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Abstract: This paper presents the usage of the hybrid simulated annealing—evaporation rate water 

cycle algorithm (SA-ERWCA) for induction machine equivalent circuit parameter estimation. The 

proposed algorithm is applied to nameplate data, measured data found in the literature, and data 

measured experimentally on a laboratory three-phase induction machine operating as an induction 

motor and as an induction generator. Furthermore, the proposed method is applied to both single-

cage and double-cage equivalent circuit models. The accuracy and applicability of the proposed SA-

ERWCA are intensively investigated, comparing the machine output characteristics determined by 

using SA-ERWCA parameters with corresponding characteristics obtained by using parameters 

determined using known methods from the literature. Also, the comparison of the SA-ERWCA with 

classic ERWCA and other algorithms used in the literature for induction machine parameter 

estimation is presented. The obtained results show that the proposed algorithm is a very effective 

and accurate method for induction machine parameter estimation. Furthermore, it is shown that the 

SA-ERWCA has the best convergence characteristics compared to other algorithms for induction 

machine parameter estimation in the literature. 

Keywords: induction machines; induction machines equivalent circuits; parameter estimation; 

hybrid optimization techniques; hybrid simulated annealing; evaporation rate water cycle 

algorithm 

 

1. Introduction 

Induction machines (IMs), especially squirrel-cage machines, are the most commonly used 

electrical machines. They have a lot of advantages over other electrical machines, such as easy control, 

easy repair, low price and size, high efficiency, and so on. For that reason, IMs are considered as the 

industry’s powerhouse motors [1]. These machines have many very different applications, for 

example with constant or variable speed, with constant or variable load, with constant or variable 

voltage supply, and so on. However, to study and simulate the IM’s behavior (such as voltage drop 

calculations, load change calculations, system analysis, transient analysis, etc.), its parameters should 
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be estimated with high precision. In that sense, a robust, accurate, and reliable parameter estimation 

method, as well as an adequate equivalent circuit, is required. For that reason, this problem has been 

analyzed in the main world standards and in research works that discuss the mentioned standards 

[2–5]. 

In the literature, there are many induction machine parameter estimation methods that can be 

categorized in several ways [6–9]. In the mentioned papers [6–9], a review of estimation methods is 

also given, with special attention to machine applications. Based on [7], methods for identification of 

induction machine parameter values can be classified in the following five categories: methods based 

on machine steady-state models [10–46], methods based on machine construction data [47–50], 

methods based on frequency-domain parameter estimation [51–59], methods based on time-domain 

parameter estimation [60–71], and methods based on real-time parameter estimation [72–76].  

Methods based on machine steady-state models determine machine parameters by solving 

equations derived from state models [10–46]. For this purpose, many estimation methods based on 

the usage of different kinds of optimization techniques (analytical [10,11], iteration [12,13], or 

evolutionary techniques [14–35]) can be used. In general, all these methods base the estimation on 

catalog data (or manufacturer or nameplate data) [13,26], [40–43], or measured data [24,46] with or 

without including temperature effects [35,36] or machine nonlinearities [37–39]. Also, it should be 

noted that this class also includes the standard testing methods, based on open-circuit and short-

circuit tests [2–5].  

Methods based on machine construction data require detailed knowledge of the machine’s 

geometry and the properties of the materials employed [47,48]. However, this class also requires the 

usage of appropriate software for electromagnetic calculation [49,50]. For those reasons, this class of 

methods is recognized as the most precise, although the costliest. In practice, these methods are 

employed by manufacturers, designers, and researchers.  

In electrical engineering, and especially in control theory, the usage of the frequency domain for 

solving different problems is popular for estimation of unknown machine parameters by using 

certain transfer functions, which are observed during performing frequency tests [51–55]. Examples 

of these methods, are Kalman filter [56], Laplace transformation [57], Lyapunov method [58], and 

signal processing (spectral analysis [36]. However, it should be noted that this class of methods is not 

used as common industry practice. 

Methods based on time-domain parameter estimation require the usage of a system of 

differential equations which describe the machine dynamics [60–62]. The unknown machine 

parameter values are adjusted so that the response calculated with a mentioned system of differential 

equations fits the measured time response. This class contains many subclasses, such as the 

acceleration test [63,64], direct start-up [65–67], a method based on transient analysis [68], methods 

based on integral calculations [69], and so on. In these classes of methods, some researches combine 

mechanical and electrical parameter estimation [70,71]. 

Methods based on real-time parameter estimation require continuous measurement of certain 

variables, such as speed, current, voltage, and so on, during machine operation [72–76]. On the other 

hand, based on continuously measured data and using usually simplified machine models, these 

methods are applied to controllers for continuous tuning of control parameters [76]. In that way, these 

methods are used as a compensation tool for appropriate machine control as they enable 

compensation of parameter variation due to temperature change, saturation, broken bars, and other 

effects in the machine.  

In the literature, there are two basic equivalent circuits of the induction machine. One equivalent 

circuit is called a single-cage equivalent circuit, while the second is called a double-cage equivalent 

circuit. Basic information about the mentioned circuits, as well as their advantages and 

disadvantages, will be given in the paper. However, it should be noted that in the literature, the 

papers which deal with parameter estimation predominantly consider only the single-cage 

[5,33,38,39,51,64] or only the double-cage [10,20,40] induction machine equivalent circuit. 

In this paper, special attention is given to methods based on machine steady-state models, as 

this class of methods are most represented in the literature. Furthermore, a detailed review of 
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methods from this class is presented. Both single- and double-cage IM equivalent circuits are 

investigated in this paper. Also, the existing methods predominantly consider nameplate or 

manufacturer data [14–28,40–42] or measured data [24,43,46,65,68] for parameter estimation. In 

addition, both nameplate data and experimentally determined machine data are used for machine 

parameter determination. Despite of the importance of the generator option in wind energy systems, 

in the literature, the authors consider only motoring operation of the IM, while generator operation 

is only mentioned in two papers [34,72]. To redress this point, in this paper, measured values for the 

2-kVA, 220-V/110-V, 50-Hz three-phase laboratory IM, as induction motor and generator are 

considered.  

A novel estimation-based method for IM parameter estimation is proposed and tested. Namely, 

the recently proposed evaporation rate water cycle algorithm (ERWCA) is improved by the simulated 

annealing (SA) algorithm to obtain a novel hybrid algorithm called SA-ERWCA. It should be noted 

that the ERWCA is a powerful algorithm which has a lot of very successful applications in estimation 

problems, such as for short-term hydrothermal scheduling [77], environmental economic scheduling 

of hydrothermal energy systems [78], solar cell parameter estimation [79],[80], and so on. The main 

characteristic of the ERWCA is that this algorithm converges very fast to the optimal solution even 

in large ranges as well as having a stable convergence with multiple runs. On the other hand, SA is a 

metaheuristic technique that has the potential to approximate global optimization in a large search 

space [81]. For that reason, we combined these algorithms. Specifically, we used SA to determine the 

initial population of ERWCA and therefore to additionally improve its convergence characteristics. 

