
FULL PAPER
www.advtheorysimul.com

Building Confidence in Simulation: Applications
of EasyVVUQ

David W. Wright, Robin A. Richardson, Wouter Edeling, Jalal Lakhlili, Robert C. Sinclair,
Vytautas Jancauskas, Diana Suleimenova, Bartosz Bosak, Michal Kulczewski,
Tomasz Piontek, Piotr Kopta, Irina Chirca, Hamid Arabnejad, Onnie O. Luk,
Olivier Hoenen, Jan Węglarz, Daan Crommelin, Derek Groen, and Peter V. Coveney*

Validation, verification, and uncertainty quantification (VVUQ) of simulation
workflows are essential for building trust in simulation results, and their
increased use in decision-making processes. The EasyVVUQ Python library is
designed to facilitate implementation of advanced VVUQ techniques in new
or existing workflows, with a particular focus on high-performance
computing, middleware agnosticism, and multiscale modeling. Here, the
application of EasyVVUQ to five very diverse application areas is
demonstrated: materials properties, ocean circulation modeling, fusion
reactors, forced human migration, and urban air quality prediction.

1. Introduction

In order for the results of computational science to become
widely accepted components of decision making processes, such
as in medicine and industry, it is essential that we quantify the
trust one can have in the model in question. Confidence can
only be gained by ensuring not only that simulation codes are
solving the correct governing equations (validation), but they
are solving them correctly (verification) and we have a compre-
hensive estimate of the uncertainties in the result uncertainty

Dr. D. W. Wright, Dr. R. A. Richardson, Dr. R. C. Sinclair, I. Chirca,
Prof. P. V. Coveney
Centre for Computational Science
Department of Chemistry
University College London
London WC1H 0AJ, UK
E-mail: p.v.coveney@ucl.ac.uk
Dr. W. Edeling, Prof. D. Crommelin
Centrum Wiskunde & Informatica
Science Park 123, Amsterdam 1098 XG, The Netherlands
Dr. J. Lakhlili, Dr. O. O. Luk, Dr. O. Hoenen
Max-Planck Institute for Plasma Physics, Garching
Boltzmannstraße 2, Garching bei München 85748, Germany

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/adts.201900246

© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim. This is an open access article under the terms of the
Creative Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.1002/adts.201900246

quantification).[1,2] Collectively the pro-
cesses involved in evaluating our level of
trust in the results obtained from models
are known as VVUQ. While the need for
rigorous model assessment is widely ac-
knowledged, it is far from being universally
implemented within the scientific litera-
ture. The reasons for this are wide ranging,
but include lack of specialist knowledge
of VVUQ techniques and, until recently,
the difficulty in obtaining sufficient com-
putational power to perform the necessary
sampling in large scale simulations.

We have recently developed EasyVVUQ,[3] a package designed
to help leverage recent advances in the scale of computational
resources to make state of the art VVUQ algorithms avail-
able and accessible to a wide range of computational scientists.
EasyVVUQ is a component of the VECMA open source toolkit
(http://www.vecma-toolkit.eu www.vecma-toolkit.eu), which pro-
vides tools to facilitate the use of VVUQ techniques inmultiscale,
multiphysics applications.[4]

In order to enable straightforward computations of EasyVVUQ
scenarios on HPC resources, the tool has been designed to work
with a variety of middleware technologies, such as FabSim3[5] or

B. Bosak, M. Kulczewski, T. Piontek, P. Kopta
Poznań Supercomputing and Networking Center
ul. Jana Pawła II 10, Poznań 61-139, Poland
Dr. D. Suleimenova, Dr. H. Arabnejad, Dr. D. Groen
Brunel University London
Uxbridge UB8 3PH, UK
Prof. D. Crommelin
Korteweg-de Vries Institute
University of Amsterdam
Science Park 105-107, Amsterdam 1098 XG, The Netherlands
Prof. P. V. Coveney
Informatics Institute
University of Amsterdam
Amsterdam 1090 GH, Netherlands
Dr. V. Jancauskas
Leibniz Supercomputing Centre
Boltzmannstraße 1, Garching bei München 85748, Germany
Prof. J. Węglarz
Institute of Computing Science
Poznan University of Technology
Piotrowo 2, Poznań 60-965, Poland

Adv. Theory Simul. 2020, 1900246 1900246 (1 of 22) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fadts.201900246&domain=pdf&date_stamp=2020-06-15

www.advancedsciencenews.com www.advtheorysimul.com

QCG.[6] The integration with pilot job mechanisms, in particular
with QCG-PilotJob[7] and Dask JobQueue, allowed us to bypass
limitations of regular queuing systems related to the schedul-
ing of workloads composed of a very large number of relatively
short tasks.
In this paper, we showcase the use of EasyVVUQ in a selection

of applications chosen to have highly varied computational and
VVUQ requirements. The examples come from a wide range of
domains; materials science, climatology, fusion physics, forced
population displacement, and environmental science. All of the
examples come from active research projects and were chosen to
highlight the range of capabilities of EasyVVUQ:

1. Materials—a simple parameter sweep performed using a
computationally expensive molecular dynamics simulation;

2. Ocean circulation— estimation of Sobol sensitivity indices
using stochastic collocation in a differential equation based
model;

3. Fusion—estimation of Sobol sensitivity indices using the
polynomial chaos expansion in a multiscale simulation work-
flow;

4. Forced migration—estimation of Sobol sensitivity indices in
an agent based model;

5. Environmental—estimating uncertainties using stochastic
collocation in a model forecasting urban air quality.

2. EasyVVUQ

EasyVVUQ is a Python library, developed within the VECMA
project, designed to simplify the implementation of VVUQwork-

flows in new or existing applications. The library is designed
around a breakdown of such workflows into four distinct stages;
sampling, simulation execution, result collation (or aggregation),
and analysis. In the sampling stage, the uncertainty on the inputs
of the model are defined, for instance, by specifying independent
probability density functions p(𝜉i) for each model parameter 𝜉i.
This leads to a sampling plan, that is, a collection of points in the
input space 𝝃 where the model must be executed. This execution
stage is deemed beyond the remit of the package (it can be han-
dled for instance byDask JobQueue, FabSim3,[5] QCG-PilotJob[8],
RADICAL Cybertools,[9] etc.) but EasyVVUQ does provide some
functionality to address it. The final collation and analysis stages,
which are handled by EasyVVUQ, deal with post processing the
simulation outcomes into mean predictions, uncertainty esti-
mates, and sensitivity measures.
A common object, the Campaign, contains information on

the application being analyzed alongside the runs mandated by
the sampling algorithm being employed, and is used to transfer
information between each stage. All applications outlined below
share a similar Campaign creation step, up until the point where
a specific sampler and input uncertainties are selected. This
general procedure consists of creating an EasyVVUQ Cam-
paign object, defining the parameter space and code outputs,
and selecting an encoder, decoder, and collation element. The
following code can be used as a generic template for all appli-
cations we consider (up to sampler selection), where variables
indicated by < ⋅ > have to be replaced with application-specific
values.

Adv. Theory Simul. 2020, 1900246 1900246 (2 of 22) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedsciencenews.com www.advtheorysimul.com

Most such variables are self explanatory, hence we only high-
light

• "<path_to_input_template>": This is the path to the input
template of a particular application. Essentially, this is just the
standard input file that the application uses, except that the
value of uncertain variables (those in params), must be flagged
by a delimiter ($ in this case, e.g., param_1=$param_1), such
that they will change their values for each sample.

• "<input_filename>": This is the file name that will be given
to each realisation of the input template.

