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Abstract 

Ionising radiation (IR) is a well-known carcinogen. For example, there is a dose-

dependent increase of cancer incidence seen in the atomic bomb survivors in Japan. 

Acute Myeloid Leukaemia (AML) is one of the most common cancers to occur in 

humans following IR exposure. It can also be induced by radiotherapy treatment - so 

called therapy-related or secondary AML. Although widely studied, the underlying 

mechanisms of radiation-induced AML (rAML) are yet to be fully characterised. The 

main purpose of this research is to examine the target cells for rAML development, the 

hematopoietic stem and progenitor cells (HSPC). Previous studies have allowed 

classification of HSPC into three sub groups based on their repopulating abilities (long 

term HSC, short term HSC and haematopoietic progenitor cells (HPC)). We aim to 

characterise the response and sensitivity of these sub-populations of HSPC to IR. 

Recent work has focused on analysing the gene expression profiles of these sub-

populations. We will expand on this by studying modifications of gene expression and 

methylation changes in these sub-populations following ionising radiation exposure in 

order to improve our understanding of the mechanisms of radiation-induced 

leukaemogenesis. Mouse and human samples of rAML will be used during this project 

with the aim to characterise the molecular mechanisms of rAML induction, assessing 

the suitability of the mouse model for humans and making for a first time an 

interspecies comparison analysis. 
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1.1 Human blood 

Human blood functions to transport nutrients to cells, transport waste away from cells 

and protect the body from foreign substances or infections. Blood cells develop by the 

process of haematopoiesis, whereby a hematopoietic stem cell, the originating cell of 

all blood cells, differentiates first into a progenitor which differentiates further into a 

more specialised cell type (Figure 1). Hematopoietic stem cells reside in the bone 

marrow and are multipotent, in that they can self-renew and can give rise to any blood  

cell. Hematopoietic stem cells can differentiate into a myeloid or lymphoid progenitor. 

Myeloid progenitors can differentiate into many types of cells such as thrombocytes, 

 

 

 

Figure 1. The development of blood cells.  

This image shows the formation, development, and differentiation of blood cells from 

a stem cell to differentiation by either myeloid or lymphoid pathways. Adapted from 

Wilson et al. 2008 and Wilson et al. 2015. 
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erythrocytes, granulocytes, monocytes, macrophages and dendritic cells. Lymphoid 

progenitors can differentiate into T cells, B cells and natural killer cells. Lymphoid and 

myeloid cells function to protect the body against infectious disease and foreign 

bodies. 

1.2 Acute myeloid leukaemia 

Leukaemia is a cancer of the blood that results in an overproduction of immature blood 

cells, known as blast cells. This accumulation of abnormal immature cells leaves little 

room for the replenishment of normal functioning blood cells which leads to a decrease 

in erythrocytes, platelets and normal white blood cells. This results in a lower immune 

response and a higher susceptibility to illness.  

Leukaemia can be categorised into 4 main groups depending on what cell type is 

affected, myeloid or lymphoid, and the speed of development of the disease, acute or 

chronic (Foucar 2010). Chronic leukaemia’s do not necessarily show symptoms during 

the early stages of the disease and can take years to progress. They can sometimes 

only be discovered during routine blood testing and initial treatment may include 

monitoring the disease, tyrosine kinase inhibitors and, in some cases at a later stage, 

stem cell transplants. Acute leukaemia’s are aggressive cancers that progress rapidly 

and require immediate treatment. Acute Lymphoblastic Leukaemia (ALL) is a rare 

blood cancer affecting lymphocytes in the blood. Abnormal lymphocytes can build up 

in the spleen and lymph nodes enlarging them causing swollen lymph nodes and 

abdominal pain, leading to weight loss and frequent infections. If untreated ALL can 

lead to death within weeks or months. Acute Myeloid Leukaemia (AML) is caused by 

the rapid development of cancer in the immature myeloid cells (monocytes, 

macrophages, neutrophils, basophils, eosinophils, erythrocytes, dendritic cells and 

platelets) which are responsible for fighting bacterial infections, stemming bleeding 

and oxygen transport. AML has a very rapid onset of disease and can lead to fatalities 

within weeks or months. 

Symptoms of AML include fatigue, weight loss, shortness of breath, easy bruising and 

frequent infections. To diagnose AML, a blood test is taken to determine the presence 

of abnormal blast cells in the blood, accompanied by a reduced white blood cell count 

(Figure 2). A bone marrow sample is also taken from the back of the pelvic bone and 

can include both a bone marrow aspirate and bone marrow biopsy. A blast cell count 
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of 20% or more in the blood or bone marrow will confirm a diagnosis of acute myeloid 

leukaemia (Dohner et al. 2017). A haematologist examines both blood and bone 

marrow samples to determine the type of leukaemia. Further tests such as 

immunohistochemistry, cytogenetic analysis or fluorescent in situ hybridization (FISH) 

can also be performed to classify the type of AML.  

 

 

Figure 2. AML bone marrow aspirate smear 

This smear is from a therapy-related acute myeloid leukaemia patient showing 

abundant myeloid blasts and abnormal erythroid cells. This image is taken from 

Foucar et al. 2008. 

 

The overall incidence of AML in the U.K. is 3.4 cases per 100,000 with around 70% 

occurring in people over the age of 60 (British Committee for Standards in 

Haematology et al. 2006). AML is generally a cancer affecting the elderly with a poorer 

prognosis and survival with increasing age. Treatment options include chemotherapy, 

radiotherapy and allogeneic hematopoietic-cell transplantation, however, for older 

patients, supportive care or new investigational therapies can often be the only options 

due to frailty and ill health.  The survival rate in patients below the age of 60 is 35-40% 

while for older patients over 60 years the survival rate drops to a low rate of 5-15% 

(Dohner, Weisdorf, and Bloomfield 2015). 

AML can be classified using two systems, the French-American-British (FAB) system 

and the World Health Organisation (WHO) classification system. The FAB system 

which separates AML into subtypes M0 to M7 based on the cell type affected. 

Diagnosis includes morphologic assessment of the blasts for lineage determination, 

which in diagnosis of AML blasts include myeloblasts, monoblasts, promonocytes, 
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erythroblasts and megakaryoblasts. Flow cytometry immunophenotyping is also 

carried out to assess the immaturity of the blasts and cytogenetic analysis. The WHO 

classification system groups subtypes based on cytogenetic analysis and patient 

history (Foucar 2010). AML can be classified into 9 biologic sub-groups based on the 

chromosomal abnormalities present by analysis of a patients karyotype as well as two 

sub-groups based on clinical information such as previous blood disorders or 

radiotherapy and two sub-groups based on Down syndrome diagnosis. This 

classification requires cytogenetic analysis of a patient’s chromosomes to look for 

aberrations. Leukaemia can develop due to an accumulation of chromosomal 

aberrations such as translocations, insertions and deletions (Figure 3). Translocations 

occur when sections of chromosomes are swapped with no loss of genetic material 

and remain fully functional (balanced) or they are swapped with loss of genetic 

material (unbalanced). Inversions also involve chromosomal breaks, this time the 

break occurs in one chromosome where the broken section is reversed and reattached 

to the chromosome incorrectly. Common translocations or inversions that occur in 

AML include t(8;21)(q21;q22) which affects the Runt-related transcription factor 1 

(RUNX1) gene, also known as AML1, and the gene RUNX1T1, also known as ETO 

producing the fusion protein AML1-ETO and inv(16)/t(16;16)(p13.1;q22), a 

translocation or inversion affecting genes core-binding factor subunit beta (CBFB) and 

myosin heavy chain 11 (MYH11) and t(15;17)(q22;q21) which is a fusion of the two 

genes promyelocytic leukaemia (PML) and retinoic acid receptor alpha (RARA) 

(Mrozek et al. 1997). Cytogenetic analysis can categorise patients into those with 

favourable (t(8;21), inv(16), t(15;17)), intermediate (normal cytogenetics) or 

unfavourable cytogenetics (3q21q26 abnormalities, 5q-/-5, 7q-/-7, 11q23 

abnormalities, 12p abnormalities, 17p abnormalities, complex aberrant abnormalities). 

Cytogenetic analysis provides the most accurate determination of diagnosis and 

prognosis for an AML patient (Mrozek et al. 1997).  
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Figure 3. Chromosomal aberrations in AML.  

Chromosomal aberrations such as insertions, deletions, inversions, where a part of 

the chromosome inverts and reattaches to the same chromosome, and translocations 

where 2 chromosomes exchange parts of each other’s chromosomes, are common in 

AML cases. 

1.3 Risk factors for AML development 

There are a number of factors that increase a person’s risk of developing AML such 

as inherited genetic disorders, environmental exposures and cancer therapies.  
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1.3.1 Genetic 

People with the blood disorders known as myelodysplastic syndromes (MDS) or 

severe congenital neutropenia have a high risk of acquiring more genetic mutations 

which will progress the disease into AML. MDS is the term used to categorise a group 

of pre-leukaemic blood disorders that produce immature blood cells and is 

characterised by symptoms such as anaemia, neutropenia and thrombocytopenia. 