Besides, we present a comparison in terms of convergence speed and accuracy between the proposed 

algorithm and other algorithms used for IM parameter estimation used in the literature. Besides, we 

compared the SA-ERWCA performance with some competitive optimization techniques for 4 

benchmark optimization problems used in the literature. 

The application is tested on three different IMs based on their manufacturer data as well as on 

two IMs based on their measured data. All the considered machines are taken from the literature. 

However, it should be noted that for some machines we considered only a single-cage equivalent 

circuit (Machines 1, 4 and 5), while for others we considered a double-cage one (Machines 2 and 3). 

This is done to make a comparison with literature solutions.  

For a proper presentation of the research, the paper is divided into several sections. Section 2 

provides basic information about the IM equivalent circuits. Section 3 presents an overview 

concerning the IM parameter estimation techniques. Section 4 presents the novel SA-ERWCA. Section 

5 gives the results of parameter estimation based on the manufacturer data and measured data found 

in the literature. The experimental validations of the proposed algorithm, as well as corresponding 

simulation results, are given in Section 6. Finally, an overview of the paper and of the significance of 

the presented research is given in Section 7. 

2. Induction Machine Equivalent Circuits  

There are two basic IM models: single cage and double cage. In most papers, the IM is 

represented by using the single-cage model. However, the double-cage model is also popular 

especially for the representation of deep-bar machines [10,13,20,40]. However, apart from the 

predominantly used models, an IM is modeled by using a triple-cage model in [61]. The equivalent 

circuit of the single-cage model of the IM is presented in Figure 1a. In this figure, R1, R2, Rm, X1, X2, 

and Xm represent the stator resistance, rotor resistance in reference to stator side, core loss resistance, 

stator leakage reactance, rotor leakage reactance resistance in reference to stator side, and 

magnetizing reactance, respectively [4]. Therefore, in general, this circuit has six different parameters. 

However, in many papers dealing with induction machine parameter estimation, the value of the 

core loss resistance is ignored (for example in [18,26,51,65] and so on). The steady-state equivalent 

circuit of the double-cage IM, shown in Figure 1b, contains, in general, eight electrical parameters. In 

this circuit, parameters Rs and Xsd correspond to stator variables, while X12, X1d, X2d, R11, and R22 

correspond to rotor variables (one cage is represented by X1d and R11, while the second is defined 

with X2d and R22). The magnetizing part of the circuit is represented by Xm. However, in some papers 
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dealing with the double-cage IM, the value of the stator reactance Xsd and/or the value of the mutual 

rotor reactance X12 are ignored [5,13,20].  

 
(a) 

 
(b) 

  

Figure 1. Basic IM models: (a) single-cage model; and (b) double-cage model. 

It is interesting to note that in [33,51] it is stated that the usage of a single-cage induction machine 

is neither an appropriate model nor sufficient for the prediction of the starting current. Namely, to 

predict the starting current, a double-cage induction machine model needs to be used. In the double-

cage induction machine model, there exist two cages: an outer cage (whose effect is predominant near 

to zero speed) and an inner cage (whose effect is predominant near to rated speed) [1]. However, for 

estimation, the usage of the single cage machine model makes it possible to solve a system of 

equations with a maximum of six unknown parameters. On the other hand, if we use the double cage 

model, in the optimization process we have a maximum of eight unknown parameters, which 

increases the complexity of the problem. 

3. Parameter Estimation Methods Based on Steady-State Models: An Overview  

The methods for IM parameter estimation based on machine steady-state models can be divided 

into two main groups. The first group represents the usage of IEEE and IEC standards. The second 

group represents the usage of catalog/manufacturer/nameplate data or measured data for machine 

parameter estimation. As these methods are predominantly based on solving a system of equations, 

the attention in this section is given to the optimization techniques known from the literature, too. 

3.1. IEEE and IEC standards 

In IEEE Standard 112 [2], the IEEE Power Engineering Society recommends different methods 

for IM parameter estimation and calculations. Some of the IEEE recommended methods use data 

from no-load or locked-rotor tests with rated/non-rated frequencies (Methods 1 and 2), while others 

use data from no-load or full-load slip tests with reduced supply voltage (Methods 3 and 4). 

Furthermore, Method 1 requires a test at a maximum of 25% of rated frequency, while Method 2 

requires tests for three different frequencies. On the other hand, Method 3 assumes that a test should 

be carried out with or without a coupled load, while Method 4 implies performing locked-rotor tests 

at rated frequency. Also, Methods 1, 2, and 4 require the implementation of tests at rated current, that 

is, precise current measurement, while Method 3 requires precise slip measurement. 

Besides IEEE Standards, there is also an IEC standard for IM parameter determination [3]. The 

IEC Standard 60034-28 establishes procedures to obtain values for elements of single-phase 

equivalent circuit diagrams from tests and defines standard elements of these diagrams. Also, this 

standard gives the procedures for the determination of equivalent circuit parameters from a load 

curve test as an alternative to the reverse rotation and locked rotor tests. Therefore, it can be 

concluded that the IEEE and IEC standards for IM parameter determination are not easy to 

implement. Furthermore, they can be erroneous, which is specially mentioned in [5]. 

3.2. Methods Based on Catalog/Manufacturer/Nameplate Data 

The IM nameplate provides very important data. However, different machine manufacturers 

give different data. On some machines, the nameplate can give only basic information about the 

machine, such as its rated voltage, power, and speed, while on others, the nameplate can also give 
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some information related to torque data. However, technical (machine) documentation (catalog data 

or manufacturer data) for novel IMs gives a lot of information. For that reason, methods from this 

group published in the literature are based on the usage of different variables [5,13,18,20] (for 

example, rated and maximum torque, rated and maximum current, rated power, rated power factor, 

starting current, etc.). Hence, one can say that methods based on catalog/manufacturer/nameplate 

data are very appropriate for novel IMs that have full manufacturer data. However, they are not 

useful for old machines as they do not have catalog data or their catalog data do not contain detailed 

information. Furthermore, during long-term operation, the IMs changes its characteristics (magnetic 

material, isolation, eccentricity, etc.) and then these methods cannot be taken as a standard method 

for IM parameter estimation. 

3.3. Methods Based on Measured Data 

Methods based on measured data require certain measurements on the observed machine. For 

that reason, these methods are very reliable and reflect the actual condition of the machine. 

Furthermore, these methods are very effective for old IMs that do not have full catalog data. 

However, for their implementation, a precise sensor must be used. It was noted earlier that machine 

torque measurement is not needed for adequate machine representation [5]. However, to present a 

different load value, a speed measurement is required (except if we apply methods based on real-

time parameter estimation, such as [71]). Therefore, methods based on measurements of phase speed, 

machine input power, machine torque, and current are presented in [12]. By using all these data, the 

authors presented a full machine model taking into account changes in parameters with speed. On 

the other hand, methods for IM parameter estimation based on phase current and power factor 

measurements at different speed values are described in [45,46]. Besides them, methods based on 

torque measurement also belong in this group [38].  