Note also that the parameter space definition (in Listing 1) has
optional specification of the type and minimum/maximum al-
lowed values. EasyVVUQ’s Cerberus dependency uses this in-
formation to apply verification of input variables such as type,
range, and conditional checks.[10] EasyVVUQ additionally pro-
vides version checking for the library (and each of the component
VVUQ elements) so that the user is made aware when a given
element they have been using in the past may now have a new
algorithm/behavior. This functionality, along with detailed log-
ging of element application and “fail-early” checks, is intended
to aid the user in verifying that a VVUQ workflow is doing what
was intended.
For more information on the various EasyVVUQ elements, we

refer to the software release publication.[3] The following sections
detail the use of EasyVVUQ as applied to a variety of different ap-
plication domains. All can be considered to have gone through
the Campaign creation process as described above, hence we will
not repeat this setup code. Only the assignment of input distri-
butions, sampler selection, and post-processing will be described
for each example application. Relevant information, code, and
output data for the following example applications may be found
in Supporting Information.[11]

3. Goals

We intend, through the five following example sections, to
demonstrate how EasyVVUQ can be used to augment existing
applications with VVUQ features or capabilities, notably:

A) In a non-intrusive manner (all solvers may be used as “black
boxes”, with no changes to their internals). This applies to all
five example applications.

B) Favouring consistency and interoperability between ap-
proaches (a particular UQ approach may be painlessly
swapped for another due to EasyVVUQ’s standard interface
for VVUQ elements). In this work, we demonstrate a ba-
sic parameter sweep (Section 5), stochastic collocation (Sec-
tions 6, 8, and 9), and polynomial chaos expansion (Sec-
tion 7), showing a similar pattern of application.

C) Combining VVUQ elements together into single elements
(to create complex) behavior easily using small, existing
parts). This is demonstrated with Encoders in the Fusion
(Section 7) and UrbanAir (Section 9) applications.

D) Allowing execution of generated runs in any order, using any
desired middleware (of particular importance to HPC appli-
cations, where job submission and execution patterns are key
to performance and highly dependent on the computing re-
sources). This design principle is demonstrated by the mix
of execution methods used in the five example applications,
ranging from local or manual execution through to dynamic
pilot job schedulers.

The focus is not on the scientific results of each section, but on
the consistency of the approach when applied to different tech-
niques, for different solvers from different scientific domains.
EasyVVUQ seeks to abstract out both the underlying model
(with its application specific inputs and execution needs) and the

Adv. Theory Simul. 2020, 1900246 1900246 (3 of 22) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedsciencenews.com www.advtheorysimul.com

implementation of VVUQ (particularly UQ) algorithms.
These algorithms, which may be custom implementations
in EasyVVUQ or sourced from existing libraries such as chaospy
or SAlib, all interact via standardized interfaces, such that the
user should not have to worry about the provenance of the
underlying implementation, but rather about connecting the
operations together (or swapping them for others).

4. Background in UQ Techniques

This section gives a brief background in the various UQ tech-
niques which are used in the example applications.

4.1. Stochastic Collocation

Once an input distribution is defined, the output quantities of
interest (QoIs) become random variables. The stochastic colloca-
tion (SC) method creates a polynomial approximation of a quan-
tity of interest q in the stochastic space 𝝃 ∈ ℝd via the following
expansion:

q(𝝃) ≈
Np∑
j=1

qj
(
𝝃 j
)
L(𝝃) (1)

Here, the stochastic space 𝝃 is the space of the uncertain code
input parameters, for which independent, user-specified, prob-
ability density functions (pdfs) must be provided: 𝜉i ∼ p(𝜉i), i =
1,⋯ , d. Furthermore, qj are the code samples which are com-
puted on a structured multi-dimensional grid, and Np is the total
number of collocation points, that is, the total number of code
evaluations. The samples qj are interpolated to an arbitrary point
within the stochastic space 𝝃 by means of Lagrange interpola-
tion polynomials L(𝝃). For interpolation in multiple dimensions
(d > 1), L(𝝃) is built as a tensor product of 1D Lagrange polyno-
mials. The SC method, and similarly the polynomial chaos ex-
pansion (PCE) method (described briefly in the next section), are
well-known and we refer to ref. [12] for more details on these
techniques. Suffice it to say that the tensor product construction
yields an exponential increase in Np with the number of uncer-
tain variables d and the chosen polynomial order, an example of
the familiar “curse of dimensionality.”However, formoderate val-
ues of d, the SC and PCEmethods can display exponential conver-
gence with Np, thereby outperforming Monte Carlo sampling.[12]

There are three main uses of the SC expansion (1). First, the
Np code samples qj can be used to estimate the first twomoments
of q in the stochastic space, giving a mean prediction and an esti-
mate of the output uncertainty due to the prescribed distributions
on the inputs. Second, (1) acts as a computationally inexpensive
surrogate model for the code. Using the Lagrange polynomials,
the code samples qj (evaluated at a specific parameter values 𝝃 j),
can be interpolated to an unsampled location 𝝃. Finally, the SC
expansion is amenable to variance-based global sensitivity analy-
sis. Estimates of the well-known Sobol sensitivity indices can be
obtained from Equation (1) as a post processing step, (which is
outlined in Section 4.3).

4.2. Polynomial Chaos

The PCEmethod is an expansion technique that is closely related
to SC method presented in Section 4.1. Whereas in SC we build
Lagrange interpolation functions for known coefficients, in PCE
we estimate coefficients for known orthogonal polynomial basis
functions. Here, we can approximate the quantity of interest q
with the following expansion:

q(𝝃) ≈
Np∑
j=1

cjPj(𝝃) (2)

In this equation, 𝝃, cj, and Np are the uncertain parameter, ex-
pansion coefficients, and number of expansion factors,[13,14] re-
spectively. The polynomials Pj are chosen such that they are or-
thogonal to the input distributions, which differ from the SC ex-
pansion in Equation (1).
To compute the cj coefficients, two variants have been imple-

mented: spectral projection and linear regression. In the spec-
tral projection variant, we project the response against each ba-
sis function (composed of the polynomials set (Pj)) and we ex-
ploit their orthogonality properties to extract each coefficient. In
the linear regression variant (also known as point collocation),
we use a least squares method that minimizes a normed differ-
ence between the PC expansion and the output for a set of sam-
ples; the coefficients cj are then the solution of the resulted linear
system.[12]

By using the PCE method, like the SC method, we can obtain
the statistical moments (mean, standard deviation, variance, and
(100 − x)th percentile) of the quantities of interest, and we can
also provide a global sensitivity analysis in the form of Sobol in-
dices (which is outlined in the next section).

4.3. Sobol Indices

Sobol indices are variance-based sensitivity measures of a func-
tion q(𝝃) with respect to its inputs 𝝃 ∈ ℝd.[15] As in the case of
the SCmethod, an independent probability density function p(𝜉i)
is assigned to each input 𝜉j, which makes this a global method.
Local sensitivity methods, on the other hand, measure the sensi-
tivity of q at some point 𝝃0 in the domain, and are uninformative
away from this point. Another advantage of globalmethods is that
they can capture the sensitivity due to higher-order interactions
(several parameters changing at once).
Sobol indices are derived from the analysis of variance

(ANOVA) decomposition of q(𝝃). This decomposes q into a sum
of basis functions of increasing input dimension, which in long
forms reads as:

q(𝝃) = q∅ + q1(𝜉1) +⋯ + qd(𝜉d) + q12(𝜉1, 𝜉2) + q13(𝜉1, 𝜉3)

+⋯ + qd−1 d(𝜉d−1, 𝜉d) +⋯ + q1…d(𝜉1,⋯ , 𝜉d) (3)

A more concise notation is

q(𝝃) =
∑
u⊆

qu (4)

Adv. Theory Simul. 2020, 1900246 1900246 (4 of 22) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedsciencenews.com www.advtheorysimul.com

where u is a multi-index and is the power set of :=
{1, 2,⋯ , d}. Let us define 𝜉u as 𝜉u := {𝜉i|∀i ∈ u}, that is, the set
of all inputs with an index in u. Furthermore, u′ is the comple-
ment of u, that is, u ∪ u′ := and u ∩ u′ = ∅.
In the ANOVA decomposition, the basis functions qu satisfy

the following properties:

