [119], nanobelts [120], nanoflowers [121], nanocombs [122] or quantum dots 

[123]. Combinations of these types have also been reported [124]. 

With the vast amount of possibilities for gas sensor materials present, now is an exciting time 

to be involved with this area. This work will look at semiconductor metal oxide type gas sensors 

coupled with 3D printed substrates as it is believed that this is an area which is yet to be 

exploited. Some work has been conducted on the humidity and CO2 gas sensing properties of 

double-layer graphene [125]. 

The advantages of employing 3D printed substrates are the speed of production and the 

tuneability of sensor size. Incorporation if functional components can be achieved; either pre-

printing in the filament [126] or post printing via solvent uptake and hydrogel formation.  

Disadvantages are the lack of literature surrounding how incorporation of different functional 

components in the filament affects the print quality. Adjustments may also need to be made to 

flow rate, temperature and build plate temperature to ensure successful prints. 
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Table 2 - Generalised summary of gas sensor types, rated by performance. 

Technology Detectable gases Accuracy Sensitivity Response 

time 

Electrochemical Sensors with 

Liquid Electrolytes 

Electrochemically 

active gases 

(approx. 20) 

±0.5ppb 0 - 10ppb <50s 

Thermal Conductivity Sensors H2, CH4, CO2, He ±2% 0.1% <20s 

Catalytic Combustion Sensor 

(Pellistor) 

Combustible 

gases (VOC’s) 

±1% 1-2% Vol. 

CH4 

<15s 

Nondispersive Infrared 

Absorption Sensors 

Hydrocarbon 

gases, CO2 

±30ppm 20-50ppm <20s 

Solid Electrolyte Sensor Approx. 150 

different 

±5ppb 10+ ppb 20-90s 

Semiconductor Metal Oxide 

Sensor 

NH3, NO2, CO, 

H2, CH4, O2 

(primarily) 

±0.2ppb <1ppb <20s 

Paramagnetic Sensors O2 (primarily) ±1% ±0.02% <15s 

 

1.4 Infrared and Optical Coatings for Buildings 

The purpose of such coatings are twofold. Firstly when referring to coatings visible in the 

infrared region it is envisioned that these may take the form of an easy, quick drying spray. 

Once applied this could aid emergency services to easily identify a target building from the 

air or ground, especially at night. This would be particularly useful in an urban environment 

where navigation could be difficult. Coatings which exhibit properties in the optical region 

would be useful for temperature and lighting control within a building. A reflective coating 

could be used as a passive cooling technique in summer months, thus reducing the need for 

active techniques, such as air conditioning, which is highly power consuming.  

1.4.1 Background 

When describing the context for this project, it was stated that a holistic approach was the most 

favoured way to look at the issue of improving air quality; both through effective monitoring 

and reduction in the anthropogenic sources of air pollution. One method which is particularly 

attractive, is the reduction in demand for energy, which in turn would facilitate a reduction in 
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power generation and therefore harmful emissions. It is true to say that the infrastructure for 

power generation from 100% renewable sources is many decades away. The UK government 

has a current target to reduce harmful emissions by 80% by 2050 (from 1990 levels) [127]. 

This can only be achieved through a combination of renewable power generation and the 

adoption of more efficient uses of power.   

Currently, it is estimated that buildings in Europe account for 40% of total final energy use and 

36% of CO2 emissions [128]. Much of this is through the need to heat, cool and light both 

industrial and residential buildings. Building construction began to address some of these 

heating demands by designing more airtight buildings; however this has led to the phenomenon 

of “sick building syndrome”. 

Table 3 provides a range of technologies which may be fitted to a building in order to reduce 

energy demands. 

Table 3 – Current technologies which may be retrofitted to a building in order to improve its efficiency and 

lower energy usage. Reproduced from [129]. 

Building retrofit technologies 

Heating and cooling demand 

reduction 

Energy efficient equipment & low 

energy technologies 

• Air tightness 

• Building fabrication insulation 

• Window retrofits (i.e. multiple 

glazing, low energy coatings, 

shading systems, etc.) 

• Cool roof and cool coatings 

 

• Control upgrade 

• Natural ventilation 

• Lighting upgrade 

• Thermal storage 

• Energy efficient equipment and 

appliances 

• Heat recovery 

Human factors 
Renewable energy technologies & 

electrical retrofits 

• Comfort requirements 

• Occupancy regimes 

• Management and maintenance 

• Occupancy activities 

• Access to controls, etc. 

• Solar thermal systems 

• Wind power systems 

• Biomass systems 

• Geothermal power systems 

• Electric system retrofits, etc. 
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Innovative ideas to address the temperature needs of a building are required if the energy usage 

is to reduce. A potential area to explore, linked to gas sensing materials is the use of functional 

coatings which may be applied to a surface to change the reflective characteristics. This 

technology is also relevant to cool roof and cool coatings.  

1.4.2 Smart Windows 

Smart windows are comprised of glass which has been treated with an optical coating able to 

dynamically change to light and temperature differences. This improves the efficiency of the 

window by allowing it to respond to changes in the outdoor environment. This can potentially 

reduce the need for artificial lighting and heating and thus reduce energy usage [130]. 

Many different technologies provide a route to smart windows. Some examples are, but not 

limited to: electrochromic [131], thermochromic [132], photochromic [133], organic light 

emitting diode (OLED) [134] and photovoltaic [135]. 

 

Figure 10 – Visual representation of an ideal smart window; on warm days IR radiation is reflected, but visible 

light allowed through and on cool days both IR and visible light may pass into the room [136]. 

This work is concerned predominantly with electrochromic devices which often utilise the 

properties of metal oxide nanoparticles. This area draws parallels with another arm of this 

work; SMO gas sensors. Many materials and preparations are closely linked [137]. Further 

crossovers exist with respect to functionalised carbon nanotubes, which have been 

demonstrated to exhibit electrochromism when based on polydiacetylene [138]. It is owing to 

these reasons’ attention has also been paid to the properties of electrochromic devices. 
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1.4.3 Electrochromic Coatings 

Electrochromism is the reversible change of the optical properties of a material when exposed 

to a current or electric field.  

The most studied and arguably best-known electrochromic material is tungsten oxide. Tungsten 

oxide is comprised of octahedrally shaped repeat units, which undertake corner sharing of 

oxygen atoms giving an overall chemical formula of WO3. The crystal structure of WO3 is 

shown in Figure 11. 

Owing to the nature of edge sharing amongst unit cells, oxides which exhibit electrochromism 

are oxygen deficient. Also apparent is the presence of voids in the structure (as depicted with 

the blue arrow in Figure 11). These voids are of a size large enough to accommodate ions from 

an electric field. When a cation is inserted into the structure, electrons originating from the 

electrodes are also present to act as charge balancers. This influx of electrons is able to alter 

the valency of the metal atom centre. A photon which interacts with the tungsten oxide layer is 

able to drive an electron from one tungsten atom to another, meaning that optical absorption 

occurs. The density of inserted electrons is proportional to the number of inserted ions which 

controls the intensity of the absorption. 

 

Figure 11 – Crystal structure of tungsten oxide showing the corner sharing characteristics of the oxygen and 

edge sharing of unit cells. Reproduced from [139]. 

Two types of metal oxides exist in terms of electrochromism. Firstly, metal oxides which 

experience charge insertion become optically absorbing (lighter). On the contrary, metal oxides 

which undergo charge extraction become optically reflecting (darker). A high-performance 

electrochromic device typically has oxides of both types as the colour change will be the same. 
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One will expel a charge whilst the other simultaneously accepts. An example of this is given 

in Figure 12.  

The electrochromic properties of metal oxides may be driven by the nature of electrolyte 

combined with type and level of dopant. When doped with a metal, tungsten oxide may be 

referred to as a tungsten bronze, owing to the colour it exhibits. A tungsten bronze has the 

generalised formula MxWO3 [140], where M is an alkali metal, often sodium (Na) or potassium 

(K) and the value of x is 0 < x < 1. This type of structure is an example of a non-stoichiometric 

compound.  A prominent feature of these materials is their superconducting ability [141]. 

Tungsten bronzes have also been noted for their catalytic activity, with routes for low 

temperature synthesis having been previously studied [142]. Common synthesis routes for 

electrochromically active metal oxide nanoparticles are: sol-gel [143], microwave assisted 

synthesis [144], chemical vapour deposition [145], hydrothermal treatment [146], spray 

pyrolysis [147], electrodeposition [148] and thermal evaporation [149]. New routes such as 

annealing [150] are being investigated for large scale production with a view to supplying 

technology for the emerging smart window market. 

 
Figure 12 – Example of an asymmetric electrochromic cell; electrochromic layers on each side are formed of 

different metal oxides. Reproduced and adapted from [151]. 

Inorganic metal oxides are not the only type of materials which exhibit electrochromism. 

Organic electrochromics and combinations of organic and inorganic materials do exist [152]. 
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Of particular interest are conjugated polymers due to the ease of synthesis, ability to adjust 

colouration and their low cost [153]. Examples of this type of electrochromic material are: 

poly(3,4-ethylene-dioxythiphene) (PEDOT) [154], polypyrrole (PPy) [155], polythiophene 

[156] and polyaniline (PANI) [157] and even combinations of these materials [158, 159]. 

Although there is literature on organic electrochromics, for the purpose of this work inorganic 

metal oxides are the preferred route to electrochromism. This is due to the many different 

properties this group of materials exhibits, namely gas sensing and electrochromism. 

1.4.4 Hydrogels 

1.4.4.1 Background 

A hydrogel is a three-dimensional network of polymer chains crosslinked either chemically or 

physically with water dispersed uniformly throughout. The hydrophilic nature of this species 

is related to the functional groups present on the polymer chain. Dependent on the degree of 

crosslinking, hydrogels may be swollen significantly by water, but are also able to resist 

dissolution in water. 

This is not a new area of research, with the first reference to a hydrogel being published in the 

1890s [160, 161]. However, modern attention to this class of materials first began to emerge 

around 60 years ago with the emergence of synthetic hydrogels [162], which prompted wide 

interest in this highly adaptable material [163]. 

Hydrogels serve a wide range of functions and may be classified in different ways, with 

modification of a single or multiple aspect(s) resulting in the display of different, often 

improved properties. Mahinroosta, et al. (Figure 13) classified hydrogels by: physical structure, 

ionic charge, synthesis route, size, type of bond and mechanical and structural properties. 
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Figure 13 – Classification of hydrogels according to various features. Reproduced and adapted from [164]. 

Hydrogels have found uses in a wide range of applications. Owing to the biocompatibility of 

some hydrogels, the medical sector has been quick to utilise hydrogels in a range of applications 

[165], including: drug delivery [166], tissue engineering [167], regenerative medicine [168], 

wound dressing [169] and ophthalmic medicine [170] to name just some. Hydrogels have also 

proved useful in a range of sensor applications: pH sensors [171], photonic sensors [172], 

nitrite sensing [173] and humidity sensors [174]. Other uses include as a method to cool 

buildings [175], through sweating surfaces [176], wastewater treatment [177], agricultural 

[178] and reduction in marine biofouling [179]. 

It is clear that hydrogels are important in many areas, with wide-ranging applications. In this 

work the author was particularly interested in hydrogels for sensors and building cooling. This 

links with the prime motivation for his work, namely cleaner air through better pollutant 

sensing, combined with a reduction in energy use. 

In order that the most appropriate hydrogel type and material is selected for this work, synthesis 

methods and materials should be considered. This is perhaps best done by looking at the two 

forms of crosslinking. 
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1.4.4.2 Physically Crosslinked Hydrogels 

Physically crosslinked hydrogels are so called because they require no separate chemical 

species to act as a crosslinker. Instead a gel is formed using the intermolecular forces which 

exist between polymer chains. There are several methods used to promote interactions of this 

type. 

Freeze-thawing is probably the simplest of all physical methods as it requires no specialist 

equipment. Solutions of the polymer are exposed to temperatures below the freezing point of 

the solvent, resulting in the formation of microcrystals as a result of hydrogen bonding . Upon 

thawing, these crystal structures survive in the polymer matrix holding polymer chains together 

around trapped solvent molecules. Depending on the degree of crosslinking desired, multiple 

freeze-thaw cycles may be required. The temperature range of this method is also reported to 

have an effect on the properties of the final gel [180]. 

Ionic interaction is another method of crosslinking polymers and relies on the inclusion of ions 

with di- or tri- valency. This method requires that the polymer chain is ionically active i.e. a 

polyelectrolyte. Polyelectrolytes are electrolytes containing polymers which when dissolved in 

an aqueous solution result in dissociation of the electrolytes, leaving a charged polymer. The 

oppositely charged ion, which is included, forms ionic bonds between the polymer chains, 

resulting in crosslinking. This method can result in hydrogels with excellent mechanical 

properties [181]. 

Complex coacervation is an additional physical crosslinking method often used to form more 

complicated hydrogels. This route relies on the interactions between anions and cations based 

on the theory that opposite charges are attracted to one another. A polyanion solution and 

polycation solution are mixed and dependent on pH and concentration, are able to form soluble 

or insoluble complexes. Hydrogels formed via this method have been used in the controlled 

release of drugs [182]. 

These methods are the most widely recognised types of physical crosslinking. Other methods, 

such as stereocomplexation [183] do exist, but are still reliant on the same principles of charge 

interaction or intermolecular forces. 
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1.4.4.3 Chemical Crosslinked Hydrogels 

Unlike physical crosslinking which relies on interactions between polymer chains, chemical 

crosslinking is the result of an included crosslinker or bonding of polymer chains via other 

means. This type of crosslinking uses covalent bonding to join polymer chains. Advantages of 

this method are the ability to fine tune the level of crosslinking, by only including a finite 

amount of crosslinker. This method is also fast compared to the freeze-thawing method 

described in 1.3.4.2 and can result in gels with high mechanical strength. Disadvantages are 

the need for cross -linkers, which may present toxicity or biocompatibility issues. 

Although “chemical crosslinking” is the generic name given to this type of bonding, chemical 

crosslinking is also a specific process. A cross-linker (e.g. glutaraldehyde or epichlorohydrin) 

and catalyst (e.g. hydrochloric acid or sulphuric acid) are reacted with the polymer chain under 

specific conditions, forming a covalently bonded chemical bridge between functional groups 

on the polymer chains. An example of this is the acid catalysed crosslinking of PVA with 

glutaraldehyde (GA). Hydroxy groups on the PVA chain react with the carbonyl groups on the 

GA molecule resulting in the formation of polar covalent carbon-oxygen bonds between the 

PVA and GA with the loss of water.  

 

Figure 14 – Acid catalysed crosslinking of PVA with GA [184]. 

Other examples of functional groups which readily undertake this type of crosslinking with 

aldehydes are amine and carboxylic acid groups. This type of bonding is highly dependent on 

stoichiometry of the reactants which can result in highly tuneable crosslinking and hydrogels 

with different properties. 
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Aldehyde Amine Carboxylic acid 

Figure 15 – Functional groups able to readily undertake crosslinking with GA [185]. 

One of the most common forms of chemical crosslinking is radical polymerisation. This 

method uses free radicals from a decomposed initiator (cross-linker) and small monomer units 

to construct a polymer network (Figure 16). Once a desired number of monomers have bonded 

to form a polymer network the reaction is terminated via the annihilation of two radicals. 

 

 

(a) Decomposition of an initiator (I) (b) Radical addition to a monomer 

Figure 16 – (a) decomposition of an initiator to give two free radicals, (b) free radicals bond to monomer units 

[186]. 

Grafting is an example of chemical crosslinking which can be achieved through inclusion of a 

chemical reagent (chemical grafting) or through the use of an electron beam to initiate free 

radical polymerisation (radiation grafting). Grafting in polymer chemistry can refer to three 

types: grafting to, grafting from and grafting through. 

Grafting to, uses a reactive polymer backbone to which pre-formed functional side chains are 

grafted. Grafting from, is a copolymerisation process where monomers are grafted onto a 

macroinitiator polymer backbone. Grafting through, is the polymerisation of monomers using 

an initiator. The chemical crosslinking of polymer chains to form hydrogels can be achieved 

using any of these processes.  

Radiation grafting uses a focused beam of energy to initiate free radicals which leads to 

bonding of successive monomer units. By using this method, control of chain length growth 

and degree of crosslinking may be achieved. 

Other crosslinking processes such as enzymatic reactions [187], condensation reactions and 

degradation exist [188], but these methods are beyond the scope of this work. 
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1.4.5 Summary 

There is much that can be done in order to improve the thermal efficiency of buildings. This 

may be achieved through smart glass, which employs a range of technologies. For this work 

we are principally interested in exploring electrochromic coatings owing to the number of 

shared materials between this technology and SMO gas sensors. Electrochromic coatings can 

be applied to windows or other surfaces in order to control the IR and optical radiation striking 

it. 

Secondly, passive cooling systems, such as “cool roof and cool coatings” (Table 3) may be 

achieved through hydrogel coatings. Many different hydrogels exist, with a range of chemical 

and physical methods to facilitate crosslinking, stability and controlled dehydration. 

Regeneration and therefore, cycling of hydrogels are also achievable. When bound in a polymer 

matrix, water is in the liquid state, but evaporates to vapour upon dehydration. 

It is important to emphasise the coating aspect of this work and how this will be achieved with 

respect to the surfaces found on a building. Two types of coating are envisioned, firstly 3D 

printed PVA hydrogels. These will be custom made using FDM to fit on the cladding which is 

typically aluminium derived. Secondly electrochromically active coatings which will also be 

3D printer derived. These will help tune the IR and optical light striking the hydrogels, 

improving the evaporation rate of guest solvent. Both aspects of work aim to passively cool the 

building thus reducing the need for active technologies, such as air conditioning, in turn 

lowering the power consumption of industrial and residential buildings. 

Gas sensing is also a pillar of this work and hydrogels have been shown to be adaptable as 

various types of sensors. This is also true of some metal oxides which exhibit both 

electrochromism and gas sensing characteristics. This work will therefore focus on functional 

hydrogels which may incorporate metal oxide nanoparticles. From this it is hoped that a 

hydrogel may be tuneable to show electrochromism, gas sensing properties and work as a 

passive cooling device. 

Finally, consideration must be given to the method of production for this type of material. It is 

clear that a polymeric material must be employed for a hydrogel to be formed and that this will 

be swollen by a solvent. It is also conceivable that this solvent may act as an electrolyte in an 

electrochromic cell. Three-dimensional (3D) printing has been suggested as a method to 

produce hydrogels [189]. Therefore, it is possible that IR and optical coatings may be produced 
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on-demand via a 3D printing technology. 3D printing will be pursued as a fundamental 

technology for the fabrication of hydrogel and gas sensor substrates for the first time. 

1.5 Three-Dimensional Printing Technologies 

1.5.1 Background 

Three-dimensional (3D) printing is now more popular than ever, with the availability, 

practicality and diversity of printers ever increasing. 3D printing is based on the concept of 

additive manufacturing (AM) which works on the principle of creating a structure by adding 

material from nothing. Traditional manufacturing methods use subtractive manufacturing and 

create an object by removing material from a solid starting piece. 3D printing is feasible where 

one or more dimensions of the required structure is not less than the resolution of the printer. 

An example of this would be a sheet of polymer with a required thickness of 0.05mm. Often 

the lowest possible layer height of a FDM printer is 0.1mm, therefore this would not be a 

feasible item to print with this technology. 

Examples of AM can be found almost anywhere, from the home hobbyist, designing items for 

fun to professional users printing functional parts on an industrial scale. 3D printing is widely 

used in the medical sector [190] with applications such as transdermal drug delivery [191], 

orthognathic surgery [192], cardiology [193], general surgery [194] and regenerative dentistry 

[195].  

Other sectors have also benefitted from the maturation of 3D printing technology, notably the 

engineering sector. Applications of 3D printing can be found in the automotive [196], 

aerospace [197] and construction sectors. Use in construction is two-fold: both for functional 

prototypes and for manufacture of the final components [198]. Finally, and slightly closer to 

home, 3D printing is finding a niche within the laboratory for everyday science, particularly in 

analytical and separation sciences. The ability to print complex geometries with ease is 

improving ways of preparing and supporting samples for analysis [199]. 

All AM processes can be divided into seven distinct categories; however, each category may 

contain several different technologies [200]. Each method has advantages and disadvantages; 

however, most users will choose a printer type based on precision of printed models, size of 

model required, speed at which the model can be printed, the material(s) the model is required 

to be printed in (for strength, heat resistance, electrical conductivity, etc.) and the cost of the 
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materials involved. It is important that each technology is reviewed and the appropriate one 

selected for use in this work. 

1.5.2 Material Extrusion 

Material extrusion (ME) is the general name given to a process where a solid thermoplastic 

filament is heated to a semi-liquid state before being fed through specific diameter aperture at 

a controllable rate. A combination of movements in the X, Y and Z planes coupled with the 

cooling properties of the filament enables an item to be constructed layer by layer. Fused 

deposition modelling (FDM) is the main technology associated with ME. 

Figure 17 shows the structure of three different types of plastic. Plastics used in ME are based 

on thermoplastic materials, with no crosslinking and only weak intermolecular forces holding 

chains together. Because of this property they are able to be melted and reformed making them 

ideal for use in ME. 

 

 

 

(a) Thermoplastic – no crosslinking between polymer 

chains 

 

 

(b) Elastomer – loose crosslinking between polymer 

chains 

 

 

(c) Thermoset – extensive crosslinking between polymer 

chains 

Figure 17 – Three types of plastic presented structurally (a) thermoplastic, (b) elastomer and (c) thermoset 
[202]. 
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Figure 17 shows the structure of three different types of plastic. Plastics used in ME are based 

on thermoplastic materials, with no crosslinking and only weak intermolecular forces holding 

chains together. Because of this property they are able to be melted and reformed making them 

ideal for use in ME. 

1.5.2.1 Fused Deposition Modelling 

Fused deposition modelling (FDM) is a commonly used ME technique which was originally 

developed by Stratasys Inc. [203]. Predominantly used for functional prototypes and low 

quantity production, it is one of the earliest types of AM yet remains one of the most popular. 

This is largely due to its low cost combined with safety and efficiency; FDM is capable of 

processing production grade thermoplastics within a well-ventilated home or office setting. 

FDM works by “fusing” streams of semi-liquid thermoplastic filament together when deposited 

on build plate. This is achieved by allowing each stream contact with the previously deposited 

one. Whilst still in a semi-liquid state the thermoplastic properties of the polymer stream allow 

mixing, so that once cooled they form a single continuous layer of material. 

 

Figure 18 – Generalised schematic diagram of a simple fused deposition modelling 3D printer [204]. 

Advantages of FDM include the diversity of objects which may be made [205] combined with 

the simplicity, speed and low cost of this technology. Drawbacks include, visible layers on the 

finished item, weak mechanical properties and the limited number of materials available to 

print with [206, 207]. 
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Figure 19 – 3D printed model of a cervical spine based on CT images, made from ABS and produce via FDM 

[208]. 

1.5.3 Material Jetting 

Material jetting (MJ) works in a similar fashion to a traditional inkjet printer. The build material 

is in a liquid state and is deposited from a print head by jetting onto a build plate. The print 

head moves in the X and Y planes to deposit a layer, which once complete is either allowed to 

solidify, or cured using UV light. The build plate then moves in the Z plane in order that the 

next layer may be deposited. Build materials are commonly based on polymers and plastics, 

such as: polypropylene, high-density polyethylene and high impact polystyrene. However, 

other print materials, notably an aqueous ink incorporating zirconium oxide (ZrO2) have been 

reported [209] for printing of ceramics. 

 

Figure 20 – MJ model of an aorta from MR angiography images [210]. 
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Advantages of this technique are that it may be used to print complex structures; it is fast and 

efficient with minimal waste material. When fitted with a multi-jet head this process is known 

as multi-jet modelling (MJM) and may simultaneously deposit materials in a variety of colours. 

Disadvantages of this technique are the extensive need for support materials to be used which 

go to waste once the print is finished. High resolution printing may be achieved but is limited 

by the number of materials available [200]. 

1.5.4 Binder Jetting 

Binder jetting (BJ) is the collective name for two different technologies: powder bed and inkjet 

3D printing (PBIH) and plaster-based 3D printing (PP). Although named differently, the 

process behind how a model is created is the same. 

BJ is the combination of two materials: a powder-based material which the final model is 

created from and a binder. Examples of the materials which may be used are stainless steel,  

glass and acrylonitrile butadiene styrene (ABS). In a BJ printer a layer of powder is spread onto 

the build plate, where required, an adhesive binder is deposited by a print head on top of the 

powder, binding the material. The build plate is then moved in the z plane and another layer of 

powder is diffused on top of the binder. This process repeats until the model is finished. 

Unbound powder is retained around the model and can be re-used.  

 

Figure 21 – Generalised schematic diagram of a binder jetting 3D printer. Adapted from [211]. 

Advantages of this method are the wide range of materials available and the possible mixtures 

of binder and powder. This method is quick but has a poor to moderate quality of finish. 

Disadvantages are the overall mechanical strength of the model, which due to the use of binder 
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can make this method unsuitable for structural parts [212]. Depending on the binder used, a 

long period of post print setting may be required [213]. 

 

Figure 22 – Model of an ankle produced using BJ [214]. 

1.5.5 Directed Energy Deposition  

Directed energy deposition (DED) is a 3D printing technique commonly used to include 

additional material or to make repairs to an existing object. This technique commonly, but not 

exclusively uses metallic powders to create objects. Other materials which can be used are 

polymers and ceramics. 

DED works by feeding a substrate to the build plate where it is melted by a laser or electron 

beam. The laser is not confined to the X and Y planes as in other techniques and may move 

upon 4 or even 5 axes. Models are created layer by layer as the material solidifies. 

 

Figure 23 – Schematic diagram of the directed energy deposition method [215]. 

Advantages of this method are the ability to make repairs to an existing object and to create 

mechanically functional parts. Other advantages include the ability to print metallic items with 

a high level of accuracy. Disadvantages include the need to undertake further processing of the 
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part after creation to improve the quality of the finish. This technique is also fairly specialised 

and has not yet advanced into mainstream use [216]. 

 
(a) (b) (c) 

Figure 24 – DED produced seat ring (a) original part, (b) new part produced by DED (c) new part after further 

processing and improvement [217]. 

1.5.6 Powder Bed Fusion 

Powder bed fusion (PBF) is a collective name given to a range of technologies which all utilise 

a similar mechanism. All of these processes use either a laser of electron beam to melt or fuse 

a powder together. Once one layer has been fused, a roller deposits the next layer of powder 

ready for melting. The differences in technologies relate to the powder material or the heating 

process. 

 

Figure 25 – Generalised schematic diagram of the powder bed fusion method; specifically, selective light 

sintering [218]. 
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1.5.6.1 Electron Beam Melting 

In electron beam melting (EBM) a vacuum is required so that the beam may be focused. EBM 

is predominantly employed to create functional parts using metals and alloys. Advantages of 

this method are that there are no voids within the final product. Therefore parts have full 

mechanical strength and this technique is also fast. Disadvantages are the high cost associated 

with the printer and materials, making it only suitable for industrial use. 

 

Figure 26 – a selection of items produced by EBM [219]. 

1.5.6.2 Direct Metal Laser Sintering and Selective Laser Sintering 

These techniques use the same sintering process, but different materials and these may be 

combined. Selective Laser Sintering (SLS) produces objects from plastics and polymers which 

originate in powder form. A laser selectively sinters parts of the powder joining it together 

molecularly. Direct Metal Laser Sintering (DMLS) uses exactly this technique, although 

employs higher temperatures to sinter metal powders rather than plastic ones. A third technique 

known as selective laser melting (SLM) goes further and actually melts the parts together 

removing voids.  

 

Figure 27 – S-shaped aluminium tube made by DMLS [220]. 



36 
 

Advantages of these techniques are relatively low cost combined with a wide range of suitable 

starting materials. Disadvantages are the lack of mechanical strength. The quality of the finish 

is also highly dependent on the powder grain size. 

1.5.6.3 Selective Heat Sintering 

Selective heat sintering (SHS) differs somewhat from the other three technologies in the sense 

that it does not use a laser to melt powder. Instead a heated print head travels across each layer 

of powder selectively melting areas to make up the model. As with the other techniques a roller 

deposits the next layer of powder and the build plate lowers in the Z plane. SHS can produce 

objects from thermoplastics, but not metal. Advantages of this technique are a much lower cost 

than SLS, DMLS and EMB. However, this technique is much slower than the other three and 

has limitation on the size of model which may be produced. 

1.5.7 Vat Polymerisation  

Vat polymerisation (VP) encompasses two technologies, which although follow the same 

principle, can result in different quality levels of finish. VP produces objects layer by layer and 

consists of a container filled with a liquid photopolymer resin and an UV light source. This 

light source is able to cure the photopolymer selectively as the build plate moves the model 

down ready for the next layer to be cured. 

 

Figure 28 – Schematic diagram of a vat polymerisation 3d printer; specifically using the stereolithography 

method [221]. 

Two technologies are used in VP, firstly stereolithography (SLA) which uses a laser emitting 

UV light to cure the photopolymer selectively. An advantage of SLA is the ability to give a 

high level of accuracy combined with a good quality finish. However, this technique is 

expensive. The second technology is digital light processing (DLP) which uses a digital 

projector screen to flash the entire photopolymer layer at once with an image of the item being 
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printed. This method is cheaper than SLA and is more versatile, with a wide range of bulbs 

available with different intensities and wavelengths. However, the quality of the finished item 

is not as good as SLA. 

 

Figure 29 – SLA produced model of conjoined twins showing blood vessels. This type of model is particularly 

good for surgical reconstruction and diagnosis [222]. 

Overall VP is able to produce large models quickly, with good quality finishes. Disadvantages 

include the limited types and cost of photopolymers available. Post-processing is also required 

to remove excess resin, potentially making this an untidy technique with additional health and 

safety concerns. 

1.5.8 Sheet Lamination  

Sheet lamination can be divided into two different processes: laminated object manufacturing 

(LOM) and ultrasonic additive manufacturing (UAM). This process works by combining 

consecutive layers of material through use of adhesive (LOM) or ultrasonic welding (UAM). 

Material is fed from a spool at one side of the build plate to one on the opposite side. A laser 

or cutter creates a shape, adhesive is applied, and the material is moved on ready for the next 

layer to be applied. This continues, layer by layer until the object is made. The need for a 

“cutting” step means that this method is a combination of additive and subtractive 

manufacturing, so not strictly 3D printing. 

Models created in this way have very low mechanical strength and are only used for aesthetic 

items. LOM predominantly uses paper as a build material, whereas UAM can use a variety of 

metals, including copper, aluminium and titanium. 
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Figure 30 – Schematic diagram of a sheet lamination process; specifically, laminated object manufacturing 
[223]. 

Advantages of LOM are low cost and speed of manufacture attributable to the way the model 

is cut, i.e. only the outline of the shape not the entire plane. Disadvantages is the poor quality 

of the finish, which due to the accuracy of cutting may require significant post-processing to 

be of an acceptable standard. 

1.5.9 Summary of Technologies 

It is evident that 3D printing technologies are wide ranging, both in the number and type of 

methods available and the materials they are able to process. For this project preference must 

be given to technologies which have a proven record in producing models which are electrically 

conductive. Attention must also be given to the type and variety of materials which a 

technology can process. This work has little interest in methods which can only process 

metallic starting materials. Moreover, materials which can be used as substrates for further 

chemical processing, either pre, during or post printing are the most desirable. 

Based on this assessment, FDM is the most appropriate technology to meet the needs of this 

project. Of particular interest are the materials polyvinyl alcohol (PVA) and polylactic acid 

(PLA), which may be easily processed by FDM. This technology is also financially viable for 

this work.  

Further adaption of this method may be achieved by the inclusion of a paste extruder. This 

allows custom mixtures to be extruded from the existing print head and is a potential route to 

printing electronically conductive materials. 
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Table 4 - Standard terminology for additive manufacturing technologies, reproduced from [201]. 

Additive Manufacturing Categories Additive Manufacturing Technologies 

Material Extrusion (ME) Fused Deposition Modelling (FDM) 

Material Jetting (MJ) Multi-jet Modelling (MJM) 

Binder Jetting (BJ) 
Powder Bed and Inkjet 3D Printing (PBIH) 

Plaster-based 3D Printing (PP) 

Directed Energy Deposition (DED) Laser Metal Deposition (LMD) 

Powder Bed Fusion (PBF) 

Electron Beam Melting (EBM) 

Selective Laser Sintering (SLS) 

Direct Metal Laser Sintering (DMLS) 

Selective Heat Sintering (SHS) 

Vat Polymerisation (VP) 
Stereolithography (SLA) 

Digital Light Processing (DLP) 

Sheet Lamination (SL) 
Laminated Object Manufacturing (LOM) 

Ultrasonic Additive Manufacturing (UAM) 

 

1.6 Materials of Interest 

The process of identifying suitable materials must consider a number of factors. Firstly, the 

project is to incorporate 3D printing for the gas sensor substrate. It is therefore sensible to 

consider 3D printing technologies and the materials they are able to use. Secondly, substrates 

will need to be chemically treated dependent on the target analyte being investigated. Materials 

will also need to be electrically or ionically conductive with good chemical stability. High 

surface area is also desirable as this is directly linked to gas sensor sensitivity; therefore 

materials in the nano-scale are considered. Coatings that are to be applied in the environment 

should be green and non-toxic or have low toxicity so that they may not affect wildlife or leach 

into the aquatic environment once dispensed with. Consideration must also be given to the 

method of application used for the coating and what personal protective equipment (PPE) users 

may or may not use. Overall, it is highly desirable for base materials to be chemically stable, 

non-toxic, environmentally friendly and biodegradable.  
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There are a number of other useful applications which share the same base materials as gas 

sensors; such as the development of infrared and optical coatings. Various coatings can be 

found which alter or tune the surface properties of a material. These can be particularly 

important in both civil and military applications. Civil uses may include medical, architectural 

and maritime, whilst military uses could include: surveillance, stealth or tagging. It is therefore 

clear that the materials being developed will be useful and will have greater performance 

capabilities than the present generation.  

The materials chosen for use in this project all satisfy one or more of the strands of research. 

Polymeric materials PVA and PLA are both ubiquitous in 3D printing. PVA hydrogels are 

common and so it is feasible that 3D printed PVA could be adapted into hydrogel form. PLA 

has been incorporated with graphene previously and with the gas sensing properties of 

graphene well known, this opens up the possibility of a 3D printed PLA/G gas sensor. 