3.4. Methods Based on Optimization Algorithms 

The estimation of the IM parameters, regardless of whether they use the catalog, nameplate, 

manufacturer, or measured data, requires solving a large number of complex equations. The 

predefined equations can be solved analytically or by using iterative or optimization techniques. 

Analytical methods, such as the methods described in [10,11] as well as those based on open-circuit 

and short-circuit experiments, are very simple to implement. However, analytical methods require 

the introduction of appropriate assumptions or the usage of some approximative formulation. 

Therefore, these methods allow parameters to be obtained very quickly with low accuracy values. 

The most commonly used iterative techniques for IM parameter estimation are based on the usage of 

the well-known Newton-Raphson algorithm or the Levenberg-Marquardt algorithm [12,13]. For the 

implementation of these algorithms, certain assumptions or additional known data are required. 

Furthermore, for its implementation, it is necessary to accurately define the iteration step, starting 

values, and appropriate iteration criteria.  

On the other hand, many papers dealing with IM parameter estimation are based on the usage 

of different optimization (usually metaheuristic) techniques [14–35,43]. The usage of optimization 

techniques requires solving of the equation to satisfy predefined criteria or an objective function. The 

IM parameters can be obtained by using the genetic algorithm (GA) [14–24], genetic programming 

(GP) [15], particle swarm optimization (PSO) algorithm [14,16,18–22,25–28,43], hybrid GA and PSO 

(HGAPSO) [18], simulated annealing (SA) [19,27], bacterial foraging technique (BFT) [26], shuffled 

frog-leaping algorithm (SFLA) [14,20], modified shuffled frog-leaping algorithm (MSFLA) [14], 

artificial bee colony (abc) algorithm [21], charged system search (CSS) [22], artificial fish swarm 

algorithm (AFSA) [23], simple random search (SRS) method [24], immune algorithm (IA) [17,26], 

steepest descent local search (SDLS) algorithm [27], evolution strategies (ESs) [27], simple 

evolutionary algorithm (SEA) [27], diversity-guided evolutionary algorithm (DGEA) [27], scatter 

search (SS) [28], ant colony algorithm (ACA) [28], sparse grid optimization algorithm (SGOA) [29], 

dynamic encoding (DEn) algorithm [30], vector constructing method (VCM) [32], least-squares 
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algorithm (LSA) [33], mean-variance mapping optimization (MVMO) [34], and differential evolution 

(DE) algorithm [14,22,31,35].  

Besides the abovementioned techniques and methods, neural networks can also be used for IM 

parameter determination [44]. However, the usage of neural networks requires a lot of data to train 

the algorithm. Also, these methods require a high-speed processor for data processing. However, 

most of these papers base their estimates on manufacturers’ data. Besides, no algorithm has yet 

proven its significant superiority in the problem under study. Furthermore, there is no paper where 

the authors test the proposed algorithm on a different kind of input data. 

From the perspective of objective functions for IM parameter estimation, the problem of finding 

unknown machine parameters is reduced to the problem of minimization of the deviation between 

the measured, catalog, or manufacturer data and the estimated value of a certain variable or variables 

in papers that deal with the usage of optimization techniques for IM parameter estimation. The 

mentioned deviation is known as the objective function (OF) or fitness function. In the literature, 

there are many types of objective functions. Some of them require the value of active and reactive 

current components [29], instantaneous current value [27], power factor, RMS phase voltage and RMS 

phase current [5], torque, current and power factor values [20], torque and power factor values [18], 

current and torque value [45], power and torque values [13], and similar. Therefore, different 

combinations of used variables can be found in existing objective functions. However, it is interesting 

to note that the investigation presented in [5] strictly notes that the information about the power 

factor, RMS phase voltage, and RMS phase current is sufficient for IM parameter determination. 

Furthermore, the torque measurement is not required for IM parameter estimation. It is well known 

that torque sensors are high-price devices, and therefore the method described in [5] is very popular 

in science. 

4. SA-ERWCA  

A novel hybrid metaheuristic algorithm named SA-ERWCA is proposed in this work. The idea 

of merging the SA algorithm with population-based algorithms comes from many existing studies 

that propose hybridization of SA with EAs, as concisely presented in [81]. According to [81], the two 

categories of hybrid SA and EAs can be defined:  

(i) Collaborative hybrid metaheuristics are based on the exchange of information between 

different self-contained metaheuristics and can be divided into two subcategories [82–88]:  

 Teamwork collaborative algorithms are hybrids where both algorithms work in parallel [82–85]. 

 Relay collaborative algorithms rely on executing the algorithms one after another [86–88].  

One such hybrid type is EA-SA, which is based on optimizing the use of EA and additionally 

improving the obtained optimal solution with the SA algorithm [86,87]. Another type of relay 

collaborative algorithm is SA-EA, in which SA is used to initialize the population of the EA [81,88]. 

(ii) In the case of the integrative hybrid metaheuristics, one algorithm (subordinate) is embedded 

into the other algorithm (master). Precisely, only a certain function or component of one algorithm is 

replaced by the other algorithm [89–91]. 

As was mentioned before, ERWCA is a population-based algorithm, which means the first step 

of this algorithm must be the initialization of the population. Assuming that the size of the population 

is Npop and N is the number of design variables (or dimension of the problem), a population is a matrix 

with dimensions Npop × N. In the original ERWCA, the population is initialized randomly between the 

upper bound (UB) and the lower bound (LB) of the design variables. In the hybrid SA-ERWCA 

proposed in this paper, the SA algorithm is used to initialize the population of the ERWCA, similarly 

to the relay-collaborative strategy presented in [81,88]. 

Each individual of the population is denoted as �⃗�, ∀� = 1,2, … ���� and represents a vector that 

has N elements. The initialization process employing the SA algorithm is precisely described with 

the pseudo-code (PC0) given in Table 1.  
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Table 1. Pseudo-code of the SA algorithm. 

Pseudo-Code of the SA Algorithm (PC0) 

For each individual �⃗�, ∀� = 1,2, … ���� 

Enter the input data: k = 0, ck = c0, Lk = L0 

�⃗� = ���� × (�� − ��) + �� 

Repeat 

For l = 0 to Lk 

 Generate a solution �⃗�  from the neighborhood of the current solution �⃗� 

  If ����⃗�� < ����⃗�� then �⃗� becomes the current solution ��⃗� = �⃗�� 

  Else �⃗�  becomes the current solution with the probability �
�

������⃗ ���������⃗ ��

��
�
  

k = k + 1           

Compute Lk and ck 

Until ck ≅ 0 

The parameters of the SA algorithm, ck and Lk, are the temperature and number of transitions 

generated at some iteration k. They are calculated as explained in [91]. Also, rand represents a vector 

of random numbers between 0 and 1. After the initialization process, the obtained population must 

be sorted according to the value of the fitness function of each individual. Namely, the best individual, 

which has the minimum fitness function value, is chosen to be the sea. Besides the sea, the population 

consists of rivers and streams. The predefined parameter of the ERWCA is denoted as Nr and 

represents the number of rivers. Thus, Nr individuals of the initial population with the minimum 

fitness function value (except the sea) are chosen to be the rivers. Finally, the rest of the population is 

considered as streams: Nstreams = Npop − Nsr, where Nsr stands for the number of rivers plus the sea (Nsr = 

Nr +1). According to the water cycle process in nature, each stream flows directly or indirectly to the 

rivers or sea. The number of streams for each river and sea is calculated as follows: 

�� = ���⃗�� − ���⃗������, � = 1,2, … , ���  (1) 

 ��� = round ��
��

∑ ��
���
���

� ��������� , � = 1, ,2, … , ��� (2) 

where NSn represents the number of streams that flow to the nth river (or the sea of n is equal to 1). 