∫ qu(𝜉u)dp(𝜉u) = 0, if u ≠ ∅

∫ qu(𝜉u)qv(𝜉v)dp(𝜉u ∪ 𝜉v) = 0, if u ≠ v (5)

that is, they have zero mean and are orthogonal when integrated
over the distributions. These properties holdwhen the basis func-
tions are defined as

q∅ = ∫ q(𝝃)dp(𝝃)

qu = ∫ q(𝝃)dp(𝜉u′) −
∑
w⊂u

qw(𝜉w) (6)

It is perhaps more clear to write this in terms of conditional
expectations:

q∅ = 𝔼[q]

qi = 𝔼[q ∣ 𝜉i] − q∅

qij = 𝔼[q ∣ 𝜉i, 𝜉j] − qi − qj − q∅

⋯ (7)

Hence, q∅ represents the mean of q(𝝃), and the qi basis func-
tions represent the effect of varying a single parameter 𝜉i, mi-
nus the mean. Basis functions such as qij capture the effect of
changing 𝜉i and 𝜉j simultaneously, minus all lower-order interac-
tions, etc.
Therefore, the variances of these basis functions are the sensi-

tivity measures we aim to approximate. Since the qu have a zero
mean, these are defined as

Du := 𝕍ar[qu] = ∫ q2udp(𝜉u), u ≠ ∅ (8)

Using the orthogonality property of the basis functions, (8) can
be rewritten as

Du = ∫
(
∫ q(𝝃)dp(𝜉u′)

)2

dp(𝜉u) −
∑
w⊂u

Dw (9)

Expression (9) allows us to compute allDu in increasing order,
if we can compute the first integral on the right-hand side. The
authors of ref. [16] developed a method to approximate this inte-
gral using the SC expansion (1) for q(𝝃), and similar techniques
exist for the PCE method.[17] It is out of the scope of the current
paper to go into detail, and we refer the interested reader to refs.
[16, 17] for themathematical details. Essentially, once all the code

samples are obtained, the Sobol indices, which are defined as

Su :=
Du

D
(10)

can be approximated in a post-processing step. Here, D :=
𝕍ar[q] =

∑
u⊆ Du.

[15] Note that all Du are positive, and that the
sum of all possible Su equals 1. EachDu measures the amount of
variance in the output q that can be attributed to the parameter
combination indexed by u.

5. Example 1—Materials

5.1. Application Outline

Molecular dynamics (MD) simulations are often used to inves-
tigate the properties of materials,[18] including as part of mul-
tiscale material prediction applications.[19] Here, we take a well
understood soft-matter system and study how calculations of its
Young’s modulus (stiffness) using MD can vary with the system
size and starting configuration.
The system under consideration (Figure 1) is an epoxy resin—

epoxy tetraglycidyl methylene dianiline (TGMDA) cured with
polyetheramine (PEA) in a 1:1 ratio. Epoxies are thermosetting
polymers. Small reactant monomer molecules have several re-
active sites which create strong covalent bonds between several
other molecules, forming a dense network of crosslinks. The re-
sulting polymer network is very strong and epoxies are widely
used in manufacturing, in the aerospace industry, as adhesives,
and as multipurpose insulators.
MD simulations in the condensed phase are almost always pe-

riodic, which means that we only simulate a comparatively small
simulation cell to approximate the bulk properties. The size of
this simulation cell hasmany implications for computational cost
and, more importantly, the scientific results it furnishes. Finite
size effects, self-interaction across periodic boundary boundaries,
and thermal fluctuations in small systems can all affect the sim-
ulation’s outcome. We measure the Young’s modulus (YM) of an
epoxy system by measuring the pressure exerted along one axis
before and after a small strain.

Figure 1. We test the effect of simulation size on the Young’s modulus of
an epoxy resin made from a 1:1 mixture of the monomers shown here.

Adv. Theory Simul. 2020, 1900246 1900246 (5 of 22) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedsciencenews.com www.advtheorysimul.com

5.2. VVUQ Algorithm

Since the instantaneous pressure of a molecular dynamics simu-
lation can fluctuate by several GPa, it is necessary to average this
value over a long sample period to measure the change in pres-
sure due to an applied strain. The YM could also be affected by
starting velocities of the atoms in the system, and the configu-
ration of the epoxy network. To measure the system size depen-
dence of all of these potential sources of variance, we design an
EasyVVUQCampaign that will take samples across each variable.
Then, bootstrap analyses will measure their effect on the YM. A
closer look at the variance due to each variable will show which
is the most significant.

5.3. Execution Pattern

This application makes use of the BasicSweep sampler in
EasyVVUQ, which recursively carries out a parameter sweep

across the range of allowed values specified for each input vari-
able. The system size is limited by computational cost at the
high end, and the system stability at the lower. In this case, we
know these approximate limits beforehand, so choose the spe-
cific range we want to sample using this method. The sampler is
set up like this:

In the above, we create a sampling element to sample across
6 simulation sizes, build 10 epoxy networks (structures) at each
size, then measure the YM for each network starting from 10
different snapshots. These numbers are somewhat arbitrary, and
more parameters could be swept depending on availability of
computational resources.

Building the epoxy networks is done with an in-house devel-
oped script,[20] used in ref. [21] Simulating the epoxy network is
accomplished using LAMMPS.[22] The execution of the system
building procedure andmeasurement simulations are submitted
on a remote computing resource. The “restart campaign” func-
tionality of EasyVVUQ is required here, as the sampling and anal-
ysis stages were performed in separate python scripts. This abil-
ity to restart a campaign from a different script is useful in cases
where, for example, the runs are expected to take a long time on a
remote computing resource, and the user cannot or does not wish
to have an EasyVVUQscript running locally, waiting for such jobs
to finish.
Each replica generates three values for the YM, measured by

separately straining along each principle axis of the polymer sim-
ulation. So that we can treat each of these values as equivalent
measurements, we change the results pandas DataFrame format
to have one row for each value; all YM values are in one column
which makes some analysis more straightforward. This mode
may be set using

5.4. Results and Analysis

The system can be characterized by simply employing a boostrap
analysis of the campaign.

The results of the above analysis are shown in Figure 2, along
with a histograms of all measured YMs associated with each box
size. We can clearly see that the average YM is independent of
simulation size, above 4 nm. There is approximately a 20% in-
crease in YM for a system size of 3 nm. We can safely say that for
this system the characteristic length is therefore less than 4 nm.

Adv. Theory Simul. 2020, 1900246 1900246 (6 of 22) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedsciencenews.com www.advtheorysimul.com

Figure 2. Young’s modulus of an epoxy resin measured with different sim-
ulation sizes. Each point is the average of 300 simulations, which make up
the pink histograms for each box size. The 95% bootstrap confidence in-
terval for each simulation size is shown clearly in the bottom right insert.

Wewould like to know if the structure of an epoxy network has
a significant bearing on the YM of a system, that is, if there is a
large variation in the expected YM given an epoxy network. We
approach this with the law of total variance

Var(YM) = Var[E(YM|#)] + E[Var(YM|#)] (11)

where “#” is used to denote a specific network of cross-links. We
can calculate the first and third terms of this law (the total vari-
ance in YM, and the expected variance given a specific structure)
by some straightforward manipulation of the campaign results
DataFrame.

Detailed results are shown in Supporting Information;[11]

however, the analysis shows that Var[E(YM|#)] ≪ E[Var(YM|#)].
Therefore, the epoxy network structure has no significant effect
on the YM. The variance is due to the inefficient sampling of
MD.We studied low strains (0.5%) because epoxies are often brit-
tle above these strains, but simulating further (into plastic defor-
mation) could resolve the dependence on the network structure.
Chaotic dynamical systems may manifest a pathology of IEEE
floating point arithmetic whichwas hitherto unknown,[23] provid-
ing a potentially interesting overlap between uncertainty quantifi-
cation and verification in affected systems.

