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Abstract 

The mobile networks users’ demands for data services are increasing exponentially, this is 

due to two main factors: the first is the evolution of smart phones and their application, and 

the second is the emerging new technologies for internet of things, smart cities…etc, which 

keeps pumping more data into the network; ‘though most of the data routed in the current 

mobile network is non-live data’. This increasing of demands arise the necessity for the 

mobile network operators to keep improving their network to satisfy it, this improvement 

takes place via adding hardware or increasing the resources or a combination of both. The 

radio resources are strictly limited due to spectrum licensing and availability, therefore 

efficient spectrum utilization is a major goal to be achieved for both network operators and 

developers. Simultaneous and multiple channel access,and adding more cells to the network 

are ways used to increase the data exchanged between the network nodes. The current 4G 

mobile system is based on the Orthogonal Frequency Division Multiple Access (OFDMA) 

for accessing the medium and the intercell interference degrades the link quality at the cell 

edge, with the introduction of heterogeneity concept to the LTE in Release 10 of the 3GPP 

the handover process became even more complex. To mitigate the intercell interference at the 

cell edge, coordinated multipoint and carrier aggregation techniques are utilized for dual 

connectivity.  

This work is focused on designing and proposing enhancing features to improve network 

performance and sustainability, these features comprises of distributing small cells for data 

only transmission, handover schemes performance evaluation at cell edge with dual 

connectivity, and Artificial Intelligence technology for balancing and prediction. 

In the proposed model design the data and controls of the Small eNodeB (SeNodeB) are 

processed at the network edge using a Mobile Edge Computing (MEC) server and the 

SeNodeBs are used to boost services provided to the users, also the concept of caching data 

has been investigated, the caching units where implemented in different network levels. The 

proposed system and resource management are simulated using the OPNET modeller and 

evaluated through multiple scenarios with and without full load, the UE is reconfigured to 

accommodate dual connectivity and have two separate connections for uplink and downlink, 

while maintaining connection to the Macro cell via uplink, the downlink is dedicated for 

small cells when content is requested from the cache. The results clearly show that the 
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proposed system can decrease the latency while the total throughput delivered by the network 

has highly improved when SeNodeBs are deployed in the system, rising throughput will incur 

the rise of overall capacity which leads to better services being provided to the users or more 

users to join and benefit from the network.   

Handover improvement is also considered in this work, with the help of two Artificial 

Intelligence (AI) entities better handover performance are achieved. Balanced load over the 

SeNodeBs results in less frequent handover, the proposed load balancer is based on artificial 

neural network clustering model with self-organizing map as a hidden layer, it’s trained to 

forecast the network condition and learn to reduce the number of handovers especially for the 

UEs at the cell edge by performing only necessary ones, and avoid handovers to the Macro 

cell for the downlink direction. The examined handovers concern the downlinks when routing 

non live video stored at the small cell’s cache, and a reduction in the frequent handovers was 

achieved when running the balancer.  

Keep revolving in the handover orbit, another way to preserve and utilize network resources 

is by predicting the handovers before they occur, and allocate the required data in the target 

SeNodeB, the predictor entity in the proposed system architecture combines the features of 

Radial Basis Function Neural Network and neural network time series tool to create and 

update prediction list from the system’s collected data and learn to predict the next SeNodeB 

to associate with. The prediction entity is simulated using MATLAB, and the results shows 

that the system was able to deliver up to 92% correct predictions for handovers which led to 

overall throughput improvement of 75%.   
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CHAPTER 1  

INTRODUCTION 

 

1.1 Introduction 

Mobile devices and service provided by cellular networks has been part of every day’s life. 

The mobile phones are no longer exclusively used to make voice calls; with the emerge of the 

smart phones and devices, digital revolution, Nano technology, internet popularity and 

artificial intelligence algorithms, and many other factors boosted the capabilities of mobile 

devices, made them more powerful, and increased the ways they can be used for. The number 

of mobile phones and services is growing; the time spent by people using their mobile phones 

or cellular devices is increasing rapidly. More time on phone means more data is exchanged 

through the network.  Thus, the network operators keep developing their networks and 

services to quench the thirst for the bandwidth.  due to the limited availability of spectrum as 

well as its high cost, the network operators tends to fully exploit what’s available by multiple 

access techniques, and by using better technologies.  

This research’s target is to study and improve the performance of the existing fourth 

generation mobile network (4G) or the Long Term Evolution (LTE).  

1.2 Motivation 

Since it was first declared, Artificial Intelligence (AI) has been a part of so many industries 

such as finance, image recognition, healthcare, self-driving cars and telecommunications. AI 

is a powerful technology that can transform the existing industry by learning the ways to 

increase the system efficiency and helping the users by advising faster decision making for 

business development and financial accounting. 

In telecommunications, wireless connectivity is a challenge, and maintaining this 

connectivity for users exchanging data at high rates makes it more complex, especially if 

those users are moving. Embedding AI technologies in wireless networks can help make 

intelligent decisions to perfectly manage the network traffic and resources which will 

eventually result in better performance and increase efficiency and reduce the cost. 
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Moreover; AI plays an essential role in providing the network operators with data driven 

solutions based on data collected from the network users, these solutions help providing 

better services to cover customers’ demands. On the other hand; AI can provide the operators 

with network driven solutions which help improving the network performance efficiently and 

costly effective in terms of speed and capacity. 

1.3 Aim and Objectives 

The aim of this work is to provide solutions that improve the performance of the current LTE 

networks and beyond: 

i) Extending the network features and capabilities 

ii) Enhancing the design and architecture circuitry and software 

The objectives of this research can be described as follows: 

i) Building and understanding an LTE model using OPNET modeller with small 

cells deployed for non-live data only transmission. 

ii) Running the LTE model with dual connectivity activated for both uplink and 

downlink, then examining the network behaviour in terms of handover and its 

effect on the network throughput and delay. 

iii) Observing the influence of adding cache units in different points of the network 

then study the outcomes and compare the benefits of this process. 

iv) Adding AI entities to the evolved packet core (EPC), to balance the load 

distributed over the small cells. Reducing the number of redundant handovers 

saves network resources, avoids adding unnecessary delays and extends the 

battery life of the User Equipment (UE).  

v) Adding another AI block based on neural networks to the EPC architecture to 

predict the next effective evolved base station eNodeB for the UE to associate 

with. The prediction procedure helps the network anticipate the handover prior 

triggering allowing resources transfer from the source to the target eNodeB.   

1.4 Contributions to Knowledge 

This research discusses the current LTE network features and studies the ways to 

consolidating these features as well as proposing the addition of new technologies to the LTE 

architecture, which leads to better Quality of Service (QoS), the contributions of this work, 

are as follows: 
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 Building an LTE model with modified architecture that extends the network coverage 

by adding small cells for non-live content delivery via the downlink, however the 

principal of small cells and different radio access technologies are proposed, none of 

the previous researches in this field reinforced the small cells with caching 

capabilities for storing the contents, non-live content may contain any frequent data 

(like saved videos or information ) , or temporarily in high demand data (such as 

operating system updates). 

 Handover management for load balancing using neural networks. Maintaining good 

connectivity in both uplink for signalling and downlink for data transfer especially at 

the edge of the cell can be improved with suitable handover policy. The neural 

network is trained using network and user data to learn the best time to trigger 

handover (HO) and avoid the consequences of any unnecessary HO. The AI entity is 

embedded in the EPC architecture, but it can be also distributed within the network 

framework. 

 Better resource scheduling can be achieved with prediction of network’s behaviour, 

the UEs mobility can be predicted by using neural networks time series tool with 

learning algorithms so that all the resources and bandwidth allocated for this user can 

be transferred to the target SeNodeB before triggering the handover if the target 

SeNodeB is on the handover list, the implementation of this design had increased the 

throughput by 50% and was able to effectively decrease the end to end delay.  

1.5 Research Methodology 

The aim of this research is to enhance the performance of the LTE network, thus a model 

built as a basic framework using Riverbed 18.7 modeller is proposed (formerly known as 

OPNET). The first step towards achieving the goal was introducing the dual connectivity 

concept in the system; the Riverbed 18.7 supports only Release 8 of the 3GPP standards. The 

node models include the full protocol stack from the physical layer up to the application layer 

represented by modules for the Access Stratum (AS) and Non-Access Stratum (NAS) 

protocols while the layers representing the U-plane protocol stack are embedded as process 

modules inside them. The modified model has the same layers of the original node model, 

except for the Long Term Evolution Dual Connectivity (LTE’s DC) which has limited 

functionality compared to the original one, as it has only the PDCP and RLC layers.  
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The mobile edge computing (MEC) server was also added at the cell edge to share part of the 

processing, manage caching and for better traffic handling; this will reduce the signalling 

overhead between the nodes and the EPC. 

Two solutions for better handover initiation were proposed, the solutions includes EPC 

architecture modifications , AI block that consists of two neural network based objects is 

embedded in the EPC, this block is used for load balancing , handover decision making and 

mobility prediction, the neural networks are modelled using MATLAB, the neural networks 

had two different training schemes ,supervised and non-supervised. The data is collected 

from the network for training, and the outcomes where fed back to the network for updating 

the parameters.      

  

1.6 Thesis Outline 

This thesis comprises totally of seven chapters, starting with the introduction chapter 

verifying the reasons behind and the motivations for doing this work, brief explanation of the 

methodology and the contributions, the rest of the thesis is organised as follows:  

 Chapter Two, is a survey on the mobile network with literature review about the LTE 

and its evolutions. Sophisticated definitions of the parts concerned in building up the 

basic model to provide good comprehension about the network architecture and its 

components. 

 Chapter Three, reviews the beginning of artificial intelligence, and its role in changing 

the face of industry. It listed some of the basic building units of the artificial neuron 

and how it is simulated to learn and react as the human brain. 

 Chapter Four, this chapter explains the deployment of small cells in an LTE 

framework simulated using OPNET modeller and how dual connectivity is 

implemented to mitigate challenges in the coordinated multipoint CoMP and carrier 

aggregation CA, The second part explains the benefits of adding caching units to 

enhance content delivery process for the network users. 

 Chapter Five, the modified LTE architecture built and tested as explained in chapter 

four, with added AI blocks is proposed to overcome the problems occurring due to 

unbalanced load routing and boosting the delivered throughput. The load balancing 

technique utilizes clustering artificial neural network application for content delivery 

mechanism in Heterogeneous LTE mobile network. The proposed network design 
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demonstrated efficient impact on the network performance in terms of power saving 

and handling data size increase. 

 Chapter Six presents a neural network prediction system as an add-on in the LTE 

EPC, the predictor is able to learn some of the patterns demonstrated by users moving 

within the network and can then predict the future behaviour of these users and the 

next associated eNodeB. These predictions are utilized for better radio resource 

allocation and scheduling. 

 Chapter Seven verifies the conclusions extracted from this work, and the future plans 

for enhancing and improving what has been proposed to help saving the environment 

and reduce the power consumption and hence the pollution.  
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CHAPTER 2  

MOBILE NETWORKS THE BEGINNING, 

EVOLUTION, AND TRENDS 

Briefing   

This chapter comprises three main sections the first illustrates the generations of mobile 

networks, their beginning, evolution, trends and technologies migrating from predecessor to 

successor generation, the second explains the architecture and features of the Long Term 

Evolution (LTE) which is the base of the model built and simulated in this work and the 

benefits of distributing small cells in LTE mobile networks. The third part views some of the 

related work and researches in this field. 

2.1 Background 

In the last 100 years the science of telecommunication witnessed huge development alongside 

with electronic and digital devices revolution. Wireless communication and mobile phones 

were dreams, now it has not only become true but roaming, video calls, virtual reality VR, 

Augmented reality AR are now possible because of the powerful and efficient mobile 

networks. Communication development is governed by the market needs in both business and 

personal aspects, and since communication became an important part of everyday life; 

therefore, simplifying the way accessing the communication is the main target of this 

development. 

 

Figure 2.1: Mobile phones everywhere 
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2.1.1 History and Evolution of Mobile Networks  

A cellular network is defined as a wireless network deployed over a geographic territory 

divided into smaller areas known as cells, provided that each cell is served by one or more 

transceiver(s). To avoid the interference caused by neighbouring cells while providing the 

service, all cells must use its own set of frequencies and it must be different from the sets 

used in all cells that are adjacent to it [1]. Cellular networks are usually deployed over a large 

geographical area to provide users with wireless connectivity based services; the users’ 

equipment varies from mobile phones used for making phone calls to IoT sensors /actuators 

proposed for smart cities. The philosophy of cellular networks had grown steadily, starting 

from first generation, evolving to the second and third generations, and the currently in use 

the 4G, trending towards the next generation 5G, as shown in figure 2.2   

 

 

  

 

 

 

 

 

 

 

 

Figure 2.2: Cellular networks evolution history. 

 

The first Generation Mobile Communication System 1G was the first ever wireless 

commercial phone launched with equivalent to Data rate or speed of 2 kbps ,the utilized 

technology was analogue with FDMA Multiplexing, the only service this system was able to 

provide was Voice call which was the main purpose behind launching the 1G, the main 

backbone Network which the system relied on was the traditional and almost everywhere 

connected Public Switch Telephone Network (PSTN) , and the radio Frequency used was 800 

to 900 MHz, however and due to not having common standards or protocols this system had 

many drawbacks  such limited coverage, low capacity, equipment cost, and lack of handover 

[1][2]. 

1G(80s) 2G (90s) 3G (2000s) 4G 

(2010) 
5G  

 

Analogue GSM 

TDMA 

EDGE 

GPRS 

1X 

CDMA 

EVDO 

LTE 

WiMAX 

UMTS 

WCDMA 

HSPA HSPA+ 

LTE-A 

WiMAX2 

OFDM 
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The digital revolution and its impact on humans life had its effect on the communication 

systems which became more available and popular, the introduction of new standards, 

communication protocols, powerful and supercomputers supported the conversion of the 

existing analogue systems to more spectrum efficient and less expensive digital system, this 

led to the birth of  second generation mobile communication system 2G in early 1990’s with 

Data capacity of 10 kbps, it was the first digital mobile technology utilizing TDMA 

Modulation, it provided both voice and data services , and it also relied on the existing PSTN 

as its backbone network, frequency used 850 MHz to 1900 MHz, due to commissioning of 

global standards for mobile systems it expanded quickly and dominated the mobile 

communication market for over a decade and deserved the name Global System for Mobile 

Communication (GSM) [3][4].  

 

Though the GSM spread widely and many of the services that were introduced during its 

development had migrated to and still in use with 3G and 4G systems, the need for better 

coverage and higher data rate was growing, which made the system unable to cope with these 

demands ,the 2.5G General Packet Radio System (GPRS) was the evolution resultant of 2G 

due to the increasing demand for data communication so with its modified architecture the 

Data capacity was increased up to 144 kbps which made it possible to browse the internet and 

send/receive emails as well as sending Multimedia Messaging Service (MMS). After the 

millennium and the launch of Wireless Access Protocol (WAP) as a connectivity protocol for 

the mobile network the Enhanced Data Rate for GSM Evolution (EDGE) considered as 

2.75G was the improved version of GPRS it boosted the Data capacity up to 237 kbps, kept 

the same Multiple Access (TDMA, CDMA) and Frequency (850 MHz to 1900 MHz) [5][6].   

As the computers capabilities and their ways of connectivity evolved and the mobile 

applications that enabled the users to continuously access the world wide web from their 

handsets, the need for higher capacity and motivated the developers to launch the Universal 

Terrestrial Mobile System (UMTS) in Europe and the CDMA2000 (1x and EV-DO) in the 

USA known as 3G- Third Generation Mobile Communication System came with increased 

Data capacity of up to 384 Kbps, main difference from 2G was the use of Broadband/IP to 

provide High speed voice, data and video service, Frequency bands changed to 1.6 to 2.5 

GHz. 3.5G with higher Data capacity up to 2 Mbps, and new standards High Speed Downlink 

Packet Access (HSDPA) and High Speed Uplink Packet Access (HSUPA) are introduced to 

provide High Speed Voice/Data/Video services, it relies the existing GSM as a main 

backbone network, Frequency: 1.6 to 2.5 GHz. The 3.9G was introduced with higher Data 
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capacity: 30 Mbps and new standard (EVDO), same access technique (CDMA) is used to 

provide high speed internet/ Multi-media service, Frequency band: 1.6 to 2.5 GHz [7].  

To a certain point the data rate provided by the 3G network was sufficient to fulfil the 

requirements for many applications, but when the smartphones where launched and the 

number of the connected devices increased in an enormous manner due to the high adoption 

rate of mobile devices and new bandwidth consuming applications arises due to the 

capabilities of the new devices and the high data rate provided by 3G networks. This growth 

in the size of cellular networks affects the performance of the 3G due to the rapid increase in 

the data amount handled by system, and major enhancements in the Quality of Service (QoS) 

for the network users became a priority need. This in turn led to the need to introduce a new 

architecture for the new generation that could satisfy the new challenges. In late 2008 the first 

seed for the Long-Term Evolution (LTE) access network saw light. The fourth generation 

mobile communication system can be defined as an all IP based wireless network designed to 

support high speed data transfer, and due to its heterogeneity it can deliver good services 

indoor and outdoor, the LTE provides service with better quality at high speed and lower cost 

. The predecessor 3G networks contained a radio network controller (RNC) in its radio 

network architecture, this controller is responsible of controlling a group or all of the 3G base 

stations, , while in LTE the network is flat, control functionalities are embedded in the evolved 

NodeB (eNodeB), therefore the need for the RNC is no longer necessary, and the 4G flat and 

simple network allows quicker data exchange and eliminate delay caused by the signalling 

overhead [3][4].   

When LTE was launched, it was looked at as the new technology overriding the legacy 3G 

network from all point of view, similarly ; the LTE-A was launched to expand the capabilities 

of  LTE and to fully cover the requirements for the 4G which was announced by the ITU. The 

improvements in LTE-A led  to commissioning of the LTE-A Pro which further extend the 

functionalities of the LTE-A and prepares  for launching the next generation 5G. 

Fundamentally the LTE can be considered as 3.5 G, LTE-A is the 4G, and the LTE-A Pro as 

4.5G  

2.2 Long Term Evolution - LTE 

Prior to the launch of 4G, mobile communication networks were used mainly to make phone 

calls or send text messages and transfer Data therefore being online 24/7 were not a major 

concern. Post- Millennium these networks gradually became dominated by emailing, 
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browsing, and applications usage, all this created huge amounts of data to transfer across 

mobile communication networks along with the increased development of applications and 

technology in the form of smart phones this data grew exponentially. In response to this 

growth, network operators had to increase the capacity of the mobile networks.  

One of the ways of achieving this is by improving spectrum utilization using better 

technologies, so that Data can be transmitted and received faster between mobile phones and 

the base stations. The main driver behind the introduction of LTE is a change in mobile 

communication technology, so that it runs faster to achieve higher data transfer rates. Another 

motivation for LTE is the reduction in delays to figures of around 20 to 30 ms [8], which are 

suitable for the more recent kind of applications such as interactive remote games, Virtual 

reality (VR) and Augmented Reality (AR) applications. 3GPP (3rd Generation Partnership 

Project) is the global organisation that defines specifications for mobile technology standards 

and can be considered as a centre point for mobile networks beyond 3G. 

The ‘Releases’ are the indication units of the specifications issuing and revision, when a Release 

is completed all the new added features will be ‘frozen’ and ready to be commissioned. The 

3GPP might develop more than one Release simultaneously and aims to make the new 

technology backwards compatible. The LTE was proposed for the first time in R8 and in the 

following Releases a lot of enhancing features were added to boost the performance starting 

with interference management and not ending by carrier aggregation in R9, R10, R11 and R12.  