Since it was highlighted that streams continue their flow to either other rivers or directly to the sea, 

the next step in the ERWCA is to mathematically model the flow of streams. To that end, two update 

equations for the position of streams that flow to rivers and the sea are given (3) and (4), respectively: 

�⃗������(� + 1) = �⃗������(�) + ���� × � × ��⃗�����(�) − �⃗������(�)�  (3) 

�⃗������(� + 1) = �⃗������(�) + ���� × � × ��⃗���(�) − �⃗������(�)�  (4) 

where rand is a random number with the range [0, 1], C is a parameter whose selected value is 2, and 

t is the current iteration. After updating the positions of streams, it is necessary to check whether the 

solution obtained by the stream is better than that obtained by its connecting river. In other words, if 

the stream has a lower fitness function than the river, the positions of stream and river are switched 

(the stream becomes a river and the river becomes a stream). Similarly, to streams, the rivers also 

update their positions using (5), thus:  

�⃗�����(� + 1) = �⃗�����(�) + ���� × � × ��⃗���(�) − �⃗�����(�)�  (5) 

If the following update equation provides a river whose fitness function value is lower compared 

to the sea, then an interchange between the sea and the river must be carried out. 

To provide an escape from local optima, the evaporation concept is built into the algorithm. In 

nature, evaporation can happen in different cases. Firstly, if a certain river has only a few streams, it 

evaporates before it can reach the sea. This process is mathematically modeled by the evaporation 

rate (ER), which is defined for each river as follows: 
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�� =
���(���)

��� − 1
× ����, ∀� = 2,3, … , ���  (6) 

Evaporation of the river is followed by the rain process, which contributes to the formation of a 

new stream: 

�⃗������
��� (� + 1) = �� + ���� × (�� − ��)  (7) 

The whole evaporation process of the river is presented using the pseudo-code PC1, presented 

in Table 2, where tmax stands for the maximum number of iterations. 

Table 2. Pseudo-code of the whole evaporation process of the river. 

Pseudo-Code (PC1) 

for i = 1: Nsr − 1 

     If (exp(−t/tmax) < rand) & (NSi < ER) 

     Perform rain process represented by (7) 

End for 

However, in this case, the evaporation process occurs when rivers or streams flow into the sea, 

causing seawater to evaporate. Before applying the evaporation process, it should be checked 

whether the rivers and streams are close enough to the sea to cause evaporation. Evaporation of the 

seawater in the case of a river flowing into the sea is modeled as presented by the pseudo-code PC2, 

represented in Table 3.  

Table 3. Pseudo-code of the evaporation of the seawater. 

Pseudo-Code (PC2) 

If ��⃗��� − �⃗�����
� � < ���� or ���� < 0.1, � = 1,2, … ��� − 1 

Perform rain process represented by (7). 

 

Similarly, to the presented model, the evaporation when the stream flows into the sea is 

modelled with the pseudo-code PC3, presented in Table 4.  

Table 4. Pseudo-code of flow of the stream into the sea. 

Pseudo-Code (PC3) 

If ��⃗��� − �⃗������
� � < ����, � = 1,2, … ��� 

Perform rain process represented by (8). 

 

The equation that describes the rain process in this case is: 

�⃗������
��� (� + 1) = �⃗���(�) + �� × �����(1, �)  (8) 

where μ is a coefficient set as 0.1, randn(1, N) is a vector of N standard Gaussian numbers, and dmax is 

an adaptive parameter calculated as follows:  

����(� + 1) = ����(�) −
����(�)

���� 
 (9) 

After the evaporation process finishes, one iteration of the SA-ERWCA is completed, and the 

process is repeated iteratively until the maximum number of iterations is reached. The complete 

pseudo-code (PCSA-ERWCA) of the SA-ERWCA is presented in Table 5. Also, a flow chart of the SA-

ERWCA is illustrated in Figure 2. 
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Table 5. The complete pseudo-code of the SA-ERWCA. 

Pseudo-Code (PCSA-ERWCA) 

Enter the parameters: Nsr, dmax, Npop, and tmax 

Initialize the population using the SA algorithm 

t = 1 

while (t < tmax) 

Calculate the intensity of flow for rivers and sea using (1) and (2) 

Calculate the positions of the streams using (3) and (4) 

If a certain stream finds a better solution than the rivers/sea then exchange the positions 

Calculate the positions of the rivers according to (5) 

If a river obtains a better solution than the sea; then, exchange the positions 

Calculate the evaporation rate ER as given by (6) 

Check the evaporation condition among rivers and streams and calculate the new positions using PC1 

Similarly, to the previous step, check the evaporation conditions between sea and streams/rivers and 

calculate new positions PC2 and PC3 

Update the value of dmax using (9) 

t = t + 1 

End while 

5. Simulation Results 

First, we compared the SA-ERWCA with some competitive optimization techniques for 4 

benchmark optimization problems, presented in Table 6. The optimization techniques used for 

comparison include moth-flame optimization (MFO), multi-verse optimization (MVO), PSO, and 

DEA [92,93]. The default parameters of these algorithms are used. The algorithms were executed 

under the same conditions to attain fairness in comparative experiments. Among them, the 

population was set to 30, the dimension (n) and the maximum iteration number was set to 30 and 

1000, respectively. All the compared algorithms were run individually 30 times in each function and 

averaged as the final running result.  

Further, standard deviation (STD), average results (AVG), and median (MED) were calculated 

to evaluate the results obtained to measure the experiment results. Table 7 presents the comparison 

results of the four functions during 300,000 evaluations. Also, Figure 3 shows the values of the OF for 

the four functions during the different runs. From Table 7, one can note that the AVG and MED values 

of the SA-ERWCA are better than those obtained using the other algorithms, which validate the 

effectiveness of the SA-ERWCA, even with the increased number of iterations during 300,000 

evaluations. 

Table 6. Four benchmark test functions [92]. 

Function Dimension Range fmin 

�� = � ��
�

�

���

 n [−100, 100] 0 

�� = �|��| + �|��|

�

���

�

���

 n [−10, 10] 0 

�� = � �� ��

�

���

�

�
�

���

 n [−100, 100] 0 

�� = ���������� − ��
� � + (�� − �)��

���

���

 n [−30, 30] 0 
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Figure 2. Flow chart of the SA-ERWCA. 
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Table 7. Comparison results of the 4 functions during 300,000 evaluations. 