Furthermore PLA is a biodegradable polymer, thus contributing to the green credentials of this 

project. Both PVA and PLA are durable and tough polymers which is an ideal property when 

one considers the environment these materials will ultimately be exposed to; namely the outside 

of a building and the variety of weather conditions possible. 

Graphene and CNTs have a vast amount of literature supporting their use as gas sensing 

materials, it is for this reason they are interesting. Also considered is the surface area of 

graphene and the importance this has on the sensitivity of gas sensors.  

Finally tungsten trioxide is often hailed as the original electrochromic material and so there is 

logic in utilising this class of metal oxide. Literature exists to support the synthesis of nanoscale 

particles and so high performance electrochromic coatings are possible. 

1.6.1 Polyvinyl Alcohol 

Polyvinyl Alcohol (PVA) is a synthetic polymer commonly derived from polyvinyl acetate 

through partial or full hydroxylation. PVA was first prepared by W. O. Herrmann and W. 

Haehnel in 1924 via saponifying polyvinyl esters with stoichiometric amounts of caustic soda 

solution. Further work in 1932 by W. O. Herrmann, et. al. yielded the method still in use today.  
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Figure 31 – Structure of (a) 100% hydrolysed PVA (b) partially hydrolysed PVA [224]. 

Unlike other polymers, PVA is not produced from its corresponding monomer. Vinyl acetate 

undergoes free radical polymerisation to form polyvinyl acetate (PVAc). PVAc is then treated 

with methanol (CH3OH) and sodium hydroxide (NaOH) to remove acetate groups replacing 

with alcohol. 

 
Figure 32 – Reaction schematic of hydrolysis of PVAc to PVA [225]. 

PVA is biocompatible, non-toxic and water soluble. It is also commonly used in 3D printing 

as a soluble support material. PVA hydrogels are common and have been used in a wide range 

of applications. It is for these reasons that PVA is an attractive material to this project. 

1.6.2 Poly Lactic Acid 

Polylactic acid (PLA) is a biodegradable and renewable bioplastic which exhibits thermoplastic 

properties, commonly produced from corn-starch and sugar cane. PLA is an aliphatic polyester 

which requires further polymerisation of the L and D isomers for high molecular weight 

polymer chains to be produced.  

PLA is commonly used as a 3D printing filament owing to the ease by which it may be used. 

FDM 3D printers in particular are able to process this material well. There is also literature to 

suggest that PLA/graphene hybrid materials may be produced [226], which would be an 

interesting route to produce 3D printed gas sensing materials due to what is already known 

about the gas sensing characteristics of graphene. 

(a) (b) 
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Figure 33 – Possible synthesis routes to producing high molecular weight PLA [227]. 

1.6.3 Graphene 

Although theorised about and produced inadvertently for years, graphene is a material which 

has attracted colossal multidisciplinary attention for more than a decade since the first high-

quality isolation by Novoselov and Geim in 2004 [228]. Structurally, graphene is comprised of 

two dimensional, hexagonally shaped patterns of sp2 bonded carbon atoms. This arrangement 

gives an exceptionally high theoretical surface area of 2,630 m2 g-1. Graphene exhibits a 

thermal conductivity of 5,000 W m-1 K-1 and an electrical conductivity of 6.4 x 106 S cm-1. This 

combined with high physical and mechanical strength, a Young’s modulus of approximately 

1,100GPa makes it a highly desirable material [229]. 

Graphene can be produced in many forms depending on the desired application. Single-layer 

(SL), few-layer (FL) and multi-layer (ML) are common arrangements.  
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Figure 34 - Visual representation of single-layer (SL), few-layer (FL) and multi-layer (ML) arrangements of 

graphene shown on the atomic scale (approximately 100nm). 

Single planar sheets of graphene may be manipulated to form other structures; commonly 

formed structures are carbon nanotubes (CNTs), graphite and spherical fullerenes 

(Buckyballs). Chemical modification of graphene can be undertaken to attach functional or 

reactive groups which may act as a link to biomolecules or other ligands. Complex modification 

is often required to retain the conductive nature of these unsaturated graphene sheets; however 

if done successfully, exploitation of the unique properties of graphene combined with enhanced 

functionalisation can be achieved. 

 

Figure 35 - Common modifications of planar graphene [230]. 

Graphene is of interest due to the properties listed above: its massive surface area makes it 

ideally suited to gas sensor applications, particularly for sensing single molecules. Traditional 

solid state, bulk sensors lack the fine sensitivity to detect very low concentrations or single 
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molecules and intrinsic noise is caused by fluctuations due to thermal motion of charges and 

defects. This noise is greater than the signal generated when a single molecule is adsorbed onto 

a tradition gas sensor surface. The result is that the signal gets lost within the noise and is 

undetectable [231]. This is a major limitation of traditional solid, bulk sensors making it 

impossible to reach very low resolutions. However, it has been reported that graphene does not 

suffer from similar levels of background noise. Molecules being ab/adsorbed have a more 

pronounced effect on the electrical properties of graphene; this combined with very low levels 

of intrinsic signal disturbance, enables parts per billion (ppb) and parts per trillion (ppt) levels 

of detection to be reached, within the capabilities of single molecule detection [232]. 

Graphene has several advantages over traditional gas sensors, perhaps firstly the gas sensing 

mechanism it uses. A gas molecule undergoes absorption, adsorption or desorption at the 

surface; this causes the conductivity of graphene to be changed significantly. The gas 

molecules act as electron donors or acceptors interrupting the electrical conductivity which is 

easily detected using a four-probe measurement in the case of planar graphene. Four-point 

conductivity measurements are a huge advantage allowing for low contact resistance. 

Furthermore, graphene has very few crystal defects when compared to traditional gas sensors; 

this gives an exceptionally low level of excess noise enabling much lower and more accurate 

levels of detection. Finally, graphene is a two-dimensional structure giving it a massive surface 

to volume ratio. These advantages promote graphene as an ideal candidate for use as a gas 

sensor, particularly in applications requiring very low levels of detection and possibly able to 

detect single molecules. It is also possible to combine graphene with traditional 3D printer 

filaments [233, 234], which would enable utilisation of another new technology. For these 

reasons’ graphene has been identified as a material of significant interest. 

1.6.4 Carbon Nanotubes (CNT) 

Graphene comes in many forms; planar sheets may be processed further for other forms to be 

constructed. A common form of graphene is carbon nanotubes (CNTs) which are widely used 

and now ubiquitous in the field of nanomaterials. A single sheet of planar graphene may be 

wrapped into a tubular shape to form a single wall carbon nanotube (SWCNT). 

Conversely, multiwall carbon nanotubes (MWCNTs) may be formed by wrapping subsequent 

layers of graphene around the initial layer.  
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Figure 36 - Different chiral arrangements of SWCNTs (a) armchair (b) zigzag (c) chiral [235]. 

 

 

Figure 37 - Illustration of a single walled carbon nanotube and a multi walled carbon nanotube; the latter can 

comprise of many layers of tubes within tubes [236]. 

CNTs have an electrical conductivity of around 106 S cm-1 [237]; thermal conductivity is 

approximated at 5,800 W m-1 K-1 for SWCNT [238] and 10,000 W m-1 K-1 for MWCNT. The 

Young’s modulus of CNTs is approximately 900GPa [239]. 

Although these properties are less than that of planar graphene, CNTs are worth considering as 

potential gas sensing materials when used in conjunction with graphene. There is literature to 

support enhanced gas sensing properties when CNTs and graphene are used together as a 

hybrid system [240, 241]. 
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1.6.5 Tungsten Trioxide 

Tungsten trioxide (WO3) is a transition metal oxide, which exhibits electrochromic [242], gas 

sensing [243] and catalytic properties [244]. These properties make it an ideal candidate for a 

range of potential applications including: electrochromic (smart) windows [245], gas sensors 

[246], photocatalysts [247]. 

Structurally WO3 consists of perovskite units (ABO3) and is similar to MoO3. WO3 possesses 

nonstoichiometric properties and is able to form tungsten bronzes. WO3 crystals are formed 

through edge and corner sharing of WO6 octahedra. Several phase transformations can be 

observed: monoclinic II (ε-WO3) (only stable at sub-zero temperature), triclinic (δ-WO3), 

monoclinic I (γ-WO3), orthorhombic (β-WO3), tetragonal (α-WO3) and cubic (rarely observed 

experimentally). These phase transformations can occur during heating and cooling. 

 

Figure 38 – Crystal structure of WO3 (a) ideal cubic structure (b) WO6 octahedra [248]. 

Electrical conductivity of a single crystal WO3 is dependent on stoichiometry but is in the range 

of 10 to 10-4 Scm-1 [249]. The band gap of WO3 is between 2.6 – 3.0eV which has been 

investigated extensively owing to the role it plays in the properties described [250]. 

1.7 Alternative Applications of Gas Detection 

The benefits of small, low powered CO2 sensing devices cannot be underestimated. Whilst 

obviously useful in areas of high pollutant concentration, other applications are also 

considered.  
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Analysis of exhaled breath has been investigated previously in medical diagnosis and health 

monitoring. Links have been made between aniline and o-toluidine and early detection of lung 

cancer [251]. 8-isoprostane, 3-nitrotyrosine and leukotriene B4 have been associated with 

COPD [252], Liver degeneration through detection of isoprene and CH3OH [253], diagnosis 

of diabetes by determination of acetone [254], pentane and CS2 for schizophrenia [255], 

pancreatitis by H2S, NO and an m/z=66 species [256] and finally HCN (Pseudomonas 

aeruginosa infection in cystic fibrosis [257]. This non evasive approach is potentially quick 

and may be performed during general health screening. Some disadvantages of off-line PTR-

MS suggested for large screening of exhaled air have been reported [258]. 

A sensor of this type may be useful to older members of the population who may live alone or 

in remote areas or see few visitors. It is envisioned that a 3D printed CO2 sensor may act as an 

emergency device, by detecting changes in CO2 concentration. 

1.8 Oil Spill Detection 

1.8.1 Background of Oil Composition 

The materials proposed for this work have previously found uses as markers for oil spills in 

water and on land. The author believes that it is important to consider where alternative uses 

exist, so that comparison of material performance can be conducted. 

Crude oil exhibits variations in chemical composition based upon the area of extraction and 

can be divided into: paraffinic (primarily paraffin based), naphthenic (cycloparaffin in heavy 

fractions) and aromatic. Owing to these differences, direct correlations cannot be reliably 

drawn between samples from alternate regions. It is important to consider than regardless of 

origin, crude oil is variable in composition, although generally, concentrations of aromatics 

and naphthalene’s exceed that of alkane paraffins. Such phases have yet further different 

interfacial tensions (and work adhesions) with water. 

Table 5 shows the work of adhesion for different hydrocarbons where the work of adhesion 

between the oil and water phases (Wo-w) equals the sum of the surface tensions of the pure 

phases in contact with their vapours minus the oil-water interfacial tension o-w as in the Dupre 

equation (Wo-w = o - w - o-w).  

 

 



48 
 

Table 5 – Work of adhesion between oil and water phases. 

Hydrocarbon Wo-w (mJ.m-2) 

Alkanes 36-48 

Aromatic 63-67 

Primary alcohols 92-97 

Further examples of hydrocarbons with known characteristics are also considered in Table 6: 

Table 6 – Phase characteristics of three known hydrocarbons. 

Hydrocarbon o o-w Wo-w 

Cyclohexane 25.3 49.7 48.8 

n-hexane 18.4 51.1 40.1 

Benzene 28.9 35.0 66.7 

water=72.8mN.m-1 

Furthermore, it is interesting that aromatic hydrocarbons exhibit larger T dependencies for their 

interfacial tensions (Table 7): 

Table 7 – Interfacial tensions of aromatic compounds. 

Hydrocarbon o o-w dT 

Octane 21.69 51.68 -0.095 

Dodecane 25.44 52.90 -0.088 

Hexadecane 27.46 53.77 -0.085 

Benzene 28.88 35.00 -0.130 

where d/dT for water is +0.160. 

1.8.2 Oil Toxicity and Detection of Spillages 

Environmental forensics can enable the source of spilled petroleum oil products to be detected 

using fluorescence spectroscopy [259]. The chemical composition (and equivalent alkane 

carbon number (EACN) [206, 261] increases and varies with the effects of weathering, owing 

to the formation of long-term recalcitrant polar compounds [262] (produced in water and soil), 

soluble naphthenic organic compounds (NOCs) and petroleum acids [263, 264]. This poses a 

large problem when oil enters marine, freshwater or soil environments. Commonly noted 

effects are; oil spilled into the marine environment has been shown to have enhanced 

bioactivity, bioavailability and toxicity [265-267] to biota [268]. Water-accommodated 
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fractions (WAF) of crude oil are toxic to zebrafish (Danio rerio) in early life stages [269]. 

Domestic heating oil (DHO) seeping into freshwater are toxic to molluscs [270]. 

Plants are affected by oil seeping to soil [271] and haemolytic anaemia in birds and mammals 

[272] including mice [273, 274] is thought to be caused by ingested petroleum. 

The toxic effects of petroleum-based oil can be long-term if PAHs accumulate in sediments 

[275]. Continual weathering subsequently generates more WAF [276] and water-soluble 

fractions (WSF) [277] from the initial spill.  

Treatment of toxic spilled oil can be chemical, physical or bio, with the latter requiring larger 

space requirements than chemical treatment [278]. However, the primary step must be to detect 

that a spill has occurred. It was considered that micro conductivity could provide a low-cost 

sensor. This, it was thought might be part of “oil production engineered nanometrically” 

(OPEN). 

The objectives of this work were to develop novel micro-conductivity of water and hence land 

pollution by oil. Bench scale experiments [279, 280] and in-situ 13NMR and oxygen sensing 

[281, 282] may help understand the kinetics [283, 284] of remediation and structure-transport 

relationships [285-287]. 
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2 Methods 

The instrumentation and synthesis methods selected in this chapter have been chosen to 

enable the aims to be achieved. 3D printing has be selected for its ease of use and for the 

sheer flexibility of design it enables. With the end product likely to be used in construction, 

custom designs will be required, it is for this reason 3D printing is a core method in this 

work. 

Analytical techniques that have been employed serve two purposes, firstly as a means to 

assess the performance of the synthesised gas sensing materials and secondly to probe the 

structure, stability and quality of the precursors and synthesised materials. 

The RGA is a reliable and durable mass spectrometry method used to analyse species by 

mass/charge ratio. In this work it is used as a technique to confirm that injected gases have 

traversed the gas rig setup and passed over the sample being analysed. An RGA was chosen 

over a traditional mass spectrometer owing to its durability and ease of adaptation. This helps 

the gas sensing aims to be achieved by giving a reliable figure to compare the performance of 

the 3D printed samples to. 

SEM-EDX, Raman, FTIR, DLS are all techniques which are used to probe the structure and 

chemistry of the samples. SEM-EDX in particular allows viewing of the interactions between 

the polymer matrix and inclusive metal oxides. FTIR allows differences in chemical structure 

to be investigated, this is important in this work as 3D printed materials may not possess the 

same purity as lab grade precursors. DLS enables particle size to be calculated, important 

when considering surface area of gas sensing or electrochromically active components. 

Furthermore, techniques such as TGA and DSC allow the thermal stability of a sample to be 

tested, DSC is particularly important in determining levels and ratios of on board solvents. 

Aims can therefore be achieved by only taking forward samples which have been subjected to 

an array of techniques. 

The chemical synthesis methods chosen represent reliable, safe and cost effective means to 

synthesis samples for testing. This helps the commercialisation of the aims, by making the 

materials financially viable. 
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2.1 Instrumentation 

2.1.1 Three-dimensional Printing 

A three-dimensional (3D) printer enables the user to create a physical object, in a variety of 

materials, from a computer aided design (CAD) model. Different types of 3D printer exist, 

using a variety of additive manufacturing (AM) techniques. AM works on the principle of 

creating a structure by adding material. Conversely, subtractive manufacturing techniques 

remove material from a solid piece [288]. 3DAM enables complex models to be produced 

which would be unsuitable for subtractive manufacturing [289, 290]. In this work, fused 

deposition modelling (FDM), a form of material extrusion, was considered the most 

appropriate method. It is relatively cheap compared to other methods and a wide variety of 

materials can be used. Materials of particular interest are polyvinyl alcohol (PVA) and 

polylactic acid (PLA) including composites of these. Conductive forms of PLA can be procured 

as a base material, some of which contain graphene. This was attractive to this project as 

graphene is widely known to be useful as a gas sensing material.  

2.1.1.1 Material Extrusion 

Material extrusion is the general name given to a process where a solid thermoplastic filament 

is fed at constant pressure and rate into a heated print head. The filament is heated to a semi-

liquid state before being extruded through a nozzle with specific diameter size (commonly 0.1 

- 0.8 mm) onto a build plate. The print head moves in the X and Y planes to create a layer. 

Once on the build plate, the material cools rapidly returning to a hardened solid state. It would 

be possible to explore the LWIR thermography (IRT) to investigate accurate temperatures. The 

build plate then moves in the Z plane a set distance dependent on layer height and thus quality 

of the finished model, allowing the print head to deposit the next layer.  

Figure 39 shows a generalised schematic of a dual extrusion FDM 3D printer. This type is 

capable of employing 2 filaments thus eliminating the need to change over material types and 

allowing the printing of dissolvable support parts such as PVA. 
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Figure 39 - A generalised schematic diagram of a material extrusion 3D printer [291]. 

Whilst nanotechnology has been expanding in most fields, 3D printing to produce 

nanostructured materials is still in its infancy. Some work has been conducted in the medical 

sector on nanostructured materials from 3D printing [292], although these methods focus on 

conventional inkjet printing rather than AM. Graphene has been incorporated in metallic 3D 

printing to produce nanocomposite materials with superior properties [293]. Other forms of 

AM using polymeric precursor materials have also been treated with graphene to improve 

mechanical and electrical properties [294]. Of particular relevance to this work is the inclusion 

of graphene in PLA for use in FDM [295]. 

Models which are to be produced via FDM predominantly originate from a variety of CAD 

software packages. The CAD package used in this project is “Autodesk fusion 360”. This was 

chosen as it is free to academic users, it is intuitive to use and utilises the cloud platform, 

allowing for easy sharing of designs.  

Owing to the range of CAD packages and the different file types, designs can potentially be 

exported in; a universal file type must be adopted before a model can be printed. It first must 

be converted into a stereolithography (STL) file, which approximates the surface geometry of 

the model using triangles. Figure 40 shows how a cylindrical model appears after it has been 

designed in the Autodesk software package. Figure 41 shows the same sample after it has been 

converted to STL file type. In this instance the surface geometry has been approximated to 264 

individual triangles. It is possible to increase the level of refinement, thus using a greater 

number of smaller triangles to better approximate the geometry of the model. 
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Figure 40 - CAD model of a cylindrical sample to be printed, before conversion to STL file type. 

 
Figure 41 – CAD model of a cylindrical sample after being converted to STL file type. 

Once a design has been produced in STL format, it must be imported for processing in an 

appropriate “slicing” or “cutting” software package. This software breaks down the model into 

individual horizontal layers (Z plane) and then calculates the path that the print head will take 

to create the model (X and Y planes). It also calculates where support material is required and 

the correct orientation of parts. Other parameters can also be decided such as the material the 

model is to be printed in, the height of each layer (determines the quality of finish on the 

model), printing temperature (must be appropriate for the material being used), temperature of 

the build plate (important for good adhesion of the model) and material flow rate. The software 



54 
 

also gives an indication to the user of how long the model will take to print and how much 

material will be used to create it.  

The slicing software used in this project is called “Cura”. This was chosen as it was developed 

and recommended by the manufacturer of the printer being used. Figure 42 shows how the 

cylindrical model appears once it has been “sliced” in Cura. Printing options and parameters 

are shown on the right-hand panel. 

 
Figure 42 - Cylindrical sample viewed in Cura, a slicing software package. 

The final stage before printing is to export the sliced model as a “.gcode” file. This is a 

numerical control programming language, which gives instructions to the motors controlling 

the print head telling them when and how far to move and at what speed. 

The 3D printer selected for this work was an Ultimaker 3 FDM (as shown in Figure 43). This 

printer is capable of dual extrusion including water soluble supports and can print models in a 

variety of materials, namely: acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), 

polyvinyl alcohol (PVA), polyamide (nylon) and polypropylene (PP) are the most common. 

Table 8 shows the chemical structure of these materials and some key properties which were 

considered when selecting materials. Materials were purchased directly from the printer 

manufacturer (Ultimaker), except for the PLA/Graphene filament, which was purchased from 

Black Magic 3D, a company specialising in materials for R&D. 

Specific purity values were hard to obtain from filament manufacturers, owing to the generally 

intended end use. Manufacturers do not generally anticipate end users to require analytical 

grade purity given the wide variation in melting temperatures. Purities of 95% would be 
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considered acceptable for general use and would not significantly affect the thermal or 

mechanical properties of an item. 

Table 8 – Key properties of a range of common FDM materials *Nylon 6, one form of nylon, commonly used 

[296]. 

Material 
Melting 

range (K) 

Diameter 

(mm) 
Key Features Structure 

ABS 498 - 518 
2.85 ± 

0.05 

Mechanical 

properties, 

minimal 

warping 
 

PLA 318 - 433 
2.85 ± 

0.10 

Tensile strength, 

high print speed, 

surface quality 

 

PVA 436 
2.85 ± 

0.10 

Non-toxic, good 

thermal stability 

 

Nylon 458 - 468 
2.85 ± 

0.05 

High strength to 

weight ratio, 

abrasive 

resistance 
* 

PP 403 
2.85 ± 

0.10 

Good heat 

resistance, high 

strength to 

weight ratio 
 

PLA-

Graphene 
443 - 513 

1.75 ± 

0.05 

0.6Ωcm-1 

volume 

resistivity, high 

strength 

 

 

The Ultimaker 3 printer is capable of printing at a build speed of 24mm3s-1 at temperatures 

between 453 and 553K. The XYZ resolution of the printer is 12.5, 12.5, 2.5µM giving 
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exceptional accuracy. Layer resolutions of 60 - 150µM (0.25mm nozzle), 20 - 200µM (0.4mm 

nozzle) and 20 - 600µM (0.8mm nozzle) are achievable. 

 

Figure 43 - Ultimaker 3 three-dimensional printer. 

2.1.2 Scanning Electron Microscopy 

It is often necessary in materials science to undertake characterisation using microscopy. 

Whilst optical microscopy can provide information on the properties of a sample to the sub-

millimetre (<mm) to micrometre (µm) scale, it requires an electron microscope to give images 

at high resolution on the nanometre (nm) scale. It was necessary to view samples on this scale 

to understand the homogeneity/heterogeneity and dispersion of the WO3 nanoparticles (NPs) 

within the hydrogel matrix. For example, the geometry of the WO3 NPs in-situ required 

investigation. Furthermore, information about the printed PLA/PVA interface and 

understanding of the surface morphology (roughness/smoothness) of printed samples needed 

gathering. 

SEM uses a focused beam of electrons originating from an electron gun. The electron gun 

typically employs a tungsten filament, which is electrically heated until it emits electrons. This 

beam is then focused using magnetic lenses so that it scans over the sample in an evacuated 

chamber. Electrons interact with the sample causing multiple processes to occur, notably, 

elastic scattering of electrons, secondary electron emission and the emission of electromagnetic 

radiation. Multiple detectors can be inserted within the evacuated chamber to detect these 
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different species and collect information allowing an image to be produced. Routinely, 

secondary electrons are collected to produce the typically-displayed SEM image. Figure 44 

shows a generalised schematic on an SEM. 

 
Figure 44 - Schematic diagram of a scanning electron microscope; with emission, focusing, sample, detection 

and display parts shown [297]. 

Samples to be analysed were first dehydrated (in the case of hydrogels) before being fixed onto 

a standard aluminium sample stub using double-sided carbon tape. Gold coating was required 

to achieve a good level of conductivity through the sample and stub. This was achieved using 

an argon source gold sputter with two applications of 1.5 nm gold coating. Sputter coating is a 

physical vapour deposition method used to deposit a thin film onto a substrate. A cathodic 

material, in this case gold, is bombarded with inert gas (e.g. argon) causing erosion of the target, 

referred to as “sputtering”. The sputtered gold atoms are attracted to the oppositely charged 

anode on which the substrates to be coated are placed, causing a thin film of gold atoms to be 

deposited on the substrate surface [298]. Once gold coated, sample stubs were secured onto a 

multi-stub holder enabling up to nine samples to be placed inside the SEM chamber in one 

session. 

Gold coating was achieved using a Polaron Emitech SC7640 High Resolution Sputter Coater 

fitted with a gold target with argon as a carrier gas. Coating thicknesses which can be achieved 

with this instrument were in the range of 1 - 20nm. It was thought that a minimum advisable 

coating thickness was 2nm to eliminate sample charging in the SEM. 

The depth at which samples in this work will be analysed is dependent on the information 

required. Penetration depths of 1-2µM are possible with a high energy electron beam.  

However, the information required about the structure of a samples will be typically in the 
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region of 100 – 500nm. The author is interested in the surface characteristics of the samples, 

the boundary layer of PLA/PVA samples and the interactions of inclusive MOx NPs in hydrogel 

and thin film matricies.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 45 – Sample preparation stages prior to analysis by SEM. (a) Affixing a sample onto an aluminium 

sample stub, (b) gold coating by placing the sample stub into a sputter coater and (c) securing the sample stubs 

to a multi-stub holder to be placed into the SEM chamber. 

 

Figure 46 – Digital photograph of using a Polaron Emitech SC7640 High Resolution Sputter Coater. 

Where EDX analysis was to be undertaken, gold coating was where possible eliminated or 

reduced to enable the accurate collection of elemental data from the sample. In cases where 

gold was amongst the elements being analysed, carbon coating was a viable alternative to gold 

coating. 

SEM images were collected using a Zeiss Supra 35VP Field Emission Gun Electron 

Microscope fitted with a range of analytical techniques including energy-dispersive x-ray 
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analysis (EDX), back-scattered electron detection (BSE) and electron back-scattered 

diffraction (EBSD).  

An acceleration voltage of between 4 and 20 kV was used and the working distance from the 

sample was in the range of 8-10 mm to enable safe and reliable focusing on the sample without 

the risk of the sample stage making physical contact with the electron gun. In this instance 

SEM analysis should be considered a destructive technique due to the need to affix the samples 

to stubs with carbon tape and to gold coat them. As SEM operates under vacuum, it was also 

necessary to dehydrate the hydrogel samples for analysis to be conducted. 

 

Figure 47 - Optical photograph of a Zeiss Supra 35VP scanning electron microscope and associated analysis 

probes. 

2.1.3 Energy-Dispersive X-ray analysis 

Energy-Dispersive X-ray analysis (EDX) commonly called EDAX or EDS is an analytical 

technique used to identify the elemental composition of a material. Commonly used in 

conjunction with SEM or TEM systems, EDX provides peaks corresponding to the elements 

within the sample under analysis. Depending on the application this makes EDX a quantitative, 

semi-quantitative and qualitative technique. The distribution of elements can also be mapped 

across the sample. 

To obtain the elemental profile the sample is bombarded with a beam of focused electrons from 

the electron gun within the SEM/TEM. This causes inner shell lower energy electrons from 

atoms within the sample up to 1 -2 µm deep to be ejected (along with the incoming bombarding 

electron) causing a vacancy. The depth at which EDX can penetrate is related to the escape 
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depth of an X-ray, characterised by the interaction volume of primary beam electrons (Figure 

48). A higher energy outer shell electron can fill the vacancy generated, with the energy 

difference being made up in the form of a characteristic X-ray. The energy of the X-ray is 

specific to the element from which it is emitted. Therefore, it is possible to detect the number 

of X-rays relative to the energy they carry.  

 
Figure 48 – Interaction volume of primary beam electrons [299]. 

Silicon drift detectors are often used to detect characteristic X-rays emanating from the surface 

of the sample. When an X-ray hits the detector a charge pulse is created equal to that of the X-

ray, this charge pulse is then converted by a charge sensitive preamplifier to a voltage pulse 

still equal to the energy of the original X-ray. A multichannel analyser then determines which 

signal corresponds to which X-ray by voltage and the data is displayed to the user on screen. 

For an X-ray to be generated, there is a requirement for an outer shell electron to fill the void 

left when an inner shell electron is ejected. Therefore, EDX cannot be used on H or He owing 

to the absence of a K-shell. Elements from Li to Ne can be difficult to quantify owing to valence 

electrons being involved in characteristic X-ray generation. Typical detection limits of this 

technique are 0.1wt% with combined errors resulting in precision levels of ±2%. 

EDX analysis was undertaken using an Oxford Instruments Octane Elect EDS System capable 

of low energy sensitivity and low voltage microanalysis. Spot and line analysis were 

particularly useful features of this system as this enabled rapid analysis of samples and gave an 

indication of elemental changes present across a sample and at the PVA-PLA interfaces. 
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2.1.4 Thermogravimetric Analysis 

Thermogravimetric analysis (TGA) investigates the physical and chemical changes a material 

undergoes when heated or cooled through a defined temperature range. A known mass of 

sample is heated through a set temperature range at a defined rate (𝛽 = 𝛿𝑇/𝛿𝑡) in a controlled 

atmosphere. The system can hold at specific temperatures (𝛽 = 0) or increase/decrease (𝛽 >

0 or < 0) as desired. The atmosphere which the sample is heated can also be controlled. Air is 

used when standard conditions may need replicating, or an inert gas (N2) can be used when 

combustion is undesirable. With the variability of conditions available TGA can give 

information on the properties of a material, such as changes in mass attributable to oxidation, 

or the temperature at which thermal decomposition occurs. This allows determination of the 

variety of components within a composite material by interpreting the mass changes at different 

temperatures. 

 
Figure 49 - A schematic diagram of a typical TGA instrument; alternative designs can incorporate a top 

loading mechanism [300]. 

Figure 49 shows a basic design of TGA which almost all modern instruments use. Gas flows 

into the furnace removing gases which may have evolved during the analysis run ensuring that 

they do not interfere with the microbalance, allowing for a controllable atmosphere. A null 

point precision microbalance ensures that the sample remains within the heated region in the 

furnace avoiding variations in temperature. This also forms part of a Wheatstone bridge and is 

marked as “restoring force” in Figure 49. When the microbalance arm moves (as sample mass 

changes) the bridge circuit restores the arm to its initial position. A computer logs all 

temperature and mass changes and outputs this graphically via an ascii file. 
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A TA Instruments TGA Q600 was used throughout this project. Typically, heating runs were 

conducted between 293K and 973-1073K (maximum performance of the instrument 1273K). 

A ramp rate of 10K min-1 was utilised and samples were nominally run in an atmosphere of air 

at a flow rate of 90cm3/min , followed by a subsequent run in N2. Prior to analysis, the sample 

was reduced to an appropriate size (approx. 4-5 mm) to fit into the sample pan; a maximum 

sample weight of 1g can be loaded into the instrument. Dependent on the upper temperature 

limit of the run, either a standard temperature platinum pan (up to 973K) or high temperature 

platinum pan (up to 1273K) was employed. The latter was used to prevent thermal welding of 

the pan to the sample stage at higher temperatures. The sample was added to the pan, mass 

zeroed and then loaded into the furnace to be heated. In cases where residue was left in the pan 

after the thermal cycle was completed, SEM-EDX was employed for elemental analysis. TGA 

was considered a destructive technique as samples were going to be thermally decomposed and 

unrecoverable. 

 
(a) 

 
(b) 

Figure 50 – (a) TA Instruments TGA Q600 TGA and (b) close-up of the sample pan arms which were connected 

to a microbalance. 

2.1.5 Differential Scanning Calorimetry 

Differential scanning calorimetry (DSC) is used to monitor the heat flow (HF; mW) to and 

from a sample. This is achieved by comparing the changes in heat flow within a sample of 

known mass against a reference material as it is heated or cooled. Endothermic processes such 

as the phase transition from solid to liquid will require a higher heat flow in the sample of 

interest with respect to the reference to maintain the same rate of temperature increase. 

Conversely, an exothermic process such as crystallisation will require a reduced heat flow 

within the sample of interest with respect to the reference material. Phase transitions, melting, 
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glass transitions and curing kinetics can all be detected by monitoring heat flow. The accuracy 

of temperature is ±0.1K with a precision of  ±0.01K and a calorimetric precision of ±0.05%. 

The instrument used had a sensitivity of 0.2µW. 

There are two types of DSC found commonly; heat flux DSC and power compensation DSC. 

Heat flux DSC as used in this work contains two raised platforms within a single furnace. A 

heat conduction path of known thermal resistance is used to exchange heat. The measurement 

taken is the temperature difference between a reference pan which has a well-defined heat 

capacity over a range of temperatures and a second pan containing the sample being analysed. 

This is achieved using individual thermocouples connected to the raised platforms. A third 

detector is used to measure temperature at the base of the sensor. The difference in temperature 

between the two pans results in heat flow between the two to maintain equal temperatures. The 

temperatures measured can then be used to calculate the heat flowing into the sample with 

respect to the reference pan. Figure 51 shows the general outline of a heat flux DSC. 

 

Figure 51 - Diagram of the heat flux DSC showing the furnace cell [301]. 

Power compensation DSC is comprised of two individual furnaces; one containing a sample 

pan and the second containing the reference pan. Each furnace also contains a detector. An 

electrical circuit inputs equal energy into both pans; where there is a temperature difference a 

second circuit compensates for any heat taken in or given off by the sample being analysed by 

increasing or reducing the heat supplied to the sample pan to bring it equal to the reference pan. 

This difference in energy is recorded and used to calculate the heat absorbed or liberated by 

the sample. 

Data is output as a DSC curve which plots heat flow (mW) against temperature (K). Peaks 

which appear in the curve are indicative of a heat event and can be integrated using Equation 
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6 to give the enthalpy of transition (∆𝐻), where K represents the calometric constant and A the 

area under the curve. 

∆𝐻 = 𝐾𝐴 

Equation 6 – Calculation of enthalpy of transition. 

In this work there was particular interest in phase transitions and melting within the PVA 

hydrogel matrix, with DSC enabling investigation of this. 