The R13 and R14 were improvements on the LTE-A technology path and paved the way 

towards the 5G. 170 features were defined in R13 during its active period (September 2012 – 

March 2016) [9]. One of the standards based and concluded on R13 and considered as the major 

contribution was the new narrowband radio technology (NB-IoT) which was developed for IoT 

in (June 2016) [9].  

R14 was built depending on many contributions, researches and projects that were worked 

out in R13, and it was active for the period (September 2014 – June 2017). As a development 

of the LTE network, the LTE-A aimed to increase the available bandwidth and deliver higher 

data rates, furthermore; it extended the range of the connected devices. As a result, the LTE-

A successfully improved and optimised the network capacity and performance, functionality and 

efficiency compared to LTE, to provide better services to the end user.  
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2.2.1 System Architecture Evolution 

In 2G and 3G communication systems data is handled separately from the phone calls this is 

because the packet core was added later to the architecture forming a 2-core network that 

might be connected to 2 different backbones. Simply in 3G network, the UE is connected to 

the base station in the radio access network and the radio access network is connected to the 

core network, the core network has 2 domains the circuit switch (CS) and the packet switch 

(PS), the CS is connected to the PSTN and the PS is connected to the internet, This 

architecture is evolved in the LTE in one evolved packet core (EPC) with PS domain 

embedded and is connected to the internet. Hence the phone calls were processed in the CS 

domain which no longer exist in the LTE, alternatively the phone calls are placed using 2 

techniques the first one is called (CSFB) Circuit Switched FallBack “(CSFB) is a technology 

where voice and (SMS) services are delivered to LTE devices through the use of GSM or 

another circuit-switched network”, and this causes a significant delay in most cases, the 

second technique is via the IP Multimedia Subsystem entity (IMS) where all the packets are 

forwarded to the IMS [11] and the IMS is connected to the outside CS  networks through the 

PSTN , all signalling and call set up functions are initiated by the IMS. Figure 2.3 illustrates 

the described system architecture evolution in the form of block diagram.  

 

 

Figure 2.3: System Architecture evolution. 

2.2.2 Evolved Packet Core 

The LTE system evolved packet core consists of the following entities: 

 The PDN gateway (PGW) is the part responsible for interfacing the core with the next 

external system, such as internet or IMS, it’s the first entity for packets being transferred 
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to/from the LTE core, it also assigns the IP address for the UE in order to be recognized 

and connected to the external system. 

 The Serving Gateway (SGW) is the entity responsible of forwarding the packets between 

the PGW and the eNodeB in the E-UTRAN, the reason for forwarding the packets in two 

stages (PGW & SGW) is to handle the roaming process [7][8]. 

 The Mobility and Management Entity (MME) is the main control part in the EPC its 

responsible for mobility management and identify and authenticate the UE and security 

parameters when the UE request access to the network and is the Non Access Startum 

(NAS) termination point. 

 The Policy Control and Charging Rule Function is responsible for policy control decision 

making, allowance check and controlling all the flow-based charging functionalities in the 

Policy Control Enforcement Function (PCEF), which is part of the P-GW and is 

responsible for (QoS) authorization providing [12].  

 Home Subscriber Server (HSS) is the equivalent of the Home Location Register HLR in 

the GSM with added and evolved functions, it stores all user-related and subscriber 

related information. It also provides support some functions in mobility management, call 

and session setup, user authentication and access authorization [12].  

 Figure 2.4 shows the block diagram of the LTE system EPC 

 

 

Figure 2.4: EPC block diagram. 

 

Due to increasing number and kinds of the devices in the network and the huge growth of the 

data routed in the network with all the emerging technologies, the amount of signalling 



13 
 

information and traffic data had increased exponentially, and separating the signalling and 

control functionalities from the traffic data will create easier ways and better procedural steps 

towards fulfilling the network evolution requirements. Hence the network is split into two 

main planes; data plane and control plane as shown in Figure 2.4, as a consequence of this 

separation the S1 interface is split into 2 sub interfaces with same functionality, S1-U is the 

interface between the E-UTRAN and the SGW for data, and the S1-MME is the interface 

between the UTRAN and the MME for control [13]. 

2.2.3 Interfaces in LTE 

Interface is the point where two different systems or subsystems meet and interact, in LTE 

network there are several interfaces used to transfer the information between different levels 

of protocols and network layers, each interface is built in a standard way described by 3GPP 

[14]. 

 The Uu interface is the air interface connection between the UE and eNodeB, these two 

elements use this interface whenever information is trancieved between them. 

 The X2 interface connects one eNodeB with another eNodeB. This allows signalling and 

traffic to be transferred between neighbouring eNodeBs, it is also split into X2-CP 

interface for signalling exchange between eNodeBs, and X2-UP interface for traffic 

exchange between eNodeBs directly. 

 The S1 interface as explained in the previous section is split into 2 sub interfaces with 

same functionality S1-U is the interface between the E-UTRAN and the SGW for data, 

and the S1-MME is the interface between the UTRAN and the MME for control. 

 Both X2 and S1 interfaces are IP based and will likely use a physical connection  either 

copper or fibre though they could be connected via spectrum in terrestrial areas or where 

physical connection is not available, the signalling procedures and the types of exchanged 

messages sent across these interfaces are defined by the application protocols.  

 The S11 interface connects the SGW to the MME, signalling related to bearer generating 

and mobility management exchanged between these 2 nodes via this interface, and no 

traffic uses S11 interface. 

 The S5 interface represents the main connection for application data across the EPC 

because it connects the SGW and the PGW which is the provider of the IP services. S5 

interface is used by both data plane and control plane. 
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 The S8 interface is similar to S5 but it connects the SGW in a certain EPC to a PGW in 

another core network, this interface is used when the UEs are roaming away from their 

home network. 

 The S6a connects the MME to the HSS and is for control plane signalling. 

 The GX interface connects the PCRF and the PGW, the PCRF provides the charging 

information to the PGW, its sometimes denoted as S7 interface [3][9][16]. 

2.2.4 Channels  

Channels in LTE are signals or information exchanged between the layers of the protocol 

stack and between the UE and the eNodeB using a certain bands of frequencies. 3GPP 

specified 6 channels bandwidths for LTE [17], with characteristics shown in Table 2.1. 

 

 1.4MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz 

Number of resource blocks 6 15 25 50 75 100 

Number of subcarrier 72 180 300 600 900 1200 

UL subcarrier bandwidth (MHz) 1.08 2.7 4.5 9.0 13.5 18.0 

DL subcarrier bandwidth (MHz) 1.095 2.715 4.515 9.015 13.515 18.015 

 

Table 2.1: Channel Bandwidths for LTE [17]. 

 

A resource block (RB) represents the basic unit of resource for LTE air-interface, the eNodeB 

scheduler allocates resource blocks to the UE when initiating a data transfer, each RB 

consists of 12 subcarriers and each subcarrier occupies 15 kHz of spectrum, and the total 

subcarrier bandwidth is smaller than the channel bandwidth to spare some guard band 

between subcarriers at the band edge, the larger channel bandwidths can support achieving 

higher throughputs whilst the smaller bandwidths that leads to achieving lower throughput 

values but are much easier to accommodate specially when low spectrum availability. Figure 

2.5 illustrates channel bandwidth and subcarriers allocation for E-UTRA carrier.  
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Figure 2.5: Channel Bandwidth and transmission bandwidth [17]. 

 

Channels can be sorted into physical channels, transport channels and logical channels and 

are linked as shown in Figure 2.6. 

 

 

Figure 2.6: LTE Channels. 

 

 The physical channels are set between the eNodeB and the UE as streams of information 

exchanged via the uplink and downlink. The subcarriers are organised in such a way that, at 

any one moment in time, a particular subcarrier is transmitting on a particular channel [18]. 

For example the physical uplink control channel (PUCCH) carries the channel quality 

indicator (CQI) as acknowledgment from the UE to the eNodeB, and the physical broadcast 

channel PBCH carries information about the bandwidth which can be recognized by the UE 

and so on. The logical channels are streams of information flowing between the radio link 
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control RLC and the Media Access Control MAC layers in the protocol stack and they are 

also characterised by the type of information they carry.  

 

One of the significant factors related to the work presented in this thesis is the received radio 

signal, reference signals are used for 2 purposes: the first is measuring the strength of the 

signal received at the UE in order to filter the subcarriers, and decide which ones are suitable. 

The UE scans for the reference signals which are distributed across the time and frequency 

domains so that the mobile will be able to find and measure them. The second is that they 

enhance the mobile capabilities to process the received information, by briefly acting as a 

signal transmitted with known amplitude and phase angle, and this will allow the UE to 

detect and supress the effect of amplitude and phase changes. On the downlink, the 

demodulation and sounding signals perform the equivalent tasks for the uplink [18]. 

2.2.5 Scheduling 

The scheduler is an entity in the eNodeB it decides which of the connected UEs has the 

priority for resource allocation and how much resource blocks to allocate depending on the 

received CQI from the UEs and on the resource availability (Figure 2.7). Scheduling is done 

at per sub-frame basis i.e. every 1 millisecond. 

 

 

 

Figure 2.7: Scheduler in LTE. 

 

Scheduling in LTE can be classified into non-persistent (Dynamic) and semi-persistent, as 

persistent scheduling is not used in the LTE, in dynamic scheduling the network is granted 

full flexibility to assign the resources to the UE as compared to persistent scheduling where it 

gives resource allocation is every sub-frame, depending on the channel conditions dynamic 
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scheduling changes the resource allocation to the UEs [20]. In LTE semi-persistent 

scheduling SPS the process is designed to reduce the control channel overhead for VoIP 

applications and services. Since voice over LTE (VoLTE) require persistent radio resource 

allocation at regular intervals (one packet in 20ms from AMR speech codec), SPS allocates 

radio resources for a long period of time [21].  

2.2.6 LTE Bearers  

The LTE system provides end to end service to the end user using the hierarchy of bearers 

shown in Figure 2.8 [3]. 

 

 

 

 

Figure 2.8: LTE Bearers [3]. 

 

The radio bearer supports the connection across the air interface and the S1 bearer provides 

the connection across the transport network, combining these two bearers result in generating 

the E-UTRAN Radio Access Bearer (E-RAB) bearer. As mentioned in Section 2.2.3 the S5 

interface provides connectivity between the SGW and PGW of the same core, while the S8 

interface provides the connectivity between the SGW and the PGW belonging to two 

different cores, combining the S5/S8 bearer and the E-RAB bearer leads to the generation the 

EPS bearer, and all data plane information transferred by the same EPS bearer will have the 

same quality of service QoS, the EPS bearer provides data plane connectivity from the user to 

the PGW, there are many classes of EPS bearers such as; default EPS bearer which is set 

immediately when the UE request anchoring to the network, other types of bearers ‘known as 
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dedicated EPS bearers’ are established either to connect to different PGWs or to provide 

different QoS in the same PGW. Signalling radio bearers (SRB) are used to transport the 

signalling messages for Non-Access Stratum (NAS) between the UE and the MME, and the 

RRC signalling messages between the UE and the eNodeB [7]. 

2.3 LTE Advanced 

Increasing capabilities and improving the performance of the LTE lead to the birth of the 

LTE Advanced (LTE-A) which was introduce in Release 10 of 3GPP specifications and its 

requirements were specified in [22]. The requirements for LTE-A have been set to comply 

the requirements of IMT–Advanced specified by the Radio communications division of the 

International Telecommunication Union (ITU-R). These most important requirements could 

be summarized by the following; Peak throughput requirements for LTE-A are 10 folds of 

those in LTE, this huge boost was achieved by increasing the  bandwidth and using multiple 

antenna transmission ,the maximum bandwidth in LTE was 20 MHz, and was increased to a 

maximum bandwidth of up to 100 MHz in LTE-A, in the downlink direction, the 4×4 MIMO 

evolved to 8×8 MIMO, and  the single antenna transmission was evolved to 4x4 MIMO in 

the uplink direction. Also and as consequences of these enhancements the peak spectrum 

efficiency which is a measure of throughput per unit of bandwidth (bps/Hz) was increased by 

6 times, and the control plane latency which is the delay in changing the state of the UE to be 

ready for data exchange via user plane connection was also reduced in LTE-A, if the UE was 

in the ‘connected’ mode the latency is reduced from 50ms in LTE to 10 ms in LTE-A, and if 

the UE was in the ‘idle’ mode then the latency is reduced from 100 ms in LTE to 50 ms in 

LTE-A [22].   

 

The main technologies proposed by LTEA are:- 

- Carrier Aggregation (CA) 

- Coordinated MultiPoint transmission (CoMP) 

- 4X4 MIMO in uplink 

- 8X8 MIMO in downlink 

- Heterogeneous networks 

- Introducing Relay nodes 
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Figure 2.9: LTE-A technologies. 

 

 

 

2.3.1 Carrier Aggregation  

In intra band adjacent carrier aggregation the channel bandwidth is increased by combining 

multiple carriers, according to Release 10 of 3GPP specification it was defined to support 

signalling for the combination of up to 5 single carriers resulting in maximum channel 

bandwidth of 100MHz, these component carriers are not necessarily adjacent and they can be 

from the same or different operating bands [3][19].  Figure 2.10 shows the aggregated 

channel bandwidth. 

 

 

Figure 2.10: Aggregated channel bandwidth [19]. 
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2.3.2 Coordinated Multipoint 

Coordinated Multi-Point transmission/reception (CoMP) is a DL/UL technique for increasing 

the capacity of the network and enhance the throughput for users at the cell edge. In a 

network containing a centralized controlling eNodeB and a Remote Radio Equipment (RRE) 

as a second transceiver Figure 2.11 shows the eNodeB can centrally control all radio 

resources by transmitting content data directly from the eNodeB to the  RRE on optical fibre 

connections, this technique is very robust in areas covered by optical fibre services. There is 

little signalling delay or other overheads in this technique, but the intra-cell radio resource 

control is relatively easy, another drawback is that the central eNodeB must be capable to 

cope with increasing load due to adding and connecting new RREs and this might need more 

powerful servers or circuitry.  

 

 

Figure 2.11: CoMP concept. 

2.3.3 Heterogeneous LTE Network 

Pre LTE-A launch, all traditional cellular networks were deployed in homogeneous way by 

using one fixed type of base transceiver subsystem (BTS), the BTS is commissioned to 

provide services to the UEs within its coverage. All the BTSs have the same transmission 

power, however the directions and angles of the sectors can be modified to change the 

antenna transmission pattern, and when possible the same backhaul connection to the data 

network [4]. In Heterogeneous (HetNet) network architecture which was defined in Release 

10 of 3GPP macrocell as main node of the network and some low-power base stations, i.e. 

micro, pico, femto and relay nodes, these small cells are robust and effective in compensating 

the dead zones that might occurred in the traditional systems (with macrocell only), boost the 

capacity and support other new services that require radio access, Figure 2.12 illustrates a 

typical HetNet [23]. 
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Figure 2.12: Heterogeneous Network (HetNet) [23]. 

 

 

Deploying a HetNet allows wide flexibility and less complexity in service providing to the 

different types of network users at a cost effective margin. A major issue in this kind of 

networks is managing and reducing the effect of interference to achieve a worthy influence 

when implementing such architecture [25]. Higher QoS plus higher signal to noise ratio 

(SNR) in the network could be scored when packet drops goes as minimum as possible 

resulting in higher data throughput, and this could be improved when using the correct 

channel estimation and allocation schemes. To maintain good indoor coverage, the macro 

eNodeB need to increase the transmission power to serve the unreachable indoor users, but 

this will certainly cause a serious inter-cell interference which will lead to severe drop in 

network performance. Introducing femtocells for indoor applications is a good alternative to 

perfectly cover the indoor areas; they can provide all the network services resulting in 

network capacity increase. Better traffic handling could be achieved when a large amount of 

data is delivered to users residing outside the macrocell’s coverage, which will be able to 

serve more users within its coverage while keeping its transmission power unaltered [18][22]. 

2.3.4 Cell Types in HetNet 

Small-cell network term is denoted for networks that have, short range and lower 

transmission power, the purpose of implementing them is to keep network users connected 

and provide the same QoS to users moving within all the network areas. A heterogeneous 
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network solution should adopt efficient spectrum management schemes by using a range of 

small-cell nodes depending on the network demands and applications. Figure 2.13 shows 

different kinds of nodes in HetNet architecture, sorted according to the coverage area.  

 

Figure 2.13: HetNet base stations. 

 

 Macrocell  

Macrocell nodes can cover large outdoor areas of a radius up to 30 km by transmitting high 

power levels, the power ranges from 40 to 100 Watt. They can provide services to a fixed 

number of users, the number of users are governed by cell deployment, brand, and available 

channels; it varies from 200 to 1000 users. 

 Microcell 

Microcell nodes are used in outdoor areas to relief macrocell nodes from users and handle 

them independently the cell radius is around 2 Km and the transmission power of 2 to 10 

Watts depending on the equipment. Microcells have also been used in GSM and 3G cellular 

networks, due to the ability to cooperate in outdoor areas. 

 Picocell 

Picocells are mainly used to extend the coverage in dead zones in order to support more 

users, they have lower transmission power compared to macrocells and microcells. 

Deploying picocells has several drawbacks, the networks using picocell nodes will probably 

have lower signal to interference ratio, due to the unplanned distributing on the network. Due 

to the difference in transmitted power levels when deploying macro and pico cells 

combination in the same network, therefore in the downlink the pico cell will have very 

limited coverage. However, this doesn’t apply in the uplink direction because the 

transmission power from UE to any kind of base stationsis the same, Picocell BTS could be 

used either in indoor or outdoor, the cell radius roughly 200 meters. 
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 Relay Node 

Relay Stations (RSs) are introduced to attract user information from the surrounding user 

equipment (UE) to a local (eNodeB). The RSs are used to increase the total system 

throughput by boosting the signal they receive from an eNodeB. Relay nodes van be 

classified into 2 types:  

Type 1 (non-transparency relay), which enables a remote UE located outside the coverage of 

eNB to access to the eNodeB. 

Type 2 (transparency relay) enables a UE residing inside the coverage of eNodeB and 

receiving the service through an active connection to enhance the link capacity and QoS. So it 

is not used to transmit the signalling and the control information, but they are used to increase 

the overall system capacity. Hence, the main advantage of combining relay nodes and 

macrocell in the same network is to boost transmission and reach UEs located outside the 

coverage area and improving the existing connections if any. 

 

 Femtocell 

Femtocells are intelligent access point deployed indoor to maintain network availability for 

3G and 4G UE. Femto nodes can be deployed within the existing macro networks, therefore 

the involved users can switch between macro and femto easily and less complexity when the 

femtocell is used within closed mode HetNet, any user associated with the femto cell will be 

able to access the network. Femtocells might cause high interference when deployed; 

therefore it’s very important to follow good switching and handovers schemes to guarantee 

maximum benefit from the network. 

2.3.4 Small Cells and Dual Connectivity 

According to [29] the definition of small cells is; “any node in the network that transmit 

lower power than the BS classes of macro node can be considered as small cell”. This will 

put Pico and femto cells that have transmission power of 0.25 W and 0.1 W respectively 

under small cells group [3].The 3GPP Release 12 defined Dual connectivity as the 

technology which extends carrier aggregation (CA) and coordinated multi-point (CoMP) to 

inter-eNodeB with non-ideal backhaul [26], the focus on inter-eNodeB CA case led to 

improving throughput per UE and mobility robustness, DC enables UE to have two separate 

connections to an MeNodeB of macro cells and an SeNodeB of small cells, simultaneously, 

However, those serving cells for the CA should belong to a single eNodeB that can have 

multiple serving cells by sectors and operational frequencies. DC in LTE can be deployed 
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according to any of the following three scenarios as represented in Fig2-14, the small cells 

can adopt intra-frequency or inter-frequency depending on the network resources, the 

scenarios are classified into;  

 Scenario1: Intra-frequency scenario 

 Scenario 2: Inter-frequency scenario 

 Scenario 3: Out of coverage scenario 

 

 

Figure 2.14: Dual Connectivity scenarios. 