Functions f1 f2 

Algorithms AVG STD MED AVG STD MED 

SA-ERWCA 1.12 × 10−10 7.80 × 10−11 9.01 × 10−11 3.88 × 10−4 2.9 × 10−4 2.6810−4 

MFO 1670 3790 1667 35.3 24.5 35.3 

MVO 3.11 × 10−3 7.04 × 10−4 596 3.84 × 10−2 1.3 × 10−2 11.13 

PSO 101 14.3 111.3 46.9 3.54 51.56 

DE 2.38 × 10−2 2.48 × 10−2 5.56 × 10−2 1.18 × 10−2 3.99 × 10−3 1.7 × 10−2 

Functions f3 f4 

Algorithms AVG STD MED AVG STD MED 

SA-ERWCA 0.3437 0.2297 0.3265 21.915 2.00 21.82 

MFO 15,800 10,800 15,785 2.69 × 106 1.46 × 107 2.68 × 106 

MVO 0.37 0.31 1613 66.8 94.5 3.59 × 104 

PSO 185 27.6 220.5 8.98 × 104 1.83 × 104 1.08 × 105 

DE 1390 773 6275 30.8 18.1 32.59 

  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

  

Figure 3. Values of the OF during 30 runs: (a) f1; (b) f2; (c) f3; and (d) f4. 

Second, the application of SA-ERWCA for IM parameter estimation is presented. The application 

is tested on three different IMs based on their manufacturer data as well as on two IMs based on their 

measured data. All the considered machines are taken from the literature. However, it should be 

noted that for some machines we considered only a single-cage equivalent circuit (Machines 1, 4 and 

5), while for others we considered a double-cage one (Machines 2 and 3). This is done to make a 

comparison with literature solutions.  

For all simulation results, the population size was 200, while the maximum number of iterations 

was 150. Note that in all equations in this section the index “cal” represents the calculated value, the 

index “m” represents manufacturer data, and the index “mes” represents measured data. Also, 
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mathematical equations for calculation of all machine variables are given in Appendix A for the 

single-cage machine (SCIM) and in Appendix B for the double-cage machine (DCIM). 

5.1. Simulation Results for Machine 1 

In [14], the authors proposed the usage of the SFLA for SCIM estimation based on manufacturer 

data presented in Table 8. Also, they compared the obtained parameter values, as well as the machine 

characteristics, with the corresponding results obtained by using DE, PSO, and GA. The circuit 

parameters are found as the result of the error minimization function between the estimated and 

manufacturer data. In [14] the following OF is used: 

�� = ��
� + ��

� + ��
� + ��

� (10) 

so that: 

�� =
���,��� − ���,�

���,�

 (11) 

�� =
���,��� − ���,�

���,�

 (12) 

�� =
����,��� − ����,�

����,�

 (13) 

�� =
����,��� − ����,�

����,�

 (14) 

The proposed SA-ERWCA technique is applied for parameter estimation of Machine 1, 

considering the parameter range given in Table 8. 

Table 8. Data of Machine 1 [14]. 

Parameter Value Parameter Value Design Variables 

Pn 40 HP Tfl 190 0.1 ≤ �� ≤ 0.6 

V 400 V Tmax 370 0.2 ≤ �� ≤ 0.6 

f 50 Hz pffl 0.8 0.1 ≤ �� ≤ 0.5 

p 2 
sfl 0.09 

0.3 ≤ �� ≤ 1.0 

Tst 260 4 ≤ �� ≤ 11 

 

A comparative study with SFLA, DE, GA, PSO, and MSFLA was done to validate the 

performance of the proposed algorithm, as presented in Tables 9 and 10. It can be seen that SA-

ERWCA gives better results than SFLA, DE, GA, PSO, and MSFLA. Furthermore, the value of the OF 

given in bold in Table 10 is considerably smaller with the proposed SA-ERWCA. It is very clear that 

SA-ERWCA obtains better convergence characteristics; the convergence characteristics of SA-

ERWCA are much better for an initial number of iterations. 

Table 9. Results obtained for Machine 1. 

Parameter () DE [14] GA [14] PSO [14] SFLA [14] MSFLA [14] SA-ERWCA 

R1 0.4993 0.4875 0.3555 0.3437 0.270719 0.27821 

X1 0.3264 0.3264 0.3455 0.3360 0.357274 0.20111 

R2 0.3510 0.3556 0.4353 0.4345 0.477311 0.38795 

X2 0.3510 0.3556 0.4353 0.4345 0.477311 0.80380 

Xm 5.6967 6.6072 6.4223 6.2629 7.543194 7.87820 

In the case, when we use SA-ERWCA, for a few starting iterations, the OF value is more than 

10–15 times better in comparison with the classic ERWCA. For a higher number of iterations, the 

values of the objective function obtained by using SA-ERWCA are equal to or better than the 

corresponding curves obtained using ERWCA.  
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Table 10. Comparisons of results. 

Manufacturer 

Data 

DE GA PSO 

Value |�| Value |�| Value |�| 

Tfl 190.902 0.902 192.788 2.788 190.453 0.453 

Tst 265.669 5.669 268.016 8.016 263.337 3.337 

Tmax 349.842 20.158 354.092 15.908 363.730 6.27 

pffl 0.8065 0.0065 0.817 0.017 0.7883 0.0117 

OF 3.5 × 10−3 3.5 × 10−3 6.6 × 10−4 

Manufacturer 

Data 

SFLA MSFLA SA-ERWCA 

Value |�| Value |�| Value |�| 

Tfl 195.106 5.106 192.197 2.197 190.001 0.001 

Tst 262.467 2.467 261.687 1.687 260.002 0.002 

Tmax 368.036 1.964 373.852 3.852 370.000 0.0004 

pffl 0.7860 0.014 0.7995 0.0005 0.8 0.0000 

OF 1.1 × 10−3 2.8 × 10−4 1.6 × 10−10 

Figure 4 shows a comparison of the curves of the torque and power factor, respectively, obtained 

with SA-ERWCA, DE, GA, PSO, SFLA, and MSFLA. It can also be seen in this figure that the SA-

ERWCA results for all of the slip zones are in good agreement with the manufacturer values. Figure 

5a compares the mean values of the best six objective functions versus the number of iterations for 

ERWCA and SA-ERWCA when 100 simulation runs are performed. 

 

 
(a) 

 
(b) 

  

Figure 4. Curves of Machine 1: (a) Torque versus slip curve; and (b) Power factor versus slip. 

 

(a) 

 
(b) 
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Figure 5. Convergence curves: (a) SA-ERWCA and ERWCA; and (b) other optimizers. 

The comparison of convergence characteristics between different algorithms is presented in 

Figure 5b. This figure shows that SA-ERWCA converges rapidly and reaches better results than the 

rest of the algorithms. 

