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Abstract

The proposed work describes a dynamic regression based event-tracker for high speed production process. The methodology discussed is a causal
system and provides trends and estimations of the sensors based on a flexible regression model of the historical sensor values. A safety threshold is
defined that provides a boundary of the tolerant working for the regime condition of production. This threshold is used as a reference to calculate
the remaining useful life of the critical component. The estimated remaining useful life is compared with the Weibull reliability analysis. The
proposed methodology provides a remaining useful life of ~ 10 weeks for the thermal regulator use-case when compared to ~ 9 weeks for
Weibull analysis. The overestimation of the methodology is discussed and along with the alternative methodology. The sensitivity analysis is

conducted on the noise and training periods are studied for better prediction.
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1. Introduction

Fast and causal prediction methodologies are becoming in-
evitable to achieve Industry 4.0 vision [11]. The current manu-
facturing approaches are leading to the generation of large asyn-
chronous data (asynchronous Big Data) [34]. The most internet
of things (IoT) application in these regards are still confined
to rich automatic data collection industries such as telecommu-
nication, image processing for medical application, as well as
some internet and social media based service provisions. The
proliferation of industrial IoT (IIoT) is inevitable but posing in-
teresting challenges at present as mentioned in [25]. Industrial
sensors are updated over time with various different partners
involved, having holistic approach is difficult. The legacy sys-
tems in the workshop floors have hindered the application of
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machine learning and traditional big data analytical methods
[18]. The authors in [26] have discussed the framework of in-
dustrial data management which provides a better understand-
ing of having multi-middleware components to cater the end-
users. The need for requirement gathering of the Industry 4.0
solutions has been elaborated by [4]. These have lead changes
in the organisation, structural changes and the prediction mod-
ellings [22] to be *Event-based’ in Industry 4.0 [6, 9, 29].

The proposed methodology combines the state-of-the-art pa-
rameter bound regressive models and the event based prediction
of the thermal regulator component in a compression moulding
machine. Pure event-based models such as [5] and [12] pro-
vide state of the machine accurately; however fails to consider
the historical data in majority of the cases to understand the
trend or degradation [13] which has been addressed in the pro-
posed method. There are efforts to model the data based on ge-
netic algorithms and gene expressions as discussed by [33] and
[12] respectively. The eigen space based modelling and princi-
ple component analysis for degradation and fault detection are
applied in [15] and [30] respectively. The estimation of remain-
ing useful life has been carried out using regression techniques.
But the pure regression models lacks accuracy [21]. They are
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Fig. 1. System hierarchy of sensor acquisition in thermal regulator of continu-
ous compression machine.

often used along with a complementary methodologies such as
clustering algorithms [36], support vector machines [28, 32],
statistical distributions [19] and multivariate analysis [20]. The
estimation of remaining useful life by various methodologies
has an advantage of understanding the prognosis, health and
knowledge management of the system as discussed in [1, 8].
The research in physical based modelling (or digital twin) [1]
has been computationally inefficient in the small and medium-
sized enterprises (SMEs) scenario. Hence the scope is in de-
ployment of linear, memory-less models which can adopt to the
legacy systems seamlessly. The regression based event-tracker
takes into account the historic trend in the training process. The
industry 4.0 vision of predictive maintenance stems from the
idea of cost effective and high productivity manufacturing [14].
However, the traditional preventive maintenance has proven to
be inefficient or requiring higher training, costs and resources.
The reliability analysis of the machines can indicate the survival
time with a probability [3]. The proposed failure-rate Weibull
analysis based on the regressive event-tracker reveals a mean
time to failure for individual components which can promise an
optimised maintenance schedules and has scope for providing
an unified health indicator for prognosis and health manage-
ment [23].

2. System description

A high speed closure manufacturing line, produces plas-
tic caps for beverage and pharmaceutical containing bottles
with a continuous compression machine. It has three super-
components namely extruder, thermal regulator and hydraulic
unit. The system hierarchy of sensor measurements in thermal
regulator is described in Figure 1.