A TA instruments DSC Q2000 was used for this work. Typically, a DSC run involves multiple 

cycles to improve the reliability of the data with temperatures ranging from 193K to 353K and 

ramp rates between 0.5Kmin-1 to 10 Kmin-1. DSC was considered semi-destructive as some 

samples could be reused after analysis; however others underwent significant structural 

changes, making them unusable. The DSC produced ascii files that could be analysed on a 

variety of graphical software packages. 

 
(a) 

 
(b) 

Figure 52 – (a) TA instruments DSC Q2000 and (b) close-up of the reference and sample cells on raised 

platforms within a single furnace. 

2.1.6 Infrared Thermography  

Infrared thermography (IRT) is a technique which produces visible images from light in the IR 

section (700nm   < 1mm) of the electromagnetic spectrum (as opposed to a conventional 

camera which uses visible light (400   < 700nm)). All bodies with a temperature above 

absolute zero (0K) emit in the form of IR energy. Emitted radiation is a function of the 

temperature of the material; as an object increases in temperature it radiates a greater amount 

of IR energy. Once the emitted radiation encounters another object, it can be dissipated in three 

different ways: 

1. Absorbance – the absorptivity of the body,  

2. Transmission – the transmissivity of the body and 

3. Reflection – the reflectivity of the body. 
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These types of energy dissipation can be described in Equation 7 where 𝛼𝜆 is the spectral 

absorptance (the ratio of the energy absorbed by the object), 𝜌𝜆 the spectral reflectance (the 

ratio of the energy reflected by the object) and 𝜏𝜆 the spectral reflectance (the ratio of the 

energy transmitted by the object). All three parameters are wavelength dependent, the sum of 

which must equal one at any wavelength. 

𝛼𝜆 +  𝜌𝜆 +  𝜏𝜆 = 1 

Equation 7 - Relationship between spectral absorptance, transmittance and reflectance of infrared energy 

striking an object. 

A hypothetical perfect material where the transmissivity and reflectivity are zero is referred to 

as blackbody, i.e. all energy striking this object is absorbed and radiation is emitted across all 

wavelengths. The spectral emissive power (𝐸𝜆) of a blackbody can be described by Planck’s 

Law which is shown as Equation 8 where h is the Planck constant, c is the speed of light, k 

refers to the Boltzmann constant, T is the absolute temperature and 𝜆 refers to wavelength. 

𝐸𝜆 =
8𝜋ℎ𝑐

𝜆5(𝑒(
ℎ𝑐

𝜆𝑘𝑇
) − 1)

 

Equation 8 - Planck's law of blackbody radiation. 

 

Figure 53 – Spectral emissive power of a blackbody versus wavelength. 

Figure 53 is a graphical representation of Equation 8, with Planck distribution plotted on the 

y-axis against wavelength on the x-axis at constant temperature lines. What is apparent is that 
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with increasing temperature at a given wavelength, the spectral emission also increases. This 

emission then tends to a maximum at each temperature line. As wavelengths get longer the 

temperature decreases, wavelengths increase. 

Equation 8 can be derived to calculate the wavelength at which the maximum emissive power 

occurs. Upon deriving the maximum emissive power, the value calculated is referred to as 

Wien’s displacement law: this is given in Equation 9, where λ refers to wavelength and T is 

temperature. 

λmaxT = 2.898x10-3 µm.K 

Equation 9 - Wien's displacement law defines the wavelength at which maximum emission occurs from a 

blackbody. 

Equation 9 indicates that as the temperature of a measured object decreases, its emission 

wavelength increases. Interestingly, if one plots a line at 5800K (which is the approximate 

radiation temperature of the Sun (an equivalent blackbody)) the area under the curve falls 

within the visible region on the electromagnetic spectrum (marked with the striped area in 

Figure 53). It is also worth noting that at a temperature of 300K, radiation is focussed within 

the infrared area of the electromagnetic spectrum. 

It is therefore apparent that there is a definite correlation between the temperature of the surface 

of a body and the spectral composition and intensity of the radiation it emits. IRT relies on this 

relationship and by determining the intensity of radiation emitted by a body, the temperature 

of this body may also be determined.  

Throughout this work a FLIR ThermaCAM PM695 thermal imaging system was used. The 

temperature range for this system was 233K to 393K or 273K to 773K dependant on the mode 

selected, with an accuracy of ±2K and a thermal sensitivity of 0.08K at 303K. Images acquired 

had a resolution of 320 x 240 pixels. Spot and area measurements could be set up to 

simultaneously measure multiple samples. A minimal focal distance of 0.5m was required 

when using this instrument. Periodic saving of images was a feature of this system and enabled 

images to be acquired less than 1s apart.  

Also used was a FLIR ThermaCAM SC3000 thermal imaging system. This instrument had an 

accuracy of ±1K and thermal imaging range of 253K to 1773K. The thermal sensitivity of this 

system is 20mK at 303K. A minimal focal distance of 0.3m was required when using this 

instrument. Despite performance improvements over the PM695, the big advantage to this 
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system was the ability to connect to a PC or laptop computer, which when coupled with FLIR 

software enabled live analysis to be conducted. 

In order that samples were accurately analysed, minimal sample preparation was required. 

Samples were placed onto a clean uniform base, within the focusing distance capabilities of 

the thermal imaging system (minimum 0.3m or 0.5m) and with no physical barrier in-between 

which could interfere with thermal sensing. Hydrogel samples would dehydrate during the time 

they were exposed to the atmosphere and in some cases could be regenerated after 

measurements were taken; however this was not always the case. This made IRT a semi-

destructive technique. 

 
(a) 

 
(b) 

Figure 54 – (a) FLIR ThermaCAM PM695 thermal imaging system and (b) the view seen by the operator. 

2.1.7 Raman Spectroscopy 

Raman spectroscopy is a vibrational rotational spectroscopic technique able to give information 

about chemical bonds and therefore structural information about a sample. Laser light of a 

specific wavelength is directed at a sample, irradiating it. The light interacts with the sample in 

different ways. The predominant interaction is elastic scattering, known as Rayleigh scattering 

which occurs where the incident and emitted photons have the same energy. However, another 

type of scattering occurs when the irradiating photons interact with the molecule. A very small 

number of photons (approximately one in tens of millions) undergo a form of inelastic 

scattering, known as Raman scattering. This occurs when a photon is absorbed causing an 

electron to be temporarily promoted to a higher virtual energy state. The new energy level is 

unstable, and the electron immediately falls from this state to a different energy level than it 
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originally occupied and, in the process, emits a photon. Depending on whether energy was 

taken by, or given to the molecule, the difference in energy can be positive (anti-Stokes 

scattering) or negative (Stokes scattering). The newly emitted photon can then be detected by 

the instrument allowing a Raman spectrum to be generated. It is important to note that 

Rayleigh, Stokes, and anti-Stokes scattering differs to that of infrared or fluorescence, in the 

sense that the excited electron occupies a virtual state, rather than a specific vibrational or 

electronic excited state. This is represented in Figure 55. 

 

Figure 55 - Visual representation of the differences between IR, Rayleigh, Raman (Stokes and anti-Stokes) and 

fluorescence electron energy levels [302]. 

Raman spectroscopy is particularly useful for looking at small samples or areas as it often 

employs a microscope to focus the laser and to collect the scattered photons. This has been 

particularly useful in this work, as reliable asymmetric sample layer analysis could be achieved. 

The technique is also widely employed and has found uses in nanomaterials [303], particularly 

in graphene-based applications [304], owing to the multitude of properties graphene exhibits. 

Layer evaluation [305], doping [306] and investigation of impurities of graphene [307] are 

possible using Raman spectroscopy. Graphene can be considered the “building-block” of all 

sp2-bonded carbon allotropes. Therefore, the properties of graphene investigated by Raman can 

provide insight into all other dimensionalities of sp2-bonded carbon allotropes. 

Figure 56 is the Raman spectra for pristine graphene with different number of layers. Looking 

at a single layer of pristine graphene a peak at approximately 1580cm-1 is apparent and arises 

from C-C in-plane vibrations (a stretching mode). This occurs in the G band and is also 



69 
 

apparent in other sp2 carbon allotropes. A second peak at approximately 2700cm-1 is also 

evident and is referred to as a 2D band. This peak is not defect activated, unlike the D band at 

approximately 1350cm-1 which arises from the breathing modes of six-atom rings as a result 

of defects. The absolute positions of these peaks are variable and is related to the wavelength 

of laser used to excite the sample. Moreover, the 2D band reduces in intensity and becomes 

broader as a result of interactions between layers which cause changes in the electronic 

environment. It is therefore interesting to note that distinguishing between 5+ layers of 

graphene and graphite is not possible. 

 
Figure 56 – Raman spectra of pristine different number layered graphene compared to pristine graphite [308]. 

Raman spectra of graphene becomes even more interesting with the presence of different 

defects, which greatly opens up the possible number of peaks present [309]. This, however, is 

far beyond the scope of which Raman was used in this work. This technique is fast 

(approximately 1 minute per point scan) and non-destructive allowing samples to be used again 

elsewhere.  

In this work Raman spectroscopy has been used only to confirm the presence of graphene. A 

Renishaw Invia Micro Raman system fitted with a 514nm laser up to 50mW power was used 

with objectives of 20 x and 50 x employed. Laser power was adapted to the material being 

investigated to obtain the best spectra. No special sample preparation was required to undertake 

Raman spectroscopy. 
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(a) 

 
(b) 

Figure 57 - (a) Renishaw Invia Raman microscope and (b) close-up of the microscope chamber. 

2.1.8 Fourier Transform Infrared Spectroscopy  

Fourier Transform Infrared Spectroscopy (FTIR) is an analytical technique able to identify 

functional groups present within a molecule based on the transition energies exhibited when 

the molecule is excited by IR radiation.  

Unlike other spectroscopy techniques (e.g. ultraviolet-visible spectroscopy) which use a 

monochromatic light beam to determine how much energy is absorbed at each wavelength, 

FTIR shines light in the IR region of the electromagnetic spectrum at the sample 

simultaneously (typically at 600 – 4000cm-1 for a mid-IR instrument). This polychromatic light 

beam from a black body radiator interacts with a Michelson interferometer where it is split into 

two beams by a beam splitter. Half of the beam is transmitted and interacts with the fixed 

mirror; the other half is reflected, interacting with the moving mirror. Both beams are reflected 

and recombine at the beam splitter. Assuming the distance between the moving mirror and the 

beam splitter is the same as the distance between the fixed mirror and the beam splitter the 

beams can have wavelengths which interact constructively resulting in maximum intensity. 

Conversely, the distances can be different and destructive interference can occur causing a 

reduction in intensity and the peaks and troughs of the wave do not align. These differences 

produce what is referred to an interferogram. Figure 58 shows the beam splitter within the 

Michelson interferometer.  

The recombined beam then interacts with the sample being investigated, which can either 

absorb or transmit IR radiation at specific wavelengths depending on its structure. If the sample 

absorbs specific wavelengths, then these are subtracted from the interferogram. When striking 

the detector, time versus variation in energy for all wavelengths is reported. Time and 



71 
 

frequency are reciprocals which enables a mathematical function known as a Fourier transform 

to be undertaken allowing a spectrum of intensity versus frequency to be produced. Spectra are 

commonly plotted as % transmittance/absorbance versus wavelength/wavenumber. 

Not all molecules can be detected using FTIR, selection rules exist which determine if a 

molecule exhibits IR active vibrations. These rules are based on molecular dipole moment 

changes which must occur if a molecule may be detectable using FTIR. Homonuclear diatomic 

molecules (e.g. N2) do not have a dipole moment present and therefore cannot be vibrationally 

excited. Other types of molecules (e.g. CO2) interact with the IR radiation inducing a dipole 

moment, owing to the displacement of the centre of charge. 

These rules also extend to the degrees of freedom which a molecule exhibits. Non-linear 

molecules have three translational and three rotational degrees of freedom, as well as normal 

modes of vibration. Linear molecules have three translational and two rotational. It can be said 

that a molecule of n atoms has 3n degrees of freedom. Therefore, non-linear molecules have 

3n – 6 normal modes and linear molecules have 3n – 5. To take CO2 as an example, three atoms 

are present, the molecule is linear, therefore, 3 x 3 – 5 is equal to four. CO2 has 4 normal modes 

(fundamental vibrations). 

 
Figure 58 - Schematic diagram of a Michelson interferometer [310]. 

For this work a Shimadzu IRAffinity-1 Fourier transform infrared spectrophotometer as 

displayed in Figure 59 was used, with a typical run employing 45 scans with a resolution of 

2cm-1. 
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Figure 59 - Shimadzu IRAffinity-1 Fourier transform infrared spectrophotometer. 

2.1.8.1 Attenuated Total Reflectance 

Attenuated total reflectance (ATR) is an accessory which can be added to an FTIR reducing 

the sample preparation required and increasing the variety of samples which can be analysed. 

Compared to traditional FTIR which analyses properties in bulk and requires sample 

preparation, ATR collects surface information, up to a depth of approximately 1 to 2µm, 

requiring minimal sample preparation. This is particularly useful for thin film materials. 

ATR works by measuring the changes which occur in an internally reflected beam of IR when 

contact with the sample is made. A beam of IR is directed at a high refractive index, optically 

dense crystal (typically zinc selenide or germanium) at a specific angle. The internal reflectance 

gives rise to an evanescent wave which extends beyond the surface of the crystal into the 

sample being analysed. At wavelengths where the beam is absorbed by the sample, energy is 

lost, and the beam is attenuated. The resultant radiation continues to the detector and is plotted 

as usual. Figure 60 shows a typical ATR setup. 

 
Figure 60 - Schematic of a typical Attenuated Total Reflectance cell. [311]. 

Throughout this work, FTIR measurements were obtained using a Specac Quest ATR 

accessory which contained a diamond ATR crystal (Figure 61). 
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(a) 

 
(b) 

Figure 61 – (a) Specac Quest ATR accessory and (b) close-up of the diamond ATR crystal. 

2.1.9 Four Point Electrical Conductivity 

The gas sensors which were one aim of the present work can operate through changes in 

electrically conductivity. This is a pivotal property which is to be exploited when monitoring 

different gases. A conductivity change in a material can be indicative of a gas species being 

adsorbed and desorbed onto a material surface. This is well documented in the case of graphene 

[312-315]. There is also literature to support conductivity in PVA hydrogels as a substrate, 

albeit in medical applications [316, 317].  

It was therefore essential that accurate and reliable conductivity (σ) measurements can be taken 

in order to correctly determine if and when a gas species has been adsorbed or desorbed onto a 

gas sensing surface. In order for this to be achieved a Jandel cylindrical four-point conductivity 

probe, coupled with a Jandel RM2 control unit were combined with a gas tight test cell. 

Hydrogel/PLA-graphene samples were placed onto the four contact needles and then sealed 

within the test cell. This enabled a controllable atmosphere whilst retaining the ability to take 

conductivity measurements. 

A constant current (0.1 – 10µA) was applied to the outer two pins whilst the inner two pins 

measure the resultant voltage. The distance from one pin to the next was 0.635mm. The 

manufacturer recommended that for reliable and accurate measurements, the current was 

adjusted so that the voltage measured fell to a value lower than 200mV. 
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(a) 

 
(b) 

Figure 62 - (a) Jandel RM2 control unit and (b) Jandel four-point conductivity probe. 

Known parameters are therefore, distance between pins, current applied and voltage induced. 

Additionally, diameter of the gel/sample being tested is known. From these values the 

resistance of a sample can be calculated using Equation 10, where R is resistance stated in 

ohms (Ω), V is voltage stated in volts (V) and I is current stated in amperes (A): 

𝑅 =
𝑉

𝐼
 

Equation 10 - Ohm's law. 

Using the resistance value (R) from Equation 10 and taking into account the length (l) between 

points at which the voltage is measured in cm and the cross-sectional area (A) of the sample in 

cm2 the resistivity of a sample could be calculated using Equation 11:  

𝜌 =
𝑅 𝑥 𝐴

𝑙
 

Equation 11 - Calculation of resistivity from length, area and resistance. 

It was possible to calculate conductivity (σ) stated in Siemens (S cm-1) which is the inverse of 

resistivity: 

𝜎 =
1

𝜌
 

Equation 12 – Calculation of conductivity from resistivity. 

It is also important to include a geometric factor when undertaking four-point conductivity 

measurements. The need for such a factor is the result of limitations in the number of current 

paths available due to the proximity of a boundary (edge of a sample). An ideal sample would 

extend infinite distance in all directions in plane from the point of measurement. However, this 

is a theoretical model and does not fully apply to real world examples. In every other case there 

will be one or more restrictions on the paths current could take due to the presence of a 

boundary. A good example would be a semi-infinite sample which extends infinitely in all 

directions, but which has a thickness less than infinity. This sample would therefore require a 
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correction based on its thickness. A distance measurement (diameter) is taken across the two 

closest points on the sample. In the samples used in this work this is typically the height or 

thickness of the cylinders as this was the current path limiting factor. Once obtained, this value 

is used to decide which geometric factor must be included when undertaking sheet resistance 

measurements from a simple calculation, where d is the diameter of the nearest points on the 

sample in the x, y or z planes and s is the spacing between each probe: 

𝑥 =
𝑑

𝑠
 

Equation 13 - Calculation to determine which geometric factor should be included when undertaking sheet 

resistance measurements. 

Once the value for 𝑥 is known, the correction value can be obtained from a list of values 

published by [318]. 

2.1.10 Residual Gas Analysis 

A residual gas analyser (RGA) is a type of quadrupole % response mass spectrometer, although 

often far more durable than standard mass spectrometers which are generally static instruments. 

An RGA is often moveable and can be employed in a wide range of scenarios, commonly found 

as an ammonia detector [319]. An RGA can also be coupled with other techniques to monitor 

the quality of a vacuum in their system [320]. Other uses for RGAs have been found in the 

semi-conductor manufacturing sector, where it is a well-used technique employed to measure 

which species are out-gassed during the degas phase of semi-conductor production. When used 

in this capacity, an RGA is also able to detect when this process reaches an endpoint [321]. 

Typically, a complete RGA setup will consist of a vacuum pump, turbomolecular pump, 

ioniser, quadrupole mass filter, an ion detector and a computer. The system is under vacuum, 

this is achieved initially by a standard vacuum pump, then latterly with a turbomolecular pump 

which enables a stable pressure of 1e-4 Torr (13.33mPa) to be achieved. Gases which enter the 

chamber firstly interact with the ioniser consisting of two filaments producing electrons. These 

electrons are drawn to a central electrostatic wire mesh due to the applied potential difference 

between the two structures. Here, neutrally charged gas atoms or molecules collide with the 

electrons in a variety of ways: elastic collisions occur where there is no change in charge, 

conversely, inelastic collisions also occur. For a change in charge to occur (ionisation) the 

electron colliding with a species must possess the minimum energy that a molecule requires to 

ionise, referred to as the ionisation potential.  
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The variety of species then travel into an ion focusing section where electrostatic lenses 

accelerate and focus them into a beam before entering the quadrupole mass analyser (filter). 

The quadrupole consists of four cylindrical rods electrically biased which sorts (filters) the ions 

based on mass to charge ratio (m/z). Ions which are of interest as chosen by the operator pass 

through the quadrupole, whereas undesirable ions are deflected to the side and become 

neutralised and undetected.  

The final stage is the ion detector which consists of a negatively charged piece of metal known 

as a Faraday cup. This attracts the positively charged ions and is measured using a sensitive 

ammeter. The signal measured is proportional to the component parts of the ions passed 

through the quadrupole. Furthermore, it is important to note that species which can be multiply 

ionised, for example a krypton (Kr) atom which has been multiply charged will give different 

sized peaks relative to the charge they carry. A Kr2+ ion will give a peak twice the size of a Kr+ 

ion.  

 
Figure 63 – Schematic diagram of the principle components of an RGA [322]. 

It is possible to increase the sensitivity of an RGA by including a secondary electron multiplier. 

Here a glass tube coated with a semiconducting material is included in the setup. When a single 

electron or ion bombards a secondary emissive metal plate it can induce the emission of 

between 1 to 3 further electrons, which if directed by the inclusion of a potential difference to 

another metal plate, can cause yet more electrons to be induced. By doing this the signal 

detected can be amplified up to 106 times, [323, 324] allowing for the detection of trace gases. 

In this work a European Spectrometry Systems GeneSys EcoSys-P RGA was used. This 

instrument can measure any gas species up to 200 amu, with up to 64 sample species measured 

simultaneously, quantitatively or qualitatively. Sensitivities of up to ppb levels can be detected 

with a response time of 120m/s. No sample preparation was required as the instrument formed 
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part of a gas testing rig. The RGA was employed downstream of a sample being analysed and 

was present to confirm the presence of an injected gas which must first have passed over the 

sample at a known flow rate. 

 

(a) (b) 

Figure 64 – Schematic diagram of (a) linear channel electron multiplier and (b) curved channel electron 

multiplier [325]. 

 
(a) 

 
(b) 

Figure 65 – (a) full RGA setup including a laptop computer for real time monitoring and recording and (b) 

close-up of RGA unit showing the capillary inlet attached to the gas test rig. 

2.1.11 Dynamic Light Scattering 

Dynamic light scattering (DLS) is a commonly used technique for measuring the size and 

distribution of particles in the nanometer and micrometer range; it may also be used to 

determine the shape of particles. DLS is widely used in many areas of nanotechnology [326-

329]. There is also literature where DLS has been used in hydrogel analysis [329]. This makes 

DLS an ideal characterisation method of primary particle sizes for this project.  
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A monochromatic laser beam is directed at the suspension of particles causing Brownian 

motion to be excited. The wavelength of the light beam is altered upon hitting particles within 

the suspension, creating a Doppler shift: a difference in frequency between un-scattered and 

scattered light. Small particles (< 100nm) cause tiny differences in frequency resulting in quick 

fluctuations and a small Doppler shift, whereas for larger particles, fluctuations are longer 

resulting in a larger Doppler shift.  

DLS is still considered an elastic scattering process where the energy of the primary beam is 

equal to the energy of the scattered radiation as the differences owing to Doppler shifts are 

minute. However, as there is a difference, DLS can be thought of as a quasielastic light 

scattering technique. [331]. 

 
Figure 66 – Schematic drawing of a typical DLS setup [330]. 

For particle size to be calculated a description of the particle size distribution and its motion is 

obtained using the autocorrelation function and measuring the diffusion coefficient of the 

particle. The scattering vector (q) can be calculated using Equation 14. 

𝑞 =
4𝜋𝑛

𝜆0
sin (

𝜃

2
) 

Equation 14 – Calculation of the scattering vector (𝑞), where n is the solvent refractive index, 𝜆0 is the vacuum 

wavelength of the laser and θ is the scattering angle (nominally 90 degrees). 

The translational diffusion coefficient (D) can now be calculated from the speed of the 

Brownian motion. Once D is known the hydrodynamic diameter (DH) is calculable using the 

Stokes-Einstein equation. 
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𝐷𝐻 =  
𝑘𝐵𝑇

3𝜋𝜂𝐷
 

Equation 15 – Stokes-Einstein equation used to calculate hydrodynamic diameter. 𝑘𝐵 is the Boltzmann constant, 

T is temperature and 𝜂 dispersant viscosity [332]. 

During this work a Malvern Instruments Zetasizer was used. This instrument is able to measure 

particle size diameters between 0.3nm to 10µm. It features a 633nm laser and can measure 

sample concentrations from 0.1ppm to 40%w/v. Samples to be analysed first had to be 

dispersed within a solvent and placed into a cuvette. In most cases the samples being analysed 

were nanoparticles produced via sol-gel methods and so could be readily dispersed in a solvent 

and recovered after analysis. This made DLS a non-destructive technique. Data can be exported 

as an ascii file for plotting in a suitable software package for graphical representation. 

2.2 General Gas Testing Equipment 

Samples which are thought to exhibit gas sensing properties were tested on a custom-built gas 

test rig, designed to measure responses to an injected gas. The rig included a range of different 

sensors aimed at improving the reliability of the data obtained, this ranged from a highly 

sensitive RGA to rugged commercially available handheld gas sensors as well as the samples 

produced. The system should be considered a closed one in the sense that detectors receive a 

direct gas stream. The only exception to this is the Crowcon T3 multi gas sensor (marked 15. 

in Figure 67) which did not have a direct coupling. In this instance a very fine stream of gas 

was directed at close range (>1cm) towards the instrument inlet using a glass Pasteur pipette 

connected to the gas stream. All other detectors had a closed connection. 

The system enabled a number of variables to be included which increased the scope of the 

experiment. Firstly, the carrier gas (1) nominally used air, however other gases (N2, Ar, etc.) 

could be coupled to the system instead of air. The volume of carrier gas travelling through the 

system could be accurately controlled; a rough increase/decrease in flow could be achieved 

using the gas regulator attached to the carrier gas cylinder (1). However, for a more accurate 

tuning of gas flow, a flow meter was included (3) which enabled adjustments to be made to 

cm3min-1 tolerances. An injection point (4) which consisted of an enclosed rubber septum 

allowed gases and humidity of interest to be injected using a gas-tight syringe. Two syringes 

were available with volumes ranging from 0.1ml to 10ml. The gas initially selected in this work 

is CO2. CO2 is a linear molecule and a significant atmospheric pollutant known to contribute 

to the greenhouse effect. Dangerous in high concentrations is it of significant interest. 

Furthermore, CO2 exhaled during a normal respiratory cycle may be analysed for remote 
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patient monitoring, which could prove useful in the medical field. MEA is a known CO2 

scrubber and hydrogels with on-board MEA have been synthesised, therefore this forms a 

logical analysis route. Future tests may involve NO2 and SO2 which are also linear molecules 

and may well form similar interactions with on board hydrogel solvents. Hydrogels were 

selected for their durability and ability to host large volumes of on-board solvents. The can be 

synthesised from non-toxic (bio)polymers and are easily adaptable in geometry. The relative 

humidity (%RH) of the system was also controllable from a gas bubbler (5). Saturated salt 

solutions were used to control the %RH. There is much literature on the use of saturated salt 

solutions in laboratory testing for relative humidity control [333-335]. A wide range of 

saturated salt solutions and therefore %RH were available [336]. The temperature of the gas(es) 

can be controlled using a tube furnace (6) in which a glass reactor (8) was inserted. There was 

also the option to include catalysis samples within the glass reactor (7) if desired. The sample 

under investigation (13) was placed on top of a Jandel four-point conductivity probe (12) which 

was fitted into a gas tight test cell (14) containing an inlet and outlet for the gas. 

Static parts of the system include a zeolite filter (2) at the beginning of the system to remove 

any impurities which may arise from the gas supply. An RGA (9) and laptop computer (10) 

were included which represent the high sensitivity and reliability part of monitoring. Real-time 

monitoring of the system could be achieved using this instrument. The Jandel RM2 control unit 

(11) was adjustable in the sense that current could be changed. By adjusting the current, the 

voltage measured could be kept within the manufacturer’s guidelines (under 200mV). A 

Crowcon T3 multi gas sensor (15) was included to confirm the presence of the sample gas post-

test cell. Also included was a particle size analyser (16) to monitor the increase or decrease in 

gas concentration. Finally, a simple water bubbler (17) was included at the end of the system 

to confirm that gas had indeed progressed the whole system to the exit point (18). 
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Figure 67 – Diagram of a custom-built test rig designed to measure the response of hydrogel samples to 

injected samples of gas. (1.) gas supply, (2.) zeolite filter, (3.) gas flow meter, (4.) gas injection point, (5.) 

relative humidity bubbler, (6.) tube furnace, (7.) optional catalysis sample, (8.) glass reactor, (9.) residual gas 

analyser, (10.) laptop computer, (11.) Jandel RM2 control unit, (12.) Jandel four-point conductivity probe, (13.) 

sample of interest, (14.) gas tight test cell, (15.) Crowcon T3 multi gas sensor, (16.) particle size analyser, (17.) 

water bubbler, (18.) gas exit stream. 

The time taken for a test gas to travel through the system from injection to sensor response is 

important as it is indicative of the performance of samples under investigation. Typically the 

RGA indicates a response to an injected gas 2.5s from the moment of injection when flow rate 

of 250ml/min is used for the carrier gas. The accuracy of the flow meter used is ±5% of the 

maximum reading on the meter (in this case 1000ml/min). The RGA returns to baseline levels 

4 to 5s from the moment of injection. This gives a reliable benchmark figure to work relate to. 

The space time of the injected gas may be calculated by dividing the volumetric flow rate 

(250ml/min) by the volume of the sample (1cm3). 

2.3 General Hydrogel Production  

2.3.1 Background 

Hydrogels are three-dimensional crosslinked polymer networks that trap solvent molecules 

and that may be swollen by H2O. There are two forms of crosslinking: a chemical one, based 

on the addition of functional molecules (crosslinker) bridging covalently the polymer’s repeat 
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units together and a physical one, based on creating nodes/knots that are less soluble in water 

by freeze-thawing cycles. 

Hydrogels were selected for this work owing to the adaptability and properties they exhibit. 

Their ability to be swollen with guest solvent(s) and to release this in a controlled manner 

make them highly desirable sweating surfaces. Furthermore the non-toxic and biodegradable 

nature of the polymer makes this class of material attractive for use in the natural 

environment and public domain. Lastly, hydrogels are highly tuneable, evaporation of guest 

solvent can be achieved through the degree of crosslinking, this property can also determine 

the durability and toughness of the material. The ability of a hydrogel polymer matrix to host 

metal oxide nanoparticles in a dispersed manner also makes them attractive electrochromic 

devices. 

2.3.2 Chemically Crosslinked Hydrogels 

Poly(vinyl alcohol) (PVA) powder was purchased from Sigma Aldrich (with Mw 89,000-

98,000, 99+% hydrolysed) along with crosslinker glutaraldehyde (GA) 25% aqueous solution, 

(≥ 98% purity) and hydrochloric acid (HCl). These were used without further processing. 

Various weight percent aqueous solutions of PVA were produced (typically between 5-10%) 

by dissolving exact amounts of PVA powder in deionised (DI) water at 363K for 3 hours whilst 

stirring. From this an amount (typically 50cm3) of PVA solution was added to a beaker and 

heated to 333K whilst stirring. A calculated amount of GA (depending on the level of 

crosslinking required) in acidic conditions (pH 4-5) controlled by the addition of HCl, was then 

added to the PVA solution, which was stirred before being cast into a plastic petri dish.  

 

Figure 68 – Reaction mechanism of PVA crosslinking via a chemical method using glutaraldehyde [337]. 
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Once the crosslinking reaction had occurred, the newly formed hydrogel was washed in acetone 

before being stored in a fridge at 276K to slow the rate of dehydration from the sample until it 

was ready for further use. 

2.3.3 Physically Crosslinked Hydrogels 

2.3.3.1 Conventional Freezer Method 

Various weight percent aqueous solutions of PVA were produced with the GA step omitted as 

described in 2.3.2. From the stock solution, 50cm3 was added to a plastic petri dish covered 

with a lid. This was then subjected to several thermal cycles of freezing and thawing. A typical 

cycle involved freezing the solution to 248K overnight in a conventional freezer, before 

allowing it to thaw to room temperature (298K). This cycle was repeated 3 to 5 times depending 

on the degree of crosslinking required. Samples were kept covered by a lid at all times to reduce 

the risk of contamination and to minimise the evaporation rate of water from the PVA solution. 

Using this method multiple hydrogels could be produced simultaneously.  

 

Figure 69 – Formation of PVA hydrogels based on the creation of nodes/knots which promote hydrogen 

bonding between polymer chains [338]. 

2.3.3.2 Liquid Nitrogen Method 

A faster method following the same theory as described in 2.3.3.1 involved replacing the slow 

convention freezer step with a faster method based on the use of liquid nitrogen. As reported 

in 1.3.4.2 it is thought that the temperature range of freezing/thawing has an effect on the final 

properties of the gel and was the rationale behind use of this method. Here, liquid nitrogen 

(77K) was used to crash cool the PVA solution. This method allowed several thermal cycles to 

be completed in a few hours. However, the additional safety, cost, and controllability 
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implications of this method, made it less desirable for mass production. This method was 

however used on occasion. 

2.3.4 Hydrogels Incorporating Functional Micro and Nanoparticles 

Several methods have been used to incorporate functional microparticles (µP’s) and 

nanoparticles (NPs) within a PVA hydrogel matrix. Methods incorporated aspects of physical 

or chemical crosslinking which are a feature of hydrogel formation. 

2.3.4.1 Synthesis of Tungsten Trioxide Nanoparticles 

Tungsten trioxide (WO3) NPs (approx. 50nm) were produced using a sol-gel route [339]. 

Tungsten powder was dissolved in hydrogen peroxide (H2O2) to form a peroxopolytungstic 

acid (PTA). To this was added an ethoxy-propoxy-ethoxylate (copolymer EO20PO70EO20 – 

Pluronic-123) in ethanol (EtOH).  

The mixture was refluxed at 353K for 2h at which point a colour change to dark blue occurred 

and a solid separated out. The solid is collected by standard filtration. It is then dried and 

calcined in a furnace at 773K for 5h to obtain WO3 nanocrystals.  

2.3.4.2 PVA Metal Oxide Slurry Method 

Physically cross-linked 10 wt.% PVA hydrogels were loaded with a variety of metal oxide 

(MxOy) µPs and NPs to investigate the effect this would have on the emissivity (Ɛ) of a surface 

when the sample was applied. The synthesis route for all of these consisted of producing a 10 

wt.% aqueous solution of PVA. From this 50cm3 was taken for each sample. Between 1 to 20 

wt.% of the desired MxOy was ground in an agate pestle and mortar with a small amount 

(typically 10ml) of PVA solution to create a PVA/MxOy slurry. This step ensured a good level 

of particle dispersion within the sample. The slurry was then added to the remaining PVA 

solution and the 50cm3 sample was then stirred for 20min and cast in a petri dish. A cycle of 

freeze-thawing (298K to 248K to 298K) was then employed to create the physically-

crosslinked sample. 

2.3.4.3 In-situ PVA Metal Oxide Dispersion Method - Chemical Crosslinking 

This approach involved synthesising WO3 precursors within a PVA solution produced via the 

method described in 2.3.2. This method exploited a property of WO3, which is stability under 

acidic conditions. The method uses the acidic environment already created during hydrogel 

stabilisation. This second method had several advantages compared to the slurry method 
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described in 2.3.4.2. Firstly, the WO3 precursors are more likely to be well dispersed and of 

nanometric size within the PVA matrix. This prevents coalescence and growth of bigger WO3 

crystallites. Furthermore, the preparation involved a ‘one-pot’ synthesis, with the reagents 

being measured by volume, rather than weight. Lastly in the case of the slurry, some µPs settled 

if not stirred. This was not the case with fully soluble reagents. WO3 precursors were prepared 

from sodium tungstate as described in Equation 16. 