 

2.3.6 Mobile Edge Computing  

Edge computing is a technology that enables cloud computing features and IT capabilities to 

be available at the edge of the network [27]. Since LTE is mainly a mobile network and has 

flat architecture, which will consequently create a perfect environment for edge computing 

deployment at the eNodeBs therefore it is denoted as Mobile Edge Computing (MEC), MEC 

can perform tasks that could not be achieved with traditionally centralized network 

architectures, this will lead to  improving user experience, and minimize congestion in the 

other parts of the network with computing and storage resources to be distributed to more 

optimized locations in the edge of the mobile network (i.e. RAN). Deploying MEC within the 

radio network can decrease latency and efficiently enhance the bandwidth it will also offer 

processing to some real time performance indicators such as UE position, cell load, and 
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power consumption, processing these factors in the MEC server can be used to efficiently 

design and deploy applications that can differentiate the mobile broad band quality of 

experience, reduce cost and increase the performance [28].  

There are several deployment architectures of the MEC server that provides computing 

resources, storage capacity, connectivity, and access to user traffic which can be used in a 

mobile edge computing environment, the most popular and mobile operators focused option 

is the ETSI MEC (Multi-access Edge Computing) [29]. Other MEC examples include new 

emerging technologies such as Internet of things (IoT), Augmented Reality (AR), data 

caching...etc.  

 

 

Figure 2.15: MEC deployment in mobile network. 

 

 2.4 State-of-the-Arts Work 

The recent works demonstrated the benefits of small cells, the effect of their range expansion 

and network performance evaluation in HetNets using different approaches, and how they 

would be deployed to comply with the next generation(s) requirements and standards. 

In [30] a mmWave-based backhaul mesh Ultradense network (UDN) is considered as a 

model, then an optimization model using IBM CPLEX solver is proposed to find optimal 

solution in terms of throughput and fairness. Also a heuristic algorithm is proposed to reduce 
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complexity and compare it with the optimal results in evaluation, upper and lower bounds of 

aggregated UE throughput using different fairness weights in random HetNet topologies were 

examined, According to simulation results, dense SeNBs and large mmWave bandwidth 

improve network throughput by increasing access and backhaul link capacity. 

 

In [31] the authors considered the same network model as in [30] but using OPNET modeller, 

same challenges were investigated, they analysed the potential gains when splitting the data 

bearer in the uplink in terms of load balancing and per user throughput and compared the 

drawback of the UE performance when connected to different cells, the results showed an 

increase in per-user throughput and better load balancing between the MeNodeB and the 

SeNodeB when implementing data bearer splitting in the uplink, but at the cost of more 

complexity in the UE functionalities. 

 

The work presented in [32] is a part of project ARTIST4G, it propose a mobile broadband 

technological framework in which to design interference avoidance solutions using numerical 

simulations and test bed measurements. The results demonstrate a significant improvement in 

the cell edge performance in terms of delay and per user throughput when using CoMP and 

HetNet and considering planned and unplanned deployment. 

 

A detailed survey on the advanced handover techniques, requirements and features for LTE-

A system is presented in [33], focusing on advanced handover techniques Fractional Soft 

Handover (FSHO), Semi Soft Handover (SSHO) and multi-carrier handover (MCHO) that 

incorporate backward compatibility to the existing systems, and highlighting the limitations 

when performing HO in terms of high latency, handover procedure unreliability, high outage 

probability and data loss, and proposed a hybrid HO scheme based on combining FSHA and 

SSHO with multi-carrier handover techniques the results show that the combination enhanced 

the system performance in term of latency, outage probability, interruption time and 

reliability during handover especially at cell edge as well as reducing the transmission 

overhead on the serving cell, which will consequently balance the load among the network 

cells. 

 

The authors in [34] proposed a wireless HetNet with split the control-plane and user-plane 

where the macro cell and SCs are equipped with some caching abilities. Comparisons of 

throughput and energy efficiency are made between the model and a traditional LTE network, 
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and numerical results are presented to validate the analysis and the impacts of the key 

parameters on the performance, the performances are derived from the characteristics of 

coverage, throughput and energy efficiency, they considered coverage threshold, transmission 

power, density of cells, and cache size, as key parameters for the numerical analysis.  

As an outcome of the comparison the numerical results show that the proposed cache-enabled 

network has much higher throughput and improved EE than current LTE networks. Similar to 

the work in [34] but with MEC base caching and virtual RAN, the authors in [35] built a 

testbed to evaluate the proposed architecture in a proof of concept and test it with typical 

caching scenarios and different sorts of data. Another work that demonstrated the influence of 

caching on an LTE-A network is presented in [36] and concentrated on power consumption, 

in order to formulate the problem of minimizing energy consumption at eNodeB caches a 

power model is built and optimized it using Lagrangian relaxation technique to find a near-

optimal solution to the proposed model, Lagrangian relaxation is a relaxation method in 

mathematical optimization which approximates a difficult problem of constrained 

optimization by a simpler problem. A solution to the relaxed problem is an approximate 

solution to the original problem and provides useful information [37].  

 

According to the presented results, the optimization method reduced the power consumption 

by 28% while keeping same QoS. The results also indicated how crucial are the content 

popularity and caching servers are to eNodeB energy efficiency. The authors of [38] also 

examined the effect of adding caches in the radio network to save the transmission energy, in 

order to prove that; a system level simulation of LTE-Advanced Release 11has been designed 

to illustrate the effects of forwarding scheme and adding cache in the network using a simple 

probabilistic model , platform is co-build with Qualcomm and sponsored with Qualcomm 

Innovation Fellowship, according to the simulation result, the method was able to save up to 

50%  (depending on the buffer size) of the total energy consumption compared the 

consumption in LTE-A network without caches. 

 

In [39] the authors considered a hierarchical collaborative caching framework with the cache 

deployment at the MEC servers; based on this framework they designed a caching strategy. 

They formulated the hierarchical collaborative content placement problem as an optimisation 

problem to reduce latency when running with limited cache capacity. Since finding the 

optimal solution is an NP-hard problem, they propose a genetic placement algorithm to find 

the near-optimal solution to reduce the computation complexity. And according to the 

https://en.wikipedia.org/wiki/Relaxation_(approximation)
https://en.wikipedia.org/wiki/Approximation_theory
https://en.wikipedia.org/wiki/Constrained_optimization
https://en.wikipedia.org/wiki/Constrained_optimization
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numerical results, the proposed algorithm had improved the performance compared with the 

reference algorithms.  

The authors of [40] used OMNeT simulator to build the models for centralized cell 

coordination at both small and large scales, and presented the work as layered solution 

considering small-scale coordination as the first building block of a large-scale scheme and 

so on, the results showed improvement in terms of fairness, cell throughput and energy 

efficiency. In the same domain of HetNet the authors of [41] proposed a rate adaptation and 

MAC algorithms for video transfer based on the user QoS requirements to improve the 

throughput, the improvements are done while user satisfaction for video is at an acceptable 

level, the user satisfaction for video is measured by the Mean Opinion Score (MOS) and is 

mathematically derived, the simulations were performed using OPNET modeller with certain 

assumptions that comply with the research motivations. Simulation results show that an 

increase in system capacity while keeping adequate MOS levels can be achieved for video 

applications users. Though all the selected researches listed above were orbiting around the 

LTE-A HetNets and many other researches are on the go in the same criteria the combination 

of intelligence and content delivery is very rare, many vendors and major players in the 

telecommunications field are competing and funding projects related to 5G, some are 

concentrating on specific features like radio network or the core, while others are considering 

the case from all sides, 3GPP, Qualcomm, Nokia, Eriksson and Huawei and many others 

working groups are working to bring network infrastructure and UE for 5G roll out by 2020. 

2.5 Summary 

LTE-A system has been able to provide significant improvements in performance for the 

mobile network. The core network as well as the radio access network seen upgrades and 

improvements, the result of all the upgrades is that users see significant performance 

improvements in the service provided, and the operators also gain greater returns compared 

with the same spectrum resources in previous systems, i.e. the cost per bit is reduced, and 

with the faster speeds, users tend to consume more data, thereby raising revenues. 

Accordingly LTE-A has provided improvements to both of the users and operators, as well as 

those providing additional services such as ISPs, mobile applications developers, and 

operating systems updates. 
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CHAPTER 3 

ARTIFICIAL INTELLIGENCE 

TECHNOLOGIES AND 

IMPLEMENTATIONS 

 

Briefing   

This chapter comprises of three main sections the first reviews the start of Artificial 

Intelligence (AI) , history, technologies, and applications, the second explains the architecture 

and features of Neural Networks which is the optimization tool used in this work and the 

benefits of using them in various optimisation approaches in mobile networks. The third part 

views some of the related work and researches in this field.  

3.1 Introduction 

Starting back in the 1950s, AI is not a newly founded science, it started with simple models 

and algorithms but with the digital revolution impact and the increase of interaction between 

humans and machines over the last three decades, AI became more attractive field for 

research and industry. Since then and due to the rapid and dynamic pace of development of 

AI it has been difficult to predict its future path and the ways which is going to alter the 

world’s life. 

 

There are many definitions, proposals and statements that customize AI. The authors of [42] 

proposed grouping AI systems into four categories depending on the used approach: 

 Systems that think like humans  

 Systems that act like humans  

 Systems that think rationally                  

 Systems that act rationally  

 

It is an easy process to build an intelligent system as defined above and can be considered a 

long-term target. 

   approach centred around humans 

approach centred around rationality 
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Alternatively, AI can be classified into two categories depending on how the machine 

responds to data sets: 

 Weak AI or Narrow AI:  Weak artificial intelligence is a form of AI designed specifically 

to be focused on limited task and to look very intelligent at it, it can do one specific task, 

i.e. the machines which are not too intelligent but capable of doing their own work are 

built in such a way that they seem intelligent. A good example would be a poker 

game where a machine beats the player; because all the rules and moves are fed into the 

machine, the level of difficulty is pre-set before the start and each and every possible 

scenario or tributary is also entered. Each and every narrow AI will contribute to the 

building of strong AI [43].  

 Strong AI: Strong AI is a machine that can actually think and simulate tasks on its own 

just like a human being. There are no commercially existing examples for this, but some 

leading industrial corporations are very keen on building a strong AI. [43]. 

 

As a resultant of that, AI researchers have tended to focus their efforts on copying the human 

thinking process or activity and implement them in machines. These efforts were centred in 

two main areas:  

 Knowledge representation- which is the study of finding the language in which 

knowledge can be encoded and used by a machine. Knowledge representation in AI is 

intended to reduce problems of intelligent action to a search problem [43]. The integration 

of search and knowledge representation is considered to be the core of AI. 

 Search- is a method of solving a problem by testing a large number of possibilities and 

finding one (or very few) solution(s) during the search which are best solutions. In real 

applications, there is a very large number of possibilities (or the search space), which 

makes the search intractable and computationally complicated. Methods such as 

heuristics search (wherein one uses existing knowledge) provide practical solutions to this 

problem. 

 

However, there are many ways in which AI could be implemented or achieved, as illustrated 

in Figure 3.1 
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Figure 3.1: AI classification. 

 

Recently, and due to the vast growth in the generated data from communication networks and 

critical infrastructure, along with the need to analyse this data in an intelligent way, the use of 

machine learning (ML) algorithms has become an essential in many everyday sectors such as 

banking, governmental services, surveillance, crime prevention, online gaming…etc. [44]. 

 

 Building effective and robust models that analyse and predict dynamic system or human 

behaviour can be achieved using Machine learning algorithms; in such a model the system 

controller can make intelligent decisions just as human being brain without involvement of 

human operator. For example, and this is one of the contributions of this work; in a wireless 

mobile network such as LTE , machine learning tools can be used to analyse big data for 

mobile edge computing enhancement. Machine learning tasks often depend on the nature of 

their training data. In machine learning, training is the process that teaches the intelligent 

machine to achieve the required target. In other words, training enables the machine learning 

framework to determine the schematic relationships between the input data and output data of 

the machine learning framework. 

 

Generally; learning schemes can be classified into three key classes as shown in Figure 3.2 

[45]: 

 Supervised learning, which is driven by the task, e.g. classification and regression. 

 Unsupervised learning, which is driven by the type of data, e.g. clustering. 
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 Reinforcement learning. This is closer to the human learning i.e. the machine learns a 

policy or rule to guide it acting in certain circumstances to maximize the gained reward.  

 

Supervised learning algorithms are trained using labelled data. When dealing with labelled 

data, both the input data and its desired output data are known to the system. Unlike 

supervised learning, the unsupervised learning tasks are done without knowing the output 

data, instead; unsupervised learning aims to investigate the input data and conclude the output 

structure directly from the unlabelled data, of course the amount of data needed to train the 

network is much bigger. A hybrid learning scheme that uses both labelled and unlabelled data 

for training is called semi-supervised learning, it is used in same applications as supervised 

learning. Semi-supervised learning is useful when the cost of obtaining fully labelled training 

data to complete the training process is not possible or relatively high. In contrast to the 

explained learning methods that need to be trained with historical data, reinforcement 

learning (RL) is trained by the data from system itself. RL aims to learn about system’s 

environment and find the best strategies for a given agent, in different environments, that 

makes RL algorithms effective and useful for use in robotics, gaming, and navigation [46].  

 

                                                                                                     Labelled data 

                                                                                                     Direct feedback 

                Predict outcome/ future 

 

          

                                                                  No labels                                                      Decision process 

                                                                  No feedback                                                 Reward system 

                                                                 Find hidden structure                                    Learn series of actions 

 

Figure 3.2: Learning in AI. 

 

Several models have been developed to accomplish these learning tasks. The most important 

one is artificial neural networks (ANN) because they are able to mimic human intelligence in 
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masking complex relationships between inputs and outputs [46]. ANNs can also be used in a 

self-adaptive manner to learn how to respond and complete tasks depending on the given data 

for training or previously gained experience.  

 

3.2 Artificial Neural Networks 

The human brain consists of a large number of biological elements called neurons 

(approximately 10
11

), these neurons are highly interconnected (approximately 10
4
 

connections per element). These neurons consist of three major parts: the dendrites, the cell 

body and the axon. The dendrites are tree-like receptive networks of nerve fibres that carry 

electrical signals into the cell body. Then cell body effectively sums and thresholds these 

incoming signals. The axon is a single long fibre that carries the signal from the cell body out 

to other neurons. The point of contact between an axon of one cell and a dendrite of another 

cell is called a synapse. It is the arrangement of neurons and the strengths of the individual 

synapses, determined by a complex chemical process that establishes the function of the 

neural network. Figure 3.3 is a simplified schematic diagram of two biological neurons [47]. 

 

 

Figure 3.3: Biological neuron. 

 

 

The artificial equivalent to the biological neurons are entities that act similar to the cell body 

in mathematical way, the Synapses are modelled by a single variable called weights so that 
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each input is multiplied by a weight before being sent to the artificial neuron [47]. Then, the 

weighted signals are added together by simple adder to give node activation.  

 

Figure 3.4 shows an artificial neuron model, the unit produces an active high output (+1) if 

the activation exceeds the threshold, otherwise it delivers a zero.  

 

 

 

Figure 3.4: The artificial neuron. 

 

 

The neuron output is simply calculated as 

 

M = f (∑ 𝑋𝑛 
𝑛=𝑖
𝑛=1  𝑊𝑛  +b)                                (3.1) 

 

The actual output depends on the particular transfer function that is chosen. The bias is much 

like a weight, except that its input value is constant and has the value of 1. It might be 

omitted as well if it’s not needed. 𝑊  and b are both adjustable scalar parameters of the 

neuron. Typically, the transfer function is set according to the design and then the network 

parameters will be adjusted by the chosen learning rule so that the neuron input/output 

relationship meets the specific goal [48]. 

3.2.1 Transfer functions  

There are different types of transfer function; they can be linear or non-linear, a certain 

transfer function is chosen to cover some specification of the problem that the neuron is 

attempting to solve. In general, the three most commonly used transfer functions are; Hard 

Limit, Linear and Sigmoid. 
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 Hard Limit transfer function: The hard limit transfer function returns the output of the 

corresponding neuron to 0 if the function argument is less than 0, or 1 if its argument 

is greater than or equal to 0 as shown in Figure 3.5, the threshold point could be 

adjusted with the bias parameter [48]. This function is used to create neurons that can 

classify inputs into two distinct categories. 

 

Figure 3.5 Hard limit transfer function 

 

 Linear Transfer function: The linear function is defined as the function that’s output is 

equal to its input,  a = n  , Figure 3.6 shows a linear function , the output could also 

be shifted by adjusting the bias and the weights [48].  

 

Figure 3.6 Linear Transfer function 

 Log Sigmoid Transfer function: This transfer function is widely used in multilayer 

networks that are trained using the backpropagation algorithm because its 

differentiable [48], The input (which may have any value between plus and minus 

infinity) is  squashed to generate the output in the range 0 to 1, according to the 

expression: 
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𝑎 =  
1

1 +  𝑒−𝑛
                                                   (3.2) 

 

The output will be as shown in Figure 3.7 and can also be shifted when implemented 

in the neuron by using the bias and the weights. 

 

 

Figure 3.7: Log Sigmoid Transfer function. 

In addition to the described transfer functions, there are many other functions that can be used 

to activate the neuron and they are selected in relation to the tasks assigned to the neuron, 

such as: Symmetrical Hard Limit, Saturating Linear, Symmetric Saturating, Linear 

Hyperbolic, Tangent Sigmoid, Positive Linear, Heaviside step function and Competitive. 

3.2.2 Network Architecture 

One neuron (Biological or Artificial) no matter how big or how many inputs are used, won’t 

be an effective entity, hence emerged the need for many interconnected neurons working at 

the same time, i.e. in parallel, these neurons are lined in the form of layers. 

A single-layer network of (S) neurons is shown in Figure 3.8, illustrating that each of the 

inputs is connected to all the neurons and that the weight matrix will also have S rows. The 

layer comprises of the weight matrix, the adders, the bias vector, the transfer function boxes 

and the output vector [49]. 
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Figure 3.8 S Neurons layer 

Each element of the input vector PR is connected to all the neurons and is multiplied by the 

weight matrix WS,R. Each neuron has a bias input, an adder, a transfer function and an output 

of aS vector. 

 

The weight matrix is represented as follow: 

     

a. Multi-Layer Neural Network 

In order to maximize the benefits of parallelism for solving complicated problems and bring 

the response to be more like the human brain, cascading neuron layers and interconnecting 

the outputs of each layer as inputs for the following layer and using different kinds of 

activation functions will result in more powerful network. 

 

The feedforward network shown in Figure 3.9 has three layers which are separated: One 

input layer, one output layer and one hidden processing layer, it is called hidden because of 

its invisible from the outside. In most networks the connections are linked to neurons of the 

following layer [50], but some of them allow shortcut connections that skip one or more 

levels and go directly towards the output layer.  
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Figure 3.9 Three layers feedforward network [46] 

Most practical neural networks have just two or three layers. However; four or more layers do 

exist, but they are rarely used in applications. In Figure 3.9 all the neurons have biases. The 

bias gives the network an extra variable, therefore the neurons with biases are expected to be 

more powerful than the one without biases, it is a technical trick to consider threshold values 

as connection weights [48][50]. 