5.2. Simulation Results for Machine 2 

In [20], the authors proposed the usage of PAMP and MSFLA for DCIM parameter estimation 

based on manufacturer data. For parameter estimation, the authors used the manufacturer data given 

in Table 11. In this case, the OF is as follows: 

�� = ��
� + ��

� + ��
� + ��

� + ��
� + ��

� (15) 

so that: 

�� =
���,��� − ���,�

���,�

 (16) 

�� =
���,��� − ���,�

���,�

 (17) 

�� =
����,��� − ����,�

����,�

 (18) 

�� =
����,��� − ����,�

����,�

 (19) 

�� =
���,��� − ���,�

���,�

 (20) 

�� =
���,��� − ���,�

���,�

 (21) 

Table 11. Data of Machine 2 [20]. 

Parameter Value Parameter Value Design Variables 

Pn 148 HP Tmax 1094.3 N 0.02 ≤ �� ≤ 0.06 

V 400 V pffl 0.9 0.03 ≤ ��� ≤ 0.09 

f 50 Hz sfl 0.0077 2 ≤ �� ≤ 5 

p 2 Ist 1527.2 A 0.005 ≤ ��� ≤ 0.030 

Tst 847.2 N 
Ifl 184 A 

0.05 ≤ ��� ≤ 0.2 

Tfl 353 N 
0.1 ≤ ��� ≤ 0.2 

0.04 ≤ ��� ≤ 0.20 

A comparative study with PAMP and MSFLA was done to verify the effectiveness of the 

proposed algorithm (as shown in Tables 12 and 13), in which it is evident that SA-ERWCA gives 

better results than PAMP and MSFLA and therefore fits the manufacturer data better.  

Table 12. Results for PAMP, MSFLA and SA-ERWCA for Machine 2. 

Parameter () PAMP MSFLA SA-ERWCA 

Rs 0.0375 0.0377 0.037614 

Xsd 0.0692 0.0691 0.050454 

Xm 3.7385 3.7475 3.767293 

R11 0.0109 0.0109 0.010833 

R22 0.1031 0.1032 0.135273 

X1d 0.1424 0.1422 0.159068 
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X2d 0.0692 0.0691 0.112364 

Table 13. Comparison of results with manufacturer data for Machine 2. 

Manufacturer Data 
MSFLA PAMP SA-ERWCA 

Value |�| Value |�| Value |�| 

Tfl 355.306 2.306 355.373 2.373 353.007 0.007 

Tst 847.169 0.031 846.924 0.276 847.199 0.001 

Tmax 1094.230 0.77 1094.112 0.288 094.315 0.015 

pffl 0.9005 0.0005 0.9001 0.0001 0.8999 0.0001 

Ifl 185.216 1.216 185.130 1.13 183.99 0.01 

Ist 1527.262 0.062 1527.225 0.025 1527.196 0.004 

OF 8.07 × 10−5 8.90 × 10−5 4.73 × 10−9 

A comparison of the curves of the torque, power factor, and machine current, respectively, 

obtained by SA-ERWCA, PAMP and MSFLA is presented in Figure 6. It can be seen that the results 

of SA-ERWCA for all of the slip zones are in very good agreement with the manufacturer values. 

Also, its superiority over other considered algorithms is very evident. 

 

 

(a) 

 

(b) 

 

(c) 

 

Figure 6. Curves of Machine 2: (a) Torque versus slip; (b) power factor versus slip; and (c) phase 

current versus slip. 

5.3. Simulation Results for Machine 3 
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In [64], the authors proposed the usage of the instantaneous power of a free acceleration test for 

IM double-cage motor parameter estimation, in which, the authors compared the obtained results 

with the corresponding values of measured and manufacturer data presented in Table 14. Further, 

we have used the proposed algorithm, machine manufacturer data, and the following function.  

�� = ��
� + ��

� + ��
� (22) 

so that: 

�� =
���,�

���,�

−
���,���

���,���

 (23) 

�� =
���,�

���,�

−
���,���

���,���

 (24) 

�� =
����,�

���,�

−
����,���

���,���

 (25) 

The obtained results are presented in Table 15. In this table, the results obtained using an 

acceleration test are presented, too. The comparison of the results in terms of absolute error with 

manufacturer data is given in Table 16. The errors obtained with the proposed algorithm are smaller 

than those obtained with the acceleration test. The same conclusion can be derived by considering 

the torque versus slip and phase current versus slip characteristics, presented in Figure 7.  

Table 14. Data of Machine 3 [64]. 

Parameter Value Parameter Value 

Pn 75 HP nr 1480 rpm 

V 400 V Tmax/Tfl 4.7 

f 50 Hz Tst/Tfl 3.8 

p 2 Ist/Ifl 5.9 

Table 15. Results for acceleration test and SA-ERWCA for Machine 3. 

Parameter () Acceleration Test SA-ERWCA 

Rs 0.11691 0.10001 

Xsd 0.10688 0.15559 

Xm 3.2023 5.1957 

R11 0.03904 0.04089 

R22 0.38144 0.29293 

X1d 0.23872 0.21717 

X2d 0.10688 0.01001 

Table 16. Comparison of acceleration test and SA-ERWCA results with manufacturer data for 

Machine 3. 

Marked Data Value 
Acceleration Test SA-ERWCA 

Value |�| Value |�| 

Tmax/Tfl 4.7 4.556 0.144 4.644 0.056 

Tst/Tfl 3.8 3.529 0.271 3.788 0.012 

Ist/Ifl 5.9 6.175 0.275 5.86 0.04 

OF 0.1698 0.00488 

5.4. Simulation Results for Machine 4 

In [45], the authors proposed the usage of a GA for a SCIM parameter estimation based on 

measured data. The measured values of machine slip, current, and power factor are given in Table 

17.  
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Figure 7. Curves of Machine 3: (a) Torque versus slip; and (b) phase current versus slip obtained from 

the acceleration test [64]. 

Table 17. Data of Machine 4 and measured data: three-phase induction motor [45]. 

Parameter Value Measured Data 

Pn 0.75 kW Slip Stator current (A) Power factor 

V 380 V 0.06 1.86 0.62 

f 50 Hz 0.10 2.39 0.74 

p 1 0.15 3.07 0.78 

The circuit parameters are found as the result of the error minimization function between the 

estimated and measured data. In [45] the following OF is used: 

�� = � �
�����,�

������,�

− 1�

�

+ � �
����,�

�����,�

− 1�

��

���

�

���

 (26) 

where i represents the measured point (in this case n = 3, while i = 1, 2, and 3).  

Table 18 presents the results obtained using the proposed SA-ERWCA technique as well as the 

GA from [45]. For SA-ERWCA, ranges of the considered parameters are: 5 ≤ ��, ��, �� ≤ 15, 10 ≤

�� ≤ 25, and 100 ≤ �� ≤ 180.  

Table 18. Results for GA and SA-ERWCA for Machine 4. 

Parameter () GA [45] SA-ERWCA 

R1 10.28 10.094 

X1 8.19 9.506 

R2 10.48 10.238 

X2 19.21 17.315 

Xm 143.17 141.961 

The comparisons of GA and SA-ERWCA results with measured data are presented in Table 19. 

The comparison of the corresponding phase current versus slip and power factor versus slip 

characteristics is presented in Figure 8. It is clear that SA-ERWCA has better results than GA. Also, 

the value of the OF is smaller with the proposed SA-ERWCA.  