Na2WO4 + 2HCl → WO3 + 2NaCl + H2O 

Equation 16 - Synthesis of WO3 from sodium tungstate [340]. 

Compared to the chemical crosslinking of PVA described in 2.3.2, Equation 16 is fast (for 

stoichiometric amounts of HCl). This posed the problem of segregation between rapidly formed 

(bigger) crystals of the precursors and the PVA crosslinked matrix. Ideally, Na2WO4-

containing crosslinked PVA needed to form first, allowing Equation 16 to happen within the 

gel. Several techniques were explored with the most successful technique being used to make 

a solution of PVA, Na2WO4 and GA. Onto this diluted HCl was gently cascaded on top of the 

solution. This allowed the HCl to permeate slowly through the PVA solution, crosslinking it 

by activating GA and allowing Equation 16 to take place within a crosslinked matrix.  

2.3.4.4 In-situ PVA Metal Oxide Dispersion Method - Physical Crosslinking 

An alternative route allowing physical crosslinking (non-acidic) to be used with the method 

outlined in 2.3.4.3 has also been devised. Aqueous PVA was mixed with Na2WO4 and GA to 

form solution which then underwent the freeze-thawing cycles outlined in 2.3.3. The gel was 

then placed in a bath of diluted HCl to initiate the reaction shown in Equation 16. This method 

had limitations, the most apparent being how to ensure the reaction described in Equation 16 

reached an endpoint. Another limitation was the degree of physical crosslinking required to 

ensure that PVA did not further dissolve in dilute HCl. 

2.3.4.5 Electrochromic Testing 

PVA-WO3 nanocomposite hydrogels which were to be examined for electrochromic colour 

changes were cut to reduced sizes (typically 5mm3) before being sandwiched between fluorine 

doped tin oxide (FTO) or indium doped tin oxide (ITO) glass. This step enabled the colour 

change to be observed, whilst providing a conductive route. Electrodes from a power supply 

with controllable voltage/current were attached to the glass using copper tape, thus completing 

the circuit. 
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2.4 Breathing Experiments 

Here the author has briefly explored real-time analysis [341] of CO2 (m/z=44) and HCN 

(m/z=27) in exhaled air using an RGA (VG Sensorlab and ESS Genysis) a well-established 

technique for CO2 detection [342]. Ultrafine Particle (UFP) concentrations were also detected 

in tandem with RGA measurements using a TSI P-Trak 8525 condensation particle number 

counter (the performance of this has been previously reviewed [343]) Repeated inhalation-

exhalation by the author, his supervisor and a colleague while they were sedentary and inactive 

during tidal breathing in urban air was measured taken as a function of time.  

The purpose of these experiments were to assess if the samples and materials used in this 

project may additionally form the basis of a low cost respiratory indicator that could enable 

remote patient monitoring of vulnerable or elderly people by a healthcare professional. 

2.5 Microconductivity  

It was thought that micro-conductivity may provide an automated HT scanner detecting oil in 

water drawing parallels with petroleum electrical resistivity tracking of oil-water interfaces. 

Electrical resistance tomography (ERT) is used to probe crystallisation reactors [344], steam 

injection [345, 346], groundwater/oil-wells [347], liquid interfaces [348, 349] and flow in 

pipelines.  

Initial attempts were made to test a petroleum electrical resistivity tomographic tracker 

(PERTT) unit. This works with a lap-top powered electrode array from Industrial Tomography 

Systems plc (ITS). The PERTT probes can be 1cm to 3m in depth/length and can be submerged. 

They are powered at 0.1mA. Importantly, they can probe oil and water-in-oil as well as the 

easier oil-in-water and water phases.  

Attempts were made to use low cost PLA/G 3D printed and Cu electrodes to measure oil and 

water conductivities. This was achieved by connecting identical length electrodes of PLA/G 

filament to a multimeter. Filaments were separated using an epoxy-resin (Araldite®) with equal 

lengths emerging from a watertight cap and with a known distance (2mm) between filaments. 

The enabled the filaments to be submerged in the water-oil being analysed. Lengths of Cu wire 

were cut to identical lengths and connected to a multimeter. These were kept separate by plastic 

insulator. Measurements were taken using a commercial multimeter at 30s intervals. 
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2.6 Summary of Techniques 

When selecting analytical techniques for characterisation of materials, it is important to select 

methods which are appropriate. Methods must be able to tell the user about the sample reliably. 

Accuracy, which is the closeness of an obtained value to that of the true value and precision, 

the closeness of obtained values to one another, are highly important in chemical analysis. 

Values should also be reproducible, such that identical results may be obtained when repeating 

the experiment or technique. 

It is therefore prudent to understand the margin of error which a technique may have. This may 

be stated as a ±% value or as a specific value, i.e. ±1K. This means that the value obtained may 

be greater than or less than the true value by the margin given. Other types of error, such as 

systematic errors may occur when there is a fundamental design flaw, or incorrect set-up of 

parameters in an experiment. This type of error commonly results in the values obtained being 

inaccurate by the same amount. It is important to note that these values may be precise (i.e. 

closely resembling one another) but not accurate. 

The advantages of the techniques chosen for this work are that they are established, commonly 

used techniques and so may be relied upon. The accuracy and precision of these techniques are 

typically ±2% at worst. Methods are generally fast, able to give results in minutes (FTIR, 

Raman, DLS, SEM-EDX, IRT, RGA) or hours (TGA, DSC). Sample preparation for analysis 

is also quick and simple and in some cases non-destructive. 

Table 9 - Summary of analytical techniques used and reasons for selecting. 

Technique Purpose Reason selected 

3D printing Creation of polymer 

substrates for further 

processing as gas 

sensors/electrochromic 

devices. 

Highly tuneable, able to print complex 

geometries, fast, safe, can process materials 

attractive to this work. 

SEM-EDX Viewing of structural 

features within polymer 

matrix, particle size 

analysis, elemental 

composition. 

Fast, reliable, able to view nanometer scale 

features and give elemental composition 

mapping, non-destructive. 
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TGA To investigate the 

thermal stability and 

properties of a material 

within a controlled 

environment.  

Standard, reliable technique used to determine 

the quality of 3D printed precursors and 

processed materials compared to their analytical 

grade counterparts. Also useful at elucidating 

thermally controlled side reactions of materials. 

DSC Determining the physical 

state of bound water in a 

hydrogel matrix. 

Controllable cooling and heating rates of this 

technique enables the heat flow required to thaw 

or freeze on board water to be determined. This 

method also enables the physical state of water 

to be determined. 

IRT View the thermal 

characteristics of 

materials and surfaces in 

the IR waveband. 

A primary technique in this work for 

determining the cooling effectiveness of the 

hydrogels/sweating surfaces when applied to a 

building surface. Spot, line and area 

measurements can be taken simultaneously 

enabling a vast amount of data to be collected. 

Raman To analyse the 3D 

printed PLA-Graphene 

samples and filament and 

to determine graphene 

content. 

Highly regarded and primary technique for 

graphene determination. Filaments were 

purchased from a manufacture, with specific 

graphene content confidential. Used as a 

confirmatory technique to prove graphene was 

indeed present. 

FTIR Determination of organic 

compounds, 

Useful in drying studies with a variety of 

solvents and for controlled hydrolysis 

experiments to determine if hydrolysis had 

indeed taken place. Finally useful at comparing 

analytical grade materials to 3D printer 

filaments. 

Four point 

electrical 

conductivity 

Accurate technique for 

measuring 

current/resistance 

changes across a surface. 

Four point conductivity is more accurate than 2 

point methods and with the geometric factor 

incorporated is a reliable technique to measure 

the surface resistance of a material. 
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RGA Determination of gaseous 

compounds via 

mass/charge ratio 

Robust and reliable mass spec which can be 

used indoors and outdoors, can be attached to a 

gas rig and gives rapid results which may be 

viewed in real time, particularly useful at 

determining is injected pulses of gas have 

traversed the gas rig system. 

DLS Used for particle size 

analysis 

Minor used technique, but able to give particle 

size range and average size of metal oxide 

nanoparticles in a solvent. Particularly useful 

when used in conjunction with SEM-EDX to 

investigate agglomeration. 

 

Synthesis techniques have been obtained from reliable peer reviewed journals and use 

techniques which do not require complex apparatus, or high temperatures and pressures. 

Because of this, the chemistry in this project may be considered “green chemistry”.  
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3 Drying Characteristics and Hydrolysis of Polyvinyl Acetate 

The purpose of this chapter is twofold; firstly to determine how inclusion of a variety of organic 

solvents may affect the drying rate of a PVA-Metal Oxide or PVAc-Metal Oxide thin film. 

Secondly, to investigate if catalysed hydrolysis of PVAc to PVA is possible with a variety of 

on-board guest solvents. 

The drying times of films are relevant to the electrochromic and IR coating aspects of this 

work. It is possible that a thin film may need to be applied to a surface rapidly, for instance by 

security services or search and rescue teams. Atmospheric and weather conditions may result 

in the film being washed off or damaged and so quick drying is essential. Furthermore, the rate 

of solvent evaporation may enable specific tuning of hydrogels which are to be used as 

sweating surfaces. This would mean that hydrogels may be preloaded or regenerated with a 

specific solvent to increase or decrease the cooling effect based on the dynamic conditions of 

the building and atmosphere. 

Hydrolysis of PVAc to PVA is an interesting step in this work. PVA does not readily dissolve 

in many organic solvents, however PVAc does. PVAc is the precursor to PVA and therefore it 

is relevant to investigate if controlled catalysed hydrolysis is possible whilst retaining on-board 

solvent. This will be particularly useful for electrochromic thin films in which the 

electrochromic aspect (metal oxide) will be dispersed within the polymer matrix. 

3.1 Introduction 

PVA does not dissolve readily in organic solvents. Therefore attempts at tuning the rate of on-

board solvent evolution by swelling the PVA polymer matrix with solvents other than H2O 

proved difficult. However, as described in 1.5.1, PVA is produced via hydrolysis of PVAc. 

Interestingly, PVAc is readily dissolved in a range of organic solvents. Therefore, the 

possibility of hydrolysing PVAc to PVA whilst dissolved in an organic solvent was 

investigated. 

Drying rates of PVA are important in the application of PVA-MxOy nanocomposites to a 

surface. Commercial use of these materials, for example in stealth coatings, or night-vision 

taggants is envisioned. These materials may be sprayable onto a surface which may be detected 

by an IR camera. This would be very useful in emergency situations at night. 
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3.2 Aims and Objectives 

The aim of this section of work was to tune the drying rates of PVA coatings via catalysed 

hydrolysis of PVAc dissolved in a range of organic solvents (MA, MF, EA, MEK and DCM). 

IRT was used to analyse solvent evaporation rates and FTIR to track the progress of hydrolysis.  

3.3 Results  

3.3.1 PVAc Drying Times with Organic Solvents 

Firstly, drying times of various organic solvents  with dissolved PVAc were investigated. The 

range of solvent selected typically had low boiling points and subsequently high vapour 

pressure compared to air at 293K. Importantly, PVAc readily dissolved into all solvents 

selected. 

3.3.2 Scanning Electron Microscopy of PVAc Films in Various Organic Solvents 

PVAc was dissolved into a variety of solvents with concentrations of 5, 8 and 10 wt.%. Table 

10 outlines the properties of the solvents used. Samples were prepared at room temperature by 

dissolving the appropriate wt.% of PVAc into the selected solvent. The sample was covered 

(to prevent solvent evolution) and gently agitated for 1h, by which point all the PVAc had 

dissolved fully. All samples gave colourless solutions. 

 

Table 10 – Solvents used in PVAc drying time experiments. 

Solvent Boiling point Vapour density Vapour Pressure* 

Methyl Formate (MF) 306K 2.10 65.3 kPa (293K) 

Dichloromethane (DCM) 313K 2.90 47.1 kPa (293K) 

Methyl Acetate (MA) 330K 2.55 22.0 kPa (293K) 

Ethyl Acetate (EA) 350K 3.00 9.7 kPa (293K) 

Methyl Ethyl Ketone (MEK) 353K 2.49 9.5 kPa (293K) 

*vs Air at 293K 

PVAc films were produced by dip coating a glass slide into solutions of PVAc/solvent. Once 

dried these were analysed by SEM. Film thickness for the samples analysed varies from 2-

5µm. It appears that samples with a lower boiling point give thinner films, possibly related to 

the speed of drying. Hole diameters seem to vary from 2-10 µm in size. The existence of holes 

in PVAc films is most likely due to the rapid evolution of solvent from the polymer matrix 

upon casting as a film. Boiling points for the samples used are low and therefore evaporation 

would be quick. 
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Methyl Acetate (MA) 

  
Methyl Formate (MF) 

  
Ethyl Acetate (EA) 

  
Methyl Ethyl Ketone (MEK) 
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Dichloromethane (DCM) 

 

3.3.3 Fourier Transform Infrared Spectroscopy 

Fourier transform infrared (FTIR) coupled with an ATR diamond crystal accessory was used 

in transmittance mode to characterise specific chemical groups and particularly to investigate 

the effect of PVAc concentration on the host solvent. A resolution of 2cm-1 and 45 repeat scans 

were selected to obtain accurate and reliable data. 

 
Figure 70 – FTIR-ATR spectra of 5, 8 and 10wt.% PVAc dissolved in methyl formate. 

The spectra obtained shows many peaks and identification of the compound each bond 

originates from proved complex. Spectra obtained, mostly show good agreement between all 

samples analysed. Peaks identified by a red arrow (and highlighted in Table 21) show bonds 

which have either been shifted, distorted or show bonds in a different environment. The C-H 

stretch identified at 2954cm-1, 90.2%T for sample MF + 10%PVAc is of higher transmittance 

and lower wavenumber than other samples in that region. It is thought that this specific bond 
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relates to PVAc instead of MF, unlike others in that region. Similarly at 1022cm-1, 59.8%T the 

C-O stretch identified is likely to be from a different environment to other C-O stretches in this 

region.  

The C-H bending identified at 1373cm-1, 64.8%T & 62.1%T exists at a different wavenumber 

to the C-H bending identified for MF. In this case, it is thought that the MF has been distorted 

by the inclusive PVAc. 

Overall, when overlaid, no single spectra is obviously different to others obtained, indicating 

in this case that PVAc and any new bonds associated with dissolution in MF is of too lower 

concentration to be detectable, or has been masked by the strong solvent spectra. 

 
Figure 71 – FTIR-ATR spectra of 5, 8 and 10wt.% PVAc dissolved in dichloromethane. 

The FTIR spectra for DCM is fairly simple, with only C-H, or C-Cl bonds present in the 

compound. The bond identified at 1734cm-1, 89.9%T for the DCM sample is different to the 

C=O stretch at the same wavenumber for samples containing PVAc. In the case of DCM, this 

peak may be identified as a C-H aromatic overtone. The transmittance value is significantly 

higher than the transmittance values for PVAc containing samples (~65%T). 

A peak which the author has had trouble identifying relates to the DCM spectra and is at 

1263cm-1, 46.4%T (highlighted in purple in Table 22). This peak also exists for PVAc 

containing samples where it has been identified as a C-O stretch. However, no such bond exists 

in DCM. The author therefore believes that this peak may correspond to a different aromatic 

overtone, or that the DCM sample has somehow become contaminated, possibly via ineffective 

cleaning of the ATR crystal between sample runs. 
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When overlaid, no single spectra (excluding DCM at 1734cm-1) is obviously different to others 

obtained, indicating in this case that PVAc and any new bonds associated with dissolution in 

DCM is of too lower concentration to be detectable. 

 
Figure 72 – FTIR-ATR spectra of 5, 8 and 10wt.% PVAc dissolved in methyl acetate. 

The spectra shown in Figure 72 is simplistic compared to others investigated in this work. 

Bonds, associated wavenumbers and %T values are all close. Spectra of neat MA and MA 

containing PVAc when superimposed show near perfect alignment indicating that PVAc and 

any new bonds associated with dissolution in MA is of too lower concentration to be detectable 

or has been masked by the strong solvent spectra.  

 

 
Figure 73 – FTIR-ATR spectra of 5, 8 and 10wt.% PVAc dissolved in ethyl acetate. 

The spectra for EA and EA with dissolved PVAc shown in Figure 73, is nearly identical to the 

MA spectra shown in Figure 72. This is understandable given their near identical chemical 
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structure. Of note are the additional C-H bending peaks (circled) in the fingerprint region (from 

1000-500cm-1) indicative of different C-H environments.  

As with Figure 72, superimposing spectra, does not indicate any noticeable differences; with 

%T within 2-3% of each other indicating minimal distortion and wavenumber values the same 

throughout. 

 

 
Figure 74 – FTIR-ATR spectra of 5, 8 and 10wt.% PVAc dissolved in methyl ethyl ketone. 

The spectra for MEK and MEK with dissolved PVAc is shown in Figure 74. Broadly speaking 

all samples give near-identical spectra. However a C-H bend exists for neat MEK and MEK + 

5%PVAc at 736cm-1, 84.3%T (highlighted in Table 25). This peak is not apparent for samples 

of MEK with 8 and 10% dissolved PVAc. This is interesting and suggests that an environment 

which existed before the inclusion of PVAc ceases to once the PVAc concentration passes a 

certain point (in this case between 5-8%). The author believes that this shows the initiation of 

a reaction, however it is difficult to conclude if this reached an end point and what the 

product(s) were as no new different bond exists in the MEK + 8/10%PVAc samples. 

Overall, visual observations indicate that PVAc powder may be successfully dissolved in a 

range of organic solvents. FTIR generally confirms uniformity between different 

concentrations of dissolved PVAc. However, in some cases the different wavenumber and %T 

for the same bond, indicate that there is traces of undissolved polymer. 
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3.3.4 Infrared Thermography of Organic Solvents 
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Figure 75 – Thermal images of (a) MF (b) MA (c) EA and (d) MEK showing the different evaporation 

characteristics from a 1ml drop of solvent onto a bench surface over time. 

IRT was used to investigate how the solvents selected affected the surface applied to. Samples 

were used as received without further treatment. Applications to a cleaned whiteboard were 

made using a commercially bought spray bottle. Approximately 1ml of solvent was delivered 

in a single spray. Thermal images were obtained at 1s intervals for 2 minutes. All spraying 

experiments were conducted at 294K. 

MF recorded the largest change in temperature with a minimum of 284.75K, 10K cooler than 

the surface applied to. IRT images also show MF to have the smallest cooled area (compared 

to the initial spray) after 100s. DCM images were unobtainable as the spray bottle was 

incompatible with DCM resulting in “clogging” of the spray bottle nozzle. The final MEK 
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image was also unreliable owing to the loss of focus by the IR camera when imaging this 

sample. 

3.3.5 Infrared Thermography of Organic Solvents with 5wt.% PVAc 
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Figure 76– Thermal images of (a) MF (b) DCM (c) MA (d) EA and (e) MEK with 5wt.% dissolved PVAc 

showing the different evaporation characteristics from a 1ml drop of each solvent mixture onto a bench surface 

over time. 

Continuing investigations from section 3.3.4, solvent evolution experiments were repeated, but 

with inclusive PVAc. 5wt.% of PVAc was dissolved in each solvent using the method 

described in 3.3.2. Samples were sprayed onto a cleaned whiteboard using a commercially 

bought spray bottle. Approximately 1ml of solvent was delivered in a single spray. Thermal 

images were obtained at 1s intervals for 2 minutes. All spraying experiments were conducted 

at 294K. 

DCM was this time investigated, however a different method of delivery was used (glass 

pipette) which delivered the same volume of sample as the spray bottle but in a less disperse 

manner (2 drops can clearly be seen in Figure 76 (b)). MF again performed well with the 

majority of solvent evaporating by 100s with the exception of a non-disperse region. Other 

solvents investigated were still present in significant amounts after 100s. 
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Based on the investigations in 3.3.4 and 3.3.5 the author decided that MF was the most 

appropriate solvent to progress to hydrolysis investigations. 

3.3.6 Fourier Transform Infrared Spectroscopy of Controlled PVAc Hydrolysis 

Controlled hydrolysis of PVAc was conducted using three catalysts: NaCl, MgCl2 and 

Mg(NO3)2 to evaluate the most effective method. The ionic strength is important here as it 

affects the solvation of reactants and intermediates in turn affecting the reaction rate. FTIR was 

selected to investigate new bond formation within the samples. 8wt.% PVAc was dissolved in 

MF and 8wt.% of catalyst added to the solution. Hydrolysis of PVAc is base catalysed and 

during the reaction CH3COOH will be produced. The inclusion of NH4OH neutralises 

CH3COOH enabling the reaction to progress. 

FTIR spectra were taken at regular intervals (21, 88 and 133hrs). The 21hr spectra has been 

omitted from the results as there was significant noise interference rendering it unreliable. A 

resolution of 2cm-1 and 45 repeat scans were selected to obtain accurate and reliable data. 

Figure 77 shows the spectra for unprocessed PVA and spectra taken at points from the initiation 

of the hydrolysis reaction. It is quite clear that hydrolysis has not taken place with no new 

bonds being formed (O-H would be expected). Possible reasons for this are acid rather than 

basic conditions existing in the reaction medium. This reaction was also undertaken at room 

temperature (298K) and even with the presence of a catalyst, may not be sufficient to overcome 

the activation energy barrier. 

 
Figure 77 – FTIR-ATR spectra of NaCl catalysed hydrolysis of 8wt.% PVAc dissolved in MF . 
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Figure 78 shows MgCl2 catalysed hydrolysis of PVAc in MF. Also shown is the spectra for 

unprocessed PVA. The purpose of using different catalysts was to investigate the effect this 

has on initiation hydrolysis. It is apparent that hydrolysis has not been initiated and that there 

has been no chemical changes within the PVAc-MF solution. As before possible reasons 

include insufficient catalyst and inappropriate temperature. It should be noted here that this 

reaction was conducted at room temperature owing to the low boiling point (306K) of MF. 

This is the primary reason for investigating different catalysts. 

 
Figure 78 – FTIR-ATR spectra of MgCl2 catalysed hydrolysis of 8wt.% PVAc dissolved in MF. 

 

 
Figure 79 – FTIR-ATR spectra of Mg(NO3)2 catalysed hydrolysis of 8wt.% PVAc dissolved in MF.  
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Figure 79 shows the spectra for Mg(NO3)2 catalysed hydrolysis of 8wt.% PVAc. This is the 

most interesting of samples analysed as there is a hint that hydrolysis may have been initiated. 

The area circled red in Figure 79, although too small to be reliably identified, suggests that 

PVA may have been produced. Peaks in this region typically correspond to O-H or C-H groups 

and although this murmur exists in the other two spectra, here it has an intensity of perhaps 

95%T. However, this tiny, unidentifiable peak is not enough evidence to draw any positive 

conclusions about the initiation of PVA hydrolysis.  

Further investigation into reaction conditions and catalyst concentration are required. It may 

also be sensible to reconsider the solvent PVAc is dissolved in, by compromising drying time 

to facilitate successful hydrolysis. 

3.4 Summary  

Drying times of PVAc in a range of organic solvents has been conducted. SEM micrographs 

indicated a polymer matrix littered with holes thought to be the result of solvent evaporation, 

through a semi-dry PVAc film. FTIR of dissolved PVAc indicated little remaining solid. More 

troubling is the unidentified peak in Figure 71. It would be prudent to take repeat measurements 

to eradicate the possibility of contamination. 

Evaporation characteristics of neat solvents with and without dissolved PVAc were 

investigated using IRT. MF proved to be the fastest at evolving from a surface. This was 

expected owing the boiling point of 306K (the lowest of all solvents explored). Emphasis must 

be place on the importance of film and hydrogel drying rates as this is the basis of cooling and 

IRT identification. This aspect of the chapter was successful and was taken forward to base 

hydrolysis studies. 

Base hydrolysis of PVAc was studied in the solvent medium using a range of catalysts.  

Ultimately this was unsuccessful, although the sample catalysed with Mg(NO3)2 gave a 

tantalising hint that hydrolysis may have been initiated, but evidence was weak and so it cannot 

be concluded with certainty that base hydrolysis had occurred. Figure 77 and Figure 78 show 

no clear indication hydrolysis has initiated as no O-H peaks can be seen on the spectra. This 

aspect of the work is frustrating, hydrolysing PVAc whilst in a solvent medium would have 

enabled a range of drying rates to be taken forward for further work enhancing the tunability 

of materials. It is likely that acid rather than basic conditions existing in the reaction medium. 
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This reaction was also undertaken at room temperature (298K) and even with the presence of 

a catalyst, may not be sufficient to overcome the activation energy barrier. 

Overall, investigations into drying times are important, especially if a potential commercial use 

could be for night search and rescue using IR imaging. Further work is warranted in this area 

to decide conclusively if base hydrolysis of PVAc is possible whilst dissolved in organic 

solvent. 

This aspect of the work will not be taken forward further in the project as time and resources 

would be better spent on refining PVA hydrogels and thin films incorporating functional 

nanoparticles. This will offer a different route to tuneability of IRT response. 
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4 Production of Polyvinyl Alcohol Hydrogels and Thin Films 

Incorporating Functional Nanoparticles  

4.1 Introduction 

PVA is a synthetic polymer derived from polyvinyl acetate (PVAc) through partial or full 

hydroxylation. PVA is commonly used in medical devices due to its low protein 

adsorption, biocompatibility, high water solubility and chemical resistance [350]. 

It is evident from the literature that use of green, non-toxic biocompatible PVA is useful. Its 

surface tension/viscosity () values in aqueous solution allows it to form self-supporting 

films and coatings [351]. The emissivity of PVA films and coatings has not been previously 

investigated. It affects IR thermal imaging in a way that may be useful in IR stealth coatings. 

Interestingly, when a self-supporting PVA film was used above a bare human hand at 304K 

the thermal image of the latter was obscured.  

 
Figure 80 – Thermal image of a self-supporting PVA film positioned in front of a human hand. 

It was hoped that stabilised PVA structures may be chemically treated to incorporate functional 

nanoparticles of known emissivity and reflective/antireflective properties. By loading the 

polymer matrix with such materials may increase the tuneability, such that surfaces may appear 

thermally different to their surroundings and potentially invisible to an IR camera. Secondary 

use of this type of material would be effective as a passive cooling system in buildings, 

potentially incorporating electrochromic materials for switchable systems to be applied.  

Chapter 4 showed that PVA hydrogels are effective at reducing the temperature of a surface 

relative to its surroundings, based on the release of solvent from the polymer matrix. In this 

chapter this mechanism is taken further, by developing a nanocomposite material, able to 
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obscure the long wave infrared (LWIR) and short-wave infrared (SWIR) properties of a 

surface. Electrochromism has also been considered as a way of passively cooling buildings, by 

making surfaces either more reflective or absorbing. The author believes that electrochromism 

in hydrogels is a novel area of research. 

4.2 Aims and Objectives  

This chapter aimed to utilise the desirable structural properties of PVA to produce hydrogels 

and thin films incorporating different functional NPs which could tune the emissivity () of a 

surface to one which is within a desired range. The desired range is dependent on which 

application the coating is to be used in. Military uses will be confidential, however passive 

cooling hydrogels for buildings will typically be close to zero (reflective) for warm days or 

close to 1 (absorbing/blackbody) on cooler days. The purpose of which is to reflect excess IR 

radiation or absorb it.  

This required the production of PVA hydrogels using both chemical and physical crosslinking 

methods. PVA films were formed due to desirable surface tension/viscosity () values, 

however further stabilisation is required once samples extend beyond certain dimensions.  

Characterisation of materials and testing using appropriate IR camera equipment was also 

required to ensure they perform in laboratory and real-world settings. Drying times of 

PVA/PVAc structures containing different organic solvents was also considered. 

4.3 Results  

4.3.1 Production of PVA hydrogels 

A range of simple PVA hydrogels with varying degrees of crosslinking and PVA 

concentrations were investigated. Both chemical and physical crosslinking methods were 

utilised to investigate any resultant differing physical and mechanical properties of the 

hydrogel.  

Glutaraldehyde (GA) was selected as a chemical crosslinker and two methods of physical 

crosslinking were used: freezing at 248K in a conventional freezer and crash cooling at 77K 

using liquid nitrogen. In all cases 50cm3 of PVA solution was used as the basis for each 

hydrogel. Freeze-thaw cycles were conducted between 1 and 5 times on each concentration of 

PVA solution. Where chemical crosslinking was used, the same volume range of GA was used 

with each concentration of PVA solution. 
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Figure 81 shows a typical physically crosslinked and chemically crosslinked PVA hydrogel 

immediately after crosslinking. The physical freeze-thawing technique yielded hydrogels that 

were of a white opaque appearance, due to light scattering as a result of the dual 

amorphous/semi-crystalline network formed. The chemically crosslinked hydrogels were clear, 

translucent with no visible inclusions. Upon drying in ambient conditions, the hydrogels 

collapsed to a light, clear, hard material with no visible light scattering, indicating poor or no 

porosity.  

 
Figure 81 - PVA hydrogels from (a) physical crosslinking from freeze-thawing, and (b) chemical crosslinking 

using glutaraldehyde (GA). The PVA solutions used were 10 wt. %. 

Figure 82 shows two hydrogels that have been dried in ambient conditions over a period of 

time. The size difference is due to the amount of PVA present in the sample. (Note that when 

hydrated, the two samples were of similar size). 

 
Figure 82 - PVA hydrogels from (a) 5 wt. % and (b) 10 wt. % PVA aqueous solutions. 

A range of hydrogels were produced to ascertain practical upper and lower limits of PVA 

concentration and degree of crosslinking required to produce a stable gel. Stock PVA solutions 

were synthesised at various concentrations and used for all crosslinking investigations. GA 

25% solution was used with HCl employed to control the acidic environment required for 

activation of GA. 
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4.3.2 Visual Observations 

A large range of hydrogels were produced to evaluate which ratio of crosslinking and PVA 

concentration would be most suitable to take forward for further development. Gels that were 

too wet/soft were considered unsuitable as the lack of structure would make incorporation of 

NPs difficult owing to the lack of mechanical stability. Conversely, gels that were too firm 

were also considered unsuitable, as homogeneous NP dispersion would be hindered by the 

densely crosslinked PVA matrix. There would have been a risk of MxOy NPs agglomerating if 

crosslinking were to be conducted too quickly or extensively.  

A further consideration was the rate of H2O loss from the hydrogel. This is an important 

property and is the mechanism by which a hydrogel material is able to cool a surface to which 

it is applied. This dehydration must be controllable; too slow and the surface may not be cooled 

sufficiently, too quick and the gel would need to be rehydrated with unacceptable frequency. 

Table 11 – Observations noted about the appearance, strength and speed of formation of hydrogels produced 

via physical crosslinking in a conventional freezer (298-248-298K). Highlighted in green are the conditions 

which produced hydrogels with the most desirable properties. 

 

PVA solution 

concentration 

(weight %) 

Number of 

freeze/thaw 

cycles 

Properties/observations 

2 

1 No gel formed 

2 No gel formed 

3 Solution appeared more viscous – no gel formed 

4 
Small areas of very thick solution – partial very weak gel 

formed 

5 
Small areas of very thick solution – partial very weak gel 

formed 

4 

1 No gel formed  

2 Solution appeared more viscous – no gel formed 

3 Some areas of gelation apparent – non-homogeneous 

4 Very wet gel formed, weak structure 

5 Wet homogeneous gel formed 

6 

1 No gel formed 

2 Heterogeneous solution/gel formed 

3 Very wet gel formed, weak structure, optically clear 

4 Soft gel formed, very little non-gelled initial solution present 

5 
Soft-medium gel formed, weak mechanical properties, slight 

opaqueness  

Table 11 is continued on the next page. 
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8 

1 Solution appeared more viscous – no gel formed 

2 Heterogeneous solution/gel formed 

3 Soft gel formed, very little non-gelled initial solution present 

4 
Soft-medium gel formed, weak mechanical properties, slight 

opaqueness 

5 Medium strength gel formed, malleable and springy to touch  

10 

1 Solution appeared more viscous – no gel formed 

2 Very wet gel formed, weak structure 

3 Soft gel formed, weak structure 

4 Soft-medium gel formed, weak mechanical properties 

5 
Medium strength gel formed, slightly firm to the touch, white 

in appearance, completely opaque. 

15 

1 Very viscous liquid, initial signs of gelation 

2 Wet gel formed, weak mechanical properties 

3 Soft-medium gel formed  

4 
Medium gel formed, maintains shape when mechanically 

manipulated 

5 
Medium-firm gel formed, signs of brittleness at boundary, 

opaque 

20 

1 Very thick viscous aqueous solution, some gelation 

2 Wet gel formed, weak mechanical properties 

3 Soft-medium gel formed, opaque and white 

4 Firm gel formed, signs of brittleness  

5 Very firm gel formed, brittle and not easily manipulated 

 

Table 12 - Observations noted about the appearance, strength and speed of formation of hydrogels produced 

via physical crosslinking using liquid nitrogen to crash cool the solution (298-77-298K). 