Many people with the disorder are asymptomatic with onset of the disease occurring 

gradually, often late in life and 40% of cases lead to the development of AML (Heaney 

and Golde 1999). Due to their similar characteristics, appearance, and presentation, 

AML and MDS are often combined together in leukaemic analysis. For people with 

severe congenital neutropenia who have had granulocyte colony stimulating factor (G-

CSF) therapy for 15 years, the incidence of development of MDS and AML is 34% 

(Foucar 2010). Other disorders such as Shwachman-Diamond syndrome, 

Dyskeratosis congenital and Fanconi anaemia also report an elevated incidence of 

development of MDS/AML (Foucar 2010). It has been reported that there is a higher 

incidence of AML, up to 10 to 18 times greater, among the Down syndrome population 

(Evans and Steward 1972).  

Another factor which increases the risk of AML development is the natural aging 

process. The incidence of AML increase with time with rates of 1.3 per 100,000 people 

aged less than 65 years and 12.2 per 100,000 people aged over 65 years old (De 

Kouchkovsky and Abdul-Hay 2016). The mean age of de novo AML patients is 65 

years, which illustrates the time required to gradually acquire mutations which lead to 

the occurrence of the disease (Milligan et al. 2006). The frequency of mutations has 

been seen to increase consistently with increasing age in people without hematologic 

malignancies (Jaiswal et al. 2014). In a large scale study common AML mutations 

were present in 2% of individuals without leukaemia studied, rising to 5-7% in people 

over 70 years old, illustrating this background number of mutations present in normal 

individuals (Xie et al. 2014). 

1.3.2 Environmental 

Benzene, a known carcinogen, has been used in the petro-chemical industry and other 

manufacturing sectors such as shoes, rubber goods and paint for decades. Benzene 

levels are now strictly regulated, especially in gasoline production in western countries. 
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A large cohort consisting of over 73,000 workers from hundreds of benzene factories 

in China from 1972-1987 has shown a significantly elevated incidence of AML (Linet 

et al. 2015). 

Ionising radiation induces DNA damage in cells that can result in cytogenetic 

aberrations such as translocations or somatic mutations that can lead to the 

development of cancer. After exposure to ionising radiation, AML is one of the most 

common malignancies to occur in humans (Hsu et al. 2013; Krestinina et al. 2013). 

This is particularly evident in the atomic bomb survivors of Hiroshima and Nagasaki 

which compromises one of the largest human radiation exposure cohort of over 93,000 

survivors. Physicians of the atomic bomb survivors during the 1940s noticed an 

increased rate of leukaemia in survivors who were near the hypocentre. Since then 

many reports and studies have been published on this cohort with many factors such 

as cancer incidence, mortality, sex, and age at exposure examined (Ron et al. 1994; 

Pierce et al. 1996; Bizzozero, Johnson, and Ciocco 1966; Preston et al. 1994). 176 

cases of AML have been identified from these Life Span Study (LSS) cohort studies, 

with radiation exposure accounting for 38% of these cases (Hsu et al. 2013). Other 

populations of exposed individuals such as the Techa River Cohort, where village 

residents near the Mayak plutonium production complex in Russia were exposed to 

multiple radionucleotides dumped into the Techa river, have long been studied as a 

source of protracted low dose rate exposure samples. Similar to the atomic bomb 

survivors, nearly 50% of the leukaemia samples studied have been estimated to be 

due to this radiation exposure (Krestinina et al. 2013). Radiation workers, although a 

much smaller cohort, also serve as a valuable source of radiation exposed individuals 

for analysis. Accidental exposure of IR among radiation workers before 1950 resulted 

in a higher incidence of leukaemia due to the high level of radiation exposure 

(Yoshinaga et al. 2004). The development of leukaemia has also been linked to 

exposure to sources of lower doses of radiation through the use of computed 

tomography (CT) scans in childhood in recent studies in the U.K. and Australia. 

Paediatric exposures to low doses of 50 mGy of IR from CT scans are also thought to 

triple the risk of leukaemia with an excess relative risk per mGy of 0.036 (Pearce et al. 

2012) and 0.039 (Mathews et al. 2013) reported. Increases in leukaemia have been 

reported in patients after x-ray treatment for other conditions such as ankylosing 

spondylitis (Weiss, Darby, and Doll 1994) and metropathia haemorrhagica (Darby et 

al. 1994). 
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1.3.3 Medical 

Secondary AML includes the development of AML from MDS or therapeutic treatment 

for a primary malignancy, known as therapy-related AML (t-AML). T-AML describes 

the development of leukaemia after a wide range of cytotoxic treatments such as 

chemotherapy drugs, radiotherapy or a combination of all. T-AML cases can be 

separated into two groups depending on what treatment the patient received. The 

most common subtype occurs after exposure to alkylating agents and/or radiation and 

is characterised by unbalanced chromosomal aberrations affecting chromosomes 5 

and/or 7 with a latency period of 5-10 years (Pedersen-Bjergaard et al. 1990). The 

second group is caused by treatment with topoisomerase II targeting agents. It is 

characterised by translocations involving chromosome bands 11q23 or 21q22 with a 

shorter latency period of 1-5 years (Greaves 1997). Separation of patients into these 

categories, however, is not easy since most patients receive a combination of these 

treatments. Of a reported 372 AML cases, 13% developed due to chemotherapy 

and/or radiation treatment for another disease and with a larger study group of 4230 

AML cases, 14% were t-AML (Mauritzson et al. 2002). Exposure to chemotherapy and 

radiotherapy treatment for other malignancies such as Hodgkin’s Lymphoma, non-

Hodgkin’s Lymphoma, lung cancer, breast cancer and prostate cancer has the highest 

incidence of the development of secondary AML (Schoch et al. 2004; Pedersen-

Bjergaard et al. 1990; Mauritzson et al. 2002). In a study by Mauritzson et al., nearly 

a quarter of t-AML/t-MDS cases developed after treatment for non-malignant diseases 

such as arthritis (Mauritzson et al. 2002). In comparison to de novo AML, t-AML is a 

disease with a faster onset, an often resistance to chemotherapy, higher relapse rates 

and lower complete remission (CR) rates. T-AML usually presents within 3 to 5 years 

after receiving treatment for cancer with an increased risk caused by exposure to 

radiotherapy and chemotherapy and an older age at treatment (Preston et al. 1994). 

It is considered a lethal disease with a poor outcome, particularly for those with 

unfavourable cytogenetics. This is a severe disease in the elderly, an already fragile 

group who may have other concurrent malignancies, previous high dose treatments 

which damaged vital organs and in general have a compromised immune system.  

T-AML is commonly reported after a combination of chemotherapy and radiotherapy 

due to the recommended treatment strategy, nonetheless, cases of t-AML following 

radiotherapy alone are also prevalent. In a case-control study of 150,000 women with 
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cervical cancer, a two-fold increase in the risk of leukaemia development was 

determined in cervical cancer patients after radiotherapy (Boice et al. 1987). Breast 

cancer patients who received radiotherapy alongside lumpectomy had a 2.38 

(P=0.006) relative risk (RR) which was relative to mastectomy patients who did not 

receive radiation therapy (Smith, Bryant, et al. 2003). Another study determined breast 

cancer patients had a 3.9 RR of developing AML after receiving radiotherapy treatment 

(Le Deley et al. 2007). For Hodgkin’s lymphoma, however, some studies have reported 

radiotherapy as having no or little effect on t-AML development (Swerdlow et al. 1992; 

Henry-Amar and Dietrich 1993). A large meta-analysis on 1,183 patients with 

Hodgkin’s lymphoma from 12 trials concluded that combined chemotherapy and 

radiotherapy does have a significantly adverse effect on mortality in comparison to 

chemotherapy alone (Loeffler et al. 1998). 

T-AML patients can also be categorised based on favourable, intermediate or 

unfavourable cytogenetics which, similar for de novo AML, gives strong indications of 

prognosis and overall survival (Kern et al. 2002; Armand et al. 2007). Normal 

cytogenetics are seen at a higher rate in de novo AML cases (Schoch et al. 2004; 

Mauritzson et al. 2002; Kayser et al. 2011). The spectrum of chromosomal 

abnormalities is similar among de novo AML and t-AML, it is the frequency of these 

abnormalities that differs. The incidence of karyotype aberrations is present at a much 

higher rate of 86% in t-AML in comparison to 57.6% in de novo AML (Schoch et al. 

2004). This was again seen in a study by Kayser et al. in 2011 where abnormal 

karyotype was seen in 75% of t-AML cases in comparison to 51% in de novo AML 

cases and in a study by Mauritzson et al. in 2002 where chromosome abnormalities 

were present in 68% of t-AML patients in comparison to 50% of de novo AML patients 

(Kayser et al. 2011; Mauritzson et al. 2002). The favourable risk category seems to 

occur at similar (Kayser et al. 2011) or slightly higher (Mauritzson et al. 2002) rates in 

t-AML in comparison to de novo AML cases. This increase in abnormal karyotypes in 

t-AML is mostly seen in the unfavourable cytogenetics category with cases much 

higher at 46.2% in t-AML cases in comparison to 20.4% for de novo AML cases 

(Schoch et al. 2004). Higher unfavourable aberrations rates could be seen in a large 

study involving 306 t-AML patients with abnormal karyotypes affecting chromosomes 

5 or 7 present in 76% of cases (Smith, Le Beau, et al. 2003). Also, in other radiation-

induced cancers such as radiation-induced osteosarcoma, spindle cell sarcoma, 

angiosarcoma and breast cancer, higher rates of balanced inversions and small 
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deletions have been detected in comparison to naïve cancers (Behjati et al. 2016). 