Figure 3. A snapshot of vorticity contours from Equation (12) with fully
periodic boundary conditions, solved on a numerical grid of 256 × 256
points.

6. Example 2—Ocean Circulation

6.1. Application Outline

In this section, we consider the forced-dissipative vorticity equa-
tions for 2D incompressible flow (as described in Verkley
et al.[24]), used as a simplified study for the general circulation
in the oceans. The governing equations are

𝜕𝜔

𝜕t
+ J(Ψ,𝜔) = 𝜈∇2𝜔 + 𝜇(F − 𝜔)

∇2Ψ = 𝜔 (12)

Here, 𝜔 is the vertical component of the vorticity, defined from
the curl of the velocity field V as 𝜔 := e3 ⋅ ∇ × V, where e3 :=
(0, 0, 1)T . The stream function Ψ relates to the horizontal ve-
locity components by the well-known relations u = −𝜕Ψ∕𝜕y and
v = 𝜕Ψ∕𝜕x. The non-linear advection term is defined as

J(𝜓 ,𝜔) = 𝜕Ψ
𝜕x

𝜕𝜔

𝜕y
− 𝜕Ψ

𝜕y
𝜕𝜔

𝜕x
(13)

This system generates flow fields such as those shown in Fig-
ure 3, which depicts a snapshot of the vorticity 𝜔.

Adv. Theory Simul. 2020, 1900246 1900246 (7 of 22) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedsciencenews.com www.advtheorysimul.com

As in ref. [24], the forcing term is chosen as the single Fourier
mode F = 23∕2 cos(5x) cos(5y). The system is fully periodic in the
x and y directions over a period of 2𝜋L, where L is a user-specified
length scale, chosen as the Earth’s radius (L = 6.371 × 106[m]).
The inverse of the earth’s angular velocityΩ−1 is chosen as a time
scale, where Ω = 7.292 × 10−5[s−1]. Thus, a simulation time pe-
riod of a single “day” can now be expressed as 24 × 602 × Ω ≈ 6.3
non-dimensional time units. Given these chosen length and time
scales, we non-dimensionalize (12) and solve by using a spectral
method with the second-order accurate AB/BDI2 time-stepping
scheme.[25]

The viscosity 𝜈 and the forcing term coefficient 𝜇 are tunable
parameters, and are typically set to a value such that the build up
of grid-scale noise at the smallest resolved scale is prevented. In
our example code, their values are computed such that a Fourier
mode at this scale is exponentially damped with a user-specified
e-folding time scale, that is, a time scale over which a decay of 63
% occurs (1 − e−1). This leads to the following expressions for 𝜈
and 𝜇:

𝜈 = 1
24 ⋅ 602

1
Ω

1
K2

1
𝜉1

and 𝜇 = 1
24 ⋅ 602

1
Ω

1
𝜉2

(14)

Here, K is the highest resolved wave number in our spectral
method, which is fixed at 85. More important for our current dis-

cussion are 𝜉1 and 𝜉2, that is, the aforementioned damping time
scales (expressed in days), which we treat as uncertain. We use
EasyVVUQ to estimate the effect of this uncertainty on certain
measures derived from the solution of (12). Our focus will be on
the (time-dependent) energy E and enstrophy Z, defined as

E(t) := 1
2

(1
2𝜋

)2
∫

2𝜋

0 ∫
2𝜋

0
V ⋅ Vdxdy and

Z(t) := 1
2

(1
2𝜋

)2
∫

2𝜋

0 ∫
2𝜋

0
𝜔2dxdy (15)

Specifically, we are interested in the time-averaged statistical mo-
ments of the energy E and enstrophy Z; for example, our quanti-
ties of interest q take the form of

q = ∫
T

T0

E(t)dt =: E or q = ∫
T

T0

(
E(t) − E)

)2
dt (16)

and likewise for the enstrophy. The integration interval [T0, T]
will be defined later.

6.2. VVUQ Algorithm

For this particular problem, we will use the stochastic colloca-
tion method, as outlined in Section 4.1. In addition to the statis-
tical moments of the aforementioned energy and enstrophy, the
Sobol sensitivity indices of our damping time scales will serve
as our QoIs as well. Specific implementation details are given
next.

6.3. Execution Pattern

EasyVVUQ is designed to work with the Chaospy library,[26] for
the specification of the input distributions. We will assume the
following distributions for the uncertain decay times associated
with 𝜈 and 𝜇:

That is, we assume that the viscous term (𝜈∇2𝜔) in Equa-
tion (12) has a uniformly distributed uncertain decay time at the
smallest retained scale between 1 and 5 days, whereas our forc-
ing term is damped somewhere between 85 and 95 days. We then
select the stochastic collocation sampler via

By selecting a polynomial order of 6, a seven-point quadrature
rule for each uncertain dimension is created. Hence, since we
have two uncertain variables, we obtain a tensor grid of 49 points
in the stochastic space, see Figure 4a. At each point, we have
to evaluate the code solving (12). Instead of directly creating a
full tensor product of the seven-point 1D quadrature rule, we can
also construct a sparse grid (see Figure 4b), which uses a linear
combination of tensor products of quadrature rules of different
orders.[12] By using carefully chosen 1D quadrature rules, many
points in the different tensor products will coincide, leading to a
more efficient sampling plan in high dimensions. To switch to a
sparse grid, one might use

Adv. Theory Simul. 2020, 1900246 1900246 (8 of 22) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedsciencenews.com www.advtheorysimul.com

Figure 4. Two stochastic collocation grids generated by EasyVVUQ. Each symbol is a point in the stochastic space at which the code solving Equation
(12) must be evaluated.

Here, quadrature_rule="C" denotes the use of 1D
Clenshaw–Curtis quadrature rules, which are a common
choice in sparse grid constructions. Furthermore, growth=True
selects an exponential growth rule, which ensures that the
Clenshaw–Curtis rules are “nested” such that a quadrature
rule of the next order contains all points of the previous order,
leading to the aforementioned more efficient sampling plan in

high dimensions. However, since we just have two uncertain
variables here, we will use the full tensor product construction.
Depending on the spatial resolution of the computational grid
(in our case, we employ a 2D grid of 256 × 256 points), the cost
of sampling Equation (12) at all collocation points 𝝃 j can be high.
Moreover, since we are interested in the time-averaged statistics
as in Equation (16), we must run each sample until convergence
in these statistics can be safely demonstrated. We use FabSim3[5]

to facilitate the execution of these samples in parallel on the
Eagle supercomputer at the Poznan Supercomputing and Net-
working Center (PSNC). A FabSim3 plugin “FabUQCampaign”
has been created to execute the ensemble run of EasyVVUQ
samples on a remote resource, with minimal change in the code
that is executed on the localhost. For a tutorial on the setup of
FabUQCampaign, see ref. [27].

The fabmodule is a wrapper around FabSim3 command-line
instructions, such that these can be executed fromwithin Python.
Furthermore, machine specifies the name of the remote HPC re-
source (the PSNC Eagle cluster in our case), and campaign_dir
is the directory containing the EasyVVUQ campaign. Finally,
"ocean" is the name of the script which executes a single run of
our model (12); see the tutorial[27] for more details. Once the en-
semble run has completed, the results can be retrieved through:

Adv. Theory Simul. 2020, 1900246 1900246 (9 of 22) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedsciencenews.com www.advtheorysimul.com

If one wishes to run a (small) local ensemble for testing or de-
bugging purposes, specifying machine="localhost" will make
sure that everything is executed locally. Note that FabSim3 is
not the only available execution interface between EasyVVUQ
and HPC clusters. EasyVVUQ-QCGPilotJob is a lightweight in-
tegration code that simplifies usage of EasyVVUQ with a QCG-
PilotJob execution engine; see ref. [7] for a tutorial.