 

PVA solution 

concentration 

(weight %) 

Number of 

freeze/thaw 

cycles 

Properties/observations 

2 

1 No gel formed, no visual difference 

2 No gel formed, no visual difference 

3 Solution appeared more viscous – no gel formed 

4 Solution appeared more viscous – no gel formed 

5 
Small areas of very thick solution – partial very weak gel 

formed 

Table 12 is continued on the next page. 
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4 

1 No gel formed 

2 Solution appeared more viscous – no gel formed 

3 
Small areas of very thick solution – partial very weak gel 

formed 

4 Very wet gel formed, weak structure 

5 Wet homogeneous gel formed, very weak, clear appearance 

6 

1 No gel formed 

2 Areas of gel formed, mostly aqueous solution present 

3 Very wet gel formed, weak structure, optically clear 

4 Soft gel formed, very little non-gelled initial solution present 

5 
Soft gel formed, weak mechanical properties, areas of air 

present in polymer matrix, slight opaqueness 

8 

1 Solution appeared more viscous – no gel formed 

2 Very wet gel formed, weak structure 

3 Soft gel formed, very little non-gelled initial solution present 

4 
Soft-medium gel formed, weak mechanical properties, slight 

opaqueness, areas of air present 

5 
Medium strength gel formed, brittle, areas collapse under 

pressure, opaque 

10 

1 Solution appeared more viscous – no gel formed 

2 Soft gel formed, weak structure, spongy 

3 Soft-medium Soft gel formed, weak structure, brittle, opaque 

4 Medium gel formed, weak mechanical properties, brittle 

5 
Medium strength gel formed, slightly firm to the touch 

collapses with firmer pressure, white in appearance 

15 

1 Very viscous liquid, initial signs of gelation 

2 Soft cloudy gel formed, weak mechanical properties 

3 Medium gel formed, easily torn, air bubbles present 

4 Firm gel formed, some areas very solid, others contain air 

5 Firm gel formed, brittle, opaque, air containing 

20 

1 Very thick viscous aqueous solution, some gelation 

2 Soft gel formed, weak mechanical properties, white, opaque 

3 Medium-firm gel formed, opaque and white, very brittle 

4 Firm gel formed, brittleness, non-homogeneous 

5 Almost solid gel formed, brittle and not easily manipulated 
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Table 13 - Observations noted about the appearance, strength and speed of formation of hydrogels produced 

via chemical crosslinking with GA. Highlighted in green are the conditions which produced hydrogels with the 

most desirable properties. 

PVA solution 

concentration 

(weight %) 

Volume of 

GA (ml) 
Properties/observations 

2 

0.1 No visible gel formed 

0.5 Solution appeared more viscous – no gel formed 

1 Wet gel formed, very weak mechanical properties 

2 Weak gel formed, soft to touch 

5 
Gel formed quickly, optically clear, weak mechanical 

properties 

10 
Soft gel rapidly formed upon casting; non-homogeneous 

dispersal apparent 

4 

0.1 Solution appeared more viscous – no gel formed 

0.5 Wet gel formed – un-crosslinked aqueous PVA present 

1 Gel formed, optically clear, weak mechanical properties 

2 Soft/medium firmness gel formed 

5 
Medium firmness gel formed quickly, clear, good mechanical 

strength 

10 
Medium firmness gel formed rapidly, some areas hard 

indicating a lack of homogeneity 

6 

0.1 Wet gel formed slowly, very weak  

0.5 Soft gel eventually formed, optically clear, structurally weak 

1 Gel formed, soft to touch, average strength 

2 Medium firmness gel formed quickly, good strength 

5 Firm gel formed rapidly, medium strength, optically clear 

10 Firm gel formed rapidly, very good mechanical properties 

8 

0.1 Soft gel formed eventually, weak properties, wet to touch 

0.5 Soft gel formed slowly, optically clear 

1 Medium firmness gel formed, good strength 

2 Medium firmness gel formed quickly, optically clear  

5 Firm gel formed, water tightly bound, slight flexibility 

10 Very firm gel formed, some brittleness, optically clear 

10 

0.1 Weak gel formed slowly, wet to touch 

0.5 Soft/medium firmness gel formed, mechanically weak 

1 Medium firmness gel slowly formed, good strength 

2 Medium/firm gel formed, optically clear, manipulatable 

5 Firm gel formed rapidly, signs of brittleness 

10 
Very firm gel formed, brittle, optically clear, not easily 

manipulated 

Table 13 is continued on the next page. 



110 
 

15 

0.1 Weak gel formed, wet to touch 

0.5 Soft/medium firmness gel formed, mechanically weak 

1 Medium/strong firmness gel formed, optically clear 

2 Firm gel formed quickly, with potential for manipulation 

5 Firm/hard structure formed; brittleness apparent 

10 Hard, almost solid gel, on board water very tightly bound 

20 

0.1 Weak gel formed, wet to touch 

0.5 Soft/medium firmness gel formed, mechanically weak 

1 
Medium/firm gel formed quickly, good strength, (possible 

candidate for further use) 

2 Firm gel formed signs of brittleness, optically clear 

5 Very firm gel formed, some brittleness, hard to twist and turn 

10 
Hard, almost solid gel formed rapidly, on board water very 

tightly bound 

 

From the array of samples produced, there were several candidates which showed potential to 

be taken forward for MxOy NP inclusion (highlighted in green). These samples have been 

selected because of the properties they exhibit. The author is mindful of the potential future 

applications and commercialisation of these materials and envisions them being applied to the 

surface of a building. With this in mind samples need to be durable, strong and clear, able to 

withstand the variety of weather conditions they may experience. It is for these reasons that the 

samples highlighted are desirable. At this stage it was decided not to pursue the physical 

crosslinking method using liquid nitrogen. Gels produced via this method were similar to ones 

produced via the conventional freezer method.  

A noticeable difference, however, was the appearance of air pockets/voids in the gels. This was 

first noticed when mechanical pressure was applied to the gel. The structure would sometimes 

collapse around the applied area of pressure rather than give a uniform physical resistance. This 

was thought to be due to air becoming trapped in the gel when it was frozen quickly. When 

aqueous PVA solution was poured into petri dishes in preparation for freezing, air bubbles 

would sometimes be present in the solution. Because of the speed of freezing when liquid 

nitrogen was applied, these bubbles did not dissipate, but instead formed small localised areas 

of aerogel. Conversely, the slower rate of freezing with a conventional freezer gave enough 

time for air bubbles to burst/rise to the surface before the solution had completely frozen. For 

this reason, and the additional health and safety issues surrounding use of liquid nitrogen, 

combined with greater cost, made this method less desirable. One strong advantage, however, 

was the increased speed at which hydrogels could be produced. 
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Hydrogels produced via chemical crosslinking were inherently more controllable, as 

stoichiometric values could be calculated to give desired levels of crosslinking. However, it 

was noticed that a lower and upper limit of PVA concentration and volume of GA added. 

Where concentration of PVA was too low (<4wt.%) hydrogels formed were too soft or weak, 

with non-crosslinked portions of aqueous PVA present. Where volumes of GA were also low, 

hydrogels were not formed at all. Alternately, where concentrations of PVA were high 

(>10wt.%) hydrogels formed were firm and in some cases brittle. This rendered them 

unsuitable as even dispersion of MxOy NPs would be challenging. In cases where PVA 

concentration and GA volume were high, hydrogels formed rapidly and sometimes unevenly 

as crosslinking was already occurring before the gel was cast. A reduction in the acidity of the 

system helped to some degree, but ultimately these gels were too firm to use. 

Based on the observations, above 8 – 10wt.% was considered the ideal PVA concentration for 

both chemical and physically crosslinked hydrogels. GA volumes of 1-2ml were also 

considered ideal owing to the type of gel produced and the rate formed. The number of freeze-

thaw cycles required was 4 or 5 to produce stable gels.  

4.3.3 Characterisation of Hydrogels 

4.3.3.1 Fourier Transform Infrared Spectroscopy 

 
Figure 83 – FTIR-ATR transmission spectra of PVA powder, 8wt.% PVA film and 8wt.% PVA hydrogel. 

Fourier transform infrared spectroscopy (FTIR) was used to confirm the identity of the starting 

materials and the chemical changes undergone when cast as films and hydrogels. This 

technique was also able to give information about H2O solvent contained within the PVA-based 
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hydrogel matrix. A resolution of 2cm-1 and 45 repeat scans were selected to obtain accurate 

and reliable data. 

Peaks which have been identified are to be expected for the materials analysed. There is no 

C=O in PVA powder owing to the high degree of hydrolysis in the starting material. 

4.3.3.2 Thermogravimetric Analysis 

Thermogravimetric analysis (TGA) was used to confirm the dehydration of H2O from PVA 

hydrogel samples and to investigate the temperature at which PVA decomposes. Identical 

samples of PVA powder (99+% hydrolysed) were run in air and N2. Physically crosslinked 

hydrogel samples produced from 8wt.% PVA aqueous solutions of the same batch of PVA 

powder were also run in air and N2. 

 
Figure 84 – TGA plot of 99+% hydrolysed PVA powder and physically crosslinked PVA hydrogels in air and 

N2. 

Figure 84 shows TGA of PVA powder and a physically crosslinked PVA hydrogel in both air 

and N2. PVA powder shows minimal weight loss (<5%) from 300-580K; this can be attributed 

to small amounts of H2O which would have been absorbed by the hydrophilic nature of PVA 

during storage/pre-processing. A steady weight decrease of 80% can be observed for PVA 

powder in N2 between 580-730K at which point a decrease is still observable but at a reduced 

rate up to the maximum operating temperature of the instrument. The PVA powder in air 

decreases in weight by >95% between 580-830K. The decrease observed is less smooth than 

the run in N2 with an observable “kink” at 695K. This could be the result of chain scission 

reactions. A constant weight residue for PVA in air is observable from 830K. 
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The thermal decomposition of PVA hydrogels begins with a clear weight loss of 30% between 

300-400K which is the result of dehydration of H2O from the polymer matrix. No weight is 

lost between 400-590K. Between 590-730K the hydrogel sample in N2 loses 70% weight 

tending to the powdered N2 PVA weight loss rate. The hydrogel sample in air has a similar 

observable “kink” to that of the powdered sample at 690K. A weight loss of 75% is observed 

to 830K after which a constant weight residue is seen. 

The thermal degradation of hydrogel samples begins 10-15K later than the powdered sample. 

This is thought to be due to the entangled polymer chains which were the basis for the hydrogel 

giving a stronger structure and requiring a greater energy to initiate degradation steps. 

4.3.4 Infrared Thermography of PVA Hydrogels 

Infrared thermography (IRT) (FLIR is described in 2.1.6) was used to observe the adsorption-

cooling effect of a chemically crosslinked PVA hydrogel swollen with H2O (prepared via the 

method described in 2.3.2), a physically crosslinked PVA hydrogel swollen with H2O (prepared 

via the method described in 2.3.3.1) and a physically crosslinked PVA hydrogel swollen with 

H2O (prepared via the method described in 2.3.3.2). 

The purpose of this test was to investigate if the method of crosslinking had an effect on the 

thermal characteristics of a PVA hydrogel. All samples were prepared from the same batch of  

8wt% PVA solution. 50cm3 was measured prior to thermal/chemical treatment for casting as 

hydrogels. When formed as hydrogels, samples were of similar physical dimensions (90mm 

diameter, 8mm high, volume = 50.89cm3). Samples were arranged near each other (but not 

touching) on a cleaned aluminium substrate. IRT images were obtained at 5min intervals over 

a period of 25hrs. The range was chosen as it enabled a complete daily cycle to be monitored, 

with atmospheric (and therefore) substrate temperatures likely to be higher during the day and 

lower at night when the laboratory is unoccupied. 
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Figure 85 - Temperature variation of a physically crosslinked (freezer method) PVA hydrogel, of a physically 

crosslinked (N2) PVA hydrogel and chemically crosslinked (GA) PVA hydrogel compared to local atmospheric 

and Al uncoated substrate temperature. 

Figure 85 shows graphically the temperatures of each hydrogel, the Al substrate temperature 

and laboratory atmospheric temperature. Firstly, one must consider the atmospheric and Al 

substrate temperature with respect to time of day. The measurements for this experiment started 

at 9am (t=0). The temperature of the laboratory atmosphere and Al substrate rose from 290.8K 

and 292.5K respectively (marked in orange) between t=0 to t=660 (11hrs) to a maximum of 

291.7K and 293.6K respectively at 480mins. From t=660 to t=1320 the temperature began to 

decrease to a minimum of 290.9K at (t=1260) and 292.7K (t=960) (marked in blue) until an 

increase was once again observed from t=1320 to the end of measurements. 

Although slight, these temperature differences indicate the temperature differences between 

day and night in the laboratory. The higher than expected peaks at 1380mins are a result of the 

author getting too close to the camera when checking the experiment the following day. 

The purpose of this section of work was to determine if the form of crosslinking affects the 

adsorption-cooling properties of a PVA hydrogel. Figure 86 shows the average temperature 

difference of each hydrogel compared to the Al substrate. It is apparent that there is no 

discernible temperature difference between the samples when compared to the substrate. 

Typically (but not always) the chemically crosslinked hydrogel is <0.1K warmer than the 

physically crosslinked samples. However, at the start of the experiment (t=0-150mins), the 

chemically crosslinked sample was indeed cooler than the physically crosslinked samples. The 
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sample used in this work conforms very closely to what has been previously observed by others 

(see Figure 89). The chemically crosslinked PVA hydrogel in this work showed a change in 

temperature (ΔT) of 2.4K compared to 3.6K as recorded by others. It may therefore be 

concluded that the method of crosslinking has negligible effect on PVA hydrogels, but that 

confidence can be taken in the performance of the hydrogels prepared. 

 

Figure 86 – Average differences in temperature of a physically crosslinked (freezer method), PVA hydrogel, of a 

physically crosslinked (N2) and PVA hydrogel and chemically crosslinked (GA) PVA hydrogel compared to Al 

substrate. 
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Figure 87- Thermal images of (a) physically crosslinked (freezer method) (b) PVA hydrogel, of a physically 

crosslinked (N2) (c) PVA hydrogel and chemically crosslinked (GA) PVA hydrogel (0-420mins). 
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Figure 88 - Thermal images of (a) physically crosslinked (freezer method) (b) PVA hydrogel, of a physically 

crosslinked (N2) (c) PVA hydrogel and chemically crosslinked (GA) PVA hydrogel (480-1500mins). 
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Figure 89 - Temperature between a chemically-crosslinked (GA) PVA hydrogel and its immediate surroundings 

as a function of time after its preparation. Reproduced from [352]. 

4.3.5 Viscometry 

Viscometry was used to confirm that aqueous PVA solutions were more viscous than H2O. It 

was found that the dynamic viscosity of water (2.5cP at 294K) increased significantly on 

addition of 8wt%PVA (Ave. RMM/kDa = 50,000) to 70.9cP. For a 1%PVA aqueous solution 

at 298K the surface tension decreases with time to 5000cP from the value for water (7200cP). 

Hence / decreased on PVA introduction. This was important when considering PVA for use 

in self-supporting films. 

4.3.6 Inclusion of Metal Oxide Nanoparticles in PVA Hydrogels and Films 

8wt.% aqueous PVA solution was loaded with 4 and 8wt.% MxOy from which self-supporting 

nanocomposite films were cast. Also produced were physically cross-linked 8wt.% PVA 

hydrogels loaded with a variety of MxOy NPs to investigate the effect this would have on the 

emissivity (Ɛ) of a surface when the sample was applied. The synthesis route for this consisted 

of producing an 8wt.% aqueous solution of PVA as described in 2.3. From this 50ml was taken 

for each sample. 4 or 8wt.% of the desired MxOy was ground in an agate pestle and mortar with 

an amount (typically 10ml) of PVA solution to create a PVA/MxOy slurry. This step ensured a 

good level of NP dispersion within the sample. The slurry was then added to the remaining 

PVA solution and the 50ml sample was then stirred and cast in a petri dish in the case of 

hydrogels. Four cycles of freeze-thawing (298K to 248K to 298K) were then employed to 

create the physically-crosslinked sample. For films, the method was similar, but instead circular 

films were produced using a plastic ring and allowing the film to dry in air. Table 14 lists the 

samples which were produced for further investigation. 
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Table 14 - Sample list of PVA hydrogel with amount of MO NP's included and their relevant emissivity’s (Ɛ) 

*Activated Carbon. 

MxOy Ɛ 
wt.% of NP 

4 8 

AC* 0.9 – 1.00 AC AC 

Al2O3 ~0.2 Al2O3 Al2O3 

SiO2 0.55 – 0.62 SiO2 SiO2 

TiO2 0.35 – 0.48 TiO2 TiO2 

WO3 0.4 – 0.45 WO3 WO3 

ZnO ~0.28 ZnO ZnO 

Au ~0.47 Au Au 

 

4.3.6.1 Characterisation of PVA-MxOy hydrogels 

Characterisation of hydrogels loaded with MxOy NPs was important to understand how the NPs 

were dispersed throughout the PVA matrix. The author was ultimately interested in how the 

NPs affected the image obtained by IRT. By ensuring a good level of dispersion during 

synthesis, it was hoped that the thermal signal of the sample would be uniform. 

 4.3.6.2 Scanning Electron Microscopy of PVA/MxOy Slurry Method in Hydrogels 

SEM gives a visual indication of the location of NPs within the PVA matrix, able to show if 

this was disperse or agglomerated. Figure 90 shows SEM micrographs of self-supporting 

8wt.%PVA films that contained 4wt.% SiO2 (a, b) and 4wt.% of AC (c, d). The NPs did not 

affect the stability of the dried self-supporting PVA films at these low concentrations; however 

at higher concentrations (8wt.%) the NPs did affect film stability and integrity, with films 

difficult/unable to be formed. 

SEM shows that there is significant agglomeration of inclusive MxOy NPs with bulk formations 

of NPs held together by the polymer network. Therefore, further consideration was given to 

the method of NP inclusion. 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 90  – SEM micrographs of (a, b) 8wt.% PVA+ 4wt% SiO2, (c, d) 8wt.% PVA + 4wt.% AC films and (e) 

8wt.% PVA + 4wt.% WO3. 

4.3.6.3 Energy Dispersive X-ray of PVA/MxOy Slurry Method in Films 

SEM-EDX measurements have been performed on a PVA-WO3 film, obtained by dip-coating 

a glass slide in a PVA/MxOy slurry produced via the synthesis method described in 2.3.4.2. The 

elemental maps from EDX show a good distribution of WO3 throughout the film. This contrasts 
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with a PVA hydrogel produced from the same slurry. It is considered, that during the physical 

crosslinking process, WO3 NPs coalesce owing to the increased time of synthesis and the 

kinetic movement in the PVA matrix during freeze-thaw cycles. Conversely, a film is a more 

basic system, able to be cast in a single motion. Once a PVA film is dried (which is a faster 

process than hydrogel formation) WO3 NPs are held in position by intermolecular forces 

originating from polymer chains. It is therefore thought, that providing a good level of mixing 

occurs immediately prior to dip-coating, a good level of WO3 NP dispersion can be achieved 

within a PVA film. Figure 91 shows EDX maps for C, O, W and Au. The Au mapped by EDX 

originates from gold sputter coating of the sample prior to SEM-EDX analysis. 

 

 
C 

 
O 

 
W 

 
Au 

Figure 91 – SEM-EDX of WO3 in a PVA hydrogel matrix produced via the method described in 2.3.4.3. 
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4.3.7 Synthesis of Tungsten Trioxide NPs 

WO3 NPs were produced following the method described in 2.3.4.1. SEM revealed an average 

particle diameter of 40-50nm. This was confirmed by DLS which indicated the average particle 

size was 48.7nm with a distribution of 15-82nm. It was originally envisioned that NPs produced 

from this method, would be directly incorporated into PVA hydrogels and films. However the 

agglomeration apparent in Figure 92 has required investigation into an alternative synthesis 

route to be conducted. 

  
(a) (b) 

Figure 92 – SEM micrographs of WO3 NPs synthesised from the method outlined in 2.3.4.1. 

4.3.7.1 Thermogravimetric Analysis 

Thermogravimetric analysis (TGA) was conducted on the WO3 NPs produced via the method 

described in 2.3.4.1. This was undertaken to ensure that the solid obtained was thermally stable. 

WO3 NPs were analysed before and after the calcination step (at 773K) as stipulated in the 

synthesis method. TGA runs were conducted in air with a controlled ramp rate of 10K/min. 

Figure 93 shows no weight loss for the sample that had undergone a calcination step. The 

sample which had not been calcined showed an initial weight loss of 15% between 300-420K 

attributable to H2O. A further 5% loss in weight between 420-730K was noted, after which 

constant weight residues were obtained. TGA has confirmed that the WO3 NPs produced were 

thermally stable up to 1200K. The melting point for WO3 is 1746K, significantly above the 

temperatures considered here. 
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Figure 93 – TGA plot of WO3 NPs pre- and post- calcination at 773K. 

4.3.8 Scanning Electron Microscopy of In-situ PVA Metal Oxide Dispersion Method 

The PVA nanocomposite materials produced so far have given different results depending on 

the method used to cast the precursor. Whilst PVA films may be produced via dip coating with 

satisfactory NP dispersion (4.3.6.3) the same cannot be said for hydrogels loaded with NPs 

(4.3.6.2) which show significant areas of NP agglomeration. It is therefore evident that the 

thickness of a sample (films are thin, hydrogels are thick) has a bearing on the level of NP 

dispersion throughout the polymer matrix. 

PVA hydrogels were produced with inclusive WO3 NPs via the novel methods described in 

2.3.4.3 and 2.3.4.4. SEM-EDX was conducted to investigate the NP dispersion within the 

polymer matrix. 

EDX images in Figure 94 show the extent of WO3 NP distribution. Homogeneous distribution 

is evident throughout the area mapped. However the area highlighted by a white arrow shows 

a reduced concentration of W. If compared to the SEM image this region appears differently 

perhaps indicating that there are variations in concentration of W. A possible explanation for 

this difference can be traced back to the synthesis method. As described in 2.3.4.4 it was noted 

that ensuring the reaction reached an endpoint was problematic owing to the requirement to 

immerse the gel in a bath of HCl. The timing of this was critical to ensure that NP formation 

occurred, but that the hydrogel did not dissolve. Therefore, the author believes that the reaction 

was terminated prematurely and that unreacted Na2WO4 may still be present in the polymer 

matrix. This was not considered at the time and therefore EDX mapping of Na was not 

conducted. This would be useful to undertake in the future to confirm this theory. 
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Further SEM-EDX imaging was conducted to evaluate inclusive WO3 quantitively (Figure 

95). This showed 32.26wt.% of WO3 which appeared in a monodisperse arrangement. 

  
SEM image C 

  
O W 

Figure 94 – SEM-EDX micrographs of a dried PVA hydrogel with incorporated WO3 NPs synthesised via the 

method described in 2.3.4.4. 

 

Element Weight% Atomic% 

   

C K 38.83 61.99 

O K 28.91 34.65 

W M 32.26 3.36 

   

Totals 100.00  

 

Figure 95 - SEM-EDX micrograph and generated report of PVA-WO3 nanocomposite film. 
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4.3.9 Synthesis of Gold NPs for Inclusion in PVA Hydrogel Matrix 

Au NPs were synthesised using the method described by Luo, et al. This method gave 

monodisperse Au NPs (approximately 2-4nm diameter) for further use in PVA hydrogels [353]. 

NPs were dispersed in 8wt.% aqueous PVA solution and cast as physically crosslinked 

hydrogels. A PVA/Au NP film was produced via dip coating a glass slide into the pre-cast 

solution. The dried film obtained was analysed by SEM-EDX. This presented a problem. Au-

sputter coating of the film was not possible as Au was the target atom under investigation. 

Instead, carbon- sputter coating was considered as an alternative option. However, coating was 

not as effective as Au and significant charging of the PVA/Au film sample occurred resulting 

in poor quality micrographs. EDX indicated that Au was present in the sample, but the 

distribution of particles could not be reliably mapped. 

4.3.10 Infrared Thermography of PVA-MxOy Hydrogels 

“Real-world” IRT was conducted on the most promising PVA-MxOy hydrogels (Figure 96). 

The purpose of this was to investigate how these samples appear from a distance and in an 

outdoor environment. Physically crosslinked PVA hydrogels produced from 8wt.% aqueous 

PVA loaded with 4, 8 and 10wt% Au, WO3 and AC were placed onto a cleaned whiteboard 

and situated 500m from an IR camera. The atmospheric conditions were:  

Temperature – 285K, Humidity – 63%, Wind speed – 12mph 

 
 (a) (from L-R) 4wt%, 8wt.%, 10wt.% Au NPs in a physically crosslinked PVA hydrogel 

 
(b) (from L-R) 4wt%, 8wt.%, 10wt.% WO3 NPs in a physically crosslinked PVA hydrogel 

 
(c) (from L-R) 4wt%, 8wt.%, 10wt.% AC NPs in a physically crosslinked PVA hydrogel 

Figure 96 - Thermal images of (a) PVA-Au (b) PVA-WO3 (c)PVA-AC hydrogels. 
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Previously, thermal images were taken as a function of time, however, in this instance the 

author was primarily interested in the appearance of samples compared to the surface to which 

they were applied.  

Hydrogels with on board Au NPs had the greatest contrast to the background surface. 

Hydrogels with AC showed reasonable contrast and WO3 NPs were almost indistinguishable 

from the background. It was also apparent that the concentration of on-board NPs had little 

effect on the IR properties of the hydrogel. A more telling factor was the species of NPs.  

4.4 Hydrogel Electrochromism 

Electrochromism in PVA hydrogels is thought to be novel. In this section of work, WO3 loaded 

PVA hydrogels prepared using the method in 2.3.4.3 were tested at different voltages, with and 

without additional salt (Li+, Na+, K+, Ba2+). Additional salts were added during the crosslinking 

stage of hydrogel synthesis. 

   
t = 0s, 12V t = 0.5s, 12V t = 1.0s, 12V 

Figure 97 - Optical images of the colour change of a PVA-WO3 (10 wt. %) hydrogel with no added salt 

Figure 97 shows the yellow – dark blue/black colour change of a PVA-WO3 (10wt.%) hydrogel 

with no added salt, sandwiched between two glass transparent ITO/FTO electrodes 

(experimental set-up described in 2.3.4.5) with an applied voltage of 12V. The colour change 

is essentially instantaneous (<1s), however the voltage was too high in this situation. Lower 

voltages were used in the range of 1V-12V. It was noted that there was a direct correlation 

between the voltage and rate of colour change. Low volts resulted in a slow colour change and 

high volts a quicker change. A possible explanation for this is the higher voltage has a greater 

motivating effect on dissociated ions in the octahedral structure. 

Figure 98 shows the colour change of a lower WO3 loading of 1wt. %. The colour contrast is 

still high, even with the hydrogel containing such a very low WO3 content. This shows that the 
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oxide particles are subjected to the electron/ion migration even when embedded in a PVA 

matrix and its guest fluid.  

  
t = 0s, 12V t < 0.5s, 12V 

  
t = 0.5s, 12V t = 1.0s, 12V 

Figure 98 - Optical images of the colour change of a PVA-WO3 (1 wt.%) hydrogel with no added salt. 

Figure 99 shows a series of PVA-WO3 (5wt. %) hydrogels with perchlorate salts containing 

cations of varying size present in the porous hydrogel fluid. Here the voltage was ramped 

slowly from 1 to ~4.5V to discriminate any colour change or speed between the different cation 

sizes (ion mobility). 

It appears that adding salts to the hydrogel increases the intensity of the end colour of the 

electrochromic gel at a fixed voltage. On the other hand increasing the salt’s concentration 

gives darker shades. The size of the cation affected the mobility (as expected); Aii and Bi appear 

darker earlier than Biii and Ci and Cii, which have bigger cations. There is little difference in 

this context between Li+ and Na+ ions. 
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1V 3.5V 

  
4V 4.5V 

Ai = no added salt Bi = 1.0M added Na+ Ci = 1.0M added Ba2+ 

Aii = 1.0M added Li+ Bii = 0.5M added Na+ Cii = 0.5M added Ba2+ 

Aiii = 0.5M added Li+ Biii = 0.1M added K+ Ciii = Blank 

Figure 99 - Optical images of the colour change of PVA-WO3 (5 wt.%) hydrogels with varying amounts of 

perchlorate salts and different cations. 

4.5 Summary 

Work undertaken in this chapter was varied and informative. The thermal adsorption-cooling 

effect of hydrogels formed by different crosslinking methods has been studied over a 25h 

period and showed the method of crosslinking to have little effect on the thermal properties of 

the hydrogel. A more critical factor could be the degree of crosslinking. Temperature 

differences between the hydrogels and Al substrate were on average 2.4K lower irrespective of 

crosslinking method. It is believed that hydrogels from 3D printed PVA is novel and therefore 

a temperature difference of 2.4K from a 3D printed material is a new achievement. Hydrogels 

selected for this work were done so on the basis of visual, mechanical and tactile properties. It 

is likely that the method of crosslinking is largely irrelevant to the adsorption-cooling effect 

and that the hydrogels used in this work have similar degrees of crosslinking. The amount of 
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crosslinking ought to be considered further, as this is likely to control the rate of solvent 

evolution and therefore cooling properties. 

A range of MO NPs have been successfully and uniformly dispersed in a PVA hydrogel matrix. 

Several different methods were trialled to achieve a satisfactory level of dispersion. SEM-EDX 

has indicated that this has been achieved. Investigation of the thermal characteristics of PVA-

MO nanocomposites revealed mixed results. The emissivity values of Au, WO3 and AC are 

0.47, 0.4-0.45 and 0.9-1 respectively. The author therefore believed that the IRT images 

obtained would reflect this. However, the sample with greatest contrast to the surface it was 

applied to was PVA-Au. Further investigation is warranted here. 

Finally, electrochromism in a PVA hydrogel has been demonstrated with and without 

additional salts. Colour changes from bleached to coloured (yellow to dark blue) occurred 

almost instantaneously. The voltage in these initial test was 12V which gave a colour change 

in <1s, other voltages (1, 3.5, 4 and 4.5V) were used with the colour change observed in 4, 2, 

2 and 1.5s respectively. It is therefore likely that the voltage across the material is responsible 

for the speed of colour change. Further investigation on cycling of colour change (bleached-

coloured-bleached) is needed to see if voltage affects the lifespan of the material. Investigations 

using different salts, revealed an element of tunability in the colours obtained. These results 

are exciting and are the first step to developing an electrochromic coating which may also be 

used as a “sweating surface”. It is believed that electrochromism in hydrogels is novel and not 

only has the author demonstrated this, he has also shown tunability of colour, a significant 

achievement. 
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5 3-Dimensional Printed PVA-PLA Materials for Gas/Breathing 

Sensing Applications  

5.1 Introduction 

Gas sensors have been around for many years and over time have become more reliable at 

selectively detecting target analytes. Current common technologies are generally based on 

carbon, nanofibers, metal oxide nanostructures, metal nanostructures and semiconductor 

nanostructures. Others utilise photonic crystals, ionic liquids and metal organic frameworks 

[354, 355]. 

There is much interest in graphene-based gas sensors because of their superior electronic 

properties over conventional bulk-based sensors. Faster response times, higher sensitivity and 

selectivity, lower cost compared to performance are all properties of this type of sensor [356]. 

Also emerging recently, are a range of electrically conductive 3D printing materials, some of 

which incorporate graphene. Work on developing 3D printed gas sensors is in its infancy but 

does exist [357]. 

5.2 Aims and Objectives 

The aim of this part of the author’s work is to utilise 3D printing technologies to develop a 

printable gas sensor able to selectively detect volatile organic compounds (VOCs), carbon 

dioxide (CO2), nitrogen dioxide (NO2) and ammonia (NH3). By incorporating 3D printing into 

the process, gas sensors could it was hoped be produced at low cost and in a short space of 

time. They could it was hoped be produced with varying dimensions appropriate to the intended 

use/user. Fused deposition modelling (FDM) has been chosen as the most appropriate method 

of 3D printing, as samples can be printed with a variety of commercially available materials, 

with a cost and speed of production that are acceptable. A range of asymmetric samples 

incorporating both single and dual layer asymmetric configurations has been explored. Each 

layer it was hoped would target different species and might be treated chemically. 

An initial specification for a 3D printed gas sensor, is that it should show a response time within 

5-10 seconds of a target gas being introduced. Return to baseline levels would ideally be within 

30 seconds. Selectivity of species is also important and so an ideal sensor should be able to 

distinguish between different linear molecules (CO, CO2, NO2 & SO2) and nonlinear (NH3 

VOC’s). Sensitivity should also be good with PPB levels of gases detectable; however this is 

largely dependent on surface area and so there may be a lower and upper limit. The potential 
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of 3D printed sensors cannot be underestimated, maturation of the technology may even see 

structural parts to buildings being made using 3D printing, with gas sensing capabilities inbuilt. 

Furthermore, the almost limitless geometries afforded by 3D printing could enable gas sensors 

to be hidden as everyday objects, such as vases or ornaments. 

5.3 Results  

5.3.1 Initial Exploratory Sensor Designs 

The shape and geometry of the sensor is highly important in terms of the surface area presented 

to/exposed to the target analytes. Previous studies have found a linear relationship between the 

surface area of a gas sensor and its sensitivity [358]. This is due to the surface area being 

proportional to the number of available analyte adsorption sites. Sensors in this project were to 

be chemically tuneable and therefore had to be adjustable in terms of their aspect ratio and 

surface area, which would in turn affect their sensitivity. Sensors were also to be durable, stable 

and also non-toxic and green. 

Several simple geometries were initially investigated for PVA only sensors (see Table 15) 

specifically: thin rectangular cuboid strips (width ≠ depth ≠ height), cylindrical shaped (radius 

≠ height) and larger rectangular cuboids (width = depth ≠ height). These were designed using 

Autodesk Fusion 360 and were “sliced” and finalised in Cura. These samples were then 

subjected to pre-treatment, characterisation and water uptake testing. 

The surface texture of these samples is not wholly uniform, with visible ridges of PVA 

separated with troughs between each strand of deposited material. The setting used on the 3D 

printer was for normal quality which gave a 150µm step changes, i.e. the height of each layer. 

The controlling factor for the thickness of material strands making up each layer is the diameter 

of the print nozzle. The nozzle used in the work was 0.4µm in diameter. Therefore strands of 

PVA emerging from the print head (in ideal conditions) should be 0.4µm in diameter. One of 

the limitations of FDM is the surface finish, which will inevitably have some observable 

layering. This could be accentuated, with noticeable voids between deposited stands if poor 

fusion has occurred. Possible reasons for this are the temperature and speed settings selected. 

If filament which has become brittle or chemically changed through absorption of H2O or 

contamination, a higher/lower temperature or faster/slower speed of feed to the print head 

would being required. If this is not done, the result could be strands emerging from the print 

head with a diameter lower than the nozzle, resulting in gaps between deposited strands. 
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This layering effect is particularly noticeable on the circular sample of 50mm diameter (b) (see 

Table 15) which has an appearance similar to a sieve. The diagonal route taken by the print 

head can be clearly seen. Models are initially printed with an outline which can be seen at the 

very edge of the samples. This edge is made up of 4 or 5 passes, meaning that the outer 

boundary is 1.6-2mm thick. Once this boundary layer is complete, the infilling of the model 

happens, which is where the cross-hatching can be seen. This is the result of the print head 

route alternating by 90o for each layer, although this is done to maximise the strength of the 

final model. The circular sample of 50mm diameter (b) is also the thinnest of all initial samples. 