 

Another important and powerful type of neural networks is the Recurrent Neural Network 

(RNN), recurrence is the process of a neuron influencing its status by a feedback or by any 

connection, recurrent networks do not always have strait defined input or output neurons, this 

is because some of its outputs are connected to its inputs. Depending on the feedback 

processing unit which is mostly a delayer or an integrator as shown in Figure 3.10, the 

recurrent network can be classified into direct, indirect or lateral, in direct recurrent network 

the neuron’s output is fed back to itself with the weight assigned to this connection as Wnn 

with a noticeable feature in this matrix ( all values below diagonal are zeros) [50],  While 

with indirect recurrent network the feedback is connected to the first layer in the network and 

the weights matrix has the feature of symmetry, finally the lateral recurrent network is the 

network that allows feedback exclusively within the same layer.   

 

Recurrent networks are potentially more powerful than feedforward networks and can exhibit 

temporal behaviour. 
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Figure 3.10 Delayer & integrator [46] 

 

3.2.3 Training the Artificial Neural Networks  

Training process of the ANN is defined as the process of adjusting and updating the weights 

of the connections between the neurons, training enables the ANN to extract information 

from the input data. Different learning schemes require different learning algorithms these 

training algorithms can be classified according to the assigned tasks into supervised and 

unsupervised learning. In supervised learning tasks, the objective of the training algorithm is 

to decrease the errors between the desired output data sets and actual output data sets [51]. 

This error can be expressed in the following formula: 

 

E(W,b) = 0.5 ∑ (∥ 𝑌(𝑊, 𝑏, 𝑝) −  𝑌 ∥𝑡 2)                                              (3.3) 

 

where (t) is the training data sets, W is the weights matrices of the connections in the input 

and hidden layers, b is the vector representing the bias, p is the input matrix, Y is the optimum 

output, and  𝑌(𝑊, 𝑏, 𝑝) is the actual output which needs to be as close as possible to Y. and 

scaling the error by 2 is to simplify the differentiation [51]. 

 

The best learning algorithms that can fulfil the above requirements for supervised learning 

are the ones including gradient descent and particularly the backpropagation. However, there 

are many learning algorithms for supervised learning that uses the gradient descent in 

different ways as a basic building formula. 
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Minimizing the error E is achieved by updating the weights of each neuron by implementing 

the learning algorithm: for a neuron N, the error between the actual output and the desired 

output can be calculated using Equation (3.3).   

Ej(Wj,bj) = 0.5 ∥ Yj  ( Wj, bj , pj ) - Yj  ) ∥2  (3.4) 

In order to minimize E every element of vector Wj    and vector bj  is updated and can be 

calculated using gradient descent based algorithms : 

Wj, new =  Wj, old  - λ 
𝜕Ej(𝑊𝑗,𝑏𝑗)

𝜕𝑊𝑗
   (3.5) 

bj new =  bj, old  - λ 
𝜕Ej(𝑊𝑗,𝑏𝑗)

𝜕𝑏𝑗
   (3.6) 

where λ is the learning rate and is in the range of (0, 1.0). The iteration continues and both 

weight and bias values continue to be updated until the value of E for all the neurons is at 

minimum value [52], However this minimum value might not reach its best, this is because 

backpropagation algorithm converges to produce solution as long as its fed with training data 

sets which may not lead perfect results, on the other side if the size of the training set is too 

large then using backpropagation will be time consuming [52][53], in order to mitigate such a 

drawback many gradient descent base algorithms were have been proposed from which:  

stochastic gradient descent (SGD) algorithm [54] , mini batch gradient descent[55], 

momentum SGD [56], nesterov accelerated gradient[57], and Adagard [55]. Many more 

methods were proposed for different cases, in addition to that the size of the network can be 

shrunk using pruning techniques [58], the concept of pruning is excluding all neurons that do 

not affect the output of the ANN because they are not involved in the learning task, as a result 

of the pruning process ;the ANN will become faster, smaller, and more efficient. 

 

Training RNN quite different and this is due to the architecture and the feedback connections 

between the neurons, therefore gradient descent algorithms such as backpropagation cannot 

be directly used, because the error backpropagation calculated using backpropagation 

algorithm cannot have feedback cycles in the connections between the neurons. Hence the 

backpropagation through time (BPTT) algorithm is one of the proposed and one of the most 

commonly used training algorithms for the RNNs [59], this approach simplifies the RNN and 

converts into a kind of feedforward ANN by simply unfold the network and process a group 

of links step by step, all feedbacks are fed forward to a copy of the original RNN and the 
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process continue forth to the next copy. However, because of the feedback connections in 

RNNs, the BPTT algorithm may generate quite large number of sub-optimal results 

compared to the gradient descent algorithms used for training feedforward ANNs. Moreover, 

the gradient in BPTT is computed based on the complete training set, and if the size of the 

training data is large it will end up with relatively long training time just like backpropagation 

algorithm. 

 

Real-Time Recurrent Learning (RTRL) is one of the learning schemes proposed to mitigate 

the drawbacks occurring when using the BPTT for training an RNN, RTRL computes the 

error gradient and can deliver it at any time, Unlike the BPTT that unfolds RNNs in time, the 

RTRL propagates error forward in time [60]. 

 

In RTRL, the weights (W) are update depending on the gradient value at time t and on the 

gradient value at the previous time, i.e. Wt+1 =  Wt - λ ∑
𝜕E(𝑡)

𝜕𝑊𝑡
  , and because of that the RNN 

trained using RTRL doesn’t need to be unfolded like in BPTT as the error vector is related to 

time and propagates forward only,  (time never come back). 

a. Deep Learning  

Any artificial neural network that includes multiple hidden layers in its architecture is 

considered a deep neural network DNN [61], Figure 3.11 shows the architecture of a DNN. 

                      Input layer                      Hidden layers                Output layer 

 

Figure 3.11: DNN architecture. [61] 
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Because of its architecture DNN models can deliver high level refined data, the data travels 

through multiple layers and is subject to several linear and non-linear transformations, and 

consequently better data relations are abstracted. There are several types of DNNs such as: 

deep RNNs, deep feedforward networks, deep convolutional networks, long-short term 

memory (LSTM), and deep Q-learning…etc [62][63].  

The new emerging technologies with high computing capabilities, the availability of huge 

amount of data generated by the digital systems and the effective programming languages for 

writing and implementing learning algorithms, all opened the way towards utilizing DNN and 

deep learning in problems solving.  

Unlike the traditional ANNs that have only one hidden layer, a DNN with multiple layers is 

more constructive due to the following reasons: 

 For the same performance level; the number of neurons in a DNN required to solve a 

certain problem is far less than the neurons required to solve the same problem using 

shallow ANN, because the number of neurons in a shallow ANN is exponentially 

proportional with problem complexity. 

  Complex task learning; Shallow ANN are effective in solving small scale problems, 

however they might turn impractical when used to solve complex problems, this is 

because these networks can learn quickly and memorize but are not good in 

generalizing the learned rules, thus the DNNs are more practical for many everyday 

life tasks that contain complex problems that require partitioning the target function 

into a chain or hierarchy of smaller functions to simplify and speed up the learning 

process.  

 

As every working system, DNNs suffer from some drawbacks and have to mitigate some 

challenges; because of their high capacity and capability to process large number of 

parameters, the possibility of overfitting will increase. To overcome this glitch, several 

advanced regularization techniques have been designed, such as dataset augmentation, early 

stopping, and weight decay [53]. These methods alter the learning algorithm in a way so that 

the test error can be reduced but this will cause increasing the training error.  

b. Training Deep Neural Network  

Training a DNN with a gradient based method will end with high instability in the error 

gradient; as explained earlier the connections weights’ are updated according to the computed 
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gradient of the error depending on their current values and the process is repeated until 

reaching the minimal, in each iteration, the gradient will pass via the weighted connections 

and hence the magnitude will be affected, and since the gradient is computed using chain 

rule. Therefore, multiplying the gradients at each layer will make the gradients exponentially 

decrease (for small gradient values) or increase (for large gradient values), these values 

depends on the number of the gradients and the layers of the DNN and are within range (-1, 

1), respectively. This problem is not critical in the shallow ANN models because they contain 

only one hidden layer, these two problems are known as the exploding gradient problem and 

vanishing gradient and their effect on the DNN can cause the layers learning at different 

speed or levels i.e. last layers learn well while beginning layers learn very little. Several DNN 

learning algorithms were proposed to overcome this instability such as LSTM [64], adaptive 

learning rate algorithms [65][66][67], multi-level hierarchy [68], and residual networks 

ResNets [69].  

 

3.3 Deep Learning for Mobile Networks 

Data growth and user preference of using wireless connectivity drives the Internet Service 

Providers (ISPs) to involve intelligent systems and tools that can be used in the currently 4G 

LTE system(s) and migrate to the next generation of mobile systems (5G) to help manage the 

rise in data volumes and algorithm-driven applications and satisfy the end-user demands. 

Therefore, embedding machine intelligence into future mobile networks is being a point of 

interest for research and industry [70][71]. Most of the works are focusing on problem 

optimization using machine learning (ML), the criteria where these solutions are needed 

range from radio access network technology selection, developing the architecture of the core 

network and introduce machine learning technologies to cope with the existing technology. 

 

 In wireless system ML can be used to extract valuable data from the traffic and automatically 

discover the mutual relationship or connection between system components leading to better 

network optimization and faster response to the users requests, Due to the high data volumes 

in the network data mining and information abstraction is a hard job for human, even for the 

ones who designed and implement the intelligent system. 
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3.3.1 Related Work 

Deep Learning is a very powerful tool in function approximation, for this reason it has been 

widely used in improving reinforcement learning and imitation learning, both approaches 

have a high impact in solving problems relating mobile network control that were considered 

hard to control or deal with, and complex: the difference between these two approaches is 

while the admin in the reinforcement learning is in direct contact with the environment to 

learn the best action, with continuous probing and analysis, the agent will learn how to 

maximize its gain, while in the imitation learning , the agent is not in direct contact with the 

environment and the learning is achieved via a demonstrating entity that teaches the agent 

how to respond with a suitable action to a specific case, after sufficient teaching , the agent 

will learn how to imitate the demonstrator, copy its behaviour and can work without 

supervision [72], Figure 3.12 shows the block diagram and data flow of both approaches.  

 

 

Figure 3.12: Reinforcement and imitation learning block diagram. 
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Most of the research considered in this field: Radio Control, Resource allocation, Scheduling, 

Routing and Network optimization. The authors in [73] considered the problem of dynamic 

spectrum access for network utility maximization in multichannel wireless networks, and 

proposed an algorithm called Deep Q-learning for Spectrum Access (DQSA), enabling each 

user to learn good policies in an online and distributed manner, the experimental results 

showed strong performance of the algorithm in complex multi-user scenarios. The authors in 

[74] discussed the case when small cells are deployed, they proposed a new inter-cell 

interference management (IIM) scheme for small cell networks with power control using NN. 

According to the results the NN system delivered almost the same performance as that of the 

ideal scheme and superior to that of the belief propagation, especially in MIMO 

environments. Same authors presented a similar work in [75].  

 

In [76] the authors used RF measurements to study the suitability of deep recurrent neural 

networks for band selection in land mobile radio (LMR) bands. The results showed that RNN 

was able to improve the performance of spectrum sharing in dynamic wireless environments.  

Nguyen Cong Luong et.al. presented in [77] some IoT service improvement using cognitive 

radio technique, they proposed using blockchain with mining pool to achieve that, they used 

deep reinforcement learning algorithm to derive an optimal transaction transmission policy 

for the secondary user, according to their simulation results; it is shown that the proposed 

deep reinforcement learning algorithm perform better than the conventional Q-learning 

scheme in terms of gain and learning speed. 

 

Working in resource allocation criteria, in [78] H. Sun et al. proposed a learning-based 

approach for wireless resource management, the algorithm considers its input and output as 

unknown non-linear mapping parameters and to use a deep neural network (DNN) to 

approximate it, they demonstrated the DNN performance using extensive numerical 

simulations for approximating two complex algorithms designed for power allocation in 

wireless transmit signal design, while giving orders of magnitude speed increase in 

computational performance. 

 

In [79], the authors proposed a resource allocation framework for collaboration between 

LTE-LAA and Wi-Fi in the unlicensed spectrum, and developed a deep learning algorithm 

based on LSTM, in this algorithm taught each Small Base Station (SBS) to select its spectrum 

allocation scheme independently, according to their simulation results, the proposed scheme 



46 
 

demonstrated better performance compared to the conventional methods that consider 

network fairness Simulation results have shown that the proposed approach yields significant 

performance gains in terms of rate compared to conventional approaches that considers only 

instantaneous network parameters such as instantaneous equal weighted fairness, proportional 

fairness and total network throughput maximization. Results have also shown that the 

proposed scheme is more stable regarding Wi-Fi connectivity in the case large number of 

LTE-LAA is deployed in the unlicensed spectrum.  

 

 In [80] the authors discussed  solutions for the under development next generation mobile 

network they considered the limitations of dynamic TDD-based resource assignment in a 5G 

Ultra dense network UDN when massive MIMO with beamforming capabilities is fitted in 

the eNodeB, the research addressed the vulnerability to congestions when conventional traffic 

control strategy is implemented. The deep LSTM algorithm aims to avoid the congestion 

events by predicting them. 

 

In [81] Xu et al. designed a framework for power-efficient resource allocation in cloud RANs 

that applies Deep Neural Network (DNN) to approximate the action-value function. 

According to the simulation results which show that the framework can achieve significant 

power savings while meeting user demands, and it can well handle highly dynamic cases. The 

authors of [82] considered the build of intelligent transport system, addressing both safety 

and Quality-of-Service (QoS) as concerns in a green Vehicle-to-Infrastructure 

communication scenario, they presented a deep reinforcement learning model, that learns an 

energy-efficient scheduling policy from inputs corresponding to the specifications and 

requirements of vehicles running within a RoadSide Unit's (RSU) coverage .the results listed 

a comparison of the proposed algorithm and three other algorithms: RVS: Random Vehicle 

Selection algorithm, LRT: Least Residual Time algorithm and GPC: Greedy Power 

Conservation algorithm, the proposed algorithm showed better performance. 

 

In [83] the authors worked in MEC criteria and cared of user scheduling, they adopted a 

model with small cells deployment and proposed a deep RL algorithm to optimize the 

probabilistic policy and minimize the average transmission delay, with Boltzmann 

distribution rule used as the parameterized policy to generate probabilistic actions, and the 

gradient ascent method to update the parameters. According to their simulation results show 

the advantage of the proposed solution. 
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The collaboration between different wireless networks sharing the same spectrum and 

handling large number of devices is and interest of the authors in [84], they presented two 

ANN algorithms to predict free slots in a Multiple Frequencies Time Division Multiple 

Access (MF-TDMA) network using function approximation, these algorithms use a low 

dimensional NN to predict the probabilities of using a slot in the next frame based on 

spectrum observation. The simulation results showed that using the proposed approach 

reduced the collisions between the networks by 50% compared to the case when using the 

traditional non-collaborative scheduler. 

Continuous Hopfield Neural Network (CHNN) is used in [85] to seek an optimal route, 

which can improve the utilization and survivability of MANET, compared to the same 

network; but using of Ad hoc On-demand Distance Vector (AODV) routing protocol, the 

simulation results show that CHNN AODV can perform better compared to AODV in terms 

of average delay and successful packet, however; adding CHNN will increase the power 

consumption which is a critical factor in Ad-hoc networks. 

 

The authors of [86] explained the router architectures. They reviewed the current Software 

Defined Router (SDR) architectures and suggested using a supervised deep learning to 

compute the routing paths instead of the conventional routing protocol in order to enhance the 

traffic control in backbone network. The simulation result show that the proposed deep 

learning based routing strategy exceeded the conventional OSPF in terms of the overall 

throughput and end-end delay per hop. Moreover, the proposed routing strategy was analysed 

to prove that the GPU-accelerated SDR better to run the proposed algorithms than the CPU-

based SDR. Same authors presented [87] in same field, a smart packet routing scheme using 

Tensor-based Deep Belief Architectures (TDBAs) that learn from the network traffic and Kpi 

, they used the tensors to perform weights , biases and the units in all the layers, the proposed 

TDBAs was trained to predict the best routes for every edge router. According to the 

simulation results the proposed TDBA algorithm performs better than the conventional Open 

Shortest Path First (OSPF) protocol in terms of packet loss rate and average delay per hop the 

network experiences a high traffic load. 

 

The authors in [88] worked on caching and interference alignment (IA), unlike the ideal 

models assumed in most researches, they considered realistic time-varying channels, 

especially the channel that is formulated as a finite-state Markov channel (FSMC), which 
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forms a highly complex system. And propose a big data deep reinforcement learning 

approach to obtain the optimal policy for user selection in cache-enabled wireless networks, 

according to the simulation results show that the performance of cache-enabled IA networks 

has been improved by using the proposed big data reinforcement learning approach. Same 

authors presented [89] and considered same model but used Google Tensor Flow to 

implement deep reinforcement learning in order to obtain the best IA user selection policy in 

the cache-enabled wireless networks. 

 

Finally, in [90] the authors considered handover (HO) as a core for the work, they aimed to 

decrease the HO rate but at guaranteed system throughput, they developed an asynchronous 

deep reinforcement learning scheme to control the handover (HO) process across multiple 

(UEs), supervised learning was used in initializing the DNN, simulation results demonstrate 

that the proposed framework can achieve better performance than the traditional schemes, in 

terms of HO rates, and the adopted framework could train faster when the number of UEs is 

increased, which a positive point supporting the scalability issue and suitability for large 

networks. 

 

3.4 Summary  

Neural networks are very good for solving variety of problems by finding trends in large 

quantities of data; they are better solver to problems which humans are good at than 

traditional computer, such as image recognition, approximation, prediction…etc.   

Most ANN applications are built using computational entities and perform the propagation of 

continuous variables from one processing unit to the next. Compared biological neural 

networks which communicate through electrical pulses, both use the timing of the pulses to 

send information and perform computation. This realization has created research fields on 

neural networks, including theoretical analyses and model development. 

Neurons are outlined in the form of layers; input, hidden and output layers and are trained 

using different learning schemes and algorithms. Well-trained networks are able to classify 

correctly patterns unseen during training. If this does not occur, then the net is denoted as 

over-fitted the decision plane and does not generalize well. 
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CHAPTER 4 

SMALL CELL DEPLOYMENT FOR 

CONTENT DELIVERY ARCHITECTURE    

AND   CHALLENGES   

 

Briefing 

The first part of this Chapter explains the deployment of small cells in an LTE  framework 

simulated using OPNET modeller and how dual connectivity is implemented to mitigate 

challenges in the coordinated multipoint CoMP and carrier aggregation CA. The second part 

explains the benefits of adding caching units to enhance content delivery process for the 

network users. 

4.1 Introduction 

All the improvements and evolutions on the cellular mobile networks since the beginning 

aimed on providing better services within shorter time, i.e. high throughput and low latency. 

The current 4G mobile system so far had successfully support the users and covered all their  

requirements and demands , but with the new technologies and increasing capabilities of the 

mobile devices, launched applications, IT integration in telecommunication, all these factors 

generated and injected big amounts of data to the network, on the other hand the way the 

people are using their smart phones and the time spent using them for whatever reason, 

chatting , watching videos, online gaming …etc. had increased the burden and made the 

network operators develop new strategies to guarantee sustainability and survivability. 