Cytogenetic analysis is currently the best method at predicting prognosis. However, 

when comparing de novo AML with t-AML survival in all risk categories, the outcome 

was poorer in all t-AML cases (Pagano et al. 2005; Schoch et al. 2004). Therefore, 

cytogenetics does not cover all aspects of prognosis and other techniques, such as 

genetic or epigenetic analysis, may provide more information on risk, prognosis and 

overall survival. 

The prognosis for therapy-related AML, with high rates of unfavourable cytogenetics, 

is poor. T-AML cases in general have a worse response to treatment than de novo 

cases (Ballen and Antin 1993). The most successful treatment for t-AML cases is 

allogeneic hematopoietic cell transplantation (HCT), which has reported success rates 

of survival of 20-30%, with a 3 year overall survival of 35% (Kroger et al. 2006) and a 

5 year disease free survival of 24.4% (Anderson et al. 1997). However very few 

patients are eligible for HCT due to their poor condition after initial treatment. Complete 

remission rates are reportedly similar between de novo AML and t-AML cases 

(Pagano et al. 2005; Kayser et al. 2011). The overall survival rate of t-AML, however, 

is much lower at 10 months in comparison to 15 months for de novo AML (Schoch et 

al. 2004) with a lower median survival rate of 4 months for t-AML after diagnosis also 

reported (Mauritzson et al. 2002). Relapse is around 3 times higher in t-AML cases in 

comparison to de novo AML cases (Schoch et al. 2004) and relapse has been 

identified as the main cause of treatment failure (Dohner, Weisdorf, and Bloomfield 

2015). In a large study involving 306 t-MDS and t-AML patients, 5 year overall survival 

is calculated at just 10% (Smith, Le Beau, et al. 2003).  

At the moment, the outlook for t-AML patients is poor with few treatment options when 

viable, poor complete remission, high relapse rates and low overall survival rates. For 

many, the treatment plan is supportive care. Also, there is a growing incidence of t-

AML due to aging population, increased detection and treatment of cancers and an 

increased use of chemotherapy and/or radiotherapy during treatment (Leone et al. 

1999). Therefore, investigation into the development of t-AML, the genetic risks 

associated with the likely development of t-AML and successful treatment options are 

vital for the successful treatment of these patients.  



26 

 

1.4 Leukaemogenesis 

Leukaemogenesis has long been considered a multistep process, requiring the 

sequential acquisition of mutations for the development of leukaemia. It has been 

shown that co-operating mutations are required in order for leukaemogenesis to occur, 

described as a two-hit theory proposed by Kelly and Gilliland (Kelly and Gilliland 2002). 

Both stages are necessary; an arrest in myeloid differentiation resulting in immature 

cells and an increase in cell proliferation, resulting in an infiltration of immature cells 

into the bone marrow and blood. Without mutations affecting both stages, myeloid 

development may be affected, or late onset-leukaemia may occur. Fusion proteins 

AML1-ETO and CBFB-MYH11, resulting from t(8;21) and inv(16)t(16;16), have been 

seen in murine models to lead to myeloid impairment but not development of 

leukaemia (Castilla et al. 1999; Yuan et al. 2001). In both cases, exposure to a DNA 

alkylating mutagen was required to induce leukaemogenesis, again showing the 

requirement for at least two mutational events. Other mouse studies have illustrated 

this theory of co-operating mutations with mouse models. A mouse model with a 

nucleophosmin 1 (Npm1) mutation and internal tandem duplication (ITD) in the gene 

Fms Related Tyrosine Kinase 3 (Flt3) resulted in the development of leukaemia (Mupo 

et al. 2013), while these mouse models on their own result in delayed-onset AML 

(Vassiliou et al. 2011) and late-onset disease similar to chronic myelomonocytic 

leukaemia (Lee et al. 2007). The long latency period in mouse models with one 

mutation indicate the requirement for at least a second mutation for the efficient 

development of AML.  

Cytogenetic analysis by karyotype and recent advances in techniques such as whole 

genome sequencing has allowed further analysis into AML development and 

architecture. Recent work by the Cancer Genome Atlas reported an average of 5 

recurrent genetic mutations per patient (Cancer Genome Atlas Research et al. 2013), 

illustrating a clonal development of AML. Clonal hematopoiesis of indeterminate 

potential (CHIP), is the development of a subpopulation of blood cells possessing a 

genetic mutation. Clonal development of preleukaemic cells leads to multiple clones 

within an individual with the dominant clone causing the cancer. In a large blood 

sampling study involving 12,380 participants, high numbers of mutations in the genes 

DNA (cytosine-5)-methyltransferase 3A (DNMT3A), Tet Methylcytosine Dioxygenase 

2 (TET2) and ASXL Transcriptional Regulator 1 (ASXL1) were detected in participants, 
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suggesting them to be initiating mutations, with somatic mutations increasing with age 

(Genovese et al. 2014). Also, the detection of clonal haematopoiesis in these patients 

strongly linked with a future blood cancer diagnosis. Cytogenetic subclones have been 

detected in 15.8% of AML patients, most common in the unfavourable cytogenetics 

group, and their development is a more branched, rather than a linear, acquisition of 

mutations (Bochtler et al. 2013). Generally cytogenetic subclones were significantly 

more evident in older patients with a median age of 58 in comparison to AML patients 

with no subclones with a median age of 52 (Bochtler et al. 2013). Normal healthy 

human hematopoietic cells acquire mutations with increasing age with the number of 

mutations in healthy individuals similar to the number of mutations in AML patients of 

the same age, therefore, although AML patients can contain mutations, only some 

initiate leukaemogenesis (Welch et al. 2012). Mutations in one gene in particular, 

tumour protein P53 (TP53), have been identified in 9 out of 19 healthy elderly cancer-

free donors (Wong et al. 2015). This is also seen in genetic mosaicism, defined by an 

occurrence of two or more distinct karyotypes in an individual, where the frequency of 

karyotype mutations is seen to increase with increasing age in cancer-free individuals 

(Jacobs et al. 2012).  

As the body ages, the hematopoietic system progressively loses its function with 

increased self-renewal and decreased differentiation which can lead to several 

diseases, such as leukaemia, being more prevalent in the older population. This 

develops through functional, transcriptional and epigenetic changes that occur in stem 

cells such as a decrease in expression of epigenetic regulators (Sun et al. 2014). 

Karyotype evolution from diagnosis to relapse is more commonly seen in patients with 

unfavourable aberrations which have been suggested to be due to genomic instability 

(Kern et al. 2002). Cytogenetic subclones have inferior complete remission rates of 

30% in comparison to the 40% in cases without subclones (Bochtler et al. 2013). The 

analysis of samples at diagnosis and relapse has illustrated how multiple clones can 

co-exist at diagnosis with cytotoxic treatment often unable to eliminate all clones. This 

can lead to relapse with the reoccurrence developing from sub clones at diagnosis 

resistant to treatment. Genomic profiling of AML patient samples at diagnosis and 

relapse determined the relapse to be due to progression of a founder clone rather than 

the emergence of a novel clone (Parkin et al. 2013). DNA sequencing analysis of 

primary and relapsed AML patient samples in a study by Ding et al. has indicated two 

major pathways of clonal development in AML. Either the founding clone survives 
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chemotherapy and gains mutations and evolves into the relapsed clone or a subclone 

survives chemotherapy and gains more mutations to develop into the relapsed clone 

(Ding et al. 2012). Mutations in DNMT3A have been detected in non-leukaemic T cells 

as well as hematopoietic stem cells (HSCs) from AML patients at the time of diagnosis 

and relapse (Shlush et al. 2014). These mutations are thought to be present in pre-

leukaemic cells, that survived chemotherapy, can persistent during remission and are 

capable of expanding with acquired mutations to cause relapse. It is also possible, 

however, that cancer therapies might exert selective pressures on hematopoietic stem 

cells (HSCs) such that certain mutant populations have a selective advantage under 

cytotoxic conditions. If the mutant clones survive longer, they may accumulate more 

mutations with time. This could be why the expansion of mutant clones, is associated 

with an increased risk of developing hematologic malignancies (Genovese et al. 2014; 

Jaiswal et al. 2014; Xie et al. 2014). This highlights the weakness of current cytotoxic 

treatment therapies and the need to further investigate the contribution of cytogenetic 

and genetic mutations to t-AML development in order to improve treatment success 

and reduce relapse rates. 

1.5 Genetic mutations in AML 

The screening of AML patients for genetic mutations developed due to the number of 

patients with no chromosomal aberrations, known as cytogenetically normal AML (CN-

AML). Cytogenetic analysis allows for prediction of outcome and survival by 

categorising them into favourable, intermediate or adverse risk groups, with all 

cytogenetically normal patients being categorised as intermediate risk, and it also 

guides physicians in their choice of treatment. However, about 42-48% of AML 

patients have a cytogenetically normal karyotype (Byrd et al. 2002; Grimwade et al. 

1998; Mrozek, Heerema, and Bloomfield 2004; Schlenk et al. 2008). This has led to 

the inclusion of genetic mutations of three genes, NPM1, CCAAT/enhancer binding 

protein alpha (CEBPA) and FLT3, into the WHO scheme in 2008 (Khasawneh and 

Abdel-Wahab 2014). They are particularly useful in providing prognostic information 

for cytogenetically normal cases, which are classified as intermediate-risk AML 

patients, so that they can be classified further into favourable, intermediate or adverse 

risk patients (Dohner et al. 2010). In order to provide prognostic information, genetic 

mutations were screened for and hundreds of mutations have now been identified. 
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Only 5 genes, FLT3, NPM1, CEBPA, DNMT3A and KIT, were mutated in more than 

10% of an AML patient group of 197 people (Kihara et al. 2014). This reinforces the 

idea that leukaemia develops from several co-operating mutations in a limited number 

of genes.  