The combined effect of few layer construction with non-perfect printing conditions has resulted 

in a model which appears to have voids, although in reality this is unlikely to be the case 

throughout the entire depth of the model owing to the number of layers. 

Table 15 - 3D printed PVA initial designs used here. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Dimensions (mm) 

 [width x depth x height] 
3D Printed Model 

50 x 5 x 2 

 

50 x 10 x 2 

 

Diameter (a): 25 

 

Diameter (b): 50 

 

50 x 50 x 1 (a) 

 

100 x 100 x 1 (b) 

 

(a) 

(b) 

(a) 

(b) 

(b) 
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5.3.1.1 Water Uptake Testing 

Once 3D-printed PVA samples had been printed they were dried in a conventional air oven at 

353K. After drying over a period of 12h at 353K 3D printed PVA samples were stored in a 

desiccator with fresh blue indicating silica gel desiccant (impregnated with CoCl2) to ensure 

no water was absorbed. Gravimetry was used to monitor how the printed PVA structures 

absorbed water (DI water) from a humid atmosphere (at defined %RHs). 

Some delamination occurred in some multilayer PVA samples (see Figure 100) whereby the 

individually printed layers of PVA, which would normally have been fused together during 

printing came apart during the water uptake cycle. This resulted in an uncontrolled much larger 

surface area being exposed to the humid atmosphere. The layers twisted and buckled with 

increasing water uptake. Due to this twisting, an exact surface area could not be calculated; 

however it was noted that the rate of water uptake was greatly increased when compared to the 

samples which remained as one. 

  

(a) (b) 

Figure 100 – 3D printed PVA cuboid shapes delaminating into separate layers with increasing water uptake. 

(a) single layer of printed PVA hydrated with H2O buckling and twisting evident (b) a different single layer from 

the same sample of printed PVA hydrated with H2O showing fused layers coming apart. 

Red arrows on Figure 100 indicate where fusion of printed PVA strands has failed due to water 

uptake. Also highlighted is the curved nature of the edges of each layer that have come apart 

from the initial boundary layer. Delamination is thought to occur owing to uneven distribution 

of additional stress on the polymer matrix due to H2O uptake. Square and rectangular shapes 

focus mechanical stress at the edges. However, it was noticed that the circular samples did not 
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show this failure, owing to a more uniform distribution of stress. For this reason it was decided 

to progress with circular samples in the next phase of study.  

Deformation of 3D printed hydrogels should be avoided, and any sign of mechanical failure 

could affect the sensitivity of the sample. It is already known that surface area is directly 

proportional to the sensitivity if a gas sensor. Therefore surface area must be accurately 

calculated in order that sensitivity can be reliably quoted. Other considerations are the 

longevity of a sensor which may be situated where exposed to a variety of weather conditions. 

Deformation in this case appears to be a combination of excessive water uptake with poor 

fusion of 3D printed layers. It is also possible that the rate of water update may have an effect 

on the failure of the sample, i.e. water uptake was too fast. 

5.3.1.2 Fourier Transform Infrared 

Fourier transform infrared (FTIR) coupled with an ATR diamond crystal accessory was used 

in transmittance mode to characterise specific chemical groups, particularly to confirm that 

post-hydration, H2O was detectable in the PVA matrices. A resolution of 2cm-1 and 45 repeat 

scans were selected to obtain accurate and reliable data. 

 
Figure 101 – FTIR-ATR evidence of H2O uptake in a 3D printed hydrated PVA sample compared to PVA 

powder. 

The observable differences circled in red (Figure 101) occur in the fingerprint region and are 

the result of the unique pattern associated with different compounds.  

From the spectra obtained (see Figure 101) it is evident that H2O is present within the 3D 

printed PVA matrix after hydration. This is shown by the increase in % transmittance related 

to the O-H peak at 3300cm-1 (marked by a red arrow). A small peak at this wavenumber is also 
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visible in the PVA powder sample; however this is attributable to the O-H group on the polymer 

chain rather than in H2O. It is possible that the powder may have absorbed atmospheric water, 

which would give a peak here too. Regardless, there is clearly a stronger O-H peak in the 

hydrated 3D printed sample. There is a clear C=O stretching bond in the printed PVA sample 

at 1716cm-1; ordinarily this would not (and indeed doesn’t) show in a fully hydrolysed PVA 

sample. However, the presence of this peak is indicative of PVA that has not been fully 

hydrolysed. This is entirely possible, as this sample originated from 3D printer filament, which 

would not be of as high quality as laboratory grade reagents. The strong C-O peak at 1295cm-

1 may also be attributed to incomplete hydrolysation as this does not appear in the powdered 

PVA sample. A C-O peak would be expected in PVA and does indeed appear for both samples 

at 1083cm-1 for PVA powder and 1087cm-1 for printed PVA hydrogel. 

5.3.1.3 Summary  

It was concluded from initial tests that square or rectangular shapes were unsuitable for 3D 

printed hydrogels owing to the level of delamination that occurs upon swelling with water. 

Layers of printed PVA material detached from other layers, resulting in the whole structure 

falling apart. This however was not the case with circular printed designs. These held shape 

and were able to be swollen with water.  

This was thought to be due to the lack of pronounced corners where it was first noticed that 

layers were separating. In a circular design, the forces of water inclusion on the polymer matrix 

are evenly spread. It may be possible to swell square and rectangular shapes to a certain point, 

thus enabling them to maintain shape. However, the author was more interested in exploring 

the maximum levels of swelling possible, in order that the cooling and gas sensing effects were 

fully exploited. Therefore, a shape which enabled this to happen was favoured. 

Owing to these initial tests, little time was wasted on pursuing geometries which were 

unsuitable. Going forward, it was decided to explore circular shapes of different sizes and 

aspect ratios and abandon square or rectangular geometries.   

5.3.2 Next Phase Designs 

Building on what was learned about the swelling characteristics of different geometrically 

shaped printed PVA, second phase designs assume a circular disc-like form. Furthermore, dual 

asymmetric novel composite samples were produced with PVA on one side and PLA/graphene 
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on the other. This was to enable a printed sensor to have greater scope and tuneability when 

detecting gaseous species. 

Dimensions (mm) 

[width x depth x height] 

Dimensions (mm) 

[width x depth x height] 

Sample 1 

Top surface of 

PVA  

50 x 50 x 2 

 

Sample 1 

Bottom surface 

of PLA/G 

50 x 50 x 2 

 

Sample 2 

Edge of PVA  

25 x 25 x 2 

PLA/G  

25 x 25 x 5 

composites 

 

Sample 3  

Edge of PVA  

50 x 50 x 3 

PLA/G 

 50 x 50 x 0.5 

composites 

 

Figure 102 – Digital photographs of a range of 3D printed asymmetrically layered PVA-PLA/graphene designs. 

Disc-like samples were printed in one step, with the initial layer being deposited onto the build 

plate, followed by the second layer directly on top. The dual extrusion capabilities of the printer 

enabled this novel and advantageous approach to be taken. Completed layers were 

geometrically aligned and a short dwell time of the printer when switching materials resulted 

in good levels of fusion between layers. 

The number of individual layers of material which make up a complete asymmetric sample can 

be calculated using Equation 17: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑙𝑎𝑦𝑒𝑟𝑠 =  
𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 (𝑚𝑚)

𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑙𝑎𝑦𝑒𝑟𝑠 (𝑚𝑚)
 

Equation 17 – Method to calculate the number of individually printed layers. 
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Therefore, taking sample 2 as an example, the PVA layer is 2mm thick and was printed at 

normal quality (0.15mm layers), so the number of individual layers of PVA can be calculated 

as 2/0.15 ≈ 13. Obviously a fractional (0.33) layer cannot probably exist, however, the initial 

layer is printed thicker than subsequent layers to ensure good adhesion to the build plate, which 

accounts for the extra part-layer. 

There is a correlation between the number of printed layers and the mechanical strength of a 

sample. Also considered is the diameter of the sample. A sample with many layers and small 

diameter has a greater mechanical strength from point to point than a sample with few layers 

and large diameter owing to the distribution of force across the surface. As layers are deposited 

they are fused and so can be considered a single piece of material when dry. However water 

uptake testing showed that layers can be separated by water causing delamination of layers. It 

is possible that there is a combination of diameter and number of layers which will not permit 

delamination, however as alternative shapes have shown to be stable, further investigation into 

this is unnecessary. 

5.3.2.1 Scanning Electron Microscopy   

Although hydrophilic PVA and hydrophobic PLA crystallise in separate domains in blends 

there is inter-polymer inter-domain interfacial hydrogen bonding between -OH groups in PVA 

and ester groups in PLA [359, 360]. It was thought that this might be explored between layers 

by µFTIR, but also by DSC (e.g. does one polymer affect the melting or hydration in the other 

in the boundary layer).The boundary layer between material layers required SEM analysis to 

determine the level of fusion obtained during printing. This was considered important 

information prior to water uptake and sensor testing. 

Figure 103 gives images of the unused PVA and PLA/G filaments. PVA showed surface 

roughness. PLA/G showed fibres emanating from the polymer; these were not expected for G 

monolayers; it was hoped CNTs were present. 

In contrast Figure 104 shows that PVA when printed has a smooth surface, with individual 

layers hard to distinguish. This may be due to the hydrophilic nature of the material which 

makes it highly sensitive to moisture. Thus, small amounts of swelling may occur giving a 

smoothing effect on the surface. Alternatively, the conditions for printing may have been more 

favourable for PVA, which has produced a consistent and smooth fused sheet. Figure 104 also 

shows that after printing PLA/G, no layer shows emerging fibres. The 3D printed 

PLA/graphene shows very clear layers and individual fused lines of material.  
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In Figure 104 the interface between PVA and PLA/graphene is seen not to be uniform. It 

appears different at various points. Figure 104(g) shows the overlapping of the two materials, 

indicating a strong layer of fusion. However, Figure 104(h) shows a definite gap between layers 

of approximately 3µm. This separation has only been observed at the edges of the layers, which 

suggests an immediate loss in temperature during printing resulting in incomplete fusion of 

layers. SEM reveals that the PVA and PLA/G layers were 150µm thick (as programmed in the 

software instructions) and that the interlayer region is 3µm thick. This was amenable to µFTIR 

analysis. Internally, the sample would retain heat better than at its extremities which would 

promote better fusion between layers. As the internal interface is more uniformly fused, an 

acceptable level of mechanical strength is given. 

 
(a) Surface of  PLA/graphene filament. 

 
(b) Cross-section of PLA/graphene filament. 

 
(c) Face of PLA/graphene printed structure. 

 
(d) Face of PLA/graphene filament. 

Figure 103 – SEM micrographs of unprocessed PLA/G filament.  
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(a) Face of printed PVA. 

 
(b) Face of printed PLA/graphene. 

 
(c) Face of printed PVA. 

 
(d) Face of printed PLA/graphene. 

 
(e) Edge of PVA printed layer. 

 
(f) Edge of PLA/graphene printed layer. 

 
(g) Interface between PVA and PLA/graphene layer. 

 
(h) Interface between PVA and PLA/graphene layer. 

Figure 104 – SEM micrographs of faces, edges and interfaces of PVA-PLA/G composites. 
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Further SEM imagery was obtained on the PLA/graphene filament which appears to show 

tubular structures protruding from the cross-section of the filament and again on the surface 

and faces of the printed structure. 

These tubular structures have an average diameter of 200-300nm and appear to have a 

randomised position within the PLA matrix. It is most likely that these structures are in fact 

MWCNTs, however this would reflect the upper limits of this structure in terms of diameter. 

Tubes of this diameter would usually be considered nanofibers rather than nanotubes. 

5.3.2.2 Fourier Transform Infrared 

Fourier transform infrared spectroscopy (FTIR) was used to confirm the identity of the 

materials pre and post processing. This technique was also able to give information about H2O 

solvent(s) contained within the PVA-based hydrogel matrix. 

As was found (Figure 105), when the virgin PVA filament was analysed by FTIR it contained 

peaks which would not be expected to be observed in fully hydrolysed PVA (see Table 32) . 

These peaks may originate from remnant polyvinyl acetate, a precursor to PVA and may be 

identified as a C=O stretching mode at 1716cm-1 and a C-O stretch at 1232cm-1 (marked by red 

arrows). In contrast, the PLA sample, showed all expected peaks, with no unexpected peaks 

identifiable. It is difficult to identify peaks corresponding to graphene as these tend to be 

masked by the PLA. It is possible that the region between 1300-1700cm-1 contains bonds 

attributable to graphene. Raman provided a better and far more reliable method for graphene 

or CNT identification. 

 

Figure 105 – FTIR-ATR transmission spectra of printed PLA/graphene and PVA. 
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Analysis of the PVA-PLA/G interface was also conducted; using µFTIR which is a more 

appropriate technique as it has a resolution of 100µm x 100µm, possibly useful when the edge 

of PLA/G has a feature 100µm wide. 

5.3.2.2 Micro Fourier Transform Infrared 

µFTIR was therefore used to investigate the 3D printed PVA-PLA/G interface in asymmetric 

samples. A dried sample with each layer 500µm thick was selected for analysis. The author 

was primarily interested in the interaction between layers after printing. 

Figure 106 shows the PVA-PLA/G interface. The interface ran horizontally across the image, 

approximately centrally (~0µm). A difference in absorbance between 200-400µm and again 

around -450µm can be seen. This suggests materials of different type. The area in-between (-

400µm-200µm) shows an almost uniform absorbance different to the areas above and below, 

indicative of good chemical mixing. 

 

< PLA/G 

 

 

 

 

< Interface 

 

 

 

 

< PVA 

Figure 106 - µFTIR chemical maps of the interface between PVA-PLA/G. 
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Figure 107 - µFTIR spectra of the interface between PVA-PLA/G. 

Figure 107 shows the spectral differences between two different interfacial regions of the same 

sample. The main areas of interest are between 2944cm-1 and 2844cm-1 which correspond to 

C-H stretches. The different peaks present are thought to be related to C-H stretched occurring 

in different local environments. This could, perhaps indicate some, but not complete fusion of 

layers. Also of interest is the peak which appears at 1534cm-1 on interface 2, but not interface 

1. The author believes this to be a C-H bond which has been distorted. 

Overall µFTIR indicates that there are homogeneous regions between PVA-PLA/G suggesting 

miscibility. There is also evidence to suggest that at some areas along the interface single 

phases exist. 

5.3.2.3 Raman Spectroscopy 

Raman spectroscopy has often been used to confirm the presence of sp2 and sp3 carbon. Here it 

was used to detect graphene within the PLA/G samples. It provides little useful information on 

PVA: however, the use of Raman spectroscopy in graphene analysis is well documented [361] 

and as such is a definitive technique in this area. 
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Figure 108 – Raman spectra of PLA/graphene filament and PLA/graphene printed. 

Based on the Raman spectra obtained for the PLA/graphene sample, it is clear that this sample 

does incorporate graphene. Peaks clearly correspond to literature values [361]  and appear to 

be shifted very little (if at all) by the thermal process of 3D printing. Also confirmed by this 

technique were two bonds expected to be present in a PLA sample. 

Table 16 – Peak identification of PLA/graphene filament before and after printing. 

Sample 

Identification of Peaks 

G-Band 

(cm-1) 

G’-Band 

(cm-1) 

D-Band 

(cm-1) 

Radial Breathing 

Modes (cm-1) 
C-O-C C-CH3 

Graphene 

standard 
1580 2700 1348 0-300   

PLA/graphene 

filament 
1582 2708 1360 144 877 2945 

Printed 

PLA/graphene 
1582 2708 1356 144 872 2947 
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Figure 109 – Raman spectra of PVA filament and PVA printed. 

Raman spectroscopy of PVA does not reveal much information; the peak at 2943cm-1 for PVA 

filament and 2943cm-1 for printed PVA correspond to C-CH3. No other identifiable peaks are 

present. 

Table 17 – Peak identification of PVA filament before and after printing 

Sample 
Identification of Peaks (cm-1) 

C-CH3 

PVA filament 2943 

Printed PVA 2943 

5.3.2.4 Thermogravimetric Analysis 

Thermogravimetric analysis (TGA) was used to confirm the temperature at which 

PLA/graphene and PVA begin to decompose. Information was also required on differences 

which may be present between standard bulk analytical grade chemicals and 3D printed 

materials. 

Figure 110 shows TGA analysis of unprocessed PLA/graphene and printed PLA/graphene in 

both air and N2. PLA is insoluble in water and therefore dehydration does not occur on heating. 

However, the printed PLA sample shows a small (10%) loss in weight between 300-620K. This 

could be attributed to loss of traces of free lactic acid trapped in the layers of PLA. Between 

620 and 650K a loss of lactic acid or decomposition with a rapid rate of degradation occurs, 

with an 80% loss in weight during a 30K temperature change. In some samples a residue of 
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almost 20% wt. was noted. It would have been useful to analyse this by 13C of 1H nuclear 

magnetic resonance (NMR) to give an indication of any organic compounds which may have 

been formed in the TGA instrument. It would have also been useful to have analysed a PVA-

PLA/G sample to investigate if there was a polymer-polymer interaction which may alter the 

thermal degradation properties of each material. 

 
Figure 110 – TGA of printed PLA/graphene and unprocessed PLA/graphene in N2 and air. 

Figure 111 shows equivalent TGA analysis of unprocessed PVA and printed PVA in both air 

and N2. Initial dehydration takes place in the two printed samples between 300-500K with a 

loss in weight of approximately 10-15%. This is also thought to be due to moisture trapped 

between printed layers and unprocessed samples did not undergo this initial dehydration.  

The degradation process begins at 510K, with the unprocessed sample in N2 showing a sharp 

weight loss of 70% before stabilising and giving constant weight residues above 800K it is 

believed that these are impurities in the filament. Both printed samples and the unprocessed 

sample in air gave similar degradation to each other from 510K to 700K, after which the 

unprocessed sample gave a final sharp decrease before meeting the degradation pattern of the 

printed samples at 790K after which constant weight residues were obtained. Gilman et al. 

suggest that there are two zones of degradation; firstly at 573-598K and latterly at 673-698K. 

TGA data obtained in this work partially supports this; however, it is possible that the areas 

where weight loss is slowed (degradation) are masked by the degradation of impurities in the 

PVA filament. This is plausible, as unprocessed filament will not have been heated to 490-

500K during printing and therefore will not have been subjected to initial chemical changes. 

The unprocessed filament shows a weight% of approximately 8% even at 800K. The author 

believes this must be attributable to impurities which were unable to react owing to the absence 
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of oxygen. It would be wise to repeat this test to understand if these results are reliable. It may 

also be interesting to include filament which has been heated to 500K, but not printed to see if 

it is chemically changed and therefore follows the same pattern as printed samples. 

 

 
Figure 111 – TGA of printed PVA and unprocessed PVA in N2 and air. 

The exact nature of the various pyrolysis reactions which occur in PVA are complex and have 

been studied in depth elsewhere [362]. TGA was able to confirm the thermal stability of PVA 

and PLA which is the level required in this work. In future this ought to be investigated for 

PVA-PLA/G nanocomposites to reveal levels of interpolymer interaction. 

5.3.2.5 Differential Scanning Calorimetry 

Differential scanning calorimetry (DSC) was used to investigate phase changes within the PVA 

matrix to give indications of hydrogel formation and the state of water therein. When cooled 

below its freezing point water in the hydrogel and on the hydrogel surface will freeze; however 

the temperature at which this occurs varies. Cryoporosimetry, cryoporometry and 

thermoporometry approaches have used NMR and DSC analysis of H2O freezing/melting of 

guest molecules in constrained hosts to reveal the nature of those hosts. Such melting-freezing 

is affected by the nature of the hosts in which the H2O molecules find themselves. This might 

reveal a host pore size or here a hydrogel chemical matrix [363]. Solid state NMR was not 

available in the relevant timescale, but DSC was used and was useful. 

Hydrogel formation might have been subsequently investigated by TGA of H2O loss, but here 

DSC analysis in-situ of on-board H2O was preferred and is now described. Water held 
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internally in the polymer hydrogel matrix will remain in liquid form slightly below its normal 

bulk freezing point in the pure state, owing to the interactions it has with the polymer chain 

[363]. DSC can sense this freezing process within the hydrogel.  

The sample was first cooled to 228K at 10K/min and then heated at 0.5K/min before a second 

cooling step (0.5K/min) to the original starting temperature. This complete cycle was 

conducted twice to determine any irreversible changes. 

 

Figure 112 – DSC curve of freezing and thawing of H2O held in a printed PVA hydrogel. 

Figure 112 shows the DSC curve obtained for the freezing-thawing of H2O in a printed PVA 

hydrogel. First it should be noted that exothermic freezing and endothermic melting for on-

board H2O are noted in both 1st and 2nd cycles repeatedly. Second, the temperatures of freezing 

(243-255K) and melting (245-270K) cover significant ranges of temperature, suggesting a 

range of H2O environments. None of these processes are occurring at 273.15K expected for 

bulk pure water, confirming the effect of the hydrophilic PVA polymer host hydrogen-bonding 

the guest H2O. Third, the enthalpy of fusion of bulk pure H2O (333.55kJ/kg at 273.15K and 

101.325kPa) is known and the DSC was indium-calibrated. Hence, the integrated areas α and 

β + βI in Figure 112, could be converted to enthalpies of fusion of hydrogel-bound water. By 

integrating the peaks, it was found that: 

Run 1 – 324.1J/g (97.0%), Run 2 – 317.9J/g (95.2%), Run 3 – 304.82J/g (91.3%) and Run 4 – 

259.9J/g (77.8%) 

α 

β 

βI 
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The percentage value relates to the closeness of obtained values to that of the enthalpy of fusion 

of bulk pure H2O. This shows lower values for the repeat runs, owing to H2O being irreversibly 

held in a new state. 

This showed a freezing phase change guest of guest water occurs as indicated by the orange 

arrow and the reverse melting by a black arrow. If there were no major PVA effect it would be 

expected that two peaks be present, one close to the freezing point of water corresponding to 

the surface water and a second at a cooler temperature to indicate freezing of the internally 

bound water. No peak appears at 273K, perhaps indicating no pure or unbound surface water.  

The black arrowed melting is indicative of forms of on-board water (internal and surface 

water). Certainly, the DSC profiles must relate to guest water and not PVA changes [364]. 

5.3.2.6 PVA Water Uptake Investigations 

The level of H2O uptake and swelling of printed PVA samples was of great importance given 

that one final application is directly related to the level of hydration from the PVA matrix and 

the parallel inclusion of a functional agent. The rate and extent of uptake of water vapour by a 

printed PVA disc was followed at different relative humidity’s using the atmospheres above 

saturated salt solutions as previously (4.3.1.1) and gravimetry. 

 

Figure 113 – Weight % increase of printed PVA samples due to H2O uptake on exposure to different relative 

humidity’s. 

The error bars given in Figure 113 are small and show a good degree of certainty about the 

data. At worst the weight% is ±1%. When considering the error of the balance is ±0.1mg and 
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the actual mass weighed is 0.04499g this error is insignificant. Furthermore repeat tests would 

increase the reliability of the data. 

Table 18 – Mass change and weight % change of printed PVA exposed to various different saturated salt 

solutions. 

Saturated salt solution % Relative humidity Weight % change after 350 min 

Atmospheric Variable 0.32 

K2CO3 43.16 ± 0.39 -0.099 

NaCl 75.29 ± 0.12 2.52 

H2O 100 9.69 

 

Printed samples of approximately the same weight were dried in an oven at 400K overnight, 

and their water uptake was measures at 295K as a function of time.  

The weight of PVA samples prior to hydration were approximately 1.21g ± 0.1g. Therefore, 

knowing the density of deionised water is  0.9970 g/mL at 298K the volume of water taken up 

by the printed PVA may be calculated (using volume = mass / density): 

Table 19 – Volume of water taken up by the printed PVA matrix 

Saturated salt 

solution 

Dried mass of PVA 

(g) 

Mass change of PVA 

(g) 

Volume of water in 

PVA matrix (cm3) 

Atmospheric 1.21651 0.00169 0.00170 

K2CO3 1.21113 -0.00053 -0.00053 

NaCl 1.20847 0.01152 0.01155 

H2O 1.21729 0.04499 0.04513 

 

This corresponds to a low volume of water taken up by the printed PVA. The 100%RH sample 

gave a level of swelling of approximately 10wt%. The second most swollen sample has a 

maximum wt.% increase of 2% indicating that the only viable sample is the one swollen in a 

100%RH atmosphere. It is possible that the partial pressure of the saturated salt solutions was  

noted that no-one has previously made 3D printed hydrogels in this way, and DSC could see 

the on-board H2O. 
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Certainly the water sample felt “gel-like” to touch and was ductile, able to be physically 

manipulated without any degree of damage occurring or evidence of delamination present. It 

was encouraging that water was able to be incorporated into the PVA matrix in this manner, 

maintaining the viability of using this method for inclusion of further or different solvents. 

5.3.2.7 Monoethanolamine Inclusion 

The possible inclusion of monoethanolamine (MEA) in the samples was important for CO2 

hydrogel-based gas sensing. MEA is well known as an industrial CO2 gas scrubber [365]. 

Others have found it could be incorporated into PVA [366]. Here it was found that MEA and 

ratios of MEA:H2O could be incorporated into the printed hydrogel matrix by a simple 

immersive swelling method. The method used was to immerse dried printed PVA disc samples 

in liquid MEA at 298K for 24hrs. Initially neat MEA was used, however, different ratios of 

H2O/MEA were also investigated. When H2O was included, the printed PVA discs were 

immersed in the mixtures of H2O+MEA. An alternative route may be to initially swell the 

printed PVA discs (as described in 5.2.3.6) before immersing them in neat MEA. The 

immersive mixture route was favoured, as it was thought this would give a more controlled 

uptake of H2O/MEA. 

The resultant material was a soft, gel-like material which was slightly yellow/red in appearance. 

The printed structure remained intact; however individual printed layers could not be 

distinguished. The structure did not show any signs of delamination and was able to be easily 

sliced using a scalpel into smaller pieces for gas testing. 

 
Figure 114 – FTIR-ATR transmission spectra of dried printed PVA, monoethanolamine and  printed PVA 

swollen with MEA. 



151 
 

FTIR investigations indicate that MEA is present within the polymer matrix (see Figure 114). 

The 100% MEA swollen PVA sample has an FTIR spectra similar to MEA solution in terms 

of peak positions; however %T values differ. FTIR does not show good correlation between 

printed PVA and PVA swollen with MEA. It is possible that the PVA is being distorted by the 

on-board MEA which may inhibit modes of vibration. Of particular interest is the peak 

indicated by the red arrow. This was identified as C-H stretching (2918cm-1, 88.4%T) in the 

printed PVA sample and C-H stretching (2920cm-1, 69%T) in the MEA sample. The same peak 

in the 100% MEA swollen PVA sample is at 2926cm-1, 63.1%T. The author believes that this 

difference is the result of MEA distorting PVA and thus a different %T intensity and peak 

position are observed 

Also of interest is the peak at 1732cm-1 75.2%T for the printed PVA and 82.3%T for 100% 

MEA swollen PVA (indicated by a red arrow). This is clearly the same peak and corresponds 

to C=O. This peak does not appear for MEA. Neither PVA nor MEA has a C=O, however this 

is thought to originate from un-hydrolysed PVAc, indicating that the PVA filament used in 

printing was not of very high purity. The %T differs between the two samples, suggesting that 

they exist in different local environments. 

The two peaks highlighted give strong evidence that MEA was successfully incorporated into 

the PVA polymer network. It would have been useful to undertake DSC to add further evidence 

to this conclusion. 

 

Figure 115 – FTIR-ATR transmission spectra of dried printed PVA, printed PVA swollen with deionised water 

and printed PVA swollen with MEA. 
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Figure 115 shows the differences and similarities between printed PVA swollen with H2O and 

MEA. It is known from Figure 114 that MEA can be successfully incorporated into the printed 

PVA matrix. Also known from FTIR (Figure 101) and DSC (Figure 112) is that H2O can be 

included in the printed PVA matrix. 

Interestingly, when MEA interacts with PVA shifting of peaks and different %T are observed, 

owing to distortion of PVA by MEA. This is noticeable for the C-H stretch at 2918cm-1, 

88.2%T for printed PVA. The same bond is at 2946cm-1, 81.6% for a printed PVA hydrogel 

(H2O on-board) and 2926cm-1, 63.2%T for printed PVA swollen with MEA. 

Similar distortions occur for a C=O stretch at 1732cm-1, 75.2%T for printed PVA, 1716cm-1, 

61.1%T for a printed PVA hydrogel (H2O swollen) and 1733cm-1, 82.3%T for printed PVA 

swollen with MEA. 

Likewise O-H bending occurs at 1400cm-1, 85.1%T for printed PVA, 1380cm-1, 66.4%T for a 

printed PVA hydrogel (H2O swollen) and 1346cm-1, 71.6%T for printed PVA swollen with 

MEA. This represents a significant shift and highlights the different local environments the on-

board solvent is held in.  

Also investigated was the effect of altering the H2O:MEA ratio would have on the PVA 

polymer matrix. Figure 116 shows a range of PVA:MEA ratios. Of note is the general shift in 

%T intensity with increasing H2O content. From 3000cm-1 to 800cm-1 samples with the lowest 

MEA content (highest H2O content) have lower %T values. This pattern does not appear to 

hold in the fingerprint region (between 800cm-1 and 400cm-1) where there is a spectra-structure 

correlation and a distinct crossover in %T intensities. The author believes that this is due to 

changing structure of PVA by the guest solvent [367]. 
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Figure 116 - FTIR-ATR transmission spectra of printed PVA swollen with different ratios of MEA:H2O. 

 

 
(a) 

 
(b) 

Figure 117 – Images of (a) printed PVA swollen with MEA (b) simple PVA hydrogel swollen with H2O. 

Figure 117 shows the appearance of the two samples tested. The slight yellow tinge apparent 

in (a) is likely to be the result of oxidation of MEA. MEA is a colourless viscous liquid which 

oxidises slowly and takes on a slight yellow hue upon doing so. Although the samples were 

freshly made, they were not photographed immediately. Therefore, the colour difference is 

likely to be the result of initial oxidation of the on-board MEA. DSC of the on-board MEA 

might in the future be useful. It is also possible to produce mixtures of H2O and MEA and 

follow the same immersive swelling method to obtain a mixed solvent printed PVA hydrogel. 

5.3.3 Gas Testing 

Gas testing was conducted using a custom designed and built test rig (described in 2.2) 

incorporating four-point conductivity, residual gas analysis and a commercial gas monitor. 
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Concentrations of (0.045, 0.089, 0.134, 0.179, 0.223 and 0.268mmol CO2) were injected into 

an air carrier gas stream flowing at 250cm3/min. Electronic responses observed via four-point 

conductivity are attributable to adsorption or desorption of CO2 from the H2O and MEA-

containing hydrogel samples. An RGA (monitoring at m/z = 16, 18, 28, 30, 32, 44 and 46 in 

an MCD mode) gave a response to injected samples within 2-3s, returning again to baseline 

levels within a further 2s. The purpose of the commercial gas sensor was to investigate whether 

levels of injected gas was sufficient to trigger an alarm response. Gas testing was conducted at 

room temperature (298K) with the relative humidity of the gas stream kept constant using a 

saturated solution of NaCl (75.29 ± 0.12%). 

Two samples were evaluated: approximately 1g of printed PVA hydrogel swollen with H2O 

(approx. surface area = 2.45cm2, diameter = 0.6cm, thickness/height = 1cm) and 1g of PVA 

swollen with MEA (approx. surface area = 2.26cm2, diameter = 0.6cm, thickness/height = 

0.9cm). The printed PVA hydrogel displayed a conductivity response between 4 and 5s after 

CO2 injection.  This response was a positive resistance change which reached a maximum after 

a further 4-6s. Once the maximum was reached an initial decrease in resistance back to pre-

exposure levels was observed, although not at the same rate as the increase. 

 

 
Figure 118 – Response of a printed PVA hydrogel exposed to different volumes of injected CO2. 

An anomaly was discovered with this sample upon the injection of 0.223mmol of CO2. Unlike 

other volumes of injected CO2, the 0.223mmol sample gave an immediate response, quicker 

even than the RGA. This sample also gave a change in resistance of over 12% which continued 
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to increase after 30s, contrasting with all other samples which presented a resistance change of 

between 3 and 4% and begun to return to baseline levels after 10s post injection. 

One might at this point consider the nature of this H2O swollen hydrogel conductivity (the 

inverse of resistivity) response (e.g. ionic, electronic or ionic-electronic). Here the author 

believes that the response is largely ionic. 

One also ought to consider the flow regime in the sensor/reactor system. The reactor volume 

(v) is 8.17cm3, the air flow rate (u) is 250cm3/min and so the average molecular residence time 

(v/u) is 0.033min (2s). The RGA response time was 2.5-3s. The RGA takes a measurement 

approximately every 0.5s. This combined with error in flow rate (±0.5%) means that the RGA 

responds as fast as the reactor system will allow, passes through a maximum response and then 

returns to the baseline equally rapidly. The H2O-swollen hydrogel sensor responds less rapidly 

and is then very slow in returning to baseline (see Figure 118). 

Another factor possibly having bearing on the response times is the flow pattern of the gas 

reaching the sample. This may be determined by calculating the Reynolds number, a 

dimensionless value which indicates is a gas stream is laminar or turbulent, calculated by:  

𝑅𝑒 =  
𝑉 𝑥 𝐷

𝜐
 

Equation 18 – Reynolds number (Re) equation, where V is velocity (m/s), D is diameter (m) and υ is kinematic 

velocity (m2/s). 

Undertaking the calculation, a value of ≈ 0.01 is obtained, indicating that the flow is laminar 

and therefore no/very little mixing of gases occurs. This supports the observed RGA 

measurements i.e. response to a maxima and a return to baseline within 5s. 