In this aspect small cells were one of the solutions applied by developers to meet the 

increasing demand for higher data rates. Small cells can be considered as low power hotspots 

and the macrocell as a parasol shading them, the UE can simultaneously connect to the Sc 

and MeNodeB using dual connectivity technique specified in 3GPP TR 36.842 [91]. This 

technology had mended several challenges when deployed such as: lack of radio resource, 

Mobility management, Signalling overhead.  
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Dual connectivity adds capacity for the UEs at the cell edge because they can dynamically 

adapt and choose the best radio resources among several cells i.e. make a handover. In 

heterogeneous networks frequent handovers might not be completed successfully which will 

result in service interruption, the LTE DC can eliminate the handover failures because the UE 

maintains the connection with MeNodeB as the coverage layer.   

 

4.2 Architecture 

In LTE DC, the UE can receive/transmit data from/to multiple eNodeBs. There is a Main 

eNodeB (MeNB) and one or more Small cells (SeNodeB), only the case of one MeNodeB 

and one SeNodeB is considered in 3GPP Release 12 specifications [91]. In order to simplify 

the architecture and its comprehension, it’s separated into control plane and user plane. 

4.2.1 Control Plane Architecture with SeNB 

In the case of handover between SeNodeBs and in order to reduce the control signalling, it 

was agreed to assign only one S1-MME connection for each UE and is established between 

the MeNodeB and the core network, and the RRC of the UE is connected to the RRC of the 

MeNodeB since there is no RRC block in the SeNodeB this procedure will help by not 

adding extra signalling or increase complexity. The control plane architecture is shown in 

Figure 4.1 

 

 

  

 

 

 

Figure 4.1: Control plane architecture [91]. 
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4.2.2 User Plane Architecture  

3GPP has defined two cases for user plane architecture; the traffic can either split at the 

MeNodeB or at the SGW. If the bearer level split takes place in the SGW the packets are sent 

via two S1 bearers to both MeNodeB and SeNodeB, and the control signalling is exchanged 

via X2 interface. This architecture is denoted as UP 1A, as shown in Figure 4.2. 

 

 

Figure 4.2: UP 1A Bearer level split at SGW [91]. 

 

The advantages of such architecture is the buffer independency so the MeNodeB is handling 

the traffic for Radio bearer 2, another advantage is only basic specifications are required for 

the link between SeNodeB and MeNodeB as it will carry no traffic. The drawbacks of this 

technique are that SeNodeB is visible to the core network, and additional overhead is 

required where coding and ciphering is duplicated to enable security in both MeNodeB and 

SeNodeB.  

 

Alternatively, if the split takes place at the MeNodeB, it can be either bearer level or packet 

level split. For the packet level split, user data may be routed between MeNodeB or SeNodeB 

and the UE and can be split as IP packets. While for the bearer level split, all user data of a 

radio bearer are routed between the SeNodeB and the UE, the architecture is denoted as UP 

3C and is illustrated in Figure 4.3 
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          Figure 4.3: UP 3C Packet level split at MeNodeB [91]. 

In contrast to alternative 1A the 3C the following advantage points: the SeNodeB is hidden 

from the core network, all the security steps and ciphering are carried out in the MeNodeB 

only, but on the other hand, it has the following considerable disadvantages: where all data 

needs to be buffered at the MeNodeB and then routed to the SeNodeB, the second is the need 

for flow controller between the MeNodeB and SeNodeB to handle that traffic. 

4.2.3 SeNodeB Commissioning  

Adding SeNodeB(s) under the coverage of a MeNodeB is done following these steps: 

 MeNodeB broadcasts the Small Cells Group (SCG) addition indication message 

containing the configuration 

 SeNodeB responds with SCG addition/ modification request message containing radio 

resource configuration. 

 MeNodeB sends RRC connection reconfiguration message to the UE, with configuration 

of both MeNodeB and SeNodeB 

 UE sets the new configuration and sends acknowledgment RRC connection 

reconfiguration complete to the MeNodeB 

 MeNodeB forwards RRC connection reconfiguration complete message to SeNodeB 

The steps are illustrated in Figure 4.4 
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Figure 4.4: SeNodeB addition procedure [91]. 

4.3 Model Design 

The architecture is based on the 3GPP LTE Evolved Packet System (EPS), with the same 

main components for radio and core networks with use of small cells as in Scenario #2 of 

Release 12 [91] which was previously explained in section 2.3.4 and Figure 2.14. This 

architecture was also the main model in publications [92] and [93]. In this scenario the 

deployment of the macro and small cells are on different carrier frequencies (inter-frequency) 

where the Small Cells (SC) will be distributed as hot spots covering specific areas under the 

coverage of the macro-cell layer. The small cell layer with frequency (F2) will be located at 

the centre of the hot spot, where the macro with frequency (F1) will be like an umbrella 

covering the small cells layer. The macro and small cells layers are assumed to be connected 

via an ideal backhaul. Scenario #2 of Release 12 is mapped in Figure 4.5. 

 

 

Figure 4.5: Scenario #2 of Release 12 3GPP [91]. 
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In such a scenario, bringing the computation and storage capacity units from the core to the 

edge of the network with dense deployment of low-power small-cell nodes in which the 

distance between the radio access points (RAP) and terminals is reduced, virtualization and 

centralized processing would improve the throughput and maintain the low latency without 

adding any additional overhead [92][93]. 

 

In this work, the concept of adding computing and storing capacity to the main eNodeB is 

considered; the content will be cached and stored in a server attached to the main eNodeB. 

Small cell nodes will be distributed with different frequency band under the coverage of the 

main eNodeB, and the small cells are connected to and controlled by the server attached to 

main eNodeB through fibre cables connection, as in the C-RAN architecture. In this way the 

resources of several cells can be pooled in one centralized entity [92]. In LTE network, 

resource allocation takes place at the level of cells, and scheduling of the resource units called 

Resource Block (RB) takes place every Transmission Time Intervals (TTIs). A UE is 

associated to a cell, and transmission of neighbouring cells on the same RBs count as 

interference, interference-prone transmission imply lower Signal to Noise and Interference 

Ratio (SINR), leading to more RBs being used to transmit the same payload, this obviously 

reduces the capacity of the network, allowing fewer UEs to be served simultaneously, and 

affecting the quality of service being introduced to the end user, on the other hand, it will 

negatively affects the energy efficiency, which also depends on the number of bits per RB. 

[93][94]. 

 

Centralized processing of the resources would result in efficient interference avoidance and 

will allow cancellation algorithms to be run across multiple cells in parallel with joint 

detection algorithms. In addition, the dense deployment of small cells under flexible 

centralization of the radio access network will allow for flexible functional split based on the 

virtualization functionality provided by the computing ability at the edge of the network, in 

this way, the main eNodeB could be used for the normal connection, handling most of the 

system control signalling, while the small cells could be seen as hot spots used for 

downloading the required content. Figure 4.6 shows the system diagram. 
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Figure 4.6 proposed system diagram [92]  

 

In this architecture, the UE in the proposed form of dual connectivity maintain a normal 

connection with MeNodeB and will establish a U-Plane connection with a SeNodeB for the 

downlink of big data applications (i.e. videos) that could be saved in content delivery (CD) 

server located in or near the MeNodeB. (an ETSI MEC (Mobile Edge Computing) server 

could be used for this purpose), which can add computing capabilities for the radio access 

networks (RATs) or could be used as an aggregation point in the IP transport layer.  

 

As in LTE Release 12 specifications [91], LTE small cell enhancement by dual connectivity 

is defined as a technology which extends carrier aggregation (CA) and coordinated multi-

point (CoMP), in which the small cells are typically deployed as hotspots within macro cell 

coverage, where any UE has the ability to receive/send data from/to two or more eNodeBs 

simultaneously. Some of the expected benefits from such enhancement are: 

 Rising UE throughput for cell edge UEs in particular. 
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 Reduce the overhead occurred from signalling towards the core requesting handovers. 

 

Information exchanged between the MeNodeB server and UE may took place on different 

layers, such as MAC, PDCP and RRC layers. A UE in RRC – connected mode first obtain 

access to the MeNodeB and keep C-plane connection with this node, which is the only RAT 

element that is visible to the core Network (EPC), measurement and statistics information 

related to the UE gathered by the mobile network element based on the 3GPP signalling 

messages and Performance Measurements (PM) defined by 3GPP can be aggregated and 

processed by the controller of the MenodeB, a table of information will be generated that will 

also contain measurements considering the information coming from the SCs. As soon as big 

size content is requested by a UE, the MenodeB will direct the UE (i.e. through the system 

information Block SIB) to connect to the best SC based on the parameters provided by the 

controller. The flowing steps, could explain such a procedure: 

Step 1: the measurement report made by the UE and sent to the controller of the MeNodeB to 

be added to the measurement table. 

Step 2: content is requested by a UE 

Step 3: MeNodeB decides which node of the SCs will the UE be connected considering the 

measurement parameters available in the measurement table. 

Step 4: MeNodeB send the decision to the UE (through dedicated RRC signalling, i.e. RRC 

Connection Reconfiguration) 

Step 5: UE connect to the node of small cell decided by the controller at the MeNodeB. 

Figure 4.7 shows the procedure in the form of flowchart  
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Figure 4.7: Content delivery procedure flowchart. 
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4.3.1 Cache Modelling 

The idea of caching frequent information in a nearby storage has been introduced since the 

beginning of computer operating systems [95], the term cache refers to a memory with fast 

access but limited storage, caching was utilised for the internet ,when internet became more 

popular and easy to access. Popular webpages were saved in small servers (caches) instead of 

retrieving them from a central server and this significantly reduced access time as the 

distance between the user and the requested data had decrease and also reduced central server 

congestion, and saved bandwidth to use it to respond for different demands [96]. 

In wireless networks; the challenges are seen from two standpoints: The Delay and the 

Bandwidth (hence the throughput), the second scenario shows that caching at eNodeB can 

lead to many benefits for both mobile operators and end users: 

  Delivery cost (Scenario1) caching in the eNodeB  

Selecting N to be the number of eNodeBs in the network, nj be the number of data 

requests received by the jth eNodeB and P be the mean size (bytes) of a requested 

object [97]. We also denote the cost components to be as follows: 

- U is the cost per byte from UE to eNodeB. 

- C is the backhaul link cost per byte from eNodeB to PGW. 

- W is the transit cost per byte between core network and the content provider. 

 

If no caching is provided in the cellular network, each request will incur the costs U+C+W, 

and the total costs for complying all the requests in the network can be calculated as follows: 

Mnocache=∑j=1  (nj) × (U+C+W) × P                      (4.1) 

In the case of adding cache to the eNodeB the following parameters are consider for the    

equation: 

(i) njc be the number of requests for objects that are cached at the jth eNodeB 

(ii)  K is the additional cost per byte of caching objects at the eNodeBs (Server, 

storage cost, etc.). With the existence of eNodeB caching, the cost for the 

mobile operator to serve the requests will be the sum of the following 

parameters: 

 

M1=∑j=1 (nj - njc) × (U+C+W) × P                (4.2) 
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M2=∑j=1 njc× U × P                             (4.3) 

M3=∑j=1  njc× K × P                            (4.4) 

 

where M1 is the cost when requested objects need to be fetched from the origin server, M2 is 

the cost incurred on the network path from the UEs to the caching eNodeB, and M3 is the cost 

when adding cache to the eNodeB. So Mcache can be calculated by adding the three parameters 

M1, M2 and M3 as follows: 

Mcache=  M1+ M2+ M3 

Mcache= ∑j=1  njc× U × P + ∑j=1  (nj - njc)* (U+C+W) × P +∑j=1  njc× K × P    (4.5) 

By subtracting (5) from (1) this will result in the benefit we get from adding cache to the 

network and as follows: 

MBenefit=∑j=1  njc× (C+W-K) ×P               (4.6) 

 

 In-network cache (Scenario 2) 

The new trend of in-network caching can achieve additional delay reduction for end 

users [95]. However, the advantage of in-network cache might be a disadvantage if the 

in-network cache cannot be efficiently utilized by the main eNodeB. An example of this 

is the situation when the cached content is duplicated in both the eNodeB and the in-

network caches, which most likely occur in the case of full load.  

 

 Device to Device (D2D) caching (Scenario 3) 

Caching content at the edge of a wireless networks using the (UE) is different from 

caching techniques in CDN and had incurred many challenges, such as caching decisions 

are coupled, security, and power management [96] [98], However; this scenario is out of 

the scope of this work due to the above mentioned drawbacks and the difficulties 

associated with simulating cache units inside the UE using OPNET. 

 

Figure 4.8 illustrates all possible caching scenarios. 
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            In Network Caching                                                                eNodeB Caching                                                 D2D caching 

 

Figure 4.8: Caching deployment in LTE network [95]. 

 

4.3.2 Gain Analysis with Dual Connectivity 

Gain is defined as a proportional value that shows the relationship between the magnitudes of 

the input to the magnitude of the output signal at steady state [93]. Gain can be enhanced by 

using changing parameters, adding circuitry, or adopting new schemes, increasing the gain 

obtained from any system or media is the goal of users and operators, introducing DC to the 

network and provisioning the layers to Macro and Small, first it is calculated theoretically 

according to Shannon-Hartley equation as follow: 

Ci = Bi log2 (1+ SNRi )    (4.6) 

 

where C is the capacity (hence throughput), B is the bandwidth and SNR is the signal to noise 

ratio all related to cell (i) which is assumed to have the best (maximum) throughput /user in 

both Small and Macro, i.e.  im = arg max (Ci)  for iϵ M  and is = arg max (Ci) for iϵ S.  

When there is no DC, the user is considered to be served by one cell all the time, when 

introducing DC, the users are assumed to receive data from the small cells and the controls 

from the macro cell. The serving cells are selected according to their performance. A cell 

either Macro or Small is picked from a list of candidate cells if it has the best throughput 

estimation. The Shannon capacity equation for a user with DC is: 

CDC = Cim + Cis 

The user throughput gain with DC will be 

  Gain = 
CDC – CnoDC 

 CnoDC 
  × 100% 

           = 
 Bq log2 (1+ SNRq )

  Bp log2 (1+ SNRp )
  ×  100% 
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where q = arg min (Cq), and p= arg max (Cp). 

If the same bandwidth is set in both two layers (i.e. Bq/Bp =1) it will explicitly show that 

introducing DC delivers its most benefit when the users are exposed to the same link 

conditions in both layers Plus 100 % DC gain when SNR difference is 0. Noting the DC gain 

cannot be larger than 100 %, due to the reason that for cases without DC the selected serving 

cell is assumed to have the highest estimated throughput from the candidate cells in the two 

layers. 

4.4 Model Simulation 

The proposed cache enabled dual connectivity architecture that integrate the SCs to the LTE 

MeNodeB at the PDCP layer, is implemented using Riverbed 18.5 Modeller based on the 

3GPP technical requirement for small cell enhancement [24]. The system model is then 

investigated in terms of throughput and delay.    

The Riverbed (formerly known as OPNET) is a powerful simulation software, offers libraries 

that contains more than 400 ‘out of the box’ protocols and vendor device models including 

TCP/UDP, IPv6, VoIP/Video/FTP/HTTP/Email, WiMAX, WLAN (a/b/g/n), and LTE to 

support accurate event driven simulation scenarios. Nevertheless, The LTE model features 

supported by this modeller are based on 3GPP Release 8 & 9, that don’t support dual 

connectivity. Therefore, a modification to the LTE node models is required, this modification 

can be done using the Device Creator to create custom model or modify the existing one. 

Furthermore, visualization functionality is also not supported but there is big number of 

devices belonging to the computer networking category and they can be used instead to 

simulate the network using the program capabilities to assign tasks and choose the statistics 

of each node. A measurement entity is also created for each UE, which records values of 

RSRP and RSRQ, thus the UE continuously measures RSRP and RSRQ for all nodes within 

its range.  
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4.4.1 LTE Implementation in OPNET 

Communication networks and distributed systems typically encompass a wide range of 

technologies ranging from low-level communications hardware to high-level decision-

making software. A successful system modelling must represent each of these subsystems 

and their interactions at a level of detail that is sufficient to obtain valid predictions of 

performance and behaviour. Because the nature of these subsystems varies significantly from 

level to level, the traditional single level frame work does not meet these expectations, hence 

the need for a multi-tier system becomes a requirement. Any wireless system modelled using 

OPNET contains the following three domains: 

 The Network Domain: concerned with the specification of a system in terms of high-

level devices called nodes, and communication links between them 

 The Node Domain: concerned with the specification of node capability in terms of 

applications, processing, queueing, and communications interfaces. 

 The Process Domain: concerned with the specification of behaviour for the processes 

that operate within the nodes of the system. Fully general decision making processes 

and algorithms can be created.  

The basic modules for building an LTE framework using OPNET are: UE, eNodeB, and an 

EPC, these modules can be duplicated, altered or combined to perform the required system 

functionalities, Figure 4.9 shows the basic units simulated using OPNET at module level.  

 

Figure 4.9 LTE network using OPNET      
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4.4.2 Dual Connectivity for UE Terminal 

OPNET 18.5 modeller contains many ready built modules to use for creating a network, the 

node models include the full protocol stack from the physical layer up to the application layer 

represented by modules for the AS and NAS protocols while the layers representing the U-

plane protocol stack are embedded as process modules inside them. Figure 4.10 shows the 

protocol stack layers of the UE without DC and its equivalent in OPNET node domain. 

                 

Figure 4.10: UE node level and equivalent protocol stack. 

Because the dual connectivity allows a UE to have two simultaneous connections to a main 

eNodeB (MeNodeB) of macro cells and a secondary eNodeB (SeNodeB) of small cells while 

exchange of information between the MeNodeB and UE may take place on different layers, 

such as MAC, PDCP and RRC layers. Therefore, a modification to the node model is 

required so that a UE will have the protocol stack defined by 3GPP for DC, as shown in 

Figure 4.11. 

 

Figure 4.11: UE layers supporting DC (UP 3C) [26]. 



64 
 

A UE in RRC – connected mode first obtain access to the MeNodeB and keep C-plane 

connection with this node, which is the only RAN element that is visible to the core Network 

(EPC), measurement and statistics information related to the UE gathered by the mobile 

network element based on the 3GPP signalling messages and Performance Measurements 

(PM) defined by 3GPP can be aggregated and processed by the controller module of the 

MeNodeB, a table of information will be generated that will also contain measurements 

considering the information coming from the SCs [92] [93]. 

The node model for the modified UE with DC is shown in Figure 4.12; this modified model 

has the same layers of the original node model, except for the (LTE’s DC) which has limited 

functionality compared to the original one, as it has only the PDCP and RLC layers.  

 

 

Figure 4.12: Modified UE for DC. 

The process of AS protocol will be done only by the original protocol through the attached 

procedure as follows: 

1- The UE is first turned on and attached to the network. 

- A UE context is created. 



65 
 

2- The UE said to be in the EMM-deregistered state.   

- The UE cannot be paged and the MME has no knowledge of the UE location. 

- The UE cannot have any user plane bearer while in this state. 

3- The UE moves to the EMM-registered state after completing the attached procedure. 

- The UE is registered with the MME while in this state and a default bearer is 

established. 

4- When in EMM-Idle, the UE can: 

- Responded for paging messages. 

- Perform service request procedure. 

5- UE and MME enter the ECM-Connected state after NAS signalling connection has 

been established. 

- UE View: RRC-Connection established between UE and eNodeB. 

- MME View: S1 Connection established between the eNodeB and MME. 

Figure 4.13 shows the procedure in process domain.  