Commonly mutated genes such as FLT3, NPM1 and DNMT3A have been identified 

as well as a large number of genes that are less frequently mutated (Figure 4) (Patel 

et al. 2012; Cancer Genome Atlas Research et al. 2013). Genetic mutations can be 

grouped into class I mutations which result in cell proliferation and survival (FLT3, KIT, 

Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS), Neuroblastoma RAS Viral (V-

Ras) Oncogene Homolog (NRAS), TP53) and class II mutations which block myeloid 

differentiation (NPM1, CEBPA, RUNX1).  

 

 

Figure 4. Mutational spectrum and heterogeneity of commonly mutated AML 
genes.  
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In the Circos diagram, the width of the ribbons indicates the percentage of patients 

with the mutation. Pairwise mutations are shown linking two mutated genes. Taken 

from (Patel et al. 2012). 

 

Recent work has scanned the genome trying to identify genomic changes occurring in 

AML patients. A large study of 200 de novo AML patients by Ley and colleagues found 

23 genes which were frequently mutated, each having different functions such as 

epigenetic regulators (DNMT3A, Isocitrate Dehydrogenase (NADP(+)) 1 and 2 (IDH1, 

IDH2) TET2, Enhancer Of Zeste 2 Polycomb Repressive Complex 2 Subunit (EZH2)), 

signalling proteins (FLT3, KIT, NRAS, KRAS) or tumour suppressors (TP53, Wilms 

Tumour 1 (WT1), PHD Finger Protein 6 (PHF6)) (Cancer Genome Atlas Research et 

al. 2013). Some class I and class II mutations have been found to occur together while 

others occur exclusive of one another. FLT3-ITD, DNMT3A and NPM1 mutations often 

occur together in 6% of patients (Papaemmanuil et al. 2016). This can be further 

broken down with FLT3-ITD mutations commonly occur alongside NPM1 exon 12 

mutations, and NPM1 mutations also occur alongside DNMT3A mutations (Cancer 

Genome Atlas Research et al. 2013). Also, the fusion genes PML-RARA and MYH11-

CBFB were present in samples that lacked NPM1 and DNMT3A mutations, while 

patients with RUNX1 and TP53 mutations did not have FLT3 and NPM1 mutations. In 

a larger study involving 1540 patients, an association could be seen for NPM1 

mutations to associate with mutations affecting codon 12/13 of the gene NRAS rather 

that codon 61 (Papaemmanuil et al. 2016). Also, a mutation affecting the codon 140 

of gene IDH2 appeared to co-occur with NPM1 mutations, while a mutation affecting 

the codon 172 did not (Papaemmanuil et al. 2016). By comparing mutations in patients 

where the initiating event (PML-RARA) is known with mutations where the initiating 

event is not known, Welch and colleagues were able to identify potential initiating 

(NPM1, DNMT3A, IDH1) and co-operating mutations (Welch et al. 2012). Analysis of 

pre-leukaemic patient samples obtained years before the development of AML has 

allowed for the identification of early mutations. DNMT3A mutations being present in 

pre-leukaemic stem cells demonstrate how they are early mutations that arise earlier 

than other mutations not found in pre-leukaemic samples such as NPM1 and FLT3 

(Shlush et al. 2014). TP53 mutations have also been identified at low frequencies in 

bone marrow samples 3-6 years before the development of t-AML (Wong et al. 2015). 
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The use of genetic information for patient prognosis has identified mutations which are 

associated with good survival rates and can provide information for physicians for 

deciding the most suitable treatment type. These mutations provide valuable 

prognosis information for complete remission and relapse, depending on where the 

mutation is located, and which genes are also mutated. RUNX1 mutations have been 

previously reported to occur alongside FLT3-ITD or FLT3-TKD. Mutations in the gene 

TP53 have been associated with an unfavourable risk cytogenetic profile (Cancer 

Genome Atlas Research et al. 2013) and these mutations occur in 70% of cases with 

complex karyotype (Rucker et al. 2012). TP53 mutations have been associated with 

very poor prognosis and have been identified as an unfavourable factor for achieving 

complete remission (Kihara et al. 2014), while mutation in the gene NPM1 has been 

associated with a favourable factor for complete remission (Kao et al. 2014; Kihara et 

al. 2014). Some of these mutations may be included in clinical guidelines such as 

WHO or European LeukemiaNet (ELN) recommendations. Others will require more 

thorough analysis involving larger studies to investigate the implication of the mutation.  

It has also been recently suggested to include an AML classification group to include 

mutations specifically affecting epigenetic regulator genes such as ASXL1, EZH2, 

TET2, DNMT3A, IDH1/2. In 2013, the Cancer Genome Atlas project revitalised these 

classes to a total of 9 classes including epigenetic mutations. Mutations in genes that 

regulate epigenetic control, such as TET2 and DNMT3A, have been reported in 40-

44% of AML patients (Kao et al. 2014; Cancer Genome Atlas Research et al. 2013). 

TET2 mutations were present in 13.2% of 486 de novo AML patients and if present in 

patients with unfavourable genotypes, conferred a worse overall survival (Chou et al. 

2011). In another large study involving 357 AML patients, TET2 mutations again 

showed a correlation with poor overall survival (Aslanyan et al. 2014). DNMT3A 

mutations, mainly affecting the codon R882, are found to be associated with an inter-

mediate risk cytogenetic profile and also a poor survival in comparison to patients 

without DNMT3A mutations (12.3 months vs 41.1 months) (Cancer Genome Atlas 

Research et al. 2013). Many pre-leukaemic mutations have been reported in 

epigenetic regulatory genes such as IDH1, IDH2 and DMT3A, illustrating the 

importance of epigenetic changes during leukaemic development (Corces-

Zimmerman et al. 2014). 
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1.5.1 SNPs 

It is not just somatic mutations which are associated with AML development but also 

single nucleotide polymorphisms (SNPs). SNPs are genetic variations in a single 

nucleotide of DNA present at a frequency of > 1% of a population. SNPs can occur 

across the genome on coding, or non-coding sites and depending on the change, can 

result in a change of protein or not. SNPs are associated with a number of diseases 

and large GWA studies have identified SNPs which are associated with an increased 

risk of diseases such as diabetes and coronary artery disease (Wellcome Trust Case 

Control 2007). 

The enzyme NAD(P)H:quinone oxidoreductase (NQO1) functions to break down 

chemotherapeutic drugs and carcinogens such as some of those in cigarette smoke 

and benzene. When benzene is metabolized, the NQO1 enzyme catalyzes the 

reduction of benzoquinones to hydroxyl metabolites which are less toxic. A 

polymorphism in this gene results in reduced expression in heterozygous patients and 

complete loss of function in homozygous patients which has been shown to lead to 

hematotoxicity in benzene-poisoned workers in China (Rothman et al. 1997). A higher 

prevalence of this polymorphism of 1.4-fold was seen in 56 t-AML patients with 11% 

being homozygous and 41% being heterozygous for the C  T polymorphism (Larson 

et al. 1999). This polymorphism was again seen 24% of a Japanese cohort of 58 t-

AML patients in comparison to 15% of de novo AML (Naoe et al. 2000). 

Polymorphisms in other detoxification genes that metabolise toxic compounds have 

also been investigated. A polymorphism in the cytochrome P450 superfamily B 

member, CYP2B6, which functions to metabolise toxic compounds and protect cells 

against oxidative damage has also been investigated. The G516T SNP was present at 

a higher rate in AML patients in comparison to controls, with homozygous 

polymorphisms were present at a much higher rate of 20% of secondary AML patients 

(Daraki et al. 2014). These results suggest that the presence of these polymorphisms 

genetically increase the risk of developing t-AML. 

1.6 Epigenetic changes in AML 

Epigenetic research has expanded over the past decade with gene expression and 

DNA methylation changes in cancer development being widely investigated (Wajed, 

Laird, and DeMeester 2001). Epigenetic research has come to the forefront due to 
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problematic issues for AML patients such as cytogenetically normal AML cases, high 

relapse rates of AML, resistance of secondary AML cases to chemotherapy and dismal 

prognosis of secondary AML cases. There are AML cases where no mutation in the 

well-known targeted genes has been detected (Patel et al. 2012; Shen et al. 2011). In 

a large study of 485 adults with cytogenetically normal AML, 14.8% of patients were 

found to have no mutations in the frequently mutated genes NPM1, CEBPA, FLT3, 

NRAS and WT1 genes (Dohner et al. 2010). There are therefore other factors, whether 

genetic or epigenetic, that result in the development of AML.  

Transcriptional mRNA and miRNA changes in leukemic cells have recently been 

investigated. Expression of 44 core genes in leukaemia stem cells have been 

associated with shorter survival in cytogenetically normal AML patients (Eppert et al. 

2011).  Further work on these samples has shown that this gene expression signature 

is associated with mutations in genes FLT3, WT1 and RUNX1 with high miR-155 

expression (Metzeler et al. 2013). Overexpression of the gene SET, Nuclear Proto-

Oncogene (SET), was found in 60 out of 214 de novo AML patients which associated 

with poor overall survival and was particularly evident in patients with a normal 

karyotype (Cristobal et al. 2012). This over-expression of SET was found to increase 

proliferation of leukaemic cells by inhibiting the tumour suppressor protein 

phosphatase 2A (PP2A).  