6.4. Results and Analysis

In our example, d = 2 (𝜈 and 𝜇), and our quantities of interest
are time-averaged moments of Equation (16) of the energy and
enstrophy. For each sample of the ensemble run, Equation (12)
is simulated for 11 years, and the last 10 years are used to com-
pute the time-averaged E and Z moments. To perform the post-
processing analysis of these samples, an SCAnalysis object is
created:

The results dictionary contains the statistical moments and the
Sobol indices of the quantities of interest, the latter of which are
given below for this particular case:
=======================
Sobol indices E_mean

S(nu) = 0.6649

S(mu) = 0.3256

S(nu, mu) = 0.0096

=======================
Sobol indices Z_mean

S(nu) = 0.7073

S(mu) = 0.2823

S(nu, mu) = 0.0103

=======================
Sobol indices E_stdev

S(nu) = 0.4661

S(mu) = 0.0881

S(nu, mu) = 0.4458

=======================
Sobol indices Z_stdev

S(nu) = 0.4971

S(mu) = 0.0775

S(nu, mu) = 0.4254

A value close to one means that this variable, or combination
of variables, explains most of the variance in the selected output.
Clearly, 𝜈 is the more influential parameter for both the time-
averaged energyE and enstrophyZ. However, for the correspond-
ing standard deviations (stdevs), 𝜇 does play an important role in
the second-order Sobol index, indicating a significant interaction
between 𝜈 and 𝜇 for these QoI.
In order to use the SC expansion as a surrogate model for the

real code, we can draw random samples from Equation (1) via

Here, xi is an array containing a random sample from the in-
put distributions of 𝜈 and 𝜇. The surrogate is far cheaper than
the original model, such that we can use it to evaluate the output
probability density function via a kernel-density estimate (KDE).
Figure 5 shows the KDE of E, evaluated using 5 × 104 samples
from (1).

7. Example 3—Fusion

7.1. Application Outline

Thermonuclear fusion is potentially a solution to the provision
of base load electricity, which is carbon free and not subject to
geopolitical problems. Understanding the mechanisms of heat

Adv. Theory Simul. 2020, 1900246 1900246 (10 of 22) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedsciencenews.com www.advtheorysimul.com

Figure 5. The kernel-density estimate of the time-averaged energy E, com-
puted from 50 000 samples of a SC surrogate of polynomial order 6. The
49 code samples used to build the surrogate are also shown.

and particle transport in hot fusion plasma is one of the keys to
obtain a cost-efficient reaction in the fusion devices. Our present
understanding of the problem is that turbulence at small scales
is responsible for much of this transport, but the profiles of tem-
perature and density evolve over much larger scales.
A wide standardization effort toward integrated modeling[28]

for fusion plasmas has allowed us to build modular applications
in the form of a workflow. The code-to-code coupling is done via
standardized data-objects[29] (referred to hereafter as CPO files),
while specific parameters are stored in XML. This setup allows
users to swap codes with others of different complexity. Based
on this effort, a multi-scale application is developed to study the
turbulence effects on plasma transport at larger scales.[30] How-
ever, much remains to be done on the validation of such sim-
ulations as well as on the control of their uncertainties. In this
work, we present an early validation pattern we uncovered by
extracting and comparing experimental and UQ simulation out-
put distributions. In our application, these uncertainties origi-
nate from applied heating sources (extrinsic) and/or from the
noisy, chaotic nature of the turbulence (intrinsic). We focus here

on quantifying extrinsic uncertainties for the heating source as
well as boundary conditions for both electron and ion tempera-
tures. The heat source (energy per unit time) for each species is a
Gaussian function with respect to the radial (or toroidal flux) co-
ordinate 𝜌tor , and it is characterized by its amplitude, width, and
position. The boundary conditions refer to the initial tempera-
tures at the plasma edge for both species; the edge is positioned
at the maximum 𝜌tor value, or at normalized 𝜌tor = 1.0.

7.2. VVUQ Algorithm

The EasyVVUQ library provides both quasi-Monte Carlo (QMC)
and polynomial Chaos expansion (PCE) methods (described in
Section 4.2) that we can select from to conduct UQ and SA in the
multi-scale fusion workflow.[31] In the work we present here, the
PCEmethodwas selected because it can carry out the calculations
much faster than the QMCmethod. However, this is only valid if
the number of uncertain parameters remain relatively low.

7.3. Execution Pattern

Similar to the ocean circulation example, we specify the input
distributions using chaospy through EasyVVUQ. In addition, to
fully benefit from the standardized interface for each code within
our multi-scale workflow, we extended the EasyVVUQ base en-
coder with a new domain specific CPOEncoder (for boundary
conditions of electron and ion temperature profiles) and a generic
XMLEncoder (for electron and ion heating sources approximated
by the amplitude, position and width of a Gaussian function).
These format-bound encoders allow us to update real data and
parameter files without having to create a template, which in turn
gives us more flexibility. Since we are interested in uncertainties
driven by both the heating sources and the boundary conditions
for electrons and ions temperatures, we need to combine these
two encoders with the MultiEncoder provided by EasyVVUQ.
Therefore, the encoder creation from listing 1 is modified with
the following snippet of code:

Adv. Theory Simul. 2020, 1900246 1900246 (11 of 22) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedsciencenews.com www.advtheorysimul.com

• common_dir is a folder that contains all required input files.
• uncertain_params is a python dictionary specified by the
user, and it contains the list of parameters with their proba-
bility distributions types followed by the chaospy glossary.

In addition, the new encoders have a specific function that pro-
vides two dictionaries containing the names and types of all pa-
rameters to be varied and their corresponding distributions.

We set up the PCE sampler using a polynomial of order 4 to
ensure good accuracy:

The output of the application is composed of several CPO for-
mat files, so the same kind of modification is done for the cre-
ation of the decoder, which uses our domain-specific CPODe-
coder.

Finally, to generate all samples needed for the analysis, we can
either call the function ExecuteLocalexecute provided directly
by EasyVVUQor resort to a wrapper enabling the execution using
the QCG-PilotJob mechanism.[7,8]

7.4. Results and Analysis

To perform a post-processing analysis on the generated sam-
ples, we use the PCEAnalysis object from EasyVVUQ. For
the results, as in the ocean circulation example, we use
analysis_results, the output dictionary of the campaign ob-
ject’s get_last_analysis() method, in which the statistical
moments, and the Sobol indices of the Quantities of Interest
are stored.

The current version of the fusion workflow uses an analyti-
cal turbulence code, with four uncertain parameters (amplitude,
width, position of heating source, and boundary condition). We
assumed each of these parameters has a normal distribution in
the range of ±20% around its original value, and as the number
of samples is determined by the uncertain parameter number
and polynomial degree in the PCE method, the number of runs
required for this example is 1296.

The uncertainty quantification of the fusionworkflow is shown
in Figures 6 and 7. The quantities of interest are the electron and

ion temperature profiles, spanning from the radial position of
plasma core (𝜌tor = 0) to the edge (normalized 𝜌tor = 1.0). The stan-
dard deviation indicates that the ion temperature varies weakly
since the uncertainties are carried by the electrons sources. The

sensitivity analysis reveals that the variance in the electron and
ion temperatures is mainly due to the uncertainty from three pa-
rameters: the position and amplitude parameters of the sources
at core region of the plasma and, as expected, boundary condi-
tion parameter at the edge region. The parameter width has no
direct effect on the variance of the two quantities, so according to
ref. [32], this parameter can be neglected and then the number of
samples can be reduced while keeping the same variance behav-
ior.
In addition to uncertainty quantification, the fusion applica-

tion performs validation on the simulation results by comparing
the distribution of the QoI to the distribution from experimental
measurements (first results are shown in the Figure 8). Specifi-
cally, we create the ValidationSimilarity object to determine
the similarity between two distribution functions:

Adv. Theory Simul. 2020, 1900246 1900246 (12 of 22) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedsciencenews.com www.advtheorysimul.com

Figure 6. Descriptive statistics and sensitivity analysis of UQ example for the electron temperature.