2.1. Thermal regulator

The modelling of thermal regulator is considered. The ther-
mal regulators act as the cooling for the closure stamps. The
sub-components and some key sensor acquisition of the ther-
mal regulators are shown in Figure 2. The schematic of thermal
regulator shows the flow of coolant (in this case water) at a pre-
set temperature (7). The coolant is used to reduce the temper-
ature of the formed plastic closures in the mould. The coolant
gains temperature (7, T) from the zones to be cooled down and
goes through heat exchanger (7, |) via filter for the compo-
nents/parts of the machine to be cooled. The temperatures at

Machine module Legend:
to be cooled
> ® SET-Point
P T | Operator sets —l
res%) emp® temperature Tw 1 ¢ Sensor

Flow-rate
(&)

Filter

Pressure :
> Coolin
(P) ¢

Heat )
unit

exchanger
Tw l

Pump

3

Temperature (Ty)

Control Valve

Fig. 2. Schematic of thermal regulator of continuous compression machine.

any given time (7,) in the circuit after coolant passes through
hot zones are T + T,,. The temperature, T, of the coolant after
passing through heat exchanger should be same as the preset
coolant temperature 7' as shown in Eq. 1.

Ty=(T,-T.)~T (1)

The coolant circulates throughout the thermal regulator com-
ponents to be cooled down by means a pumps that boosts the
coolant flow. The system is monitored by flow-rate and pres-
sure sensors, in order to detect any deterioration in the circuit
components. Besides, an electrovalve is used for controlling the
cooling power that is provided to the heat exchanger by an ex-
ternal cooling unit (chiller).

2.2. Failure mode analysis

The control system in the cooling circuit is described in Fig-
ure 3. The user set value of 7' is maintained in the thermal
regulator using a feedback mechanism. The temperature error
function, AT = (T, —T) is determined as the difference be-
tween the post-heat exchanger temperature of 7', (output tem-
perature as shown in Eq. 1) and user set value of 7' (input).
If the AT is positive indicating increase in temperature of the
coolant in the system, the motor pumps more water increasing
the pressure from P to P + AP. Hence, AT and AP are directly
proportional to each other. The filter in the thermal regulator

Pressure Moulds
(P + AP) -
Tw? ——»| Filter
Set Value N Twd
(m T «

Heat Exchanger

Fig. 3. The temperature control system of cooling circuit in the thermal regula-
tor.
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Fig. 4. The ontology of the filter clog failure mode in upper/lower moulds.

depreciates the system by progressively getting clogged by the
coolant degradation, erosion of the components in contact with
the coolant and penetration of particulate matter in the cooling
circuits. Given the higher pressure drop in the filter due to its
progressive clogging and the characteristic P — Q curve of the
centrifugal pumps, the flow-rate (Q) in the system decreases
by AQ. The decreasing flow-rate causes increase in tempera-
ture in the coolant passing through the hot zones. The control
system tries to compensate for decreased flow-rate by pump-
ing more water causing increased pressure. Hence, the change
in flow-rate AQ and change in pressure AP are inversely pro-
portional. This phenomenon provides an opportunity to model
the depreciation of the filter. The filter clog failure mode can
be assessed by the failure mode, effects and critical analysis re-
ports (FMECA) and from control system of the cooling circuit.
The ontology of the failure mode is described in Figure 4. The
failure mode ontology describes the relation between the sen-
sor values, failure modes and components. This simulates the
overall health and possibilities of failures of the entire system
in retrospect. The other parameter measured such as tempera-
ture and pneumatic valve openings values are ineffective due to
the control system described in Figure 3.