DNA methylation is an epigenetic mechanism which is common throughout 

development in order to control the transcriptional activity of gene expression, as 

needed. DNA methylation is essential for normal development and involved in 

numerous processes such as gene repression, imprinting and X-chromosome 

inactivation (Bogdanovic and Veenstra 2009). DNA methylation involves the transfer 

of a methyl group to the 5th carbon atom of the nucleotide cytosine to form 5-

methylcytosine (Figure 5). This tends to happen to areas of DNA that contain stretches 

of cytosine and guanine nucleotides, known as CpG islands, where the modified 

cytosine lies next to a guanosine base and so there is also a cytosine diagonally across 

from the modified cytosine. The nucleotides cytosine and adenine can be methylated, 

however, methylation of cytosine is the most common. DNA methylation can occur 

across the whole genome, not just in the promoter region. DNA methylation is also 

found in exons, thought to regulate alternative splicing (Maunakea et al. 2013; 

Shayevitch et al. 2018), however it seems to be centered around CpG islands, which 

can be commonly found next to transcription start sites. 
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Figure 5. Methylation of cytosine in carbon 5.  

This figure is copied from (Ghavifekr Fakhr et al. 2013).  

 

DNA methylation patterns are regulated by several groups of proteins such as DNA 

methylation writers, readers and editors. DNA methylation first occurs due to members 

of the DNA methyltransferase family, DNMT1, DNMT3A and DNMT3B. DNMT3A and 

DNMT3B are responsible for de novo methylation, so they are able to methylate 

unmethylated CpG regions, while DNMT1 functions to maintain the methylation 

signature during replication (Bogdanovic and Veenstra 2009). DNMT3A and DNMT3B 

are essential in embryonic development with murine studies reporting knock outs of 

both genes to be embryonic lethal (Okano et al. 1999). Aberrant DNA methylated has 

been thought to contribute to cancer development for many years and in AML patients, 

mutations in genes involved in DNA methylation have been identified with DNMT3A 

mutations found to be present in 22% of AML patients (Ley et al. 2010). 

DNA methylation patterns are then modulated by DNA methylation binding proteins 

which include methyl-CpG-binding domain (MBD) proteins, the Kaiso family proteins 

and the SET- and Ring finger-associated (SRA) domain family. These family members 

contain a MBD domain which binds to methylated CpG dinucleotides and most of the 

proteins also contain a transcriptional repression domain (TRD). The MBD proteins 

guide proteins with histone modifying activity or chromatin remodelling activity to 

specific sites. MeCP2 and MBD1 both interact with the chromatin remodelling binding 

partner HP1 (Du et al. 2015). MBD proteins are expressed at different levels during 

development. MBD2a and MBD2t bind to and regulate expression of the pluripotency 

genes OCT4 and NANOG (Lu et al. 2014). Their expression levels change during 
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development with overexpression of MBD2a causing differentiation by silencing OCT4 

and NANOG expression while MBD2t overexpression maintains pluripotency. Many 

of these proteins have dual roles in histone and DNA methylation. MBD1 is involved 

in directing histone methylation to sites of DNA methylation, while MBD3 regulates 

histone deacetylation and de novo DNA methylation by interacting with the NuRD/Mi-

2 complex and recruiting DNMT1 and DNMT3B (Morey et al. 2008). Finally, DNA 

methylation editors, the TET family members are responsible for the removal of the 

DNA methylation mark by converting 5-mC to 5-hmC, which inhibits binding of MBD 

proteins (Pastor, Aravind, and Rao 2013). 

DNA hypermethylation of gene promoters, results in gene silencing while 

hypomethylation, a general decrease in methylation level, is very common in cancers. 

Abnormal DNA methylation is found in many diseases, including leukaemia (Claus and 

Lubbert 2003). Both hypermethylation and hypomethylation are evident in leukaemic 

cases, with hypermethylation of tumour suppressor genes leading to their silencing 

evident in cancers. Reprogramming of leukemic AML samples to induced pluripotent 

stem cells (iPSCs) resets epigenetic patterns but still results in the reacquisition of 

epigenetic patterns upon differentiation, illustrating their persistence in leukemic 

development (Chao et al. 2017). Abnormal methylation changes have been evident in 

early stages of AML, defined by blast percentages in the bone marrow, which can 

increase dramatically as the disease progresses (Sonnet et al. 2014). Mutations in 

epigenetic genes such as DNMT3A, TET2, IDH1 and IDH2, as already discussed, 

have been identified as an important class of mutation in AML development. Mutations 

in DNMT3A have been found to be present in AML patients with significantly reduced 

gene methylation, of Homeobox (Hox) genes in particular, in comparison to healthy 

donor samples (Hajkova et al. 2012). Also, 4 weeks after exposure to 56Fe ions, a 

decrease in expression in the Dnmt genes Dnmt1, Dnmt3a and Dnmt3a was reported 

in murine HSPCs with an increase in global HSPC methylation, suggesting 

hypermethylation of these genes (Miousse et al. 2014). Disruption of epigenetic 

regulation, therefore, appears to be important for leukaemogenic development. 

Different areas of the genome are found to be methylated; promoters, gene bodies 

and CpG islands (CGIs). Analysis of methylation changes in these regions across AML 

subtypes has revealed that differentially methylated regions, mostly CGIs, are 

individual to each AML subtype (Saied et al. 2012). Promoter methylation levels of 

secondary AML cases showed an increase in comparison to de novo AML cases 
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which may be responsible for their different response to chemotherapy (Figueroa et 

al. 2009). Distinct subsets of AML revealed defined methylation patterns in comparison 

to normal bone marrow and DNA methylation patterns of 15 genes were also capable 

of predicting overall survival in AML patients (Figueroa et al. 2010). In a study by 

Agrawal et al. increased estrogen receptor α (ERα) and p15INK4B methylation levels in 

bone marrow samples from AML patients in remission was found to correlate with a 

high relapse risk (Agrawal et al. 2007). DNA methylation therefore, like genetic 

mutations, has possibilities to be used for providing prognostic information for AML 

patients after treatment and survival and relapse risk estimation.  

Another epigenetic mechanism which regulates transcription are histone 

modifications. Histones are proteins around which DNA winds, packaging the DNA 

into compact structures. There are 5 main families of histones: H1, H2A, H2B, H3 and 

H4. Histones H2A, H2B, H3 and H4 are known as the core histones which form the 

nucleosome. while histones H1 are known as linker histones which act to bind the 

nucleosome together. Histone modifications are an epigenetic mechanism which has 

important roles in DNA repair, replication and recombination (Bannister and 

Kouzarides 2011). Modifications to the histone proteins change the structure of the 

proteins and can therefore regulate access to DNA for gene transcription. Some 

modifications can disrupt histone-DNA interactions, loosening and unwinding the 

nuclesosome leaving a more open chromatin conformation for gene transcription. 

While other modifications strengthen the histone-DNA modifications tightening the 

structure and preventing gene activation. Many different types of modifications can 

occur such as methylation, acetylation, phosphorylation, deamination and 

ubiquitination.  

Lysine acetylation occurs on the N-terminal histone tails that extends out from the 

nucleosome, removing lysine’s positive charge and this modification then weakens its 

binding to the negatively charged DNA. This results in a dissociation of the histone 

from the DNA and a more open chromatin structure, allowing transcription factors 

access to the DNA. Histone acetylation and deacetylation are catalysed by histone 

acetyltransferases (HAT) which add acetyl groups or histone deacetylases (HDAC) 

which remove them. In therapy-related AML cases, it was found that the HAT 

CBP/P300 has an increased activity after the chromosomal 

translocation t(11;16)(q23;p13.3) (Sobulo et al. 1997) and directs cells towards a 

specific leukemic phenotype (Santillan et al. 2006). 
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Methylation modifications can also occur with the addition of a methyl group to the 

lysine or arginine residues of H3 and H4. Methylation differs from acetylation in that it 

does not change the charge or interaction with DNA. Lysines can be mono-, di- or tri-

methylated while arginine can be mono- or di-methylated and the level of methylation 

appear to have different effects. A study by Barski et al. 2007 mapped 20 histone 

methylations of lysine and arginine residues by ChIP-seq analysis (Barski et al. 2007). 

They found that monomethylation of H3K27, H3K9, H4K20, H3K79 and H2BK5 are 

associated with gene activation while trimethylation of H3K27, H3K9 and H3K79 are 

associated with repression. 

Murine studies have identified enzymes such as Moz, Mll1 and Ezh2 which perform 

essential roles in the modifications of histones in hematopoiesis (Butler and Dent 

2013). Genetic mutations in genes involved in chromatin regulations have been 

identified in AML cases, such as EZH2 and ASXL1, highlighting the interplay between 

cancer genetics and epigenetics (Cancer Genome Atlas Research et al. 2013). Recent 

research by Yi et al. has identified subtypes of AML through an integrated epigenetic 

analysis of human patient samples. One subtype with mutated NPM1 were associated 

with an open chromatin confirmation, active enhancers with H3K4me1 and H3K27ac 

signals and hypomethylated CpG regions while samples with mutated RUNX1 were 

associated with closed chromatin, promoters with H3K27me3 signals and DNA 

methylated regions (Yi et al. 2019). Histone modification, therefore, is another 

epigenetic mechanism disrupted in AML cases which can lead to cancer progression. 