After this procedure the UE is in the RRC connection mode and is successfully connected to 

the eNodeB and can start reading the system information of the cell and performs the PDCP 

status report procedure with the eNodeB. LTE modes are RRC-Connected and RRC-Idle 

mode, In the Idle mode the UE is just paged for the downlink data while in the connected 

mode, and the UE is in full operation for transmission and reception. The NAS, S1 and other 

RRC connections are active in the connected mode, while in the idle mode all the mentioned 

connections are removed. 
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Figure 4.13: Attach procedure in process domain. 

Regarding the MeNodeB, this node will be attached to router via point to-point protocol 

(PPP) link to add routing capabilities. And will be acting as a gateway unit linked to the EPC. 

In this case the MeNodeB GW serves as a concentrator for the C-Plane, specifically the S1- 

MME interface. The S1-U interface from the SCs may be terminated at the MeNodeB GW. 

The MeNodeB GW appears to the MME as a normal eNodeB while appears as an MME to 

the SCs. In similar functionality to the HeNodeB [100] with some modification made to 

support Dual Connectivity. 

Figure 4.14 shows the node model for MeNodeB. The designated eNodeB structure includes 

Ethernet and PPP ports in the physical layer to provide capability of communication to the 

servers by Ethernet and optical fibre links.  
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Figure 4.14: eNodeB node model. 

 4.5 Performance Evaluation  

The system performance is evaluated over multiple scenarios using riverbed simulator to 

investigate the optimal solution, with the same LTE simulation parameters, that are set 

according to 3GPP TR 36.842 [91] and summarized in Table 4.1. 

Parameter Value 

Type of Service HTTP with Video 

Video Type On demand – Non live 

File Size 200 Mbytes 

File inter-arrival distribution Exponential 

Average File inter-arrival 

Time 

16s, 20s, 24s 

Total MeNodeB Tx Power 46 dBm 

SC Tx Power 30 dBm 

Noise figure 9 dB in UE, 5 dB in eNodeBs 

UE Tx Power 23 dBm 

MeNodeB Carrier Frequency (F1) 2 GHz  

SC Carrier Frequency (F2) 3.5 GHz 

LTE Bandwidth/Duplexing 20 MHz/FDD 

Sub-carrier spacing 15 kHz 

Sub-frame length (TTI) 1 ms 

Symbols per TTI 14 

Data/control symbols per TTI 11/3 

Table 4.1: Simulation parameters. 
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LTE system contains 1 MeNodeB, with variable number of hotspots (Small Cells) and UEs 

as shown in Table 4.2. The SCs and UEs are randomly distributed under the MeNodeB 

coverage. Adaptive modulation and coding were enabled in order to enable the UE to 

communicate with the eNodeB in variable channel conditions.  The interference and multi-

path are modelled. IP traffic is established between the UEs and HTTP server is connected to 

the LTE network through internet backbone as shown in Figure 4.15.  

 

 

 

 

 

Table 4.2: Corresponding Network parameters. 

 

 

Figure 4.15: Basic System model.  

 

SC UEs 

0 5 

1 5 

2 5 

2 10 

3 10 

3 20 
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For the first scenario set to start with 1 MeNodeB and 5 UEs randomly distributed within the 

MeNodeB coverage area, then for the succeeding scenarios, the number of SCs and UEs will 

be increased to be as 0, 1, 2, 3 for the SCs, and 5, 10, 20 for the users as shown in Table II. 

The simulation time has the duration of 60 minutes; there is a warmup time of 90 seconds 

approximately, before the start of the simulation and results collection.  

The proposed scheme is analysed based on the previously specified settings and scenarios.  

The IP data packets (both sent and received) are also examined over the LTE network. The 

key performance factors chosen for investigation are the throughput and packet end-to-end 

(E2E) delay. In the first scenario, the network is configured with low load traffic to decrease 

the probability of packet loss due to either the buffer overflow or repeated re-transmissions 

due to the traffic congestion. 

Three main cases are considered in evaluating the network performance 

 Content is delivered from the cloud (No content is cached). 

 Content cached in M-eNodeB  

 The UE with active dual connectivity is connected to the M-eNodeB in the UL and to the 

S-eNodeB in the DL, with Content cached in the small cell. 

 

4.6 Results Discussion and Analysis  

Figure 4.16 shows the response of the network in terms of E2E delay for the three scenarios. It 

can be observed that the delay is very high when the UE is connected to the M-eNodeB 

provided that no data is cached in the network while it is acceptable when the contents are 

cached in the M-eNodeB and has dropped significantly when the UE is connected to the SC-

eNodeB and using the proposed scheme. 

The explanation of drop in the delay is the fact that the distance to the M-eNodeB is quite 

larger than the distance to the SCeNodeB, provided that the DL frequency differs from the UL 

frequency which reduces the interference in the network in order to help decreasing the losses 

as proposed 
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Figure 4.16: End to End delay. 

Considering the same network simulation and examining the results in terms of the 

throughput. Figure 4.17 illustrates the throughput delivered in bits/seconds. It can be observed 

that the throughput is increasing when the content server is getting closer to the UE, achieving 

its best when the UE downlink is connected to the SC-eNodeB and using the proposed 

scheme.  

 

Figure 4.17: Network throughput. 
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Logically, the throughput (bits/sec) will increase in 2 cases: 

i) If Data traffic is increasing within the same period 

ii) If the elapsed time to transfer the same amount of data decreases. 

iii) Or both of them though it’s very rare to happen  

Hence in the proposed model, when the content is cached in the M-eNodeB the network 

delivers and performs best at the beginning of the simulation because the data has been 

fetched and cached closer to the UE. However, it starts to perform even better in the third 

scenario when the DL is connected to the S-eNodeB after 20% of the simulation time, this is 

due to S-eNodeB initialization and time spent fetching the content from the main sever to the 

S-eNodeB. 

In the second run of the simulation the same network is considered with the same parameters 

but will examine the case when the network is configured and routes full load in its data 

plane.  Figures 4.18 and 4.19 show the response of the network in terms of End to End delay 

and throughput for the three scenarios.  

 

 

Figure 4.18: End to End delay 
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Figure 4.19: Network throughput. 

It is observed that the delay is at its highest value when the UE is connected to the MeNodeB 

with no data server available in the RAN, which is considered as a normal result. On the 

other hand it is more acceptable compared to the first scenario when the content server is 

attached to the MeNodeB and it has dropped significantly when the UEs are connected to the 

SeNodeB and using the proposed Dual connectivity scheme.   

 

The same thing applies regarding the throughput delivered in bits/seconds. When the content 

server is getting closer to the UE, it can be observed that throughput starts to increase 

achieving its best when the UE downlink is connected to the SeNodeB. Noting that when the 

content server is placed in the M-eNodeB the throughput drops remarkably when the network 

is running full load, this is due to high traffic that is being processed and requests from the 

UEs to be fulfilled by one content server. 

 

Finally, the system was run with multiple scenarios of different numbers of SeNodeBs and 

UEs as set in table 4.2, Figure 4.20 shows the response of the network in terms of E2E delay 

for the multiple scenarios. The observation is that the delay is increasing with the increase 

numbers of UE, even when there is more than one SeNodeB to serve the same number of 
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UEs equally or when the number of UEs under the coverage of the SeNodeBs is close. This is 

the expected response as the burden increases on the MeNodeB since the same content is 

routed in the network in every scenario. Whilst the incremental increase in SeNodeB numbers 

in the entire network efficiently decreases the delay as the time elapsed to fetch data from the 

cloud is narrowed or sub-zeroed, once the data is cached. The difference between the distance 

to the SeNodeB and to the MeNodeB is major factor to the rise and drop in the delay. In other 

words, the drop in the delay is because the distance from the UE to the SeNodeB is quite 

smaller than distance to the MeNodeB, provided that the access time is increasing when 

increasing the number of UEs to be attached to the network and requesting same contents to 

be delivered from the server.  

 

 

Figure 4.20: E2E delay (multiple scenarios). 
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 4.7 Summary  

The increasing demand for data connectivity especially indoor drives both operators and 

developers towards improving the network in terms of capacity, integration of new 

technologies, spectrum and architecture options. And one of the promising solutions is small 

cells deployment with in-network caching capabilities; caching techniques have an essential 

role in communication systems and networks.   

In order to fully utilize the facilities provided by small cells without adding burden to the 

network, dual connectivity was introduced for the UE, DC is a technology to extend CA and 

CoMP to simultaneous double connection,  

This chapter described a heterogeneous network, design and implementation based on the 

LTE system that supports dual connectivity and data delivery at the RAN. In the proposed 

design the data and controls of the SeNodeB is processed at the network edge using a MEC 

server, and the SeNodeBs are used to boost services provided to the users. The proposed 

system and resource management are simulated using the OPNET modeller and evaluated 

through multiple scenarios with and without full load. The results clearly show that the 

proposed system can decrease the latency while the total throughput delivered by the network 

has highly improved when SeNodeBs are deployed in the system. Rising throughput will 

incur the rise of overall capacity which leads to better services being provided to the users or 

more users to join and benefit from the network. 
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CHAPTER 5 

LOAD BALANCING USING NEURAL 

NETWORKS APPROACH FOR ASSISTED 

CONTENT DELIVERY IN HETROGENOUS 

NETWORK 

 

Briefing 

In this chapter, a modified LTE architecture with added AI blocks is proposed to overcome 

the problems occurring due to unbalanced load routing and boosting the delivered 

throughput. The load balancing technique utilizes Hopfield artificial neural network and 

Radial Basis Function Neural Network for content delivery mechanism in Heterogeneous 

LTE mobile network. The proposed network design demonstrated efficient impact on the 

network performance in terms of power saving and handling data size increase [102].  

 

5.1 Introduction 

Surfing through the different mobile generations from 1G to 4G, the mobile networks 

evolution examined various fundamental changes and challenges. Early systems migrated 

from analogue networks providing voice only service to, nowadays, full IP packet core 

networks providing multimedia services. During this evolution journey both parts of the 

mobile network, the core and the radio, evolved through essential changes and enhancements 

to their structure as well as the way that the user equipment accesses the network. The mobile 

equipment or user equipment is associated with the end user of the network and is the first 

link in the mobile network chain; consequently, satisfying the end user by keeping a good 

quality of experience. The latter is a fundamental requirement to gain substantial revenue 

levels.  

 

Revenue generation is the target for the mobile network operators; hence they provide their 

maximum to the customer to increase income. As the mobile networks evolved, the 

customers’ demands grew and their satisfaction level demands became harder to maintain. 
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Mobility is one of the major challenges in the mobile network! The fact that any mobile user 

can move within the network, remain connected and use the service at the same time is one of 

the fundamental reasons that keeps the user preference of the mobile networks over fixed or 

landline networks. In order to sustain customers’ desired level of satisfaction, the mobile 

network operators must provide the mobile users with seamless connectivity and continuous 

service. This is particularly important since mobile devices are no longer a complement or 

luxury items but have become an essential part of people’s everyday life and business [92]. 

People use their mobile devices while on the move for different purposes and needs, browse 

the internet, check their e-mails, connect with each other through social media, and streaming 

audio and video files.  

 

The integration between mobile and computer networks with the advanced capabilities of the 

devices have led to large amounts of data to be generated. The majority of this data is due to 

mobile networks and the attached devices, such as mobile smart phones, tablets, wearables 

and many other devices, routing Big Data which is another major challenge. 

 

According to Cisco Visual Networking Index (VNI) 2019 [102], by 2021, one year after the 

3GPP to submit the final specifications of the 5G at the ITU-R WP5D meeting in February 

2020, there will be an estimated 58% of the world population using the internet, 4 networked 

devices per person, global IP traffic will reach 3.3 Zettabyte as shown in figure 5.1. The 

traffic from wireless and mobile devices will represent 63% of total IP traffic, Smartphones 

will exceed 86 % that is four-fifths of mobile data traffic, and over 78% of that is three-

fourths of the world’s mobile data traffic will be video. The requirements for the 5G mobile 

network include higher connection speed of up to 10 Gbps, latency of about 1 ms, increase in 

the bandwidth per unit area, 100% coverage and almost the same for availability. Taking into 

consideration the estimates above and the potential requirements for 5G mobile network; the 

current architecture of the 4G, represented by the structure of LTE , will not be able to cope 

with such needs in its present form, but could be the base of the future mobile network or 5G.  

 

Before the full Release of 5G, it is expected that 4G will continue to develop to support many 

new uses and applications, by making some modification and enhancement on its structure. 

4G can handle many new features that could be seen as 5G specific. Such enhancements 

include the use of small cells in Heterogeneous networks, cloud computing with intelligent 

load balancing, software defined networks (SDN), and network slicing. 



77 
 

 

 

Figure 5.1: Global Mobile Data Traffic, 2017 to 2022 [102]. 

 

 

 

5.2 Load Balancing  

Mobility while routing Big Data in wireless networks is one of the hardest challenges [103]. 

Call drops or transmission gaps, which may appear at the users’ end, must be prevented as 

much as possible. This becomes even more critical with LTE since this technology was 

proposed and designed to support mobile terminals moving at high speeds. While soft and 

softer handovers mechanisms were implemented in the GSM and 3G mobile networks, they 

are not applicable in LTE; all handovers performed in LTE are known as “hard handovers”. 

Hard handover means that the reception is interrupted, i.e. connection with the network is lost 

for a short period [104]. The occurrence of these interruptions has to be reduced as well as 

their effective periods keeping them as low as possible in order to satisfy the quality of 

service (QoS) requirements for Voice-over Internet Protocol (VoIP). The users at the edges of 

cells with heavily loaded links can be transferred to less loaded cells within the neighbouring 

eNodeBs by making inter-eNodeB and intra-eNodeB handovers similar to cell breathing, to 

efficiently host the imbalance load over the links, load balancing is needed, figure 5.2 shows 

balancing diagram. At a certain time, the offered network load, through the bottleneck link in 

the network link interface, can be reallocated to other links that are not congested. Moreover, 

from the point of view of the radio network, diverting traffic to the less congested cells will 

reduce the cell overloading [105]. The radio network can be improved by applying 

knowledge-based adaptive handovers; thus, enabling a guaranteed QoS for end users. There 

Overall mobile data 
traffic is expected to 
grow to 77 exabytes 
per month by 2022, a 
sevenfold increase 
over 2017. Mobile 
data traffic will grow 
at a CAGR of 46 
percent from 2017 to 
2022 
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are several methods for load balancing in the LTE mobile networks such as cell coverage 

control (CCC) and handover parameter control (HPC) [106], both mechanisms has 

advantages and disadvantages. 

 

 

 

Figure 5.2: Unbalanced network [105]. 

 

5.2.1 Reporting Handover Parameters 

When the UE is in RRC connected mode, it keeps measuring the cell signals of the SeNodeB 

and the neighbouring cell, according to 3GPP TS 36.331 [107] the UE can be configured to 

comply with wide individual and separate measurements. These network measurements are 

related to the reference signals which are generated and transmitted within the control frame. 

By keeping measures of the reference signal received power (RSRP) and the reference signal 

received quality (RSRQ) signals the UE generates a measurement table and send it to the 

SeNodeB with the triggering response or Time To Trigger (TTT) that is determined 

according to the measurements values as specified in [107]. The TTT is the timespan required 

for the entering condition to be fulfilled without triggering the leaving condition, which in 

turn would trigger the handover, while Handover margin (HOM), is a critical value that when 

is reached by the measured signal to trigger the entering condition Figure 5.3 gives general 

description of the process within time [108]. 
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Figure 5.3: HO triggering values selection [108]. 

 

In general, and in order to have as minimum as but necessary number of handovers; the 

mobile service providers must set the parameter values to make sure neither unnecessary nor 

repeated handovers occur. This is because each handover consumes valuable network 

resources as well as UE resources (such as battery, processing…etc.) that can be used to 

deliver better services to network users. If these settings are not carefully selected, then 

unnecessary handovers may be triggered. For example, if the received RSRP from the 

neighbouring cell goes high for a very short period of time and if the selected TTT value is 

too small, a handover will be triggered. These handovers might happen in a frequent way at 

cell edges, because the received signal strength of the two adjacent cells changes many times, 

this is denoted as the ping-pong effect. Therefore, the parameters have to be selected 

carefully by the network operator in such a way that optimal network performance is 

delivered. Hence, the operator must set these parameters considering the requirements and 

conditions of the network. 

 

5.2.2. Handover Stages 

The handover process comprises of three stages [109], handover preparation, handover 

execution, and handover completion.  

 Handover preparation 

The Handover preparation procedure is initiated by the source eNodeB if it determines 

the necessity to initiate the handover via the S1 interface, then the target eNodeB will 

perform the admission control to determine whether it has enough resources to provide 

the EPS bearers for the new added user while maintaining acceptable services for the UEs 
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within its coverage, After finishing the admission control the target eNodeB transmits a 

handover-request containing result of the admission control to the source eNodeB within 

acknowledge message., the  source eNodeB approves the handover. 

 Handover execution 

In the handover execution, the UE disconnects from the source eNodeB and sequence 

number status transfer message is generated, all handover necessary data are included in 

this message, the sequence number status transfer is sent to the target eNodeB to establish 

a forwarding tunnel, Once this has been done, the SeNodeB will forward all incoming 

downlink data to the target eNodeB over the X2 interface without the EPC involvement, 

the target eNodeB buffers all the forwarded until the UE reconnects again. 

 Handover completion 

After the UE is reconnected to the target eNodeB, the eNodeB will inform the MME and 

the SGW to switch the downlink to it and send end marker to the source eNodeB to 

terminate the old path and no further data related to the specific UE will be sent, and will 

consider such data as a duplicate and discard it. If any packets are transmitted during the 

handover procedure, they might go through either old or new path via dual connectivity 

and the PDCP layer set them in order deliver in the correct sequence. 

 

Figure 5.4 shows the phases of handover according to [108]. 

 

5.3 Load Balancing Algorithms 

There are several types of traffic distribution algorithms which can be considered for load 

balancing, from which: random, round robin, least load, and least hops…etc. all these 

algorithms had not achieve full utilization neither for the links nor for used equipment. Hence 

the need for better algorithms had increased due to the limited resources availability and the 

growth of user data exchanged in the network, many proposals for new algorithms has been 

presented considering different sides of the problem. 
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Figure 5.4: Handover Stages [109]. 

 

5.3.1 Related Work   

Some research studies have recently been focusing on achieving load balancing among 

heterogeneous networks. In [110] the authors presented policy framework for resource 

allocation in combined cellular/WLAN network, admission control, and selection schemes 

for access network/access points (APs) where they are re-designed to achieve load balancing. 

According to the presented results high utilization was achieved when the offered traffic 

loads are dynamically balanced over the two networks via admission control and vertical 
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handoff, also significant performance improvement is observed in comparison with other 

reference schemes. 

 

Similar network to [110] was considered by the authors of [111], they proposed performing 

dynamic load balancing through joint session admission control based on user mobility 

cognition and service awareness in a tightly coupled 3G/WLAN network, the numerical 

validation showed enhancement in terms of delivered throughput and call blocking 

probability of service. 

 

The authors in [105] worked on congestion in the transport network to implement handover 

toward less loaded cells to help redistribute the load of the bottleneck link; they designed and 

implemented a handover and load-balancing mechanism for an LTE system model. They 

considered simulating various handover schemes and different load scenarios with various 

traffic classes, the results show that the load balancing algorithm can help in balancing the 

load among the network components. The simulation was carried out using OPNET. 

 

The authors in [112] worked on radio resource allocation in a heterogeneous wireless access 

medium with constant and variable bit rate services, they proposed a distributed algorithm for 

resources allocation in each part of the network, Numerical results demonstrated the validity 

of the proposed algorithm and showed better resources allocation when the number of 

eNodeBs is reduced or the number of UEs is increased. 