Table 19. Comparison of GA and SA-ERWCA results with measured data for Machine 4. 

Slip 
Measured Data GA [45] SA-ERWCA 

Stator Current(A) Value |�| Value |�| 

0.06 1.86 1.8554 0.0046 1.8591 0.0009 

0.10 2.39 2.3840 0.006 2.3921 0.0021 

 
(a) 

 
(b) 
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0.15 3.07 3.0542 0.0158 3.0685 0.0015 

Table 19. Cont. 

Slip 
Measured Data GA [45] SA-ERWCA 

Power Factor Value |�| Value |�| 

0.06 0.62 0.6193 0.0007 0.6203 0.0003 

0.10 0.74 0.7366 0.0034 0.7375 0.0015 

0.15 0.78 0.7812 −0.0012 0.7819 0.0019 

OF 2.18 × 10−4 2.31 × 10−5 

 

  
(a) (b) 

Figure 8. Curves of Machine 4: (a) Phase current versus slip; and (b) power factor versus slip. 

5.5. Simulation Results for Machine 5 

In [46], the authors proposed the usage of the new adaptive GA (AGA) for SCIM (with data 

presented in Table 20) parameter estimation based on measured data. In which Machine 5 is a three-

phase squirrel cage induction motor ELPROM, Type A0-112 M-2B3T-11. The measured values of 

machine speed, current, and power factor are given in Table 21.  

Table 20. Data of Machine 5 [46]. 

Parameter Value 

Pn 4 kW 

V Δ/Y 220/380 

Ifl Δ/Y 14.2/8.2 A 

pffl 0.88 

nr 2870 

Table 21. Measured results from [46]. 

Speed (rpm) Stator Current (A) Angle (degree) Power Factor 

0 45.70 57.0 0.5446 

2842 10.00 25.0 0.9063 

2878 8.20 27.0 0.8910 

2902 7.00 28.5 0.8788 

2931 5.90 31.0 0.8572 

2950 4.55 40.0 0.7660 

2952 4.25 43.0 0.7314 

2960 3.80 52.0 0.6157 

2968 3.55 58.0 0.5299 

2994 3.05 76.0 0.2419 
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To obtain the unknown values of parameters, the authors used the measured phase current 

value and its power factor, and the same OF given in (26). The results are presented in Tables 22 and 

23. 

Table 22. Results for AGA and SA-ERWCA for Machine 5. 

Parameter () AGA [46] SA-ERWCA 

R1 1.4460 1.6794 

X1 2.0735 1.1164 

R2 1.1994 1.0372 

X2 2.0735 3.0241 

Xm 72.728 78.723 

Table 23. Comparison of AGA and SA-ERWCA results with measured data for Machine 5. 

Speed (rpm) Stator Current (A) 
AGA [46] SA-ERWCA 

Value |�| Value |�| 

0 45.7 45.3571 0.3429 45.5731 0.1269 

2842 10 9.3893 0.6107 10.6616 0.6616 

2878 8.2 7.5945 0.6055 8.5931 0.3931 

2902 7.0 6.3968 0.6032 7.1816 0.1816 

2931 5.9 4.9958 0.9042 5.4826 0.4174 

2950 4.55 4.1558 0.3942 4.4225 0.1275 

2952 4.25 4.0738 0.1762 4.3165 0.0665 

2960 3.80 3.7634 0.0366 3.9089 0.1089 

2968 3.55 3.4871 0.0629 3.5366 0.0134 

2994 3.05 2.9566 0.0934 2.7801 0.2699 

Speed (rpm) Angle (degree) Power Factor 
AGA [46] SA-ERWCA 

Value |�| Value |�| 

0 57 0.5446 0.5318 0.0128 0.5471 0.0025 

2842 25 0.9063 0.9026 0.0037 0.9179 0.0116 

2878 27 0.8910 0.8829 0.0081 0.9075 0.0165 

2902 28.5 0.8788 0.8553 0.0235 0.8900 0.0112 

2931 31 0.8572 0.7861 0.0711 0.8409 0.0163 

2950 40 0.7660 0.6947 0.0713 0.7683 0.0023 

2952 43 0.7314 0.6815 0.0499 0.7571 0.0257 

2960 52 0.6157 0.6194 0.0037 0.7025 0.0868 

2968 58 0.5299 0.5398 0.0099 0.6273 0.0974 

2994 76 0.2419 0.1361 0.1058 0.1686 0.0733 

OF 0.4667 0.2582 

Visualization of the results obtained is shown in Figure 9 to declare that the SA-ERWCA obtains 

results that better fit the measured results, which demonstrate the applicability, efficiency, and 

accuracy of the proposed estimation technique for different IMs (different in respect to power value), 

different objective functions, and different kinds of input data. 



Mathematics 2020, 8, 1024 20 of 29 

 

  
(a) (b) 

Figure 9. Curves of Machine 5: (a) Phase current versus slip; and (b) power factor versus slip. 

6. Experimental Results 

The verification of the applicability of SA-ERWCA for the IM parameter estimation is 

demonstrated by considering a 4-kW three-phase IM from the Laboratory for Electrical Machines and 

Drives at the Faculty of Electrical Engineering (University of Montenegro), shown in Figure 10. The 

bench used for obtaining the experimental data (phase current versus slip, power factor versus slip, 

input power versus slip, and reactive power versus slip characteristics) is composed of an IM 

(KONCAR, 4 kW, 380 V, 8.6 A, 1435 rpm, pf = 0.83) coupled to a DC motor/generator (KONCAR 230 

V, 22.2 A, 5.1 A, 1450 rpm). 

The DC machine is used as generator or motor. Namely, it is used to vary the slip of the IM over 

the negative (generator) and positive (motor) slip range. For the DC generator, the output is 

connected to a variable resistor. Active power, reactive power, voltage, and current are measured 

with an LMG power analyzer (Leistungsmessgerät). The speed is measured by using a UT372 speed 

sensor (UNI-T, Dongguan City, China), while the instantaneous value of the phase current and 

voltage are measured by using a TO102 oscilloscope (Shenzhen Micsig Instruments CO, Shenzhen, 

China) to check the RMS value of the phase current and voltage. 

The measured phase current versus slip, power factor versus slip, and input power versus slip 

characteristics are shown in Figure 11. By using the obtained results and applying the proposed 

method and OF given in (26), the IM parameters were determined (as shown in Table 24) for both 

single-cage and double-cage equivalent circuits.  

The calculated phase current versus slip, power factor versus slip, input power versus slip for 

the obtained machine parameters are also shown in Figure 11.  

As can be seen, the calculated characteristics correspond very well with the measured 

characteristics. However, from the presented results and by observing the value of the calculated 

objective function, it is very clear that the double-cage model gives a better fit with the experimental 

results. Also, the proposed method guarantees that an optimal solution will be found quickly (as 

illustrated in Figure 11d). For the analyzed case, the accuracy of the obtained results is appropriate 

after only a few iterations.  
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Figure 10. Experimental setup. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

  

Figure 11. Experimental results: (a) Phase current versus slip; (b) power factor versus slip; (c) active 

power versus slip; and (d) convergence characteristics of considered machine when applying the 

proposed algorithm. 
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Table 24. Estimated IM parameters: Experimental Application. 