1.7 Radiation-induced AML in the mouse 

Mouse models of human cancers are invaluable in giving us a better understanding of 

the molecular mechanisms of tumour initiation and development. They are useful for 

the study of human diseases due to the similarity of protein-coding genes in both 

species and the ability to alter transcriptional expression of a gene of interest using 

gene knock-in/knock-down techniques. There are also several inbred mouse strains 

of rAML available which develop leukaemia following radiation exposure, such as 

CH3/He, RF and SJL/J, with the inbred CBA/Ca strain being particularly well-

characterised model of radiation induced AML (Verbiest et al. 2015). The CBA/Ca 

mouse is the mouse model of choice for radiation induced AML for several reasons. 

CBA/Ca mice have low background rates of AML (less than 1 in 1000) (Rithidech et 
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al. 1995) and there is a consistent induction rate of 15-20% following exposure to an 

optimal leukaemic dose of 3 Gy whole body exposure (Major and Mole 1978). 

Moreover, the histopathological features, such as splenomegaly, are very similar to 

those of human AML. Molecular findings such as a partial deletion of chromosome 2 

(Clark et al. 1996) and a later accompanying point mutation in the gene Spi-1 Proto-

Oncogene (Sfpi1) (Cook et al. 2004) have been established as characteristic features 

in the CBA/Ca mouse after irradiation. In contrast, the C57/BL6 mouse model is 

considered a model resistant to the development of AML after radiation exposure. 

Chromosome 2 deletions have been shown to be at a lower frequency in F1 hybrid 

CBA X C57 mice in comparison to CBA mice (Clark et al. 1996). Analysis of bone 

marrow cells from CBA and C57 mice after 56Fe ions or γ-rays show C57 mice to have 

fewer cells with Sfpi1 loss and the numbers of C57 bone marrow cells with Sfpi1 loss 

returned to control levels around one month after exposure, while CBA bone marrow 

cells with Sfpi1 loss did not (Peng et al. 2009). There is also a difference in the number 

of Sfpi1 point mutations with R235 point mutations reported in 87% of the radiation 

susceptible cross CBA x SJL mice (Cook et al. 2004), however this drops to 67% in 

CBA x C57 mice (Suraweera et al. 2005). Therefore, the genetic background does 

appear to have an influence on the development of AML and provides rAML sensitive 

and rAML resistant mouse strains of interest in leukaemogenesis studies. 

1.7.1 Sfpi1 

The gene Sfpi1, known as PU.1 in humans, is a member of the E26 transformation-

specific (ETS) family that encodes a transcription factor PU.1 which is vital for 

development of the immune system. It contains a transactivation domain which 

interacts with transcription factors, a PEST domain which regulates protein-protein 

interactions, and a DNA binding domain that regulates its binding to DNA and other 

proteins such as GATA Binding Protein 1 (GATA1), GATA Binding Protein 1 (GATA2), 

Jun Proto-Oncogene, AP-1 Transcription Factor Subunit (Jun), MYB Proto-Oncogene, 

Transcription Factor (Myb) and RUNX1 (Gupta et al. 2009). PU.1 directly activates up 

to 67 genes such as immunoglobulins and Ig receptors, cytokines and cytokine 

receptors involved in leukocyte growth and development and inflammation with the 

majority of the protein products located in the plasma membrane, illustrating the 

important role of PU.1 in cell communication (Turkistany and DeKoter 2011). In the 
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rAML mouse model CBA/Ca, AML mainly develops after irradiation through the 

deletion of one allele of the gene Sfpi1 and a mutation in the remaining copy affecting 

codon R135 (Silver et al. 1999). In about 90% of mice that develop rAML, a partial 

deletion of one copy of chromosome 2 is apparent (Azumi and Sachs 1977; Silver et 

al. 1999; Brown et al. 2015), which is where the myeloid transcription factor Sfpi1 lies. 

This is commonly thought of as the first hit in radiation leukaemogenesis. In mice 

containing chromosome 2 deletions, 70-80% were also found to contain a point 

mutation at codon R135 in the DNA-binding domain of the protein (Cook et al. 2004) 

on the second allele which is believed to be the second hit needed for the development 

of leukaemia. This particular mechanism seems to be highly specific to this mouse 

model and one that is not commonly found in human therapy-related AML cases 

(Suraweera et al. 2005). From Sfpi1 gene knockout studies, homozygous mutations 

of the DNA binding domain resulted in an almost complete halt in progenitor production 

evident from clonogenic assays with no viable embryos after 18 days of gestation 

(Scott et al. 1994). This shows that Sfpi1 is necessary for myeloid development and 

so is a critical factor of the hematopoietic system.  

However other mutations must also contribute to the development of rAML in cases 

lacking Sfpi1 mutations. In the CBA/Ca mouse, Flt3 ITDs were detected specifically in 

cases with neither chromosome 2 deletions nor Sfpi1 mutation, suggesting a different 

mechanism of rAML development (Finnon et al. 2012). A nonsynonymous single 

nucleotide polymorphism (nsSNP) in the gene C-terminal binding protein (CTBP)-

interacting protein (CTIP)/retinoblastoma binding protein 8 (RBBP8) in the mouse has 

been identified which disrupts its homologous recombination repair function and so 

may play a role in the development and susceptibility to rAML (Patel et al. 2016). 

Although the Q418 nsSNP has not been reported in human cases, it points towards 

other regions of this gene that might affect the risk of AML and worth investigating.  

1.7.2 Epigenetic changes 

Several factors, including regulation of transcriptional expression, microRNA (miRNA) 

and interactions with proteins tightly regulate the expression of Sfpi1. Sfpi1 contains 

upstream distal regulatory regions. Epigenetic analysis in human cases has revealed 

the promoter and -17 kb upstream regulatory element of the PU.1 gene to be highly 

methylated in classical Hodgkin lymphoma cells (Yuki et al. 2013) and in myeloma 
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cells (Tatetsu et al. 2007) with reduced PU.1 expression. Deletion of an upstream 

regulatory element (URE) which is necessary for expression of the gene has been 

shown to reduce Sfpi1 expression down to 20% of wild type levels in a murine mouse 

model and results in the development of AML within 3-8 months (Rosenbauer et al. 

2004) with even a minimal reduction in expression of 35% leading to the 

transformation to AML (Will et al. 2015). Epigenetic regulation of PU.1 expression is 

mediated by the microRNA-155 (miR-155), having both pro-tumorigenic and anti-

tumorigenic functions. Increased expression of miR-155 decreases Sfpi1 mRNA levels 

which develops into a myeloproliferative disorder (O'Connell et al. 2008) while miR-

155 deficient cells produces an up-regulation of PU.1 (Vigorito et al. 2007). It is also 

regulated by its many interactions with many proteins such as transcription factors, 

chromatin remodelling factors and proteins that function in cell cycle regulation (Gupta 

et al. 2009). Despite the very low frequency of Sfpi1 mutations in human AML cases, 

a recent review by Verbiest et al. has highlighted the possible epigenetic mechanisms, 

such as miR-155, which may instead affect Sfpi1 expression (Verbiest et al. 2015). A 

recent study by Badie et al. has developed a radiation-induced AML gene expression 

signature in a murine rAML mouse model, compromising of 17 genes/ proteins which 

are distinguishable from normal control cells (Badie et al. 2016). This illustrates that 

the development of AML involves a mixture of genetic mutations and epigenetic 

changes which up until now has not been fully investigated. 

1.8 Hematopoietic stem and progenitor cells 

AML is thought to develop from initial mutations occurring in the hematopoietic stem 

and progenitor cells (HSPC). Hematopoietic stem cells are multipotent self-renewing 

cells that reside in the bone marrow and give rise to all blood cells through the process 

of hematopoiesis. This self-renewing property was first demonstrated by Till and 

McCulloch in 1960 after the transplantation of bone marrow cells into lethally irradiated 

mice led to reconstitution of the bone marrow (McCulloch and Till 1960). Bone marrow 

transplantation assays remain the standard technique to confirm the presence of stem 

cells. HSCs reside in the stem cell niche in the pelvis, sternum, femur, spine and in 

smaller populations in umbilical cord blood with a few detectable in the peripheral 

blood. HSCs can now be separated into long-term HSCs and short-term HSCs. Long 

term HSCs, also known as dormant HSCs, are defined by their ability to give rise to 
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all blood cell lineages and also must be able to reconstitute the bone marrow niche of 

a lethally irradiated niche following transplantation, resulting in long-term survival. 

They are located beside osteoblasts in the endosteal niche and they lie in a quiescent 

state until there is a requirement for blood cells to be replenished (Figure 6). These 

dormant HSCs then become activated HSCs and relocate to the vascular niche beside 

sinusoids. The activated HSCs can divide either asymmetrically producing another 

stem cell or symmetrically into a multipotent progenitor (MPP). MPPs have a limited 

self-renewal capacity and can be further separated into MPP1, MPP2 or MPP3, 

depending on their phenotype. MPPs can follow a myeloid path (Common Myeloid 

Progenitor) or lymphoid path (Common Lymphoid Progenitor) of development. 