3. Regressive Event-Tracker

The preventive alarms are set in place to shut-down the sys-
tem if the sensor values cross the thresholds. However, the oper-
ators prefers to set these preventive threshold to be way higher
(or lower) because of the demand on non-stop production. This
is despite the fact that there could be sudden breakdown and
the sensor values have not reached the preventive thresholds.
Hence, a safety threshold is proposed that can provide the inter-
mittent health of the sensors and track the quality of the prod-
ucts and degradation of the machines. The sensor values can be
modelled as a linear function with slope and intercept as shown
in Eq. 2. The slope of the model, ¢(?), is time dependant. The
linear function is used as the model for sensor values. As the
sensor values theoretically does not have any trend. Any trend
reflected by the sensors as evident in the Figure 5 is purely due
to degradation.
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Fig. 5. Sensor values of coolant flow-rate (Q) and pressure (P). The sensor
values are plotted against cycles.

The regressive event-tracker technique is a causal system in na-
ture as it models historical and real-time values and tries to train
the model, f(¢), to the sensor values and predict the future sen-
sor values. The observations on slope of the model, ¢(?), is:
from Figure 5, the values of flow-rate, Q, is decaying and hence
¢(¢) will be negative. The ¢(¢) for pressure sensor, P, will be
positive. The noise of the sensor values, £(f), makes the sys-
tem very sensitive for small training set of data. Hence the for
training the model the range is chosen for ~ 10000 cycles (A
cycle is defined as the process of one full turn of the carousel
of the continuous compression machine). The model requires
counting of production cycles, noise in the sensors could be
transferred to ¢(¢) in the form of Poisson noise. By considering
large sample size the addition of additive noise tends to 0. The
presence of Poisson noise, if any, will be minimised by hav-
ing large fit ranges, which minimises the noise by square-root
function. This also means that the time it takes for the model to
run is very high. The Table 1 demonstrates various training cy-
cle ranges to noise reduction. There is a clear trade-off between
time to train the model and noise factor. A useful user defined
safety threshold (S) is defined for shutdown of components if
the sensors crosses these values. The safety threshold could be a
threshold for safety of the personnel working around the work-
shop floor or safety of the components or the degradation of the
manufactured components. The remaining useful life, gy, can
be derived from Eq. 2 as the value of  when f(¢) = S as shown

Table 1. The trade-offs between noise reduction factor of ¢(r) and wait time for
the training of thermal regulator prediction

Training cycles Noise &(t) % Noise Wait time

1 x 10! 3.16 31.62% 20's 600 ms

1 x 102 10 10% 3min 265
1x103 31.62 3.16% 34min 19s
1x10* 100 1% 5h43min 10s
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t Table 2. Special cases of Weibull distribution with respect to shape and scaling
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Fig. 6. The evaluation remaining useful life by regressive event tracking model.
in Eq. 3. The tgy is described in Figure 6 as a duration.
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An example of modelling on coolant flow-rate depreciation is
shown in Figure 7 for a training range of 1 x 10° cycles before
current cycle at # = 0. The training of this range would be more
than 2 days. However, the &(¢) will be as negligible as ~ 0.3%. A
safety threshold S = 250 is assumed. From Eq. 3, the remaining
useful life, tgyy, is estimated at 3.0173 x 10° cycles or 10 week
1 day 21 h 41 min 59s with a fitting confidence parameter of
95%.

4. Weibull Distribution

The Weibull distribution has been a standard form of failure,
survival and reliability analysis [2, 7, 17, 27, 31, 35]. The nor-
malised Weibull distribution can provide the relation between
the remaining useful life or remaining useful cycles to the prob-
ability. In the use case, the relation between remaining useful
life and remaining useful cycle is established by finding the cy-
cle rate (cycles/second or Hz) or the time between the cycle, A¢
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Fig. 7. f(r) model between cycles 7.5 x 10° to 8.5 x 10° (current) with the es-
timated parameter of ¢(f) = —1.689 x 103 and o = 300.9.

(Eq. 4), with standard error of median, &y, (Eq. 5).

At = Vit (€]

The Eq. 5 is the standard relation between standard deviation,
&;, and standard error of median, gy,.