 

The authors in [113] mathematically proved NP-completeness of the problem and develop 

two algorithms to approximate the optimal solution for big instance sizes, the first algorithm 

allocates the most demanding service requirements first, considering the average cost of 

interfaces' resources. The second one calculates the demanding resource shares and allocates 

the most demanding of them first by choosing randomly among equally demanding shares. 

The numerical results show the role of the activation cost in the services’ splits and 

distribution among the interfaces, moreover the results demonstrate relation between the 

number of rounds and the total cost.  

 

While in [114] Song et al. propose a load balancing algorithm based on Radial Basis function 

neural networks, they implemented the algorithm to conduct prediction through network load 

rate and achieve the network admission of new service. This is by combining an admission 
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control optimization algorithm, and by analysing network performance, some services of 

heavy load network are transferred to overlay light load network, according to the simulation 

results the proposed algorithm was able to well realize the load balancing of heterogeneous 

wireless network and provide high resource utilization. 

 

The authors in [115] introduced an inter-access system anchor based load balancing 

mechanism to performs load monitoring and evaluation for access gateways and networks, 

they also proposed a load balancing algorithm for heterogeneous integrated networks with 

introduction of  the utility function concept which supports both single type service. 

Numerical results demonstrate that load balancing between access networks can be achieved, 

and the optimal number of handoff users corresponding to the maximal joint network utility 

can be obtained. Same authors extended their work [116] and improved the network to 

support multimedia services. 

 

In [117] the authors combined fuzzy logic control (FLC) and multiple preparation (MP) for 

self-optimization of HO parameters, MP approach is adopted to overcome the hard HO 

(HHO) drawbacks, such as the large delay and unreliable procedures caused by the break-

before-make process. According to the results of the work; the proposed method was capable 

of reducing HOF, HOPP, and packet loss ratio (PLR) at various UE speeds compared to the 

HHO and the enhanced weighted performance HO parameter optimization (EWPHPO) 

algorithms. 

 

The authors of [118] proposed load balance technique based on artificial neural network to 

equally distribute the workload across all the nodes by using back propagation learning 

algorithm to train feed forward Artificial Neural Network (ANN). The ANN is used to 

predict the demand and thus allocates resources according to that demand, the work and 

results were compared to another 17 load balancing techniques. 

 

[119] demonstrated small cell traffic balancing by jointly optimizing the use of the licensed 

and unlicensed bands in LTE License-Assisted Access (LTE-LAA), the authors derived a 

closed form solution for this optimization problem and proposed a transmission mechanism 

for the operation of the LTE-LAA small cell on both bands.  According to the numerical and 

simulation results, the proposed traffic balancing scheme, successfully provided better LTE-

WiFi coexistence and more efficient utilization of the radio resources relative to the existing 
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traffic balancing scheme, it also provided a better trade-off between maximizing the total 

network throughput and achieving fairness among all network flows compared to alternative 

approaches.  

 

5.4 Architecture  

The proposed network model is based on the 3GPP LTE  Evolved Packet System (EPS) built 

and validated in chapter 4 of this work, main components for radio and core networks, (the 

core network simulated using OPNET is available in the form of only one node called the 

EPC) remained the same, but two additional entities are introduced into the EPC, which will 

be denoted as Predictor and Balancer, users in various heterogeneous access networks 

transmit data to these entities via several access gateways, i.e. ePDGs for small cells and 

MMEs for Macro eNBs MeNB, and the traffic load of each access network can be evaluated 

through summing up the load of the corresponding access gateways. After receiving the 

RSSI, the gateways in each access network forward it with monitoring response message 

containing their load information to the Predictor/Balancer block. In the radio network, and in 

a similar way to scenario#2 in the 3GPP TR 36.842 V12.0.0 (2013-12) (Release 12) [91]. 

 

In this scenario, a UE with dual connectivity will maintain an RRC Connection with the 

MeNodeB at all times, while receiving user plane data from the MeNodeB and SeNBs. Hence 

there will be only one S1-MME connection per UE. In such way, the mobility of the UE will 

be controlled through the MeNodeB, as the MeNodeB will be responsible of the RRC 

signalling with the MME and there is no need to move the RRC context of the UE between 

the SeNodeB’s. In this technique, handover between SeNodeB’s will be as adding and 

removing new cells as all the information and radio resource management (RRM) are in the 

MeNodeB server. The main service required by the UE will be the responsibility of the 

MeNodeB as it keeps all time connection with the UE, while SeNodeBs could be used for 

specific services such as content delivery. Figure 5.5 shows the suggested EPS with 

Predictor/Balancer block. 
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Figure 5.5: Proposed EPS architecture [101]. 

 

The Balancer needs to be trained before involvement in decision making; the training scheme 

is non-supervised which justifies the need for large amount of data that can also be used for 

the test. The proposed network prototype here consists of 4 clusters based on the data 

extracted from the LTE core, these groups of data concerns CPU utilization, Link utilization, 

end to end delay, and throughput. The training data were collected from several OPNET 

simulations ran 24 hours and fed to the Balancer slices.  

 

The Predictor part is trained with fewer amounts of data when based on RBFNN (supervised 

training), and the training samples are divided into number of classes equal to the number of 

hidden neurons, also the same data used for training could be further used for testing the 

model.  

 

5.4.1 Physical Layer Measurements 

Physical layer measurements of SINR are collected for both UL-SCH and DL-SCH by a 

measurement entity in each UE; the measurement entity computes the average load and the 

size of the measurement window. The link adaptation parameters values can be set in the 

LTE attributes. RSRP and RSRQ are also collected by the measurement entity in the UE for 

every eNodeB in range. 

 Transmission power 

Maximum transmission power is the transmission power of the device over the entire 

channel bandwidth. It’s measured in Watts (W) and is configured via the node 

attributes. 
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 Uplink Power Control 

LTE uses uplink power control to manage the transmit power of UEs. Hence, each UE 

adjusts its transmit power to an optimal level for achieving the desired received signal 

quality at its eNodeB while keeping the power consumption and co-channel 

interference to neighboring cells as minimum as possible. The Physical Uplink Shared 

Channel (PUSCH) and the Physical Random Access Channel (PRACH) parameters 

are also measured from the eNodeB by the measurement entity. 

 Power Headroom  

Power headroom is the difference between computed and maximum transmits power 

of a UE. It’s computed by the UE and reported to the associated eNodeB. 

Both parts of Power Consumption Measurement for eNodeB (operating power and battery 

capacity) are also reported as physical layer measurements. 

Reporting of the measurement required to perform the handover and event triggering are 

based on the RSRP and RSRQ made by the UE and then reported to the eNodeB as defined in 

the 3GPP specifications [120]. The RSRP is the average power received by the UE from a 

single cell and can be measured as:  

 

RSRPi (UE) = Pi – LUE – Lf    (5.1) 

 

where P is the transmission power of eNodeBi, LUE is the loss gain from the UE to the source 

eNodeB, and Lf is the fast fading channel gain loss.  

 

The reference signal received quality RSRQ is calculated as follows:  

 

RSRQ = B   X  
RSRP

 RSSI
           (5.2) 

 

where B is the number of resource blocks and RSSI is the reference signal received indicator 

of the total power received by the UE. 

 

5.4.2 Load Balancing Procedure  

According to the proposed architecture shown if figure 5.5 regarding load balancing among 

the small cells, it is assumed to have one MeNodeB and four SeNodeBs for this simulation, 
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three cases were considered (all cells overloaded, some cells overloaded, no cell is 

overloaded). 

 All cells overloaded: in the situation when all the SeNodeB are congested, the 

balancer will provide information to the chosen UEs to perform a handover to the 

MeNodeB at a certain triggering time and the procedure explained in 5.2.2 will start.  

 Some cells are overloaded: in the situation when all the SeNodeB are congested, the 

balancer will provide information to the chosen UEs to perform a handover to another 

less loaded SeNodeB, the balancer decides which UEs and which SeBodeBs are 

involved in the handover and also when to perform the handover , depending on the 

learned scheme. Resulting to the optimal load balancing  

 No cell is overloaded: in the situation when the load is below the critical value for all 

the SeNodeB, no handover is needed, and the balancer will keep monitoring the load 

status. 

The load status in a certain SeNodeB is governed by many factors such as: Number of the 

connected UEs, allocated bandwidth for each UE and the actually available bandwidth, and 

this will lead to: 

Li = 
Bi

Bmaxi
     (5.3) 

where L is the load, B is the bandwidth and Bmax is the maximum bandwidth for the ith 

eNodeB. 

 

The ith  eNodeB is considered congested if  Li ≥ K  

where K is a threshold value defined for this purpose 

Figure 5.6 shows the flow chart for the algorithm. 
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5.4.3 Load Balancer Design 

The proposed load balancer utilises neural network clustering mechanism to sort the UEs in 

clusters within the SeNodeBs and gives results to control the handover triggering for any 

congested cell in the network. MATLAB software is used to implement the predictor, and as 

mentioned earlier, simulation run takes place over two platforms and the data exchange is 

made manually for the prototype, because of that the balancer can be distributed in one or 

many pints of the network e.g. the MEC server, or any other computing capable machine, 

however; in the proposed network the balancer is located in the EPC and the connections to 

and between the cells are assumed to be optical fibre. 

 

The balancer consists of three layers, Input, Self-Organizing map SOM, and output layer. 

MATLAB software supports two approaches to simulate clustering with neural networks; the 

first is numerical modelling with which all the parameters are defined numerically, with 

system coding to solve the problem and obtain the output tables, the second approach is the 

neural clustering app which can be set using graphical user interface (GUI), the input is called 

and fed to the input layer, the SOM learn to cluster data based on similarity, topology, with a 

preference of assigning the same number of instances to each class, they are also used to 

reduce the dimensionality of data [121]. Figure 5.7 shows the layers of clustering neural 

network. 

 

 

Figure 5.7: Clustering neural networks [48]. 

 

For SOM training, the weight vector associated with each neuron moves to become the centre 

of the cluster of input vectors [48]. 
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The number of hidden neurons determines total number of clusters in the first layer. The 

larger the hidden layer the more clusters the first layer can learn, and the more complex 

mapping of input to target classes can be made. The relative number of first layer clusters 

assigned to each target class is determined according to the distribution of target classes at the 

time of network initialization [48]. 

 

5.5 Simulation Setup 

As mentioned in section 5.3 the proposed network model is based on the 3GPP LTE Evolved 

Packet System (EPS) built and validated in chapter 4 of this work, main components for radio 

and core networks, (the core network simulated using OPNET is available in the form of only 

one node called the EPC) remained the same, The AI part, is designed, simulated and run 

using MATLAB. The behaviour of the proposed traffic balancing scheme in various 

scenarios using a combination OPNET/MATLAB results. 

 

In order to compare results of the same class and distinguish the impact of the enhancing 

circuitry added to the network, the simulation considered two projects;  

a) Using the available balancing technique in three scenarios; where the first one 

presents the case when no congested cells, the second incur the same condition but 

with more users (causing congestion on some cells), and the last one with all 

SeNodeBs congested. The simulation parameters are listed in Table 5.1.  

b) The other project in which the proposed balancing with handover mechanism is 

activated, it comprises of one scenario examining and comparing the behaviour of the 

network. The simulation parameters are set as in Table 5.2. 
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Table 5.1: Simulation setup (Balancing). 

 

Table 5.2: Simulation setup ( proposed). 

 

5.6 Simulation Results and Analysis 

Project 1. In this section, the network is run and analysed based on the scenarios and settings 

discussed in the previous section. The sent and received IP data packets all over the LTE 

network were examined. The throughput, packet end-to-end (E2E) delay, CPU utilization and 
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the associated eNodeBs for both uplink and downlink were chosen as the key performance 

factors. In the first scenario, the network was running normally with different load conditions 

and the handovers performed were due normal mobility, the network behaviour with 

increasing probability of packet loss due to either the buffer overflow or repeated 

retransmissions caused by link congestion, however; since the number of users was limited 

then the cached content are neither large nor variant and the small cells handles the network 

efficiently. Figure 5.8 shows the network throughput  

 

 

Figure 5.8: Network throughput (scenario 1). 

 

Figure 5.9 shows the packets end to end delay for each small cell in the network, it can be 

observed that they have close values to each other, the differences corresponds to several 

reasons, such as distance between UE and the eNodeB and content availability.   

 

Figure 5.9: end2end delay (scenario 1). 
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Figure 5.10 shows the associated eNodeB for the UEs at the cell edge. It can be noted that the 

UEs are connected and transmitting/ receiving for the whole period of the simulation. 

 

Figure 5.10: Associated eNodeB (scenario 1). 

 

In the second scenario, the load was increased by increasing number of UEs; however the 

new added UEs were chosen to be close to the eNodeB with limited or zero mobility in order 

to maintain connectivity and to affect the resources and channel conditions for the UEs at the 

cell edge. The throughput and the delay were not significantly altered compared to scenario 1, 

and this is due to the caching facility in the SeNodeB, which saves the time elapsed for 

fetching the content .Figure 5.11 shows the throughput and Figure 5.12 shows the end to end 

delay of SeNodeBs in the network.  
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Figure 5.11: network throughput (scenario 2). 

 

 

Figure 5.12: end2end delay (scenario 2). 

 

Figure 5.13 shows the associated eNodeB for the UEs at the cell edge. It can be noted that the 

UEs maintaining connectivity and keeps transmitting/receiving for the whole period of the 

simulation. 
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Figure 5.13: associated eNodeB (scenario 2). 

 

In the third scenario, the network load was further increased by increasing number of UEs; 

similar to scenario 2, the new added UEs were chosen to be close to the eNodeB with limited 

or zero mobility in order to maintain connectivity and to absorb as much resources and 

channel conditions resulting in shortage for the UEs at the cell edge. The delay started to 

increase rapidly compared to scenarios 1 and 2. This increase is caused by frequent 

handovers performed by the UEs due to the link congestion; Figure 5.14 shows the end to end 

delay for the 4 participating SeNodeBs. 
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Figure 5.14: end2end delay (scenario 3). 

In Figure 5.15 where the associated eNodeB for the UEs at the cell edge is viewed, it can be 

seen that the UEs in dual connectivity mode are performing handovers continuously in the 

downlink direction, either from SeNodeB to another or from SeNodeB to the MeNodeB; this 

will result in huge amount of resources to be allocated and hence consumed for this purpose 

as well as more burden on the MeNodeB due to the uneven resources sharing, it can be 

observed that SeNodeB 3 is providing less service than the other SeNodeBs. 

 

Figure 5.15: Associated eNodeB (scenario 3). 
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Project 2. In the second part of the simulation, in order to investigate and compare the 

benefits of the proposed architecture, same conditions of scenario 3 were considered but with 

the load balancing entity ON. The balancer is trained to gain knowledge from the network 

load, delay and handover parameters, the outputs can be used to apply load balancing, the 

propose load balancing add-on allows defining new threshold values to recognize congested 

cells, upon these values the decision of performing handover is made, depending on the 

learned pattern load balancing is activated in the PDCP layer of the MeNodeB and SeNodeBs 

to decide the which UEs to remain associated with and which ones to issue a handover.  

 

The results in Figure 5.16, shows the end to end delay for each SeNodeB in the network, it 

can be observed that the average delay doesn’t exceed 30 msec in its worst case and remain 

consistent when compared to the results showing the delay of unbalanced network (Figure 

5.14). The delay can be reduced either by adding more resources or reducing the number of 

connected users, however better resources utilization can also reduce the delay.   

 

 

Figure 5.16: end2end delay (Balanced network). 

 

Another benefit of the adding the balancer is noted when comparing Figures 5.15 and 5.17 in 

which the number of handovers occurring in the network are shown for UEs at the edge of 

the cell, the balanced network demonstrated less handovers compared to the unbalanced and 

this is due to the better exploitation of the network resources. 
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Figure 5.17: Associated eNodeB (Balanced Network). 

 

However; and because of its nature, the balancer in some cases may not give the optimum 

solution, and will output data for triggering the handover not in the direction of the best cell, 

this might happen when very large sets of data are used which increases dimensionality, or 

deficiency of the used algorithm, or unexpected reaction or speed mobility of the UE, which 

is the reason for proposing another AI entity for prediction in the next chapter of this work, 

the AI entity is merely a software package installed on a computing platform to perform  

specific tasks. 

  

5.7 Summary  

Maintaining good mobile communication service at the cell edge is a critical point and 

requires improvement, especially with limited resources availability and increasing demand 

for service, in this chapter an AI based load-balancing block is introduced within the 

architecture to help congested cells handle traffic dynamically by changing the handover 

triggering parameters depending on the values tables obtained from the AI entity. The 
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balancing algorithm is based on clustering approach and was evaluated in various conditions 

with comparison to the traditional built in load balancing.  

The results show a better distribution of the load in the previously congested cell, less 

handovers were initiated and less end to end delay in all the small cells; this will 

consequently result in significant reduction in the signalling allocated for handovers and will 

save the resources just like in a lightly-loaded cells. 
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CHAPTER 6 

NEURAL NETWORK FOR MOBILITY 

PREDICTIONS AND RESOURCE 

ALLOCATION IN LTE 

 

Briefing   

This chapter presents a neural network prediction system as an add-on in the LTE EPC, the 

predictor is able to learn some of the patterns demonstrated by users moving within the 

network and can then predict the future behaviour of these users and the next associated 

eNodeB. These predictions are utilized for better radio resource allocation and scheduling. 

 

6.1 Introduction 

Prediction is defined as knowing what will might happen in the future under certain 

conditions and circumstances before its occurrence, prediction is an outstanding approach in 

many fields such as disease health care, telecommunications, weather and climate 

forecasting, and natural disasters precautions. Prediction studies address the development of a 

prediction model, the validation of a prediction model or both. In mobile communication 

networks, all the UEs must have free mobility while maintaining connection and keep 

acceptable level of QoS. As a consequence of mobility, any moving UE in the wireless 

environment will have to have different points of contact with the network, i.e. it has to 

perform handovers to all the eNodeBs lying in its path. 

The time elapsed for handovers is a critical problem in wireless mobile networks, and it has 

to be minimized along with decreasing the occurrence of redundant handovers or unfinished 

handovers especially when the UE is moving fast at the edge of the cell, this kind of 

handovers is known as the ping pong effect, this kind of handovers reduces the throughput 

and degrades the QoS because of the management signalling overhead and the channel 

interference. Predicting the next eNodeB on the path and directing the resources towards it, 

could be helpful in solving this problem. 
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Prediction process needs to address the following points: location, the type of knowledge, 

type of next action, time of next action, and accuracy level of the prediction, 

 The location of the user can be considered as the location of the fixed eNodeB that is 

associated with, from the view of the prediction unit, though it can easily be either 

calculated or accurately estimated, the exact geographical location is not very 

important for the process, therefore the UE location and its motion through the 

network can be considered as a sequential list of associated eNodeBs and their links, 

as shown in Figure 6.1. 

 

Figure 6.1: UE mobility path [122]. 

 

 Type of previous knowledge used for prediction: The exact specifications of the data 

used, and the knowledge acquired for prediction is very necessary for evaluating and 

determine how appropriate will be the prediction result. If the predictor needs data 

that is not available at a certain time interval or it does exist but not accessible due to 

privacy setting requirements, then the predictor will not output a correct result.   