Genetic alterations such as insertions, deletions, translocations, inversions or 

mutations may occur in these stem cells or progenitors after radiation exposure 

potentially inhibiting further development. This causes them to remain in an immature 

state and increases proliferation, leading to an overproduction of immature white blood 

cells and a reduction in functioning leukocytes, red blood cells and platelets. This leads 

to symptoms such as fatigue, bleeding and shortness of breath.  
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Figure 6. Model of the stem cell niche. 

Dormant HSCs lie in a dormant state in the endosteal niche and relocate to the 

vascular niche upon activation. The activated HSC can divide to form a HSC or MPP. 

CAR = Cxcl12-abundant Reticular, ECM = extra-cellular matrix. This figure is copied 

from (Wilson et al. 2007). 

 

1.8.1 HSPC sub-populations 

In order to study HSPC, mouse HSCs were first isolated in 1988 by a lab in Stanford 

University (Spangrude, Heimfeld, and Weissman 1988) using lineage negative (Lin-) 

and populations positive for stem cell antigen-1 (sca1) cell surface markers with a Thy-

1 Membrane Glycoprotein (Thy1.1)lo expression. C-kit was discovered to play an 

important role in haematopoiesis by the mapping of c-kit to the W locus in the stem 

cell defective W/W mice and subsequent transplantation assays with Lin-, c-kit+ cells 

resulted in reconstitution of lethally irradiated mice (Okada et al. 1991). Further 

development has led to the use of Lin-, Sca1+, c-kit+ markers, known as LSK, to 

isolate HSCs (Adolfsson et al. 2001). 
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Other markers have been investigated to further classify the LSK cell population. The 

signalling lymphocytic activation molecule (SLAM) family cell surface receptors, such 

as CD150 and CD48 are expressed in different sub-sets of HSCs. CD150 

transcriptional expression is up-regulated in HSCs in comparison to MPPs and in 

transplantation assays recipients of CD150+ cells resulted in long-term reconstitution 

while recipients of CD150- cells resulted in short-term reconstitution (Kiel et al. 2005). 

CD150 therefore has been identified as a marker of long-term HSCs. Transplantation 

of CD48+ cells however resulted in B and T cell reconstitution, while CD48- cells 

resulted in long-term reconstitution (Kiel et al. 2005). CD34 has been identified as a 

marker of long-term HSCs. Mouse HSC colony forming unit (CFU) assays showed 

CD34 expression to positively correlate with colony growth. However, CD34- HSCs 

cultured with IL-3 and stem cell factor resulted in 80% of the cells forming multi-lineage 

colonies (Osawa et al. 1996). The tyrosine kinase receptor Flt3 was found to be 

expressed in 60% of the LSK population and was investigated as it was indicated to 

play an important role in the growth of HSCs (Lyman and Jacobsen 1998). 

Transplantation assays have revealed that Lin-, Sca1+, c-kit+, flt3- cells produced 

multilineage reconstitution whereas Lin-, Sca1+, c-kit+, flt3+ cells reconstituted B and 

T lymphocytes with only a short-term myeloid reconstitution (Adolfsson et al. 2001). 

Flt3, also known as CD135, therefore appears to be expressed on lymphoid 

progenitors which do not have self-renewal capacity. HSC can now be further 

categorised into long-term HSCs (Kiel et al. 2005), intermediate-term HSCs 

(Benveniste et al. 2010), common lymphoid progenitors (Kondo, Weissman, and 

Akashi 1997), common myeloid progenitor (Akashi et al. 2000) by differences in 

expression of Sca-1, macrophage-1 antigen (Mac-1) (Morrison and Weissman 1994) 

CD34 (Osawa et al. 1996), Flt3 (Adolfsson et al. 2001), CD150, CD48 and CD49B 

(Wagers and Weissman 2006).  

Taking together the previous studies over the past couple of decades, a model of HSC 

hierarchy has been proposed by Wilson et al. illustrating the loss or acquisition of 

various cell surface markers as a HSC evolves (Figure 7). Cycling activity, measured 

by Ki67 expression and DNA content, showed that the LSK+, CD34-, CD48-,CD150+, 

CD135- population had 70% of the population in G0 and less than 2% actively cycling 

with other cell populations showing larger populations cycling and less in G0 (Wilson 

et al. 2008). This specific population was therefore designated HSC. This was further 
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confirmed by a label-retaining assay where DNA was labelled in vivo with 

bromodeoxyuridine (BrdU) to detect nondividing cells. The HSC population was found 

to retain the most BrdU labelled cells, again showing it to be the most quiescent. Using 

a mathematical model of BrdU decay, the HSC population was determined to be 

composed of two populations, a small dormant population and a larger activated 

population. HSCs can reversibly switch between being a dormant HSC and an 

activated HSC with self-renewing properties when needed due to bone marrow injury 

or G-CSF stimulation and then differentiate into MPPs (Wilson et al. 2008). These 

advancements in stem cell characterisation and isolation will allow further investigation 

into the development of radiation-induced leukaemia and insight into the stem cell 

niche as a whole.  
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Figure 7. Proposed model of stem cell development in the mouse. 

Adapted from (Wilson et al. 2007; Wilson et al. 2008). 
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1.8.2 HSC heterogenicity 

Traditionally, transcriptional analysis of HSPCs has been by bulk analysis, however, 

single cell analysis in recent years has revealed the heterogeneity of a pool of cells in 

a population (Figure 8). Single cell transcriptional analysis of murine long-term HSC, 

lymphoid progenitors and erythroid progenitors has identified heterogeneity in 

transcription factor expression among the cell types (Moignard et al. 2013). Some 

genes such as meis homeobox 1 (Meis1) showed different expression levels between 

cell types, while other genes showed a range of expression levels within a single 

population. Single cell RNA sequencing analysis of 2000 single cells from chronic 

myeloid leukaemia patient samples revealed heterogeneity within the CML population 

while also identifying rare BCR-ABL+ populations persisting during remission 

(Giustacchini et al. 2017). 

To isolate HSCs, differentiated cells are usually first removed from the total bone 

marrow sample by immunobead subtraction of lineage positive cells so that the 

remaining cells are lineage negative. Cell surface markers can then be used to 

separate the cells into sub-populations. Recent advances in technology, in particular, 

single cell capture methods, has led to an increased analysis and understanding of 

hematopoietic stem and progenitor cell populations. There are numerous technologies 

to research single cell genomics and transcription such as digital droplet polymerase 

chain reaction (PCR), Fluorescence-activated cell sorting (FACS) single cell sorting, 

microfluidics, laser capture microdissection or microwell capture. These technologies 

allow for the analysis of single cell RNA and DNA sequencing. This will allow further 

investigation of these distinct sub-populations in the development of radiation induced 

leukaemia and advance our understanding of haematopoiesis.  
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Figure 8. Heterogeneity revealed by single cell analysis. 

Using traditional bulk analysis of a pool of cells, gene expression analysis reports an 

average expression level of all cells. On a single cell level, transcriptional expression 

is revealed per cell and cells populations can be further separated into sub-populations 

based on their expression levels. This article is distributed under the terms of the 

Creative Commons Attribution 4.0 International License 

(http://creativecommons.org/licenses/by/4.0/). Taken from (Ye, Huang, and Guo 

2017). 

 

1.9 Objectives of the project 

The main purpose of this research is to examine the target cells for rAML development, 

the hematopoietic stem and progenitor cells where the initiation of leukaemic events 

occurs. Previous studies have allowed classification of HSPC into three sub groups 

based on their repopulating abilities i.e. long term HSC, short term HSC and 

haematopoietic progenitor cells (Zhong et al. 2005). In order to do so, we aimed to 

http://creativecommons.org/licenses/by/4.0/
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characterise the response and sensitivity of these sub-populations of HSPC to IR. We 

will also analysed the genetic and epigenetic alterations that occur in human de novo 

AML and t-AML samples in order to improve our understanding of the mechanisms of 

radiation-induced leukaemogenesis as outlined in Figure 9. Mouse and human 

samples of rAML were used during the course of this PhD project, assessing the 

validity of the mouse model for humans and making for a first time an interspecies 

comparison analysis. 

 

 

Figure 9. Experimental plan for mouse and human samples.  

Human DNA and bone marrow samples from de novo AML and t-AML patients will be 

collected and analysed by gene expression, DNA sequencing and DNA methylation 

analysis. HSPC will be isolated from CBA/Ca and C57BL/6 mice at various times after 

IR exposure and separated into HSPC sub-populations. RNA will be extracted from 

the samples and gene expression performed. RNA and DNA will also be isolated from 

rAML spleen tissues and gene expression, DNA sequencing and DNA methylation 

performed.  
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1. Human bone marrow samples were obtained from de novo AML patients and 

AML after chemotherapy and radiotherapy patients which were analysed by 

DNA sequencing of previously identified genes mutated in AML.  

2. Human AML patient samples were also analysed by gene expression and DNA 

methylation analysis.  

3. A historical bank of murine rAML spleen samples were used to identify genetic 

mutations, epigenetic changes and identify genes of interest in the development 

of rAML. 

4. An interspecies comparison of PU.1/Sfpi1 expression in human and mouse 

AML cases was performed. 