EM = [ FEr )

where &; is the standard deviation of time between cycles. This
paves the way to estimating the remaining useful life in the
form of distribution analysis and regressive trend tracking. The
Weibull distribution definition is described as shown in Eq. 6.

_\B-1 _\B
paswos 3 f (5]
n\ 7 "

where ¢ is time to failure, f(tk,B,n,t) = OVt < ¢, B €
{Ryp | Ryg = R >0} is the shape parameter which deter-
mines the slope and 7 € R is the scaling parameter of the dis-
tribution, ' € Ry is the time offsetting parameter and k € Ry
is the scalar parameter. The advantage of Weibull distribution
is that it takes the shape of other distribution when shape and
scaling parameters take particular values as shown in Table 2.

The Weibull distribution has been a standard to understand
the failure rate analysis. The shape 8 and scale n parameters of
the distribution indicates the behaviour of the system, as well
as prediction parameters.

4.1. Weibull Analysis of Data

To find the overall health of the thermal regulator based on
the perspective of its critical sensors such as flow-rate (Q) and
pressure (P) sensors, the statistical study has to be carried out
for each estimation of #zy,. The remaining useful life is esti-
mated at every 1000 cycles interval for the training sample of
1 x 10° cycles. The estimates are filtered for out of boundary
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Weibull Based Failure Prediction
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Fig. 8. The probability of failure estimation with respect to remaining useful
life distribution for a safety threshold, S, is ® 15% below set value in the tran-
sition/degradation period.

estimations as shown in Eq. 7.

_ #()<0 VO
trur = trur Y 60)>0 VP @)

The distribution of gy for coolant flow-rate in weeks with a
bin width of 5 days is shown in Figure 6. The distribution is
modelled with the Weibull distribution of 4 parameters with the
estimation parameters of 8 = 0.8925, n = 6.113, ¥ = 2 week
3 day 12h 38 min 17 s and k = 4852. The distribution peaks at
9 week 3 day 12 h indicating the mean time for a filter to fail (or
mean time for coolant flow-rate to cross safety threshold). The
probability is of failure is relatively low because of the large
interval (1000 cycles) between training. Based on the mode of
the Weibull distribution model, the events can be classified by
the time ranges from < 1 to > 10 week as shown in Figure 9. A
decision support system will be alerted by the outcome of event-
tracker prediction. The probability of breakdown [16] can also
calculated from the range of event-tracker.

5. Conclusion

The proposed regression based event-tracker has an advan-
tage of being causal system with fast prediction. For the thermal
regulator the proposed prediction on health provides an estima-
tion of ~ 10 weeks. The reliability analysis show that the es-
timated reliability to be ~ 9 weeks. The proposed method is
assuming that the sensor values are linear and hence there is
potentially an small error if the sensor value changes rapidly

< 1Week

Fig. 9. The event-tracker based on regression and Weibull distribution.

> 10 Week Event-Tracker

compared to modelled historical values. This will also lead to
a slight overestimate of remaining useful life, tzy . However,
the fgyr provides more accurate estimation as the sensor val-
ues approach towards the safety threshold. The other possibil-
ity is to model with a pair of exponential degradation functions
[10]. The pair of exponential degradation functions might pro-
vide the flexibility in providing accurate predictions in case of
rapid changes in the sensor values. The regression based event
trackers are in agreement with Weibull theory of degradation.
The computational complexity [24] is low compared to neu-
ral networks and deep learning making it attractive to SMEs.
The complexity over time can be further reduced by increasing
the interval between training length of data set and testing. The
event of safety threshold, classified by the regression based dis-
tribution analysis are dynamic and can be translated to all sen-
sors to build an ontology of machine breakdowns (a machine
simulator) and provide a single health indicator of the entire
workshop floor. The concept of having a mean time to failure
for individual component provides an optimised scheduling for
maintenance and will provide an holistic approach to prognosis
and health monitoring.
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