Parameter () Single Cage Parameter () Double Cage 

R1 3.2342 Rs 3.3486 

R2 3.5253 Xsd 0.1004 

X1 5.7459 Xm 195.486 

X2 9.2029 R11 4.5219 

Xm 192.2646 

R22 21.9186 

X1d 20.2025 

X2d 59.8289 

OF 
Single cage 0.0744 

Double cage 0.0178 

7. Conclusions 

An IM is the most frequently used type of electrical machine in industry. However, for accurate 

and precise IM dynamic simulations, an exact knowledge of its equivalent circuit parameters is 

required. In this paper, an overview of IM parameter estimation methods is given. Special attention 

is given to methods based on measured or nameplate/catalog/manufacturer data. The main part of 

the paper is devoted to the novel algorithm, called SA-ERWCA. The applicability of the proposed 

algorithm is tested by considering five different induction machines found in the literature. 

Furthermore, the considered machines have a wide power range. Also, the tests are realized using 

different objective functions, as well as for two equivalent machine circuits. Also, we compared the 

SA-ERWCA with some competitive optimization techniques for 4 benchmark optimization problems 

used in the literature. The obtained results demonstrate that the proposed algorithm enables better 

fitting between the measured (or marked) and simulated results than other methods used in the 

literature. Furthermore, the proposed algorithm has a very good convergence characteristic as it only 

reaches an appropriate level of accuracy after only a few iterations.  

Besides, the paper also presents the results of the estimation for a laboratory 4-kW machine. In 

this case, the estimation is realized for both equivalent circuits. All results demonstrate the 

effectiveness and applicability of the proposed algorithm for IM parameter estimation. In future 

work, we will consider parameter estimation of IMs with variable parameters, as well as optimal 

design of other electromagnetic machines. Also, we will compare constant and variable machine 

parameter models. 
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Abbreviations 

ABC Artificial bee colony 

ACA Ant colony algorithm 

AFSA Artificial fish swarm algorithm 

BFT Bacterial foraging technique 

CSS Charged system search 

DCIM Double cage IM 

DEn Dynamic encoding 

DEA Differential evolution algorithm 

DGEA Diversity-guided evolutionary algorithm 

ER Evaporation rate 

ERWCA Evaporation rate water cycle algorithm 

ES Evolution strategy 

GA Genetic algorithm 

GP Genetic programming 
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HGAPSO Hybrid of genetic algorithm and particle swarm optimization 

IA Immune algorithm 

IM Induction machine 

LSA Least-squares algorithm 

MFO Moth-flame optimization 

MVO Multi-verse optimizer 

MVMO Mean-variance mapping optimization 

MSFLA Modified shuffled frog-leaping algorithm 

OF Objective function 

PC Pseudo-code 

PSO Particle swarm optimization 

SA Simulated annealing 

SA-ERWCA Simulated annealing–evaporation rate water cycle algorithm 

SCIM Single cage IM 

SDLS Steepest descent local search  

SEA Simple evolutionary algorithm 

SFLA Shuffled frog-leaping algorithm 

SGOA Sparse grid optimization algorithm 

SRS Simple random search 

SS Scatter search 

VCM Vector constructing method 

 

Nomenclature 

AVG Average value 

C  Parameter used in the SA- ERWCA 

ck   Temperature at the kth iteration 

|�| Absolute error 

dmax   Adaptive parameter 

f   Nominal frequency 

I   Phase current 

Ist   Starting current 

Ifl  Full load current 

LB   Lower bound of the design variables. 

Lk    Number of transitions 

MED Median value 

n Dimension 

nr  Rated speed 

N  Number of design variables 

Npop   Size of the population 

Nr  Number of rivers 

Nstreams Number of streams 

NSn Number of streams which flow to the nth river 

Pn Nominal power 

p  Pole pairs number 

pf, pffl Power factor and pf at full load 

R1  Stator resistance 

R2  Rotor resistance in reference to stator side 

Rm  Core loss resistance 

R11  Resistance of first rotor cage (for double-cage machine) 

R22  Reactance of second rotor cage (for double-cage machine) 

Rth  Thevenin equivalent resistance 

rand  Vector of random numbers between [0, 1] 

randn (1, N)  Vector of N standard Gaussian numbers 

STD Standard deviation 

sfl   Slip value at full load 

smax  Slip value at maximal torque 
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t  Current iteration 

tmax  Maximum number of iterations 

T  Torque 

Tst  Starting torque 

Tfl  Full load torque 

Tmax  Maximal torque 

X1  Stator leakage reactance 

X2  Rotor leakage reactance resistance in reference to stator side 

Xm  Magnetizing reactance 

Xsd  Stator leakage reactance (for double-cage machine) 

X12  Mutual rotor leakage reactance (for double-cage machine) 

X1d  Reactance of first rotor cage (for double-cage machine) 

X2d  Resistance of second cage (for double-cage machine) 

Xth  Thevenin equivalent reactance 

�⃗�, ∀� = 1,2, … ���� Individual ranges from i to Npop 

UB Upper bound of the design variables 

V Nominal voltage 

Vph Nominal phase voltage 

Vth Thevenin equivalent voltage 

μ Coefficient used in the SA- ERWCA 

 

Appendix A 

The basic equations for a SCIM illustrated in Figure 1a, ignoring Rm, are given as follows: 

Impedance: 

�̅� = �� + ��� 

�̅�� = ��� 

�̅� =
��

�
+ ��� 

�̅�� = �̅� +
�̅��̅��

�̅� + �̅��

 

(A1) 

Input current: 

��̅� =
����

�̅��

 (A2) 

Power factor: 

�� = cos �arctan �
Imag(�̅��)

Real(�̅��)
�� (A3) 

Thevenin equivalent impedance: 

�̅�� = ��� + ���� =
�̅��̅��

�̅� + �̅��

 (A4) 

Thevenin equivalent voltage: 

���� =
�����̅��

�̅� + �̅��

 (A5) 

Torque expression: 
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Maximum torque expression: 

���� =
3����

�

2������ + ����
� + (��� + ��)��

 (A7) 

Appendix B 

The basic equations for a DCIM illustrated in Figure 1b, ignoring X12, are given as follows: 

Input current: 

��̅� =
����

�� + ���� + �̅�

 (A8) 

where: 

�̅� =
1

1
���

+
1

���

�
+ ����

+
1

���

�
+ ����

 
(A9) 

Power factor: 

�� = cos �arctan �
Imag��� + ���� + �̅��

Real��� + ���� + �̅��
�� (A10) 

Current flowing through first cage: 

��̅ =
��̅̅�

���

�
+ ����

 (A11) 

Current flowing through second cage: 

��̅ =
��̅̅�

���

�
+ ����

 (A12) 

The general expression for machine torque is: 

� =
3�

��

���
�

���

�
+ ��

�
���

�
� (A13) 
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