 The type and time of the next event: Prediction can be classified into: a predictor that 

knows the event and predicts the time of the next occurrence, e.g. the predictor knows 

a handover to another eNodeB is needed but needs to predict the exact moment to 

trigger, or a predictor that must predict what event or action needs to be adopted in a 

specific time, e.g. the predictor knows it’s the right time to trigger the handover but 

needs to predict the target eNodeB. 
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  Accuracy level of the prediction: is an essential factor when implementing prediction, 

it specify how granulated is the prediction, i.e. if prediction is about time then what is 

the accuracy level (sec, msec, nsec…etc.), or if it’s about location then it must match 

the definition of location in the design (coordinates, eNodeB ID, whole path…etc.)   

 

6.2 Related Work 

Many handover prediction approaches were proposed in academic and industry, these 

approaches predict the next station by utilizing combination of many network’s Kpi such as 

RSSI, battery power, latency, and throughput. The RSSI is the most used parameter in the 

prediction process because of simplicity, easy to be measured.  

The authors of [123] presented a prediction method based on RNN with LSTM to predict the 

next eNodeB for the UE to associate with. The RNN is trained using sequences of RSSI 

values, for using to predict next eNodeB association, according to the simulation results; the 

proposed machine learning method achieved an accuracy of over 98% to predict the optimal 

virtual cell topology in the time required based on the mobility of users.  

In the field of UE future location prediction in mobile network to benefit from both intra and 

inter cell based techniques for network and services enhancement the authors of [124] 

proposed Intra Cell Movement Prediction (ICMP), this method depends on map based intra-

cell prediction and utilizes the network database and handovers history to extract the user 

trajectories and movement styles. The performance of the proposed algorithm is evaluated 

and compared with two similar works. The simulation results show that the proposed method 

is more efficient, and it can also be used to enhance location based services with satisfactory 

accuracy. 

Davaslioglu et.al. in [125] considered the deployment of small cells in LTE environment and 

studied critical issues affecting the performance focusing on cell selection part, they proposed 

interference-based cell selection algorithm as a solution to provide better load balancing 

among the base stations in the system to improve the uplink user rates compared to traditional 

cell selection schemes such as RSRP, CRE and PL-based strategies that don’t consider the 

network traffic load when applied, they presented the implementation steps in a typical LTE 

network and examined its performance through simulations. According to the simulation 

results the proposed cell selection algorithm based on interference levels was able to double 
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the cell-edge user SINR and to raise the SINR of the median user by 50% compared to the 

RSRP-based cell selection. 

In [126] the authors proposed call admission control using neural networks to predict the 

future location of the UE based on its mobility history. The neural network model used error 

back propagation technique for prediction. The proposed scheme predicts the time and 

location of the next handover, a call admission control scheme is also used to decide whether 

a call will be accepted or rejected in the current traffic which is based on the available 

resources after a handover. According to the results the proposed model increased the ratio of 

mobility prediction and decreased the call dropping probability and the probability of ping 

pong effect compared to the conventional schemes.  

Kaaniche and Kamoun presented [127] for prediction model in wireless Ad-Hoc network, 

because mobility prediction is a related to time series prediction the predictor utilized 

recurrent neural network for long-term time series prediction, this neural network is 

composite of three layers with feedback and is trained using BPTT algorithm, the nodes 

mobility style follows Random Waypoint Model (RWM) with variable but limited speed. The 

depicted results show high similarity between predicted and actual nodes paths. 

The work presented in [128] refers to predicting next position of the network user in a GSM 

network, the applied pattern recognition algorithm used to generate the model is based on the 

Support Vector Machine (SVM), which provides a powerful solution to nonlinear 

classification. The SVM is used to calculate the optimal separating hyper plane maximizing 

the distance between the plane and the training examples, the authors used RapiMiner Data 

mining framework to implement the model and OneR as a reference algorithm to compare 

with, and the results demonstrated higher efficiency and accurate next cell prediction. 

The work in [129] considers handover prediction between Wi-Fi access points in a portable 

and completely decentralized way, by exploiting RSSI monitoring and with no need of 

external global positioning systems GPS. The authors focused on proposing and comparing 

different filtering techniques for mitigating sudden variations in the Received Signal Strength 

Indication. Grey Model, Fourier Transform, Discrete Kalman, and Particle, techniques were 

used for filtering the RSSI. 

The authors in [130] proposed a prediction technique dedicated for reducing the handover 

failure rate and ping-pong handover rate, in order to avoid the delay increasing and burdening 
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eNodeB with too much data. Two network models were simulated to compare the results, the 

proposed method showed better performance in terms of handover failure rate and ping-pong 

handover rate. 

Similar to [127], the authors of [131] also utilized RSSI, delay and handover cost as 

parameters for prediction, they used nonlinear autoregressive exogenous model (NARX), and 

used integer linear programming (ILP) mathematical model to solve the handover decision 

problem; the solution was then used to train the NARX. After the training the NARX was 

able to decide handover triggering depending on RSSI and the delay data. The simulation 

results showed that the proposed handover mechanism can avoid redundant handovers (ping 

pong effect) within a short time, which leads to better QoS. 

In [132] the authors considered the handover procedure between different radio access 

technology, and the cellular network and the Wi-Fi access points. A comparison between the 

existing association policies and a policy they proposed based on fairly maximizing the 

minimal utility of the user and how they achieve sustainability for the network; the minimal 

utilities were obtained from quality of experience essential values for users with different 

requirements. According to the results, the proposed algorithm for selection sustainably 

enhanced the total satisfaction by 62.2%. The problem was considered in more specific cases 

regarding fairness, worst satisfaction and load balancing.  

6.3 Handover Prediction  

Predicting the target eNodeB before handovers depends on network information such as , 

radio channels quality , trajectory history and handovers history, these information are 

updated  and stored  to the target and source eNodeBs whenever a handover is completed, in 

addition to that  the eNodeBs gather more information from the UEs such as the UE location , 

RSSI strength , and possible target eNodeBs , because handover is only possible between 

adjacent or neighbour eNodeBs. Prediction can be also made by using the information and 

the history of the previous associated eNodeBs. 

In order to successfully predict the next UE position, the following information requires to be 

collected [133]: 

 Accurate network domain deployment with the current and previous positions of the 

UE, e.g. similar to GPS coordinates [134].  

 Knowledge about UE’s frequently visited locations and time spent, e.g. going from/to 

home to/from work Monday to Friday 9:00 – 17:00, and the usual route  
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6.3.1   Prediction Parameters 

In most prediction algorithms the RSSI is used to evaluate the radio link quality, this 

indicator helps the UE decide the best next eNodeB to associate with. The proposed 

prediction scheme is based on continuous reporting of the RSSI from the eNodeBs in range. 

The UE performs the scanning process on frequencies of the MeNodeB and SeNodeB. 

Continuous scanning will drain the UE battery power faster, especially if there are more than 

one eNodeB covering the area, additional reasons of power dissipation are Ideal listing, 

collisions detection, frame errors, protocol overhead, and overhearing.   

 

Two threshold parameters are defined for the predicted handover algorithm, The first 

threshold (S_thresholdAB) is determined by the RSSI value of the source eNodeB when the 

UE performs the handover, and the second threshold (P_thresholdAB) is determined by the 

RSSI value of the predicted eNodeB at the same time , these two parameters at the specific 

and due to the fact they are measured and considered at the same time , they would have 

close but not the same values to each other [135]. 

 

The handover is triggered if the target eNodeB offers better radio resources quality than the 

source eNodeB. at this specific moment the value of the threshold, (P_thresholdAB) is 

considerably higher than the corresponding value of the threshold, (S_thresholdAB) and will 

continue to increase until the handover if finished: 

If   

RSSI of eNodeBA <  S_thresholdAB 

And  

RSSI of  eNodeBB > P_thresholdAB  

Then  

UE is handover from eNodeBA  to  eNodeBB 

A and B  are base station ID 

 

The target eNodeB should also accommodate a maximum value of SNR and maintain enough 

bandwidth at the cell edge in order to be included in the candidate eNodeBs list, otherwise 

they are listed as blocked or currently not suitable for handover and this applies for the 

neighbouring eNodeBs without enough bandwidth. The UE keeps scanning the RSSI values 
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of its associated and neighbouring eNodeBs. All determined SNR, RSSI and data rates values 

are reported to the predictor in the EPC in a continuous manner. 

 

6.3.2 Prediction Steps  

The predictor compares the available bandwidth at the neighbouring eNodeB(s) and the data 

rate needed by the UE to switch to perform a successful handover, to calculate a new 

parameter for preparing the prediction list: 

D rate = min (eNodeB bandwidth, UEDatarate)  

and the prediction follows the steps below: 

1. UE scan RSSI values for source eNodeB and all neighbouring stations and report 

them to the predictor. 

2. If RSSI of the source eNodeB is less than S_thresholdAB , then start prediction 

3. Sort eNodeBs according to the RSSI values 

4. Determine eNodeB bandwidth   for the list 

5. Obtain D rate  

6. Sort eNodeBs according to Drate Values 

The prediction list is updated continuously to keep optimum number of handovers initiation. 

Figure 6.2 shows the parameters collection and calculation by the network. 
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6.4  Architecture 

The proposed network model is based on the 3GPP LTE Evolved Packet System (EPS) built 

and tested in Chapter 4 of this work, main components for radio and core networks, (the core 

network simulated using OPNET is available in the form of only one node called the EPC) 

remained the same, but two additional entities are connected to the EPC, which will be 

denoted as Predictor and Balancer as previously explained in Chapter 5 and shown in Figure 

5.5.  In the model the data is exchanged between the predictor and other network components 

manually as these is no interface or suitable software that combines the OPNET and 

MATLAB capabilities. 

6.4.1 Predictor Architecture 

From the definition of prediction; it can be considered as dynamic filter, which uses the 

previous results to predict the future results. Dynamic neural networks can be used in 

nonlinear filtering and hence prediction. 

MATLAB software provide a readymade tool packages to solve the nonlinear time series and 

selecting one of these tools depends on the nature of the problem and the characteristics of 

the tool itself. 

 Non-Linear Autoregressive Network with Exogenous inputs (NARX) 

 Non-Linear Autoregressive (NAR) 

 Non-Linear input-output 

The NARX prediction is based on the time series previous values and another time series, 

while the NAR doesn’t have an input time series (only the feedback), and the Non Linear 

input-output keeps the values from the previous session and use it for the prediction because 

it has no feedback. Figure 6.3 shows the layer architecture of the NARX tool. 

 

 

Figure 6.3 Neural time series (NARX) [48]. 
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The network must be trained to learn the prediction rules, and since the output sets are also 

known which means the need for supervised learning and no large amounts of data is 

required. MATLAB offers 3 learning algorithms for training the neural time series: 

 The Levenberg-Marquardt  

 Bayesian Regularization 

 Scaled conjugate gradient 

Each one of these algorithms has different features and must be selected on that basis. The 

Bayesian algorithm needs more training time, but it returns good generalization solutions 

especially when difficult or distorted datasets are used, stopping is governed by minimizing 

the network weights. On the other hand, the Levenberg-Marquardt is faster and very robust 

for simple problems. While the Scaled conjugate gradient needs less memory and is very 

effective when small datasets are used, both algorithms stop the training once the 

generalization stops to improve or when the mean square error of the validation data begins 

to increase. However; in the handover problem that needs prediction based solution the exact 

location of the UE is not an essential necessity, the predictor deals with eNodeBs list and, 

therefore the Levenberg-Marquardt method is used to train the network. 

 

6.5 Simulation Setup 

In order to fully discuss and compresence the benefits of prediction each of the simulation 

scenarios has 3 phases, the first is running the network before prediction, training the 

predictor, and running based on prediction results. The same model that was proposed in 

chapter 4 is used for performance evaluation; one user is selected to have a predefined path 

which will be considered for network behaviour investigation in terms of handovers and 

throughput. All the other nodes were set to have random trajectory. The simulation 

parameters for dual connectivity setting are customized according to table 6.1.  
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Table 6.1: Simulation parameters (LTE model with predictor). 

The trajectory of the chosen UE is selected as shown in Figure 6.4, and the cruising speed is 

assumed constant and selected to have an average of 5 miles/hour. 

 

Figure 6.4: Mobility path for UE. 

 

Figure 6.5 shows the associated eNodeB for the entire period of the simulation. 
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Figure 6.5: Associated eNodeB sequence. 

 

In the second phase the predictor is being trained for handover triggering to the target 

eNodeB. The network validation and testing data are divided into time steps, these time steps 

are then grouped for using them in training, validation and testing, the percentiles are set as 

:70% for training, 15% for validation, and 15% for testing. According to the simulation 

results, the network did 17 epochs in total and the mean square error was at its minimum 

magnitude in epoch 11. 

 

The epoch is “the number of times all of the training vectors are used once to update the 

weights. For batch training all of the training samples pass through the learning algorithm 

simultaneously in one epoch before weights are updated” [48]. The Mean Squared Error 

(MSE) is the average squared difference between outputs and targets. Lower values are 

better. Zero means no error, and Regression R Values measure the correlation between 

outputs and targets. An R value of 1 means a close relationship, 0 a random relationship. 

Figure 6.6 shows the performance of the time series [48].  
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Figure 6.6: Neural time series performance. 

 

Table 6.2 demonstrates the results obtained from the network 

 

 Target values Mean Squared Error Regression 

Training 1400 1,2289 𝑒−1 9,77886 𝑒−1 

Validating 300 1,72054 𝑒−1 9,69093 𝑒−1 

Testing 300 1,60436 𝑒−1 9,70192 𝑒−1 

Table 6.2: Training results. 

The regression is illustrated in Figure 6.7 shows good correlation between the outputs and the 

target with very small number of errors. 
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Figure 6.7: Neural Network training regression. 

 

In the third phase, the first scenario is repeated with same trajectory and load conditions but 

with new information for the associated eNodeB and time, Figure 6.8 shows the actual 

handovers results and Figure 6.9 shows the predicted ones. From the graphs it’s obvious that 

the neural network was able to accurately predict the sequence of the handovers and the 

triggering time is also predicted. 
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Figure 6.8: Obtained associated eNodeB. 

 

Figure 6.9: Predicted associated eNodeB. 

Comparing the results in Figure 6.5 and Figure 6.8, it can be noted that the UE never initiated 

a handover towards eNodeB 3; this is because the predictor decided for the UE not to perform 

a handover and associate with eNodeB 3. The prediction is made for the downlink only and 

the MeNodeB has not been involved in the prediction procedure.   

The throughput of the network is evaluated for three scenarios: 
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 Prediction performed with normal load (automatically set by OPNET)  

 Prediction performed with full load ( file size is set to 3 Giga Byte) 

Figure 6.10 shows the impact of prediction procedure upon the throughput and how it is 

affected by the reducing the number of handovers. 

 

 

Figure 6.10: Throughput evaluation.  

 

6.6 Summary 

Predicting the handovers before they occur, and allocate the required data in the target 

SeNodeB will help the network to utilise its resources in a better way and save time, the 

predictor entity in the proposed system architecture combines the features of Radial Basis 

Function Neural Network and neural network time series tool to create and update prediction 

list from the system’s collected data and learn to predict the next SeNodeB to associate with. 

The prediction entity is simulated using MATLAB, and the simulation results show that the 
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system was able to deliver up to 92% correct predictions for handovers, these predictions 

assisted increasing the throughput of the network to its optimal value, and it can be observed 

they led to overall throughput improvement of 50% when the network saturates.  
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 

7.1 Conclusions 

While looking forward for the 5G Release the current 4G network will continue to provid 

services, many of the features of the 4G will also be used in the 5G. This thesis considers 

maximizing the outcomes and the efficiency of the LTE heterogeneous cellular system by 

fully utilizing the available resources. Small cells, caching, dual connectivity for separate 

data and control transmission, artificial intelligence, all these tools have been exploited either 

separately or jointly to boost the performance of the model framework. 

This thesis initially presents the how the heterogeneous deployment of macrocell and 

smallcell is beneficial and listed the restrictions and solutions when they are in cooperation, 

followed by building the model and using resource management techniques in the network to 

present and test the simulations. The general information about the OPNET modeller network 

simulator, standard deviation and confidence interval, and also network statistical 

configurations are presented, which are widely used in all the delivered contributions. The 

behaviour of the system was evaluated in terms of throughput, end to end delay and handover 

performance. 

According to the repeated system simulations, the obtained results specify the following: 

 Separating the control and data and allocating small cells to transmit non-live content 

is proposed as a solution to relief the burden on the network that is caused by 

multiple requests for the same content, the system performance is evaluated over 

multiple scenarios using Riverbed simulator to investigate the network from all 

points and diagnose the optimal solution. According to the results, the proposed 

design had effectively reduced the delay and increased the throughput, while it had a 

higher impact when caching units were distributed and brought closer to the UE, the 

concept of caching is similar to the one used in microprocessors for short term 

content storing, but the policy is different because the requests in the mobile network 

are governed by the users. 
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 For the same network model and to furtherly increase the efficiency and optimise the 

network, Artificial neural network clustering tool with self-organizing map had been 

introduce to balance the load over the small cells, The balancer consists of three 

layers, Input, Self-Organizing map SOM, and output layer. The proposed balancer 

designed using neural network had successfully balanced the load among the clusters; 

the influence was sensed through consistency and the drop in the number of 

handovers, and reduction in the end to end delay in each cluster. The handover 

mechanism requires resources and signalling, it sometimes backfires by keeping the 

UEs at the cell edge switching between the cells (ping pong effect); therefore any 

reduction helps saving network resources, reducing signalling overhead and saving 

UE battery power. 

 The third approach for enhancing the performance of the network is proposed using 

another form of artificial neural network techniques, neural networks are like a black 

box, they can learn and derive the relations between inputs and return outputs, similar 

to the human way of thinking. For the proposed model and when the users are in high 

mobility and frequent handovers, in order to maintain uninterrupted services 

optimising the available resources is very necessary. The proposed solution is by 

using Artificial Neural network time series for mobility prediction, predicting the 

handovers before they occur, and allocate the required data in the target SeNodeB 

will help the network to utilise its resources in a better way and save time. The 

designed prediction entity was able to successfully predict the next target cell to 

associate with when there is a need for a handover. Though the exact position was 

not desperately required, the new position could be any spot within the coverage 

area; the ANN did the prediction very accurate with very small error (8% of total 

attempts). The prediction resulted in rising the throughput by 50%, because no 

additional data was injected into the network the throughput had risen due to the time 

saving which is normally wasted for handover preparation when there is no 

prediction. 

The overall performance evaluation showed robustness when the proposed add-ons are 

added, and the network survivability scored 100% as shown in Figure 7.1 .  Survivability 

is defined as the ability of a system to minimize the impact of a finite disturbance on 

value delivery, achieved through either (1) the satisfaction of a minimally acceptable 
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level of value delivery during and after a finite disturbance or (2) the reduction of the 

likelihood or magnitude of a disturbance   

 

 

Figure 7.1 : Survivability Score 

 

 

7.2 Future Work 

Integrating AI with wireless network was considered from two aspect, balancing and 

prediction. The AI capabilities nowadays exceeded the expectations and the learning 

algorithms are in continuous evolution. But for the proposed system and due to platforms 

incompatibility between OPNET and MATLAB, the dialogues and data transfer were 

exchanged  manually, as part of the future work concerning this thesis, an interface that is 

capable of linking OPNET and MATLAB is needed , this will convert the whole system and 

make it operate  in a more convenient way. The presence of the interface will also make it 

possible to operate both the balancer and predictor at the same time. Testing more learning 

algorithms and different ANN designs to provide solutions for various optimization problems 

in the wireless network , for example ; the predictor can be designed to predict the type of the 

content to be cached based on the first time it was broadcasted live , and predict how long 

time to keep it in the cache, are to be considered in the future researches or publications as 

well as possible interaction from different AI technologies usage, such as: genetic algorithms, 

particle swarm optimization, and ant colony. 
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