Figure 7. Descriptive statistics and sensitivity analysis of UQ example for the ion temperature.

• exp_dist_values is a list of approximated distributions of the
given experimental samples. The samples obtained from fu-
sion experiments contain the mean, lower, and upper thresh-

old values; these lower and upper threshold values do not nec-
essarily equal to each other. Therefore, we treat each sample as
a two-piece normal distribution.

Adv. Theory Simul. 2020, 1900246 1900246 (13 of 22) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedsciencenews.com www.advtheorysimul.com

Figure 8. Validation using comparison between experimental and simulation data for electron temperatures. On the left hand-side axis, the expected
values and standard deviations, and on the right hand-side axis, the Jensen–Shannon distance measuring the similarity between distributions with
respect to the normalized toroidal flux coordinate 𝜌tor .

• sim_dist_values is a list of output dis-
tributions given by Analysis results:
analysis_results[’’output_distributions’’]

["QoI"]. In EasyVVUQ, we use a function that constructs
a kernel density estimator (KDE) for each polynomial by
sampling it.

For the similarity measure, we use the Jensen–Shannon dis-
tance (JSD), which is a symmetrized and smoothed version of
the Kullback–Leibler divergence.[33,34] It is defined by

JSD(P,Q) = 1
2

Ns∑
i=1

(
Pi log(

Pi

Mi
) +Qi log(

Qi

Mi
)
)

(17)

Here, Ns is the number of samples, P and Q are defined
as two discrete probability distributions, and M = 1

2
(P +Q).

As presented in Figure 8, Jensen–Shannon distance takes val-
ues in the range [0, 1]. The values closer to 0 indicate a
smaller “distance” between the two distributions and there-
fore a stronger similarity. Two other measures based on the
Hellinger and Wasserstein distances[33] are also available in
EasyVVUQ. These measures were also tested on the current ex-
ample, and they give equivalent results as the Jensen–Shannon
distances.

8. Example 4—Forced Migration

8.1. Application Outline

Forecasting forced displacement is of considerable importance
since 70.8 million people are today being forcibly displaced
worldwide, a record level.[35] It is also challenging as many forced
population data sets are small and incomplete, and data sources
have too little information.[36] Nevertheless, forced population
predictions are essential to save the lives of such migrants, to
investigate the effects of policy decisions and to help complete
incomplete data collections on forced population movements.
Through the use of computational approach, namely the FLEE

agent-based simulation code, we predict the distribution of forced
population arrivals to potential destinations as governments and
NGOs can efficiently allocate humanitarian resources and pro-
vide protection to vulnerable people.[37] We represent forcibly dis-
placed people as individual agents, combining simple rulesets
for individuals to allow complex movement patterns to emerge
and validate simulation results against real data. We are also
able to systematically explore the possible impact of policy deci-
sions using the FabSim3-based FabFlee toolkit while accounting
for the sensitivity to a subset of parameters and assumptions in
the model, such as the probability of migrants making specific
moves. In Figure 9, we present a simulation instance of the Mali
conflict, in which a number of insurgent groups began a fight
for the independence of the Azawad region resulting in an in-
creasing number of forcibly displaced people since January 16,
2012.[36,37]

Adv. Theory Simul. 2020, 1900246 1900246 (14 of 22) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedsciencenews.com www.advtheorysimul.com

Figure 9. Overview of geographic network model for Mali, which includes conflict zones (red circles), camps (dark green circles), forwarding hub (light
green circle), and other major towns (yellow circles) interconnected with straight-lines that represent roads and their length in kilometers with adjacent
blue numbers.

8.2. VVUQ Algorithm

FabFlee uses the EasyVVUQ library to facilitate VVUQ for simu-
lation analysis. It allows us to automate parameter exploration
analysis and explore essential one-at-a-time input uncertainty
quantification. Importantly, uncertainty quantification and sen-
sitivity analysis are required in multiscale migration studies to
understand in what regimes and scenarios our simulation ap-
proach performs well. FabSim3, EasyVVUQ, QCG-PilotJob, and
other QCG components can be combined in a variety of ways, en-
abling users to combine their added values while retaining a lim-
ited deployment footprint. As previously mentioned, EasyVVUQ
can use FabSim3 to facilitate automated execution. Users can
convert their EasyVVUQ campaigns to FabSim3 ensembles us-
ing a one-line command, and the FabSim3 output is ordered such
that it can be directly moved to EasyVVUQ for further decoding
and analysis.

8.3. Execution Pattern

We use similar approach as described in the ocean circulation ex-
ample for sensitivity analysis of forced migration application. In
particular, we analyze the probability of parameters when agents
move from their current location to a different one on a given
day. These probabilities depend on the type of locations, namely
conflict zone, camp, or other location, where agents reside.[37] We
adjust these parameters to understand the importance of our as-
sumptions in regard to the validation results. In Figure 10, we
provide the overall workflow of forced displacement application
for sensitivity analysis.
To provide the input distributions, for instance, we specify a

uniformly distributed move chance probabilities for camps be-
tween 0.0001 and 1.0, as well as for conflict locations between
0.1 and 1.0 as illustrated below.

Then, we set up the stochastic collocation (SC) sampler using

Adv. Theory Simul. 2020, 1900246 1900246 (15 of 22) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedsciencenews.com www.advtheorysimul.com

Figure 10. Overview of the FLEE workflow, where we use FabSim3 in conjunction with EasyVVUQ and QCG Pilot Job Manager.

Figure 11. A stochastic collocation grid generated by EasyVVUQ for migration application parameters.

where a polynomial order is 3 in this instance. In turn, it cre-
ates a four-point quadrature rule for each move chance parame-
ter (see Figure 11). EasyVVUQ encodes the generated samples to
FLEE input definitions for specific conflict simulations and sub-
mits all ensemble runs for execution using FabSim3 to Eagle ma-
chine where QCG-PilotJobs schedule submitted ensemble runs
and pre-reserved resources.

8.4. Results and Analysis

We apply the same SC-based Sobol index method[16] as in the
ocean circulation example above to the Mali conflict, and obtain
the results illustrated in Table 1 for two parameters. We draw
our own distinction on the Sobol indices by accepting parameters
with values below 0.05 while identifying parameters with higher

Adv. Theory Simul. 2020, 1900246 1900246 (16 of 22) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedsciencenews.com www.advtheorysimul.com

Table 1. FabFlee and EasyVVUQ input parameter exploration results for
multiscale migration application, where we vary two parameters.

Parameters Sobol indices

camp_move_chance (0) 0.9497191

conflict_move_chance (1) 0.04978418

Combination of parameters (0, 1) 0.00049672

values as sensitive to output results. The camp_move_chance pa-
rameter is more sensitive in our model compared to the other pa-
rameter, namely conflict_move_chance, since camps are primary
destination locations for forcibly displaced people fleeing from
conflict locations. We also find that our models are not sensitive
to the combination of these parameters.