Lastly, one ought to consider the prevailing concentration of CO2 that is seen by the RGA and 

the H2O-swollen hydrogel sensor. Dividing the CO2 RGA response by the N2 RGA response 

allows the %CO2 to be deduced via 

%𝐶𝑂2 = 100 𝑥 
Ρ𝐶𝑂2

(
100
79  𝑥 Ρ𝑁2)

 

79 𝑥 Ρ𝐶𝑂2
 (𝑅𝐺𝐴)

Ρ𝑁2
 (𝑅𝐺𝐴)

 

PVA swollen with MEA gave a different electronic response to the printed PVA hydrogel 

sample. Both positive and negative changes in resistance were observed ranging between a 3% 
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positive change and a 6% negative change. Response times also seemed to be randomly spread 

with apparent changes in resistance observed from 1s (in line with RGA response times) to 

12s. Some responses also gave variations, in the case of 0.045mmol CO2, an initial response 

was immediate to 1% change, followed by a second change in resistance at 7s, tending to a 

maximum at 13s before declining again. Owing to the randomised spread of responses and 

various types, the data obtained from this sample was deemed unreliable. 

 
Figure 119 - Response of printed PVA swollen with MEA exposed to different volumes of injected CO2. 

Figure 120 shows the responses measured by the RGA for different concentrations of injected 

CO2. The first peak at 238s is indicative of 0.045mmol CO2, followed by a 0.134mmol injection 

at 300s. The peak at 351s is 0.223mmol and the final peak at 395s is a 0.268mmol injection. 

The peaks relate in magnitude to the volume of injected gas.  

 
Figure 120 – RGA response to individual pulses of injected CO2.  
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RGA responses were within 2.5-3s of gas injection with the RGA situated downstream of the 

sample cell. The RGA measurements confirm that CO2 was injected and that it would have 

passed over the gas sensitive sample on route to the RGA inlet. Individual combination plots 

of RGA response with sample conductivity response indicates any subtle differences in each 

sample. 

5.3.3.1 Printed PVA Hydrogel Gas Testing 

 
Figure 121 – RGA and printed PVA hydrogel response to 0.045mmol injected CO2. 

The 0.045mmol CO2 injection for the printed PVA hydrogel is shown in Figure 121. The RGA 

responds to injected CO2 within 2.5s. The light blue line representing the %change in resistance 

of the printed PVA sample, shows an initial response 4s from the point of injection, increasing 

to a maximum of change of 3.9% Ω 8s later; 12s from the moment of injection. After this 

maximum, a slow decrease is observed returning towards pre-injection levels. 



158 
 

 
Figure 122 – RGA and printed PVA hydrogel response to 0.089mmol injected CO2. 

Figure 122 shows the RGA and printed PVA hydrogel response for 0.089mmol of injected 

CO2. The RGA peak for CO2 is greater than for 0.045mmol. The printed PVA hydrogel sample 

indicates an initial response 4s from injection tending to a maximum of 2.1% Ω change, 9s 

post-injection, 5s after the initial response. A quicker decrease towards baseline levels is 

evident compared to the 0.045mmol injection. 

 
Figure 123 – RGA and printed PVA hydrogel response to 0.134mmol injected CO2. 

0.134mmol CO2 injection is presented in Figure 123. The preliminary response of the printed 

PVA hydrogel sample is 4s after injection rising to a maximum of 2.7% Ω change 10s after 

injection. The return towards baseline decrease is at a similar rate of decrease to the 0.089mmol 

CO2 injection. The RGA peak for CO2 is larger than for 0.045mmol or 0.089mmol.  
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Figure 124 – RGA and printed PVA hydrogel response to 0.179mmol injected CO2. 

A sharp response to 0.179mmol injected CO2 for the printed PVA hydrogel sample is shown 

in Figure 124, with the initial increase starting at 4s, and the maximum peak height at 8s. An 

initial decrease to baseline is not observed until 20s where there is an apparent slight increase 

again. A maximum % change in resistance is observed at 2.3%. As to be expected the RGA 

response is within 2.5s with a peak for CO2. Also of note is the slight increase in H2O level 

owing to a difference in the %RH of the CO2 that was sourced from a metal lecture bottle. 

 
Figure 125 – RGA and printed PVA hydrogel response to 0.223mmol injected CO2. 

The 0.223mmol injection is perhaps the most interesting of all the responses as it presents a 

response unlike that of all other injection volumes. Shown in Figure 125 the response for the 

printed PVA hydrogel sample is odd, with an initial response at 2.5s rising to a maximum of 

12.7% Ω change 34s after injection. By this stage all other tests had begun a decrease. For this 
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sample the measurement time was extended allowing for a maximum to be reached and a 

decrease to be observed. 

 
Figure 126 –RGA and printed PVA hydrogel response to 0.268mmol injected CO2. 

The response to 0.268mmol of injected CO2 shown in Figure 126 was broadly in line with other 

samples (excluding the 0.223mmol injection). The RGA showed the usual responses at 2.5s 

from the point of injection. The conductivity response of the printed PVA hydrogel sample 

occurred after 4s reaching a maximum 8s and showing a definite initial return toward baseline 

levels. 

Overall, some level of confidence can be taken in the observed conductivity changes. Each 

sample produced an increase in resistance ranging from 2%Ω to over 12%Ω and with responses 

typically 4-6s from the point of injection when exposed to injected CO2 compared to a static 

baseline when exposed to only the air carrier gas.. The main conclusion which can be drawn 

from this experiment is that the hydrogel is responding electronically to injected gas. What 

cannot be said without further experimentation is the time taken to return to baseline and if the 

hydrogel has been chemically changed by the injected gas. Furthermore, it is unclear if these 

samples are selective as time constrains forbade the testing of different gases.  

These conclusions would agree with the theory which suggests that an adsorbed species 

interrupts the local charge carrier network, thus increasing the observed resistance. Response 

times were generally 1 or 2s slower than the RGA; a sophisticated and proven analysis 

technique. When overlaid on the same plots as a function of time, these responses share a strong 

correlation. 
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5.3.3.2 Printed PVA Swollen with MEA Gas Testing 

As with the standard hydrogel samples, the MEA-based gels underwent the same volumes of 

CO2 injection with responses measured in the same manner. 

 
Figure 127 –RGA and printed PVA swollen with MEA response to 0.045mmol injected CO2. 

Figure 127 shows the RGA and PVA-MEA response to 0.045mmol of injected CO2. As 

observed in previous studies, the RGA presents an initial response within 2.5s of injection with 

a clear CO2 peak. The printed PVA-MEA sample shows a positive change in resistance 

response within 2s of injection with a slight dip at 6s, followed by a maximum at 12s from 

injection with a 3% Ω change. A steady decrease can then be seen with an initial return to 

baseline evident. 

 

Figure 128 –RGA and printed PVA swollen with MEA response to 0.089mmol injected CO2. 
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The response shown in Figure 128 for 0.089mmol of injected CO2 is different to other runs 

conducted so far, in the sense that a negative Ω change of 3.3% is observed. The RGA shows 

the usual response to an injected volume of CO2, however, the printed PVA-MEA conductivity 

is very irregular with an almost flat baseline until 12s where a 0.5% increase in resistance is 

observed followed by a steady decrease. Although not shown graphically, this decrease 

continued to -6%Ω change at 50 s when measurements were stopped. 

 
Figure 129 – RGA and printed PVA swollen with MEA response to 0.134mmol injected CO2. 

Unusually, the RGA response for 0.134mmol of injected CO2 shown in Figure 129 does not 

show a clear peak, but rather multiple. Equally unusual is the response time of 2s rather than 

the customary 2.5-3s observed previously. The printed PVA-MEA sample shows a similar 

initial increase, followed by a decrease similar to that of Figure 128. However, this time a 

maximum trough level is reached before a steady Ω change of -2% occurs. 

 
Figure 130 –RGA and printed PVA swollen with MEA response to 0.179mmol injected CO2. 
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The combination plot shown in Figure 130 for 0.179mmol of CO2 follows a similar unusual 

pattern to the 0.134mmol injection. As in Figure 129 the RGA response for 0.179mmol consists 

of multiple peaks rather than a single, clear peak as observed in every other injection. The 

initial RGA response is at 2.5s, tending to a maximum at 5s followed by a return to baseline at 

9s. This is peculiar as previously the RGA responds to a species, reaches a maximum and 

returns to baseline within a 3s window. The response for PVA-MEA reaches a maximum 

trough level 10s after injection and flatlining at 23s with a -6% Ω change. 

 
Figure 131 – RGA and printed PVA swollen with MEA response to 0.223mmol injected CO2. 

The printed PVA-MEA response for 0.223mmol of CO2 in Figure 131 is reminiscent of the 

printed PVA hydrogel samples and dissimilar to other responses observed for this material. An 

initial response can be observed 2.5s from the point of injection tending to an initial peak at 

6.5s followed by a maximum at 13s, after which an initial decline back to baseline can be seen, 

with a slight third peak at 22s before a sharper decrease. The RGA peaks for this injection 

appear as expected with a large CO2 peak 2s from the point of injection.  

The final measurement is 0.268mmol of CO2 which elicits a standard RGA response as shown 

in Figure 132. The CO2 peak observed is the largest seen, indicative of a large volume of 

injected gas. This correlation between injected concentration and peak size is expected. The 

printed PVA-MEA response is similar to 0.089, 0.134 and 0.179mmol injections. An initial 

positive %Ω change can be observed, before a decrease to a maximum trough depth of -1.7% 

Ω change followed by a steady increase back to pre-exposure levels. 
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Figure 132 – RGA and printed PVA swollen with MEA response to 0.268mmol injected CO2. 

Overall, the PVA-MEA samples have provided some highly varied data. Out of 6 different 

concentrations of injected CO2, 2 gave a positive %Ω changes of approximately 2.5%Ω and 

1.5% Ω (0.045 and 0.223mmol) compared to the majority (0.089, 0.134, 0.179 and 0.268mmol) 

which showed a variety of mostly negative %Ω changes ranging from -2%Ω to -6%Ω. Also of 

interest were the RGA responses to 0.134 and 0.179mmol injected CO2 which gave broad, 

multi-peak plots potentially indicating an issue with the injected gas. It is possible that the 

injection was conducted quicker, slower or less consistently. 

What is clear, is the conductivity responses from the PVA-MEA samples cannot be trusted in 

the same way as the printed PVA hydrogels which gave more correlated responses. It is unclear 

why some samples gave negative responses and others gave positive responses. It could be that 

the sample was not given sufficient time to return to baseline between injected pulses of gas. It 

may also be the case that chemical changes are occurring within the MEA. 

A further consideration is that CO2 could be being absorbed into MEA solution on the surface 

of the PVA-MEA gel rather than undergoing a simple adsorption-desorption mechanism. There 

is literature to support MEA as an industrial gas scrubber. Such absorptions would change the 

chemical composition of the gel, perhaps leading to irregular conductivity responses. 

What is clear about these experiments and those conducted in 5.3.3.1 Printed PVA Hydrogel Gas 

Testingis they are inconsistent and show different responses. The author believes that the 

samples in 5.3.3.1 Printed PVA Hydrogel Gas Testingrespond electronically and the samples in this 

section are responding as a result of chemical changes to the inclusive MEA. 
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5.4 Atmospheric Breathing of Adult Males 

The breathing experiments carried out in this section were exploratory and were conducted to 

give the author some view of a typical breathing pattern for adults of different ages. A potential 

use for 3D printed gas sensors is remote patient monitoring, and so breathing tests are required. 

Here 3 adult male subjects of differing ages (24, 28 and 73y.o.) exhaled into a particle analyser 

and RGA 3 times. UFP, O2 , NO2, CO2 and H2O were measured and a return to baseline was 

allowed to occur before the next exhalation. 

RGA exhalation profiles in Figure 133, Figure 134 & Figure 135 do not show the presence 

biomarker HCN, however were reasonably consistent with CO2 concentrations (red) falling 

during inhalation and rising to 3kPa during exhalation. The minima are above current 

atmospheric levels previously measured. These were 450ppm (high; 0.045kPa) and 390ppm 

(low; 0.039kPa) at a suburban site [368]. 

On the other hand, the background UFP concentrations in Figure 133, Figure 134 & Figure 135 

showed agreement with data for an urban atmosphere. In cities, roadside concentrations of 

UFPs of 30-131/mm3 have been previously detected [369]. Inhalation is when the UFPs are at 

this background level. Exhalation is when (if there is some UFP retention) a minimum UFP 

level is seen. CO2 maxima and UFP minima correlated with exhalation. It is relevant that more 

than half of the prevailing UFPs were retained by the subject. 

RGA CO2 analysis is useful for breath analysis on exhalation – seeing tidal waves of CO2. 

However, a pensioner at risk would not sit comfortably at home with a turbomolecular pump 

spinning to support an RGA. The could however, feel more comfortable with a soft hydrogel 

badge on their collar. 
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(a) 

 

(b) 

 

(c) 

 

 Figure 133 – %CO2 detected from repeat exhaling from (a) 73yo male (b) 24yo male and (c) 28yo male. 
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(a) 

 

(b) 

 

(c) 

 

 Figure 134 - %O2 detected from repeat exhaling from (a) 73yo male (b) 24yo male and (c) 28yo male. 
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(a) 

 

(b) 

 

(c) 

 
Figure 135 – UFP concentration from repeat exhaling from (a) 73yo male (b) 24yo male and (c) 28yo male. 
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5.5 Microconductivity 

It is apparent in Figure 136 that the simple International Test Solutions (ITS) linear probe sees 

oil at the surface of water using conductivity analysis. In Figure 136 blue areas are water-rich 

and red areas are oil-rich. At the start of measurements at zero time the surface is an oil-in-

water phase of 10cm depth and below this is a 6-7cm deep layer that is water-in-oil. After 

travelling across the surface for 3-4h there is a switch to the top 7cm being oil-rich and the 

10cm below this being water-rich. After 6h of travelling across the surface the oil is no longer 

present.  Although this is laboratory data, it is possible to see how this could transfer to 

aircraft/boat-based measurements. 

 

Figure 136 -  Preliminary conductivity-time-depth profiles (blue=water and red=oil). The surface is at 0cm 

depth. 

PLA-G results were unreliable and did not differentiate seawater (SW) and deionised water 

(SW). This is thought to be because of the high resistance (0.6Ωcm-1) of PLA/G filament. Cu-

based micro-conductivity measurements did work and were able to differentiate between SW 

and DW. It is therefore plausible that this type of sensor would also detect oil in water as this 

would affect the overall conductivity of the system. The common issue of high resistance 

possibly caused by low concentration of graphene in the PLA filament, is the most probable 

cause of this sample failing to detect the change in conductivity of the two systems. This was 

also an issue in 5.3.3. 
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Figure 137 – Plot of seawater (SW) minus deionised water (DW) conductivity (µS) vs time for a Cu wire and 

PLA/G electrode. 

5.6 Summary 

In this chapter designs for 3D printed hydrogels have been developed from an initial range of 

shapes and sizes to fine-tuned geometries with controllable aspect ratios ranging from 100:1  

to 5:1. Also developed were dual layer asymmetric samples with PVA and PLA/graphene. 

Water uptake tests were conducted and show successful inclusion of water as a solvent into the 

polymer matrix, initially 10wt%. DSC indicates that there is internally bound solvent within 

these polymer chains. FTIR-ATR also indicates where solvent has been included in a polymer 

matrix as well as giving clues to the level of hydrolysation of the PVA starting material. FTIR-

ATR has also allowed inclusion of MEA in printed PVA to be investigated with differing ratios 

of H2O:MEA (100:1, 70:30, 30:701:100). Indications are that MEA and H2O can be included 

via a simple immersive method. Further work would see DSC evaluate on-board MEA. Also 

of interest would be the level at which H2O may be included in the PVA matrix via immersion 

before a solution was formed. It could be that MEA:H2O mixtures are only effective to a certain 

point. SEM has given visual clues to the interaction between materials and to the nature of 

fusion between printed layers. It has also given clues towards the form graphene is in when 

included in PLA filament/printed. Raman spectroscopy confirms the presence of graphene in 

PLA unequivocally. µFTIR has given clues to the type of interaction which exists between 

PVA-PLA/G. The author believes that this interaction is mostly miscible and that layers are 

strongly bonded. TGA provided information regarding the thermal stability of materials used 

and how the thermal cycle of 3D printing may have affected this.  
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Gas testing has shown that printed PVA hydrogels with on-board H2O give a typical electronic 

response of 1-2%Ω to different concentrations of injected CO2. However, a response of 12%Ω 

was recorded for a single sample. Responses were typically within 4s of injection compared to 

an RGA response of 1.5s. PVA swollen with MEA gave a less certain responses with both 

positive (2%Ω) and negative -6%Ω  being recorded. This range of samples therefore requires 

further investigation.  

Overall, it appears that printed PVA when converted into a water-based hydrogel or combined 

with a second material forms a responsive gas sensor and is also successful as a passive cooling 

method. 
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6 Cooling Performance of 3D Printed Hydrogels and Composites 

6.1 Introduction 

With 40% of all global energy use directed at heating and lighting of residential and industrial 

buildings [370], the potential for reduction through building retrofit technologies is vast. So 

called “sweating surfaces” are one such way to achieve a reduction in temperature, thus 

negating dependence on high power consuming air-conditioning units. A “sweating surface” 

is a material designed to release a solvent (e.g. H2O) at a controlled rate, thus reducing the 

temperature of the substrate by removing heat from it. This type of evaporation is so called as 

it mimics the natural sweating undertaken by humans and other mammals in order to lower the 

core temperature of their bodies. 

There is interest in hydrogel-based coatings for development of sweating surfaces owing to 

their ability to hold large amounts of guest solvent and be produced with high mechanical 

strength [371]. 

Utilising the ever-improving capabilities of 3D printing, it was hoped that PVA may be printed 

prior to being exposed to a controlled %RH atmosphere to facilitate H2O uptake into the 

polymer matrix. The adsorption-desorption properties of the on-board H2O may then be 

investigated in a thermal sense to understand how this may affect the temperature of the surface 

to which it is applied.  

Advantages of this method over traditional casting from aqueous PVA solution followed by 

crosslinking, is the speed of production (no requirement to undertake multiple freeze-thaw 

cycles) and the lack of potentially harmful chemical crosslinker in acidic conditions. Thus, it 

was envisioned that hydrogels of this form may be produced in non-laboratory settings, to 

dimensions required by the user. 

6.2 Aims and Objectives 

The aim of this part of the work is to investigate the adsorption-cooling properties of 3D printed 

hydrogels with on-board H2O and MEA. Although it is unlikely that an MEA based hydrogel 

would be useable in a commercial way, it gives a useful comparison as MEA has successfully 

been included in printed PVA previously (see chapter 4).  

Comparisons can also be drawn with conventionally prepared PVA hydrogels, synthesised 

using physical and chemical crosslinking from aqueous solutions of PVA. The author is 
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interested to see if there is a significant performance difference between a conventionally 

prepared hydrogel and one produced via 3D printing. 

6.3 Results  

6.3.1 3D Printed Hydrogel Preparation 

As discovered from previous investigations (see 5.3.1), the most efficient and durable shape 

for a 3D printed hydrogel is circular. Therefore, a range of circular discs of PVA were printed 

before being exposed to a humid atmosphere (at defined %RH).  

The time printed PVA discs were exposed to the humid atmosphere set at 12, 24 and 48hrs. 

This was based on the information obtained during previous water uptake investigations (see 

5.3.2.6). With investigations already conducted on the nature of water uptake, it was not 

considered necessary to repeat these as the PVA discs were printed with the same batch of 

material, under identical conditions and were of identical sizes. 

6.3.2 Infrared Thermography of 3D Printed Samples 

Infrared thermography (FLIR is described in 2.1.6) was used to observe the adsorption-cooling 

effect of a printed PVA hydrogel swollen with H2O, printed PVA swollen with MEA and a 

dual layer printed PLA/graphene-PVA hydrogel composite swollen with H2O. This was of 

interest as the samples could be considered dual-purpose if cooling and gas sensing properties 

were both favourable. Obviously a sample that releases MEA (443K) to the atmosphere is not 

a very green adsorptive cooling coating. Previously, work on hydrogel cooling has been 

described by [372]. 

Samples were prepared in advance and stored in a fridge at 276K in their swollen state 

containing maximum amounts of H2O. When ready to use samples were cut to similar physical 

dimensions and weighed, each sample being approximately 4g. These were then arranged on a 

cleaned sheet of aluminium. The thermal camera looked vertically onto the sample tray with a 

focal distance of 0.7m (minimum focal distance of the camera is 0.5m). Images were obtained 

at 20s intervals, with minimum, maximum and area temperatures obtained. The temperature of 

the laboratory (302-304K) and Al substrate (302-313K) was also measured periodically as a 

reference. On one hand the elevated temperatures would have contributed to faster loss of H2O 

or MEA, resulting in accentuated cooling. Conversely, the higher temperatures are exactly the 
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conditions the materials would be expected to perform in, assuming they were to be used as a 

“sweating surface”. 

 
Figure 138 – Temperature variation of a printed PVA hydrogel H2O-swollen, PVA swollen with MEA and dual 

layered asymmetric PVA hydrogel-PLA/graphene compared to local atmospheric and Al uncoated substrate 

temperature.  

Figure 138 gives the average temperatures of each sample with respect to the atmospheric 

temperature and uncoated Al substrate in the lab. Initially the temperature difference between 

sample and Al substrate was 14.9K for the printed PVA hydrogel reaching the largest 

difference of 16.1K, 500s from the start of measurements. The initial difference in temperature 

was 14.7K for PVA swollen with MEA, with the largest difference at 500s which reached 

15.6K. The dual layer printed PVA hydrogel-PLA/G composite initially performed differently, 

with the greatest difference in temperature being 12K at time 2500s. 

The typical errors originating from this form of measurement can be divided into two types. 

Firstly the largest accuracy error originates from the instrumentation, particularly the IR camera 

(±2K). Because of this it is possible that the difference between two individual measurements 

could be as much as 4K. This is important to consider when comparing data sets and drawing 

conclusions. Other types of errors are a result of experimental design such as other lab users 

inadvertently standing too close to the camera. Other errors could become apparent during data 

processing, with area and spot measurements not being taken at the absolute coolest point, or 

selection of areas being inconsistent. Because of this range of errors, it could be argued that the 

overall accuracy of these results is in the region of ±2-3K and are therefore each sample shows 

an average cooling effect identical to one another. 
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Each sample followed a similar, mostly flat initial cooling rate to 600s where all samples began 

to increase in temperature causing the temperature difference to the atmospheric temperature 

decreased steadily. Interestingly, the temperature difference between samples and the Al 

substrate remained reasonably constant. This decrease continued to 1800s where each sample 

began to show signs of reaching a plateau. Although initially appearing cooler the PVA-MEA 

sample crossed over with the dual layer sample at 1400s, indicative of different rates of 

warming and potentially solvent evaporation. After 2000s, each sample remained on course to 

maintain a temperature difference. From 2000-4000s the temperature difference between the 

Al substrate and printed PVA hydrogel was on average 13K, for PVA swollen with MEA the 

average difference was 10K and for the dual layered sample was on average 11.8K. 

Between 2000-4000s the difference in temperature between the atmosphere and printed PVA 

hydrogel with guest H2O went from 3.8K to 3.3K, for PVA swollen with MEA, the change was 

1.1K to 0.2K and for the dual layered sample it was 2.5K to 2.1K. This is interesting; by 4000s 

the printed hydrogel and asymmetric sample were still slightly cooler than the atmosphere, but 

significantly cooler than the Al substrate. Clearly, the cooling performance of these materials 

had not been exhausted by 4000s and measurements over a longer period should be considered 

in order to find an equilibrium point. 

Also of interest was the temperature distribution across each sample. Observing significant 

areas cooler or warmer than others gave an indication of the solvent distribution throughout the 

sample. 

 
Figure 139 – Temperature variation of printed PVA hydrogel swollen with H2O compared to atmospheric and 

Al uncoated substrate temperature.  
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Figure 139 shows the maximum, minimum and average temperatures recorded in the printed 

PVA hydrogel sample. The absolute minimum temperature recorded was between 100 – 200s 

and was 284.4K compared to a substrate temperature of 302.4K and an atmospheric 

temperature of 302.2K, a difference of 18K and 17.8K respectively. By 4000s, the average 

temperature was 12.7K lower than the Al substrate and 3.7K cooler than the atmospheric 

temperature. This indicates that a complete cycle of solvent desorption had not finished.  

 
Figure 140 – Temperature variation of printed PVA swollen with MEA compared to atmospheric and Al 

uncoated substrate temperature.  

Printed PVA swollen with MEA is the most disappointing sample in terms of cooling 

performance. Although initially following a similar temperature profile to the water swollen 

samples, this was the only sample to equal the atmospheric temperature after 4000s. However, 

by 4000s, the temperature difference between the sample and Al substrate was still 9.6K. The 

apparent initial decrease in temperature from the starting point is thought to be due to a 

variation in the accuracy of the area selected for temperature measurements. 

The temperature profiles for a dual layer asymmetric sample are shown in Figure 141. This 

sample, like the single layered PVA hydrogel performed well throughout the measurement 

period with all recorded temperatures being below that of the Al substrate and atmosphere. Of 

note are the variations in the maximum temperature. This may be attributable to the location 

of the sample. Images presented in Figure 142 indicate a heat source close to this sample. As 

with other samples the temperature profile of the sample closely resembles that of the Al 

substrate. Towards the end of measurements the difference between Al substrate temperature 

and sample temperature begins to narrow. However, the cooling performance of the dual-

layered sample is by no means exhausted by the time measurements were stopped. 
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Figure 141 – Temperature variation of a dual asymmetric printed PVA hydrogel-PLA/G (non-swollen) 

compared to atmospheric and Al uncoated substrate temperature.  

Images show three identifiable circles of identical size with temperatures cooler than the 

surrounding area. As time progresses the circles, while still apparent, begin to merge into a 

larger area, cooler than the surrounding area. This is thought to be the cooling effect of the 

samples on the aluminium tray they are positioned on. Aluminium is highly thermally 

conductive and therefore easily subject to variations in heat. Consideration ought to be given 

to the positioning of samples as the close proximity to one another on a thermally conductive 

surface, may mask the true performance of each sample. In future work, samples should be 

positioned independently.  

As time progresses further, a rectangular item can be made out in the top right of the images; 

this item is the hottest measured area on the Al substrate reaching in excess of 313K compared 

to an atmospheric temperature of 303K. Whilst care was taken to place the sample tray away 

from all known sources of heat, it is possible that the power transformer for the camera was 

not initially considered as a potential heat source. This was located underneath the camera 

tripod and as time progressed it is thought that the transformer increased in temperature thus 

creating a heating effect below the Al uncoated substrate on which the samples were positioned. 
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Figure 142 – Thermal images of (a) printed PVA hydrogel (b) printed PVA swollen with MEA (c) dual 

asymmetric layers printed PVA hydrogel and PLA/graphene. 
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As was graphically evident the printed PVA hydrogel was the sample with greatest temperature 

difference followed by the dual layer asymmetric sample, with both remaining cooler that the 

atmospheric temperature after 4000s. Finally the printed PVA swollen with MEA whilst 

initially appearing cool, had aligned with the atmospheric temperature by 4000s. The difference 

in temperature of water swollen samples was thought to be due to the volume of solvent 

retention. Whilst starting weights were the same, the dual layered sample contained no solvent 

in the PLA layer as this is hydrophobic. Therefore, the single-layered sample was able to 

contain a larger volume of inclusive water. 

6.3.3 Infrared Thermography of Conventionally Prepared PVA Hydrogel 

A physically crosslinked PVA hydrogel was synthesised in the conventional manner as 

described in 2.3.3.1. It should be noted immediately that a hydrogel produced via this method 

would be significantly larger and thus, contain a greater quantity of on-board H2O than a 

hydrogel produced via 3D printing. However, the purpose of this test was to evaluate the 

adsorption-cooling properties of a conventional hydrogel compared to a 3D printed one. 

Therefore longevity of the sample at this stage was not considered overly important. 

Figure 143 shows the various temperatures recorded by the IR camera. Figure 144 shows an 

obvious circle where the hydrogel is situated. Using the circular area function on the IR camera 

maximum, minimum and average temperatures can be obtained directly. There are noticeable 

fluctuations in the temperature of Al substrate from 0-2500s. Interestingly, the hydrogel sample 

does not fluctuate also, but instead remains fairly constant. The fluctuations are thought to be 

caused by other researchers working in the laboratory. Owing to the high thermal conductivity 

and high reflectivity of aluminium, a human body passing or being near to the experimental 

set-up near or at the point of measurement, would be sufficient to cause a fluctuation in 

temperature. On first glance, these fluctuations caused by a third party could be considered 

frustrating. However, it has provided evidence to support the thermal stability of the hydrogel 

and that it is not affected by small fluctuations in surface temperature. 
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Figure 143 - Temperature variation of a conventionally produced PVA hydrogel compared to atmospheric and 

Al uncoated substrate temperature.  

 

Figure 144 shows thermal images taken of the PVA hydrogel with guest H2O over a period of 

90mins (5400s). There appears to be very little change on temperature of the hydrogel. 

Interestingly, the hydrogel surface appears to be getting cooler despite an obvious increase in 

the temperature of the surrounding area.  
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Figure 144 – Thermal images of (a) conventionally prepared physically crosslinked PVA hydrogel with on-

board H2O. 
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6.4 Summary 

Thermography was successful, with both conventionally prepared hydrogels and 3D printed 

hydrogels (with different guest solvents) cooling the surface of an Al substrate convincingly. 

The temperature difference between the Al substrate and the samples was initially averaged at 

15.5K (t=0s). Halfway through the run (2000s) the average temperature differences were 12.4K 

for all samples and by the end of the analysis (t=4000s) the temperature difference for all 

samples was on average 11K less than the Al substrate. It is clear that IRT was not carried out 

over a long enough time period and that no sample reached a temperature equilibrium with the 

substrate. Owing to this oversight, it is difficult to make direct comparisons between the 

performance of a conventionally prepared hydrogel and a 3D printed one. 

However, it should be noted that there was a larger temperature difference between 3D printed 

samples and the Al substrate than for the conventionally prepared hydrogel. Typically 3D 

printed samples were 1.2K cooler than conventionally prepared samples. It is possible that this 

temperature difference would have been identical were the samples measured in identical 

conditions. As previously mentioned in 6.3.2 Infrared Thermography of 3D Printed Samples the 

errors associated with the equipment and methods are between ±2-3K, therefore a temperature 

difference between samples cannot be reliably quoted as significantly different. 

There is clear potential for further work here. On-board solvent volumes, size of samples,  

conditions and temperature equilibrium point are all variables which could be further explored. 

Indeed it is possible that those who died of heat stress in SAS trials in South Wales might not 

have done so with hydrogel coated wearables. 
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7  Conclusions 

7.1 Achievement of Aims 

The aims as set-out in section 1.6 were varied, but strongly linked and were based upon the 

authors understanding of the current state of gas sensing and active/passive building cooling 

technologies. It was noticed that there was crossover of materials between these two areas 

which sparked the idea to combine technologies. 

A range of PVA hydrogels have been produced and fully characterised incorporating both 

chemical and physical crosslinking. Functional MxOy NPs have been incorporated into the 

hydrogel matrix via different methods with characterisation and electrochromic properties 

examined. In-situ hydrolysis of PVAc to PVA was not successfully achieved, however 

understanding of organic solvent drying rates and characteristics was. Finally, a range of gas 

sensor substrates were successfully produced via 3D printing, with hydrogels formed from 

these substrates and gas sensing achieved. 

Table 20 - Summary table of aims/objectives and the amount (as a %) the author believes has been achieved. 

Aim/Objective % Achieved 

To develop methods for inclusion of M
x
O

y
 nanoparticles within a PVA 

electrochromic hydrogel matrix for emissivity tuning of an industrial-type 

aluminum surface. Additionally, to explore PVA/PVAc hydrogels/thin films 

incorporating various organic solvents to assess drying rates. 

80% 

To synthesize and explore PVA hydrogels for their absorption/desorption 

properties of water cooling for the purpose of passive cooling devices. 
75% 

To develop 3D printed substrates, both single layer and asymmetrically 

layered with PVA/PLA-G, which may be chemically treated/processed in 

order to enhance their gas sensing characteristics. 

90% 

Fully characterize the above materials/structures using an array of analytical 

techniques. 
95% 

 

7.2 PVA-MxOy Nanocomposite Films and Hydrogels  

A range of nanocomposite PVA films and hydrogels were synthesised using a carefully 

selected range of MxOy NPs, with a view to developing coatings which may be applied to a 
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surface and be detectable using an infrared camera. Hydrogels of differing PVA concentration 

and degrees of crosslinking were produced via chemical crosslinking using the crosslinker GA 

and via physical crosslinking using (i) a conventional freezer and (ii) liquid nitrogen. Simple 

visual and mechanical observations were used to select hydrogels with the most appropriate 

properties.  

Characterisation by FTIR confirmed the presence of PVA and TGA plots revealed H2O 

evaporation from the hydrogel followed by the expected decomposition profile. IRT was used 

to investigate if the type of crosslinking had an effect of the adsorption-cooling characteristics 

of simple PVA hydrogels swollen with H2O. When identical weight/size samples were 

compared under identical atmospheric conditions over a period of 25h, it was found that all 

samples were consistently cooler (average 2.6K) than the substrate to which they were applied. 

Therefore, it is not believed that the type of crosslinking has a significant effect on solvent 

evaporation and therefore, thermal characteristics of PVA hydrogels. 

Investigation into the emissive tuneability of PVA hydrogels by inclusive nanomaterials was 

considered. NPs including WO3, AC, SiO2, TiO2, Al2O3, ZnO and Au were incorporated into 

the PVA polymer matrix at concentrations of 4, 8 and 10wt.% via a simple “slurry” method 

and by a more complex “in-situ” synthesis. The latter method enabled NPs to be produced 

within the polymer during (chemical) or after (physical) crosslinking. SEM-EDX showed a 

homogeneous dispersion of NPs within PVA films and (dried) hydrogels when the “in-situ” 

method was used. DLS was used to estimate the average particle size of NPs synthesised by 

the author (WO3 and Au) and revealed WO3 to have an average particle size of 48.7nm and Au 

to be 3nm.  

“Real world” IRT was conducted outdoors with a distance of 500m from a range of PVA-MxOy 

nanocomposites and concentrations. This revealed noticeable differences between samples 

compared to the background surface to which they were applied. The samples with the greatest 

contrast were AC, WO3 and Au. This test revealed that when considering the emissive 

tuneability of a hydrogel, the species of MxOy NP is more important than the concentration. 

Building on this, consideration was given to PVA films and how application to a surface could 

be made to ensure (a) quick drying time of solvent and (b) good dispersion of the PVA-MxOy. 