9. Example 5—UrbanAir

9.1. Application Outline

The UrbanAir application concerns the modeling and forecast-
ing of the concentration and dispersion of pollutants. It is a 3D
multiscale model that combines a numerical weather prediction
(NWP) model, running at larger scale (e.g., mesoscale), with
a city-scale geophysical flow solver for accurate prediction of
contaminant transportation through the street corridors, over
buildings and obstacles.
TheNWPmodel is based on the communityWeather Research

and Forecasting (WRF) model,[38] while the city-scale problem
is solved using the EULAG model.[39] EULAG is a numerical

solver for all-scale geophysical flows, with many proven scenar-
ios, for example, flows around buildings[40] with comparison
against wind tunnel experiments.[41] The coupling betweenWRF
and EULAG model has been evaluated in ref. [42]. Typically, an
emergency response situation requires fast and accurate tools.
However, the use of more complex and expensive models is dic-
tated by the need for accurate prediction of peak concentrations
and plume temporal evolution.
With increased model resolution, small-scale flow character-

istics are becoming more essential for prediction, and general
urban parameterization coming from the NWP model is not
enough. TheWRF output is used as the initial and lateral bound-
ary conditions for the EULAG simulation, along with terrain data
(terrain elevation, road network, buildings shapes, and height)
and emission data. Figure 12 presents the general workflow of
the application. The IMB approach is used in EULAG to explic-
itly resolve complex building structures, accounting for different
urban aerodynamic features, such as channeling, verticalmixing,
and street-level flow. The pollutant dispersion is simulated using
passive tracer equations.
The NWP model may be supplemented with an additional

chemistry module, to simulate chemical transportation and mix-
ing over larger scales.[43,44]

In order to accurately simulate at small scales (grid resolu-
tions up to 1 metre), HPC resources are required. EULAG is
proven to scale up to thousands of CPU cores to support such
resolution and to decrease overall time-to-solution.[45] The key
problem in providing accurate forecasts is the lack of complete,
well-known emission sources. Contaminants—such as NO,
NO2, PM2.5 (particulate matter under 2.5 µm in size), and PM10
in particular—are emitted by point sources (e.g., industrial
chimneys), line sources (e.g., road transportation), and area

Figure 12. High-level UrbanAir application workflow.

Adv. Theory Simul. 2020, 1900246 1900246 (17 of 22) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedsciencenews.com www.advtheorysimul.com

sources (e.g., heat appliances). The uncertainty comes from
unknown emission details. Taking road transportation as an
example, there is a set of parameters that need to be estimated:
these include the ratio of cars using gasoline to diesel fuel, fuel
usage, emission index, percentage of cars that cold-started, and
so on. Through the use of computational ensemble simulations,
we can address these issues using statistical data, such as by
combining the number of cars passing a given road section
within 1 h with previously estimated parameter values.

9.2. VVUQ Algorithm

In order to assess the influence of unknowns in the emission
sources, we have designed an EasyVVUQ campaign that sam-

ples across each of the input variable. It allows us to assess in-
put uncertainty quantification and sensitivity analysis, thoughwe
concentrate on the former at the moment. The uncertainty may
additionally stem from weather boundary conditions, heights
of buildings, etc. To facilitate uncertainty quantification for this
computationally demanding application, The QCG-PilotJob is
used to choreograph the execution of the ensembles.

9.3. Execution Pattern

Currently, we focus on quantifying uncertainty coming from pa-
rameters related to NO2 emission attributed to road transporta-
tion. The simulations require input data regarding, for example,
NO2 index from gasoline engines, fuel usage, density, and ra-
tio of gas to diesel cars. The input distribution is specified using
chaospy via EasyVVUQ. Here, we focus only on parameters re-
lated to petrol-powered vehicle, while a similar setup is needed
for diesel vehicle analysis.

Next we set up different samplers for different input parame-
ters we want to be sampled.

A custom encoder is used, EmisEncoder, whose goal is to use
the values of the sampled parameters as components to calculate
the correct value of road transportation emissions.

Adv. Theory Simul. 2020, 1900246 1900246 (18 of 22) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedsciencenews.com www.advtheorysimul.com

We setup a stochastic collocation sampler

and use the multiencoder for our campaign.

To facilitate running ensembles, each of which requires hun-
dreds of cores, we use an integrator between QCG-PilotJob and
EasyVVUQ called EasyVVUQ-QCGPJ.[7,8]

Adv. Theory Simul. 2020, 1900246 1900246 (19 of 22) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedsciencenews.com www.advtheorysimul.com

9.4. Results and Analysis

In this simulation example, a 2 × 2 × 2 metre grid resolution
has been used, and the same resolution has been applied to
the output results, which contain NO2 concentration for each
given point in 3D space. The output is then transformed into
x*y columns with z NO2 values, that is, for each point in 2D-
space, there is a list of NO2 concentration at different heights.
Such data is then processed and analyzed using the SCAnalsysis
object from EasyVVUQ.

The goal of the analysis is to provide us with the mean con-
centration (and associated uncertainty) for the whole domain
at different heights, and to study how the final result may vary
due to the incomplete emissions data. While at present the anal-
ysis is performed for a given point in 2D space for different
heights above street level, future analyses will concern the entire
3D space.

The uncertainty quantification of the UrbanAir workflow for
an arbitrary point in 2D-space is shown in Figure 13. Since the
NO2 concentrations is attributed to road transportation, it tends
to decrease with increasing height above road level. Note that the
interpolation of NO2 concentration in between every 2 m is here
due only to the plotting software. The standard deviation indi-
cates how much uncertainty of input parameters (currently only
four are taken into account) is reflected in the air quality pre-
dictions. In the forthcoming work, a sensitivity analysis will be

conducted to select the most important uncertainty input param-
eters.

10. Discussion and Conclusions

In this work, we have applied EasyVVUQ to five diverse appli-
cation areas, in order to extract information on sensitivity or

Adv. Theory Simul. 2020, 1900246 1900246 (20 of 22) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedsciencenews.com www.advtheorysimul.com

Figure 13. Emissions of NO2 at different heights above street-level from road transportation, with the mean (red line) and standard deviation (blue
region) calculated using the EasyVVUQ campaign.

uncertainty in these pre-existing models, without the need for in-
trusive modifications to the code. EasyVVUQ provides the tools
necessary for computational scientists to add state of the art
VVUQ algorithms to their simulation workflows without mod-
ifying the underlying codebase.
The library is intentionally execution-method agnostic, pro-

viding the base VVUQ workflow elements to allow for different
execution patterns (such as Pilot Jobs) facilitated by any choice
of middleware solutions. The agnosticism to choice of middle-
ware (including using no middleware at all), and restartability of
the workflow, provide the flexibility necessary for EasyVVUQ to
be applied to many workflows in the HPC domain. For exam-
ple, the Fusion application above uses the PSNC Pilot Job Man-
ager tomanage job execution, whereas theOceanCirculation and
Migration applications rely on FabSim3. Execution of the mate-
rials application, meanwhile, is handled manually by the user.
Other middleware solutions may be used, such as RADICAL
Cybertools,[9] Dask JobQueue,[46] or cloud submission tools.
The encoding and decoding steps of a standard EasyVVUQ

script ensure that application-specific information is abstracted
from the rest of the VVUQ workflow. This keeps the UQ al-
gorithms in the sampling elements entirely generic. As such,
multiple sampling elements may be chained or combined
into more complex sampling elements (such as via use of
the MultiSampler element). Complex encoding may also be
achieved through combining multiple encoders into a single
MultiEncoder element.
This generic approach is intended to accommodate switching

to different UQ methods at no development cost to the user, al-
lowing users to easily try out a variety of UQ approaches. It is
intended that many more UQ algorithms will be integrated into
this framework over time.

Acknowledgements
D.W.W. and R.A.R. authors contributed equally to this work. The authors
are grateful to the VECMA consortium, its Scientific Advisory Board, and
the VECMAtk alpha users for their constructive discussions and input
around this work. The authors acknowledge funding support from the Eu-
ropean Union’s Horizon 2020 Research and Innovation Programme un-
der grant agreement 800925 (VECMA project, www.vecma.eu), and the
UK Consortium on Mesoscale Engineering Sciences (UKCOMES, http:
//www.ukcomes.org), EPSRC reference EP/L00030X/1. This work was sup-
ported by the Netherlands eScience Center. The calculations were per-
formed in part at the Poznan Supercomputing and Networking Center.

Conflict of Interest
The authors declare no conflict of interest.

Keywords
high-performance computing, multiscale simulations, uncertainty quan-
tification

Received: December 13, 2019
Revised: April 24, 2020

Published online:

[1] W. L. Oberkampf, C. J. Roy,Verification and Validation in Scientific Com-
puting, Cambridge University Press, Cambridge 2010.

[2] W. L. Oberkampf, S. M. DeLand, B. M. Rutherford, K. V. Diegert, K. F.
Alvin, Reliab. Eng. Syst. Safe. 2002, 75, 333.