It was envisioned that the material would be delivered via a mechanical spray or aerosol method 

and that solvent evolution would be key. The evaporation characteristics of a range of organic 

solvents including MF, MA, EA, DCM and MEK were investigated by IRT. These 
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investigations revealed MF to evaporate quickest, which, when considered with a boiling point 

figure of 306K (the lowest investigated) was a logical outcome. It was already known that PVA 

is insoluble in many organic solvents and therefore an alternative method of inclusion was 

investigated. 

PVAc readily dissolves in the organic solvents selected and therefore controlled base 

hydrolysis of PVAc in solvent using a range of catalysts was studied (NaCl, MgCl2 and 

Mg(NO3)2). NH4OH was also used to neutralise CH3COOH which is produced during 

hydrolysis of PVA. FTIR spectra were taken at intervals of 21, 88, 114 and 133h to track new 

bond formation and give an indication of hydrolysis progress. By 133h it was apparent that the 

hydrolysis reaction had not been initiated or was progressing at a very slow rate. The Mg(NO3)2 

catalysed sample gave a tantalising glimpse that a new -OH bond was beginning to form, but 

this was of a too low %T to be reliably identified. It must be recommended that hydrolysis 

when performed in this way does not yield PVA. 

7.3 Electrochromic Hydrogels 

PVA-WO3 nanocomposite hydrogels were produced using the “in-situ” synthesis method in 

2.3.4.3. Concentrations of 1, 5 and 10wt.% of WO3 NPs were homogeneously dispersed in 8 

and 10wt.% aqueous PVA before being cast as hydrogels. Small quantities (typically 0.5g) of 

PVA-WO3 hydrogel were sandwiched between ITO/FTO glass and a voltage between 1-12v 

applied. Instantaneous colour changes (<1s) from yellow to dark blue were observed. When 

the voltage was reversed the hydrogel returned to its bleached (yellow) state. 

Investigations were evolved further with incorporation of various salts (Li+, Na+, K+, Ba2+) at 

concentrations of 0.5-1M into the PVA solution prior to casting. Upon testing, the inclusive 

salts showed an ability to control the colour change by increasing or decreasing the intensity 

of colour observed. The voltage applied also impacted on the colour change observed; 

increasing voltage led to more intense colour changes at quicker switching speeds. From the 

observations it is clear that electrochromism in hydrogels is successful and that tuneability of 

colour intensity and speed of switching can be achieved. 

The commercial possibilities of electrochromic hydrogels are wide-ranging. The author 

originally envisaged hydrogels would be applied to the interior, exterior and or roof of a 

building, enabling it to act as a passive cooling device (sweating surface). The inclusion of an 

electrochromic material could enable colour matching for aesthetic reasons and/or to 

absorb/reflect solar and IR radiation thus acting as a two stage cooling device. 
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Other uses of these materials could be in low power advertising. Current LCD screens are 

power hungry, whereas electrochromic devices only require a small voltage and current (1-

12v) to drive a colour change. If sufficient colours were available, pictures and text could be 

worked into a 3D design, printed and displayed. As the polymer substrate is non-toxic and 

biodegradable, there would be few issues in the general public accessing them.  

Finally uses may be found in the military or search and rescue sector. It is possible that 

sprayable hydrogels could be stored in a suitable vessel for use in an emergency and when 

deployed may be visible only in the IR spectrum. Search and rescue teams or forces equipped 

with IRT may be able to spot a target at night which is marked out with fast evaporating 

hydrogels or even gel microspheres loaded with metal oxides. 

7.4 3D Printed Gas Sensors 

FDM has been used to create PVA and asymmetric PVA-PLA/G discs for use in gas sensing 

and “cool coatings”. Initial investigations into sample geometry and swelling characteristics 

were informative and showed shapes with pronounced corners (square or rectangular) to be 

unsuitable for solvent uptake, with structural failure occurring. Circular shapes were found to 

be the most amenable to H2O-swelling and were subsequently taken forward.  

PLA with incorporated graphene obtained from a supplier was characterised before and after 

printing by Raman spectroscopy. This confirmed the presence of graphene in the filament and 

printed sample. SEM was then used to evaluate the form of graphene incorporated in the 

filament. It was concluded that graphene was most likely in MWCNT form as SEM showed 

cylindrical structures of approximately 250-300nm diameter emanating from within the PLA/G 

filament.  

Printed PVA samples were subjected to H2O uptake testing via gravimmetry using a range of 

saturated salt solutions of known %RHs. This was done to control the rate of H2O uptake by 

the printed samples. It was discovered that samples exposed to low %RH’s showed negligible 

mass increase, indicative of H2O not being incorporated into the PVA polymer matrix. The 

sample exposed to 100%RH showed a weight increase of almost 10%. This sample was further 

analysed by DSC which confirmed the presence of on-board H2O. 

Asymmetrically layered PVA-PLA/G samples were produced, and the boundary layer 

investigated by µFTIR and SEM. This confirmed some small non-fused areas between layers, 

but more significantly, large areas of good chemical mixing and fusion. Confidence could then 
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be taken going forward that separation of layers would not occur once the PVA layer had been 

swollen with solvent. 

Inclusion of MEA and ratios of MEA/PVA into the PVA layer was achieved using an 

immersive swelling method. FTIR confirmed the presence of MEA in the PVA layer. This was 

considered important for gas sensing. A 3D printed PVA hydrogel and a printed PVA disc 

swollen with MEA underwent gas testing. Various concentrations (0.045, 0.089, 0.134, 0.179, 

0.223 and 0.268mmol) of CO2 were injected into an air carrier gas stream flowing at 

250mL/min. The printed PVA hydrogel (H2O) gave electronic responses to all injected 

concentrations indicated by an increase in %Ω. Response times were typically 4s from the point 

of injection, with an initial return to pre-injection baseline levels observed. This was 

comparable with the response of an RGA which was 2.5s from the point of injection returning 

to baseline levels 6s after injection. The electronic responses (Δ%Ω) for the MEA inclusive 

sample were less clear with both negative and positive Δ%Ω observed and seemingly random 

electronic responses. It may therefore be concluded that printed PVA converted to a hydrogel 

forms a responsive gas sensor, but that PVA with on-board MEA does not. 

Printed PVA swollen with H2O and MEA was also investigated for adsorption-cooling 

characteristics which may be compared to PVA hydrogels produced in the conventional 

manner. Samples of approximately 4g in weight were tested over a period of 4000s. Maximum 

temperature differences at t=4000s of printed samples compared to an Al substrate were 

observed at 13K (H2O swollen), 10K (MEA swollen) and 11.8K (H2O – asymmetric sample). 

It can therefore be concluded that printed PVA hydrogel samples when applied to a surface, 

are equally, if not more effective than conventionally prepared hydrogels at reducing the 

surface temperature. 

7.5 Future Work 

It is clear that avenues exist for future work associated with the research presented in this thesis. 

The interconnected nature of the materials investigated, enables wide-ranging applications of 

similar base materials to be realised. The aims of this work set out in section 1.6, have been 

successfully achieved on a small scale. 

Areas which would benefit wider-ranging investigation are the degree of crosslinking in PVA-

MxOy hydrogels and how this may affect the adsorption-cooling properties of the material. The 

work conducted by the author suggests that the method of crosslinking does not play a 
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significant role in the thermal characteristics of the hydrogel. However, fine tuning of the 

cooling properties of this type of hydrogel (difference in temperature vs length of time before 

regeneration is required) ought to be considered. Also of interest here would be investigation 

into the long-term stability of a MxOy hydrogel/film coating once applied to a surface. It is 

evident that when investigated by IRT, hydrogels were not fully dehydrated. It would be 

curious to understand how the coating behaves once fully dehydrated i.e. what happens to the 

MxOy – do they remain bound but unchanged in structure and morphology in their dispersed 

positions in the hydrogel host; this may require HRTEM. At the same do the guest NPs modify 

the host – this may require in-situ real-time solution and magic-angle NMR. 

Gas testing is an area which also warrants further work. PVA swollen with MEA gave 

conflicting responses to injected CO2. It would be interesting to explore this further. However 

the most exciting possibility for future study is the concentration of graphene/CNTs in a 3D 

printed polymer matrix. When used in this work, the PLA/G was unresponsive to injected CO2 

which would appear to conflict with expected characteristics. The author believes that the 

concentration of CNTs in the PLA as supplied was not sufficient to enable ionic conductivity 

throughout the sample to occur, thus gas sensing was not achieved. Further work might 

consider investigating synthesis “in-house” rather than relying on a 3rd party supplier. This way 

the researcher would be able to produce 3D printer filament with the properties they desire. 

Linked to this is the possibility of using a paste extruder to print novel polymer blends. 

Electrochromism in hydrogels is novel and fascinating and as such, many possibilities for 

further work exist. Incorporation of different electrochromic MxOy materials (V2O5, MoO3, 

NiO) or even organic electrochromics (poly(3,4-ethylene-dioxythiphene) (PEDOT), 

polypyrrole (PPy), polythiophene and polyaniline (PANI)) ought to be considered, the latter 

may form interesting arrangements with common 3D printing materials, able to be paste 

extruded, providing yet another link between areas in this work.  

Despite clear possibilities for further work, this is work has been novel in many areas. 

In a broader context one should be able to see bio-hydrogels developed from PVA-gelatine and 

even biomimetic hydrogel jellyfish sensing the state of corals in the ocean and oil-pollution 

that might harm them or CO2 causing a rise in ocean acidity that might damage. The author 

expects more exciting development. For the moment he is proud of what he has achieved. 
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8 Appendix Items 

8.1 FTIR Peak identification tables 

Table 21 - FTIR-ATR peak identifications of methyl formate with 5, 8 and 10wt.% of dissolved PVAc. 

Sample Bond Wavenumber (cm-1) %T Compound 

Methyl Formate (MF) C-H stretch 2970 84.0 MF 

MF + 5%PVAc C-H stretch 2970 84.1 MF 

MF + 8%PVAc C-H stretch 2970 85.3 MF 

MF + 10%PVAc C-H stretch 2954 90.2 MF/PVAc 

Methyl Formate (MF) C=O stretch 1718 9.2 MF 

MF + 5%PVAc C=O stretch 1718 9.3 MF 

MF + 8%PVAc C=O stretch 1718 9.4 MF 

MF + 10%PVAc C=O stretch 1720 27.8 MF 

Methyl Formate (MF) C-H bending 1435 70.7 MF 

MF + 5%PVAc C-H bending 1435 70.9 MF 

MF + 8%PVAc C-H bending 1435 71.8 MF 

MF + 10%PVAc C-H bending 1435 76.7 MF 

Methyl Formate (MF) C-H bending 1365 64.5 MF 

MF + 5%PVAc C-H bending 1365 63.5 MF 

MF + 8%PVAc C-H bending 1373 64.8 MF/PVAc 

MF + 10%PVAc C-H bending 1373 62.1 MF/PVAc 

Methyl Formate (MF) C-O stretch 1203 21.0 MF 

MF + 5%PVAc C-O stretch 1203 20.8 MF 

MF + 8%PVAc C-O stretch 1205 21.4 MF 

MF + 10%PVAc C-O stretch 1205 29.0 MF 

Methyl Formate (MF) C-O stretch 1151 19.1 MF 

MF + 5%PVAc C-O stretch 1151 19.5 MF 

MF + 8%PVAc C-O stretch 1151 20.0 MF 

MF + 10%PVAc C-O stretch 1155 37.8 MF 

Methyl Formate (MF) C-O stretch 1029 85.6 MF 

MF + 5%PVAc C-O stretch 1028 84.7 MF 

MF + 8%PVAc C-O stretch 1028 83.8 MF 

MF + 10%PVAc C-O stretch 1022 59.8 PVAc 

Methyl Formate (MF) C-H bending 908 54.2 MF 

MF + 5%PVAc C-H bending 908 54.3 MF 

MF + 8%PVAc C-H bending 908 55.1 MF 

MF + 10%PVAc C-H bending 908 66.3 MF 

Methyl Formate (MF) C-H bending 767 69.8 MF 

MF + 5%PVAc C-H bending 767 70.9 MF 
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MF + 8%PVAc C-H bending 767 70.9 MF 

MF + 10%PVAc C-H bending 767 78.1 MF 

MF + 10%PVAc C-H bending 605 81.9 PVAc 

 

Table 22 - FTIR-ATR peak identifications of dichloromethane with 5, 8 and 10wt.% of dissolved PVAc. 

Sample Bond Wavenumber (cm-1) %T Compound 

DCM C-H stretch 3055 96.7 DCM 

DCM + 5%PVAc C-H stretch 3055 95.2 DCM 

DCM + 8%PVAc C-H stretch 3055 95.4 DCM 

DCM + 10%PVAc C-H stretch 3055 95.0 DCM 

DCM C-H bending 1734 89.9 DCM 

DCM + 5%PVAc C=O stretch 1734 69.4 PVAc 

DCM + 8%PVAc C=O stretch 1735 65.3 PVAc 

DCM + 10%PVAc C=O stretch 1735 62.6 PVAc 

DCM C-H bending 1373 93.9 DCM 

DCM + 5%PVAc C-H bending 1373 84.3 DCM 

DCM + 8%PVAc C-H bending 1373 82.9 DCM 

DCM + 10%PVAc C-H bending 1373 81.1 DCM 

DCM  1263 46.4  

DCM + 5%PVAc C-O stretching 1263 49.3 PVAc 

DCM + 8%PVAc C-O stretching 1263 47.9 PVAc 

DCM + 10%PVAc C-O stretching 1263 48.3 PVAc 

DCM + 5% PVAc C-O stretch 1022 92.0 PVAc 

DCM + 8%PVAc C-O stretch 1022 86.9 PVAc 

DCM + 10%PVAc C-O stretch 1022 85.6 PVAc 

DCM C-Cl 731 10.3 DCM 

DCM + 5%PVAc C-Cl 731 11.9 DCM 

DCM + 8%PVAc C-Cl 731 11.3 DCM 

DCM + 10%PVAc C-Cl 731 12.9 DCM 

 

Table 23 - FTIR-ATR peak identifications of methyl acetate with 5, 8 and 10wt.% of dissolved PVAc. 

Sample Bond Wavenumber (cm-1) %T Compound 

MA C-H stretch 2955 91.1 MA 

MA + 5%PVAc C-H stretch 2957 90.5 MA 

MA + 8%PVAc C-H stretch 2955 91.6 MA 

MA + 10%PVAc C-H stretch 2955 91.1 MA 

MA C=O stretch 1740 17.8 MA 

MA + 5%PVAc C=O stretch 1740 23.4 MA 

MA + 8%PVAc C=O stretch 1740 17.2 MA 
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MA + 10%PVAc C=O stretch 1740 17.1 MA 

MA C-H bending 1437 64.1 MA 

MA + 5%PVAc C-H bending 1437 64.0 MA 

MA + 8%PVAc C-H bending 1437 64.3 MA 

MA + 10%PVAc C-H bending 1437 64.1 MA 

MA C-H bending 1369 53.5 MA 

MA + 5%PVAc C-H bending 1369 53.7 MA 

MA + 8%PVAc C-H bending 1369 52.4 MA 

MA + 10%PVAc C-H bending 1369 52.2 MA 

MA C-O stretch 1236 12.8 MA 

MA + 5%PVAc C-O stretch 1236 14.7 MA 

MA + 8%PVAc C-O stretch 1236 12.2 MA 

MA + 10%PVAc C-O stretch 1236 12.2 MA 

MA C-O stretch 1043 37.0 MA 

MA + 5%PVAc C-O stretch 1043 38.3 MA 

MA + 8%PVAc C-O stretch 1043 36.9 MA 

MA + 10%PVAc C-O stretch 1043 36.8 MA 

MA C-H bending 843 54.2 MA 

MA + 5%PVAc C-H bending 843 57.4 MA 

MA + 8%PVAc C-H bending 843 54.5 MA 

MA + 10%PVAc C-H bending 843 54.4 MA 

MA C-H bending 640 74.7 MA 

MA + 5%PVAc C-H bending 640 73.1 MA 

MA + 8%PVAc C-H bending 640 74.9 MA 

MA + 10%PVAc C-H bending 640 74.2 MA 

 

Table 24- FTIR-ATR peak identifications of ethyl acetate with 5, 8 and 10wt.% of dissolved PVAc. 

Sample Bond Wavenumber (cm-1) %T Compound 

EA C-H stretch 2983 87.3 EA 

EA + 5%PVAc C-H stretch 2983 87.5 EA 

EA + 8%PVAc C-H stretch 2983 86.9 EA 

EA + 10%PVAc C-H stretch 2983 86.9 EA 

EA C=O stretch 1736 19.4 EA 

EA + 5%PVAc C=O stretch 1736 20.9 EA 

EA + 8%PVAc C=O stretch 1736 19.1 EA 

EA + 10%PVAc C=O stretch 1736 18.3 EA 

EA C-H bending 1446 86.3 EA 

EA + 5%PVAc C-H bending 1446 85.4 EA 

EA + 8%PVAc C-H bending 1446 85.9 EA 
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EA + 10%PVAc C-H bending 1446 85.5 EA 

EA C-H bending 1371 51.9 EA 

EA + 5%PVAc C-H bending 1371 51.9 EA 

EA + 8%PVAc C-H bending 1371 50.7 EA 

EA + 10%PVAc C-H bending 1371 49.8 EA 

EA C-O stretch 1232 15.6 EA 

EA + 5%PVAc C-O stretch 1232 15.7 EA 

EA + 8%PVAc C-O stretch 1232 15.3 EA 

EA + 10%PVAc C-O stretch 1232 14.7 EA 

EA C-O stretch 1043 27.6 EA 

EA + 5%PVAc C-O stretch 1043 28.6 EA 

EA + 8%PVAc C-O stretch 1043 28.4 EA 

EA + 10%PVAc C-O stretch 1043 28.1 EA 

EA C-H bending 847 82.5 EA 

EA + 5%PVAc C-H bending 847 81.2 EA 

EA + 8%PVAc C-H bending 847 83.2 EA 

EA + 10%PVAc C-H bending 847 83.1 EA 

EA C-H bending 634 81.0 EA 

EA + 5%PVAc C-H bending 634 81.1 EA 

EA + 8%PVAc C-H bending 634 80.5 EA 

EA + 10%PVAc C-H bending 634 80.1 EA 

EA C-H bending 607 78.1 EA 

EA + 5%PVAc C-H bending 607 77.0 EA 

EA + 8%PVAc C-H bending 607 76.6 EA 

EA + 10%PVAc C-H bending 607 76.0 EA 

 

Table 25 - FTIR-ATR peak identifications of methyl ethyl ketone with 5, 8 and 10wt.% of dissolved PVAc. 

Sample Bond Wavenumber (cm-1) %T Compound 

MEK C-H stretch 2978 86.6 MEK 

MEK + 5%PVAc C-H stretch 2978 85.7 MEK 

MEK + 8%PVAc  C-H stretch 2978 86.8 MEK 

MEK + 10%PVAc C-H stretch 2978 86.2 MEK 

MEK C=O stretch 1713 36.1 MEK 

MEK + 5%PVAc C=O stretch 1713 35.5 MEK 

MEK + 8%PVAc  C=O stretch 1713 35.7 MEK 

MEK + 10%PVAc C=O stretch 1713 35.5 MEK 

MEK C-H bending 1458 83.0 MEK 

MEK + 5%PVAc C-H bending 1458 81.8 MEK 

MEK + 8%PVAc  C-H bending 1458 83.2 MEK 
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MEK + 10%PVAc C-H bending 1458 82.0 MEK 

MEK C-H bending 1417 79.5 MEK 

MEK + 5%PVAc C-H bending 1417 78.5 MEK 

MEK + 8%PVAc  C-H bending 1417 79.5 MEK 

MEK + 10%PVAc C-H bending 1417 78.9 MEK 

MEK C-H bending 1364 61.0 MEK 

MEK + 5%PVAc C-H bending 1364 59.7 MEK 

MEK + 8%PVAc  C-H bending 1364 60.1 MEK 

MEK + 10%PVAc C-H bending 1364 59.8 MEK 

MEK C-CO-C bend 1171 60.8 MEK 

MEK + 5%PVAc C-CO-C bend 1171 60.4 MEK 

MEK + 8%PVAc  C-CO-C bend 1171 60.7 MEK 

MEK + 10%PVAc C-CO-C bend 1171 60.1 MEK 

MEK C-H bending 943 86.8 MEK 

MEK + 5%PVAc C-H bending 943 85.1 MEK 

MEK + 8%PVAc  C-H bending 945 85.1 MEK 

MEK + 10%PVAc C-H bending 945 84.3 MEK 

MEK C-H bending 736 84.3 MEK 

MEK + 5%PVAc C-H bending 736 85.6 MEK 

MEK C-H bending 586 87.0 MEK 

MEK + 5%PVAc C-H bending 586 86.6 MEK 

MEK + 8%PVAc  C-H bending 590 86.3 MEK 

MEK + 10%PVAc C-H bending 590 84.8 MEK 

 

Table 26 - FTIR-ATR peak identifications of PVA and catalysed (NaCl) hydrolysis products of PVAc. 

Sample Bond Wavenumber (cm-1) %T 

PVA O-H stretch 3275 66.0 

PVA C-H stretch 2906 75.8 

88hrs C=O stretch 1728 87.7 

114hrs C=O stretch 1726 90.7 

133hrs C=O stretch 1730 87.4 

PVA O-H bending 1419 71.7 

88hrs C-H bending 1369 92.3 

114hrs C-H bending 1369 93.8 

133hrs C-H bending 1373 90.5 

PVA O-H bending 1323 73.9 

88hrs C-O stretching 1226 85.8 

114hrs C-O stretching 1226 89.0 

133hrs C-O stretching 1226 85.7 
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PVA C-O stretching 1087 50.9 

88hrs C-O stretching 1018 89.0 

114hrs C-O stretching 1018 90.9 

133hrs C-O stretching 1018 87.0 

PVA C-H bending 846 63.9 

 

Table 27 - FTIR-ATR peak identifications of PVA and catalysed (MgCl2 )hydrolysis products of PVAc. 

Sample Bond Wavenumber (cm-1) %T 

PVA O-H stretch 3275 66.0 

PVA C-H stretch 2906 75.8 

88hrs C=O stretch 1730 90.7 

114hrs C=O stretch 1724 91.7 

133hrs C=O stretch 1734 89.9 

PVA O-H bending 1419 71.7 

88hrs C-H bending 1369 93.7 

114hrs C-H bending 1369 94.3 

133hrs C-H bending 1369 93.9 

PVA O-H bending 1323 73.9 

88hrs C-O stretching 1224 89.1 

114hrs C-O stretching 1222 90.6 

133hrs C-O stretching 1224 91.4 

PVA C-O stretching 1087 50.9 

88hrs C-O stretching 1018 91.0 

114hrs C-O stretching 1016 92.0 

133hrs C-O stretching 1018 91.4 

PVA C-H bending 846 63.9 

 

Table 28 - FTIR-ATR peak identifications of PVA and catalysed Mg(NO3)2 hydrolysis products of PVAc. 

Sample Bond Wavenumber (cm-1) %T 

PVA O-H stretch 3275 66.0 

PVA C-H stretch 2906 75.8 

88hrs C=O stretch 1734 87.5 

114hrs C=O stretch 1728 75.5 

133hrs C=O stretch 1730 83.7 

PVA O-H bending 1419 71.7 

88hrs C-H bending 1369 92.6 

114hrs C-H bending 1369 85.0 

133hrs C-H bending 1369 89.8 

PVA O-H bending 1323 73.9 
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88hrs C-O stretching 1226 86.8 

114hrs C-O stretching 1226 72.7 

133hrs C-O stretching 1226 81.4 

PVA C-O stretching 1087 50.9 

88hrs C-O stretching 1018 89.5 

114hrs C-O stretching 1016 79.4 

133hrs C-O stretching 1018 85.4 

PVA C-H bending 846 63.9 

88hrs C-H bending 603 93.6 

114hrs C-H bending 603 88.0 

133hrs C-H bending 603 91.5 

 

Table 29 – FTIR-ATR peak identifications of PVA powder 99+% hydrolysed. 

Bond Wavenumber (cm-1) %T 

O-H stretching 3263 85.7 

C-H stretching 2889 88.7 

C-O stretching 1082 79.1 

C-C stretching 830 78.4 

Table 30 – FTIR-ATR peak identifications of PVA film cast from 8wt.% aqueous PVA solution. 

Bond Wavenumber (cm-1) %T 

O-H stretching 3384 76.7 

C-H stretching 2918 82.9 

C=O stretching 1716 75.0 

O-H bending 1373 74.9 

C-O stretching 1240 65.9 

C-O stretching 1085 61.7 

C-H bending 450-600 59.1 

Table 31 – FTIR-ATR peak identifications of a physically crosslinked hydrogel cast from 8wt.% aqueous PVA 

solution. 

Bond Wavenumber (cm-1) %T 

O-H stretching 3300 55.3 

C-H stretching 2919 81.9 

C=O stretching 1716 61.1 

O-H bending 1375 66.4 

C-O stretching 1248 51.3 

C-O stretching 1024 60.9 

C-H bending 450-600 31.5 
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Table 32 – Identification of peaks in FTIR spectra of PVA power. 

Bond Wavenumber (cm-1) %T 

O-H stretching 3300 85.2 

C-H stretching 2920 88.4 

C-O stretching 1083 78.4 

C-C stretching 830 83.2 

 

Table 33 – Identification of peaks in FTIR spectra of printed PVA hydrogel. 

Bond Wavenumber (cm-1) %T 

O-H stretching 3300 53.2 

C-H stretching 2930 81.9 

C=O stretching 1716 60.9 

O-H bending 1380 66.4 

C-O stretching 1295 51.3 

C-O stretching 1087 60.7 

C-H bending 450-600 31.6 

Table 34 – FTIR-ATR peak identifications for printed PLA/graphene. 

Bond Wavenumber (cm-1) %T 

C-H stretching 2918 85.9 

C-H stretching 2848 86.7 

C=O stretching 1734 77.2 

C-O stretching 1174 78.0 

C-O stretching 1074 76.5 

Table 35 – FTIR-ATR peak identifications for printed PVA. 

Bond Wavenumber (cm-1) %T 

O-H stretching 3300 93.6 

C-H stretching 2930 92.9 

C=O stretching 1716 88.4 

O-H bending 1371 89.6 

C-O stretching 1232 84.3 

C-O stretching 1018 84.2 

C-C stretching 830 90.1 
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Table 36 - FTIR-ATR peak identifications for printed PVA. 

Bond Wavenumber (cm-1) %T 

O-H stretching 3315 88.1 

C-H stretching 2918 88.4 

C=O stretching 1732 75.2 

O-H 1417 84.1 

C-O 1232 68.0 

C-O 1049 70.1 

Table 37 - FTIR-ATR peak identifications for monoethanolamine. 

Bond Wavenumber (cm-1) %T 

N-H stretching 3392 76.9 

N-H stretching 3282 77.2 

C-H stretching 2920 69.0 

C-H stretching 2839 66.8 

N-H bending 1575 77.4 

C-H bending 1456 80.8 

O-H bending 1354 77.7 

C-N stretching 1041 50.0 

C-O stretching 952 50.1 

C-O stretching 858 49.8 
 

Table 38 - FTIR-ATR peak identifications for printed PVA swollen with monoethanolamine.  

 

 

 

 

 

 

 

 

Table 39 - FTIR-ATR peak identifications for printed PVA. 

Bond Wavenumber (cm-1) %T 

O-H stretching 3315 88.1 

C-H stretching 2918 88.2 

C=O stretching 1732 75.2 

Bond Wavenumber (cm-1) %T 

N-H stretching 3392 68.4 

N-H stretching 3282 67.3 

C-H stretching 2926 63.1 

C-H stretching 2845 62.9 

C=O stretching 1733 82.3 

N-H bending 1593 71.5 

C-H bending 1440 74.3 

O-H bending 1361 71.7 

C-N stretching 1041 47.4 

C-O stretching 952 48.2 

C-O stretching 858 45.7 
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O-H bending 1400 85.1 

C-O stretching 1232 68.1 

C-O stretching 1049 70.8 
 

Table 40 - FTIR-ATR peak identifications for printed PVA swollen with water. 

Bond Wavenumber (cm-1) %T 

O-H stretching 3300 53.1 

C-H stretching 2945 81.6 

C=O stretching 1716 61.1 

O-H bending 1380 66.4 

C-O stretching 1295 51.0 

C-O stretching 1024 60.9 

C-H bending 450-600 30.3 

Table 41 - FTIR-ATR peak identifications for printed PVA swollen with monoethanolamine. 

Bond Wavenumber (cm-1) %T 

N-H stretching 3392 77.1 

N-H stretching 3282 67.2 

C-H stretching 2926 63.2 

C-H stretching 2839 62.7 

C=O stretching 1733 82.3 

N-H bending 1575 71.3 

C-H bending 1482 74.2 

O-H bending 1346 71.6 

C-N stretching 1041 47.4 

C-O stretching 952 47.9 

C-O stretching 858 45.7 

 

Table 42 - FTIR-ATR peak identifications for printed PVA swollen in neat MEA. 

Bond Wavenumber (cm-1) %T 

N-H stretching 3392 77.1 

N-H stretching 3282 67.2 

C-H stretching 2895 63.2 

C-H stretching 2839 62.7 

C=O stretching 1735 84.0 

N-H bending 1575 71.3 

C-H bending 1482 74.2 

O-H bending 1346 71.6 

C-N stretching 1041 47.4 

C-O stretching 952 47.9 
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C-O stretching 858 45.7 

Table 43- FTIR-ATR peak identifications for printed PVA swollen with 90% MEA 10% H2O. 

Bond Wavenumber (cm-1) %T 

N-H stretching 3392 71.6 

N-H stretching 3282 64.8 

C-H stretching 2895 65.7 

C-H stretching 2839 66.1 

C=O stretching 1735 85.8 

N-H bending 1575 71.6 

C-H bending 1482 76.6 

O-H bending 1346 75.9 

C-N stretching 1041 52.4 

C-O stretching 952 49.5 

C-O stretching 858 49.0 

Table 44 - FTIR-ATR peak identifications for printed PVA swollen with 70% MEA 30% H2O. 

Bond Wavenumber (cm-1) %T 

N-H stretching 3392 77.1 

N-H stretching 3282 67.2 

C-H stretching 2895 63.2 

C-H stretching 2839 62.7 

C=O stretching 1735 84.0 

N-H bending 1575 71.3 

C-H bending 1482 74.2 

O-H bending 1346 71.6 

C-N stretching 1041 47.4 

C-O stretching 952 47.9 

C-O stretching 858 45.7 

Table 45- FTIR-ATR peak identifications for printed PVA swollen in 100% H2O. 

Bond Wavenumber (cm-1) %T 

O-H stretching 3300 53.1 

C-H stretching 2930 81.6 

C=O stretching 1716 61.1 

O-H 1380 66.4 

C-O 1295 51.0 

C-O 1024 60.9 

C-H bending 450-600 30.3 
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8.2 List of Conferences Attended 

2013  XVIIth International Sol-Gel Conference, Madrid, Spain. 

• Poster presentation (accepted abstract below) 

Sol-gel Electrochromic Coatings 

Sam Rust 

Nanomaterials Laboratory, Wolfson Centre for Materials Processing, Brunel University, 

Uxbridge, Middx, UB8 3PH 

In electrochromic films the host cathode can be oxide TOn (WO3, MoO3 or TiO2), the inserted 

ion can be H+ or Li+ (or cations of Na, K, Rb, Cs, Cu, Ag, Zn, etc) and the anode can be NiO2, 

IrO2 or RhO2. At the TOn cathode a solid non-stoichiometric bronze MxTOn is formed by 

intercalation of an electron and a cation insertion into the host lattice. Oxide hydrogen bronzes 

(e.g. HxWO3) have been in use as reversible electrode materials, electrochromic devices, 

heterogeneous catalysts, electro-catalysts (for fuel cells or water lysis) and hydrogen storage 

devices. We have worked on these bronzes previously [1]. 

We show here that sol-gel WO3/C↔XxWO3/C, MoO3↔XxMoO3/C and WO3-MoO3↔XxWO3-

XxMoO3/C electrochromic coatings can be prepared and have exceptional response times. Their 

properties are compared with those of unsupported oxides↔bronzes. The potential of these 

coatings in nanofuel cells are considered. 

[1] M.S.W.Vong Solid State Ionics 32-3,91- 96,(1989); 26,180,(1988); S.A.Lawrence 

Proc.Roy.Soc. 411A,95-121,(1987); S.Stevenson J.Chem.Soc.Farad.Trans. I 83,2175-

2191,(1987); G.C.Bond Mater.Res.Bull. 19, 701-704,(1984) 

2013  Brunel Graduate School and Specialist Research Institutes Research Conference, 

Uxbridge Campus. 

• Poster presentation 

2014 Brunel University Research Student Conference, Uxbridge Campus. 

• Poster presentation – placed in the top 10 entries 

2014 Materials Research Exchange: UK Advanced Materials Research Showcase, Coventry. 

2014 Joliot-Curie Conference – Royal Society of Chemistry, Edinburgh. 

• Poster presentation 
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2017 HiPerNano17, Knowledge Transfer Network, London. 

2017 46th Intelligent Sensing Program – Sensing the Air Quality and Emissions, 

Birmingham. 

8.3 List of Presentations Given 

2013 Wolfson Centre for Materials Processing – Seminar  

• Presentation title – A History of Electrochromic Materials 

2014 Wolfson Centre for Materials Processing – Seminar 

• Presentation title – Infrared Stealth Coatings 

2014 Brunel University Graduate School – Researcher Development Series 

• Life as a “lab based” PhD Student 

8.3 Miscellaneous Honours 

2014 Chair of interviewing panel of PGR students for the role of “Institute Director”. 

Invited by the Vice Provost (Research) to chair a panel of PGR students to interview 

senior academic candidates for the “Institute Director” role as part of the University 

TxP development programme. 

2015 Attended a dinner meeting with the Vice Provost (Education) to discuss PGR students’ 

views on TxP and how the University could better support research students. One of 10 

PGR students selected.  

8.4 Teaching 

2013 & 2014 Lab demonstrator for “Communications, Projects and Electronic Engineering” 

module for the College of Engineering, Design and Physical Sciences. 
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