[3] R. A. Richardson, D. W. Wright, W. Edeling, V. Jancauskas, J. Lakhlili,
P. V. Coveney, J. Open Res. Softw. 2020, 8, 11.

Adv. Theory Simul. 2020, 1900246 1900246 (21 of 22) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedsciencenews.com www.advtheorysimul.com

[4] D. Groen, R. A. Richardson, D.W.Wright, V. Jancauskas, R. Sinclair, P.
Karlshoefer, M. Vassaux, H. Arabnejad, T. Piontek, P. Kopta, B. Bosak,
J. Lakhlili, O. Hoenen, D. Suleimenova, W. Edeling, D. Crommelin,
A. Nikishova, P. V. Coveney, in Computational Science – ICCS 2019,
Springer International Publishing, New York 2019, pp. 479–492.

[5] D. Groen, A. P. Bhati, J. Suter, J. Hetherington, S. J. Zasada, P. V.
Coveney, Comput. Phys. Commun. 2016, 207, 375.

[6] T. Piontek, B. Bosak, M. Ciżnicki, P. Grabowski, P. Kopta, M. Kul-
czewski, D. Szejnfeld, K. Kurowski, J. Grid Comput. 2016, 14, 559.

[7] B. Bosak, J. Lakhlili, EasyVVUQ-QCGPJ, https://github.com/
vecma-project/easyvvuq-qcgpj (accessed: May 2020).

[8] P. Kopta, B. Bosak, QCG-PilotJob, https://github.com/
vecma-project/QCG-PilotJob (accessed: May 2020).

[9] V. Balasubramanian, S. Jha, A. Merzky, M. Turilli, arXiv preprint
arXiv:1904.03085, 2019.

[10] Cerberus: Lightweight, extensible data validation library for python,
https://github.com/pyeve/cerberus (accessed: April 2020).

[11] Supplementary information/code repository for this paper, https://
github.com/vecma-project/EasyVVUQApplicationsSupplementary
(accessed: December 2019).

[12] M. Eldred, J. Burkardt, in 47th AIAA Aerospace Sciences Meeting In-
cluding the New Horizons Forum and Aerospace Exposition, American
Institute of Aeronautics and Astronautics, Reston, VA 2009, p. 976.

[13] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral
Method Approach, Princeton University Press, Princeton, NJ 2010.

[14] R. Preuss, U. von Toussaint, in AIP Conf. Proc., Vol. 1756, AIP Pub-
lishing, New York 2016, p. 060001.

[15] I. Sobol,Math. Comput. Simulat. 2001, 55, 271.
[16] G. Tang, G. Iaccarino, M. Eldred, in 51st

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conf., Orlando, FL 2010, pp. 1–13.

[17] B. Sudret, Reliab. Eng. Syst. Safe. 2008, 93, 964.
[18] M. Vassaux, R. C. Sinclair, R. A. Richardson, J. L. Suter, P. V. Coveney,

Adv. Theory Simul. 2019, 1900122.
[19] M. Vassaux, R. Richardson, P. Coveney, Philos. Trans. R. Soc., A 2019,

377, 20180150.
[20] R. C. Sinclair, Epoxy polymerisation code, https://github.com/

velocirobbie/epoxy_polymerisation (accessed: August 2019).
[21] M. Vassaux, R. C. Sinclair, R. A. Richardson, J. L. Suter, P. V. Coveney,

Adv. Theory Simul. 2019, 2, 1800168.
[22] S. Plimpton, J. Comput. Phys. 1995, 117, 1.
[23] B. M. Boghosian, P. V. Coveney, H. Wang, Adv. Theory Simul. 2019,

1900125.
[24] W. Verkley, P. Kalverla, C. Severijns, Q. J. R. Meteorol. Soc. 2016, 142,

2273.

[25] R. Peyret, Spectral Methods for Incompressible Viscous Flow, Springer
Science & Business Media, New York 2013.

[26] J. Feinberg, H. P. Langtangen, J. Comput. Sci. 2015, 11, 46.
[27] W. Edeling, D. Groen, FabUQCampaign, https://github.com/

wedeling/FabUQCampaign (accessed: May 2020).
[28] G. L. Falchetto, D. Coster, R. Coelho, B. D. Scott, L. Figini, D. Kalupin,

E. Nardon, S. Nowak, L. L. Alves, J. F. Artaud, V. Basiuk1, J. P. S.
Bizarro, C. Boulbe, A. Dinklage, D. Farina, B. Faugeras, J. Ferreira,
A. Figueiredo, Ph. Huynh, F. Imbeaux, I. Ivanova-Stanik, T. Jonsson,
H.-J. Klingshirn, C. Konz, A. Kus, N. B. Marushchenko, G. Pereverzev,
M. Owsiak, E. Poli, Y. Peysson, et al., Nucl. Fusion 2014, 54, 043018.

[29] F. Imbeaux, J. Lister, G. Huysmans, W. Zwingmann, M. Airaj, L. Ap-
pel, V. Basiuk, D. Coster, L. G. Eriksson, B. Guillerminet, D. Kalupin,
C. Konz, G. Manduchi, M. Ottaviani, G. Pereverzev, Y. Peysson, O.
Sauter, J. Signoret, P. Strand, Comput. Phys. Commun. 2010, 181, 987.

[30] O. O. Luk, O. Hoenen, A. Bottino, B. D. Scott, D. P. Coster, Comput.
Phys. Commun. 2019, 239, 126.

[31] J. Lakhlili, O. Hoenen, O. Luk, D. Coster, Multiscale FusionWorkflow,
https://github.com/vecma-ipp/MFW (accessed: May 2020).

[32] A. Nikishova, A. G. Hoekstra, J. Comput. Sci. 2019, 35, 80.
[33] G. M. Venturini, PhD Thesis, Universidad Carlos III de Madrid (Spain)

2015.
[34] J. Lin, IEEE Trans. Inf. Theory 1991, 37, 145.
[35] UNHCR, Figures at a glance, https://www.unhcr.org/

figures-at-a-glance.html (accessed: May 2020).
[36] D. Groen, Procedia Comput. Sci. 2016, 80, 2251.
[37] D. Suleimenova, D. Bell, D. Groen, Sci. Rep. 2017, 7, 13377.
[38] F. Chen, H. Kusaka, R. Bornstein, J. Ching, C. Grimmond, S.

Grossman-Clarke, T. Loridan, K. Manning, A. Martilli, S. Miao, D.
Sailor, F. Salamanca, M. Taha, H. abd Tewari, X. Wang, A. Wys-
zogrodzki, C. Zhang, Int. J. Climatol. 2011, 31, 273.

[39] J. M. Prusa, P. K. Smolarkiewicz, A. Wyszogrodzki, Comput. Fluids
2008, 37, 1193.

[40] P. K. Smolarkiewicz, R. Sharman, in 8th GMU Conf. on Transport and
Dispersion Modeling, George Mason University, Fairfax, VA 2004.

[41] P. K. Smolarkiewicz, R. Sharman, J. Weil, S. G. Perry, D. Heist, G.
Bowker, J. Comput. Phys. 2007, 227, 633.

[42] A. Wyszogrodzki, S. Miao, F. Chen, Atmos. Res. 2012, 118, 324.
[43] A. Kumar, R. Jimenez, L. Belalcazar, N. Rojas, Aerosol Air Qual. Res.

2015, 16, 12.
[44] J. Karlický, P. Huszár, T. Halenka, Adv. Sci. Res. 2017, 227, 181.
[45] Z. P. Piotrowski, A. Wyszogrodzki, P. K. Smolarkiewicz, Acta Geophys.

2011, 59, 1294.
[46] M. Rocklin, in Proc. of the 14th Python in Science Conf., Citeseer,

2015, pp. 130–136.

Adv. Theory Simul. 2020, 1900246 1900246 (22 of 22) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