5. A protocol was developed for the single cell transcriptional analysis of HSPC 

populations after irradiation 

6. mRNA gene expression changes were analysed in murine HSPC sub-

populations in response to irradiation by molecular counting (nCounter 

analysis) and genes of interest identified and validated by quantitative PCR. 
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2 Materials and methods 
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2.1 Common reagents 

Pipettes, pipette tips, 1.5 ml microcentrifuge tubes and 0.5 ml microcentrifuge tubes 

were purchased from STARLAB (STARLAB UK Ltd., Milton Keyes, UK). 15 ml and 50 

ml conical bottom tubes were purchased from SARSTEDT (SARSTEDT Ltd, Leicester, 

UK). Centrifugation for microcentrifuge tubes was performed using a MicroStar 17R 

centrifuge (VWR International Ltd., Lutterworth, UK) and centrifugation for conical 

bottom tubes was performed in Sorvall Legend RT (Thermo Fisher Scientific, Paisley, 

U.K.). 

2.2 Samples 

2.2.1 Mice 

All CBA/Ca and C57/BL6 mice animal procedures conformed to the United Kingdom 

Animals (Scientific Procedures) Act 1986, Amendment Regulations 2012. 

Experimental protocols were approved by the Home Office and institutional Animal 

Welfare Ethical Review Body (AWERB) (PPL 30/3355; 21 December 2015). CBA/Ca 

and C57/BL6 mice were provided with sterile water and food ad libitum and subject to 

a 12 h light/12 h dark cycle.  

2.2.2 Mouse spleen samples 

A bank of 123 radiation-induced AML samples (104 spleen and 19 DNA samples) were 

held at Public Health England, Chilton, Oxfordshire. The samples were a combination 

of 95 CBA/H mice, 30 of which were exposed to 3 Gy X-rays, 3 exposed to 4.5 Gy X-

rays and 62 of which were exposed to neutrons and 28 F1 CBA/H x C57BL/Lia which 

were exposed to 3 Gy X-rays. Mice were irradiated at 10-12 weeks of age at MRC 

Harwell using a Pantak X-ray source 250kVp, 11 mA at a dose rate of 0.887 Gy/Min 

to give a single whole body dose.  The 62 neutron-induced AMLs were irradiated with 

fast fission neutrons from a 235U converter in the Low Flux Reactor at NRG, Petten, 

Netherlands. 

AMLs were diagnosed using the criteria described in the Bethesda Proposals for 

Classification of Non-lymphoid Hematopoietic Neoplasms in Mice (Kogan et al. 2002). 

Mice were examined daily for signs of illness and were euthanized with a rising 

concentration of CO2 when moribund. Mice found to have increased white blood cell 
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counts in the peripheral blood and to display splenomegaly upon dissection were 

treated as suspect AMLs. Diagnosis was confirmed by examination of blood films, 

immunophenotyping and transplantation of tumours into recipient hosts.  All animals 

were bred and handled according to UK Home Office Animals (Scientific Procedures) 

Act 1986 and with guidance from the local animal welfare body. All spleen samples 

were stored in RNALater (Thermo Fisher Scientific, Paisley, U.K.) at the time of 

sacrifice. 

2.2.3 Human AML patient samples 

DNA from 21 historical AML patients was obtained from the National Centre for 

Research "Demokritos", Athens, Greece with informed consent from each patient. 

Bone marrow aspirates were obtained from 5 normal donors (ALLCELLS, Alameda, 

CA) with informed consent and ethical approval from the Alpha Independent Review 

Board. Bone marrow aspirates from 7 AML patients were also obtained from an 

existing biobank in the Northern Institute for Cancer Research (NICR), Newcastle with 

informed consent and ethical approval from the Newcastle and North Tyneside 

Research Ethics Committee (REC 17/NE/0361) and with the appropriate material 

transfer agreement in place. Age, gender, cytogenetic data were obtained where 

possible. Approval for human cell work was obtained from the Brunel Research Ethics 

Committee (reference 11466-TISS-Oct/2018- 14402-4). 

2.3 X-ray exposure 

In vivo irradiations were performed at the Centre for Radiation, Chemical and 

Environmental Hazards (Public Health England, Harwell, UK) using an X-ray source 

(AGO, Reading, UK; 250 kVp and 13 mA) with a dose rate of 4.9 mGy/min. All x-ray 

exposures were performed by Mr Paul Finnon. 

2.4 Tissue harvest and cell preparation 

All mouse euthanasia and dissections were performed by Dr Rosemary Finnon. Mice 

were sacrificed using a rising concentration of CO2. Femurs, tibias, iliac crests and 

spine were dissected from the mice. The bones were cleaned including removal of the 

spinal cord and excess tissue. The bones and spine were then crushed in a small 

volume Iscove's Modified Dulbecco's Media (IMDM) using a pestle and mortar and 
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disaggregated with an 18 G needle and then passed through a 40 micron cell strainer 

to produce a single cell bone marrow suspension. A cell count was performed using 

an equal volume of cell suspension with 0.4% Trypan Blue (Thermo Fisher Scientific, 

Paisley, U.K.) using a Neubauer haemocytometer (Nanoentek, Korea). All reagents 

were obtained from Sigma-Aldrich, Dorset, UK, unless otherwise stated.  

2.5 Immunomagnetic negative selection of haematopoietic stem 

and progenitor cells 

Lineage depletion of the bone marrow cells was performed by immunomagnetic 

negative selection using the EasySepTM Mouse Hematopoietic Progenitor Cell 

Isolation Kit (Stem Cell Technologies, Grenoble, France). All reactions were performed 

on the RoboSepTM and RoboSepTM-S (Stem Cell Technologies, Grenoble, France). 

Bone marrow cell suspensions were prepared at 1 x 108 cells/ml EasySep™ Buffer in 

a 5 ml Falcon™ polystyrene round-bottom tube (BD Biosciences, Oxford, U.K.). 

Normal Rat Serum was added at 50 µl/ml of cells. The samples and kit reagents were 

then loaded onto the RoboSepTM. Briefly, following 15 minutes incubation with the 

EasySepTM Mouse Hematopoietic Progenitor Cell Isolation Cocktail at 50 µl/ml of cells, 

EasySep™ Streptavidin™ RapidSpheres were added at 75 µl/ml of cells and 

incubated for another 10 min. EasySep™ Buffer was added to bring the cell 

suspension up to a total volume of 2.5 ml and the mixture pipetted into the EasySep™ 

Magnet for 3 min, after which the negative fraction containing the HSPCs was pipetted 

off into a fresh tube. The cell number was determined using a Neubauer 

haemocytometer (Nanoentek, Korea) with 0.4% Trypan Blue (Thermo Fisher 

Scientific, Paisley, U.K.).  

2.6 Flow cytometry analysis and cell sorting 

Following bone marrow lineage depletion, cell suspensions were prepared at 5 x 

106 cells/ 100 µl. Primary conjugated antibodies were then added, and all reagents 

were diluted to the manufacturers' recommendations. Two sets of conjugated 

antibodies were used. Set one was composed of CD27 (LG.3A10) fluorescein 

isothiocyante (FITC) (BioLegend, San Diego, USA) and CD201 phycoerythrin (PE) 

Figure 10. Set two was composed of Sca1 PECy7 (D7; Affymetrix, High Wycombe, 

UK), cKit-APCe780 (2B8; Affymetrix), CD150-APC (TC15-12F12.2; BioLegend, San 
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Diego, USA), CD48 FITC (HM48-1; BioLegend, San Diego, USA), CD135 PE (A2F10; 

BioLegend, San Diego, USA) and CD34 Alexa Fluor 700 (RAM 34; Invitrogen, 

Carlsbad, USA) Figure 11. Following incubation for 30 min on ice, cells were washed 

twice in EasySep™ Buffer. Flow cytometry acquisition and sorting was performed 

using a MoFlo XDP (Beckman Coulter, High Wycombe, UK) equipped with four lasers 

[355nm (UV); 488nm (Blue); 561nm (Yellow-Green); 640nm (Red)] and analysed 

using Summit 5.4 software (Beckman Coulter)]. Single colour compensation controls 

were prepared for each fluorochrome (UltraComp eBeads®; Affymetrix). Cells were 

gated for size, shape and granularity, using forward and side scatter parameters. 

Regions were drawn around major populations of cells on a forward scatter/side 

scatter (FSC/SSC) dot plot. Dead cells, clumps and debris were excluded from further 

analysis. For dead cell exclusion, 7-amino-actinomycin D (7-AAD; BD Biosciences, 

Oxford, U.K.) was added 10 mins before analysis. Operation of the MoFlo XDP sorter 

was performed by Mr Andrew Worth, Oxford University, UK. 

 

Figure 10. Flow cytometry cell sorting set one protocol.  

The bone marrow of CBA/Ca mice was crushed obtaining a cell suspension. Lineage 

depleted cells were isolated from the cell suspension by immunomagnetic selection 

on the RoboSep. Cells were gated for size, shape and granularity using forward and 
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side scatter and dead cells excluded using 7AAD. Long-term HSCs were isolated that 

were CD27+/CD201+.  

 

 

Figure 11. Flow cytometry cell sorting set two protocol.  

The bone marrow of CBA/Ca mice was crushed obtaining a cell suspension. Lineage 

depleted cells were isolated from the cell suspension by immunomagnetic selection 

on the RoboSep. Cells were gated for size, shape and granularity using forward and 

side scatter and dead cells excluded using 7AAD. LSK cells were isolated by gating 

cells Sca-1+/cKit+. Five populations of cells were isolated HSCs (Sca-1+, cKit+, 

CD150+, CD48-, CD135-, CD34-), MPP1 (Sca-1+, cKit+, CD150+, CD48-, CD135-, 

CD34+), MPP2 (Sca-1+, cKit+, CD150+, CD48+, CD135-, CD34+), MPP3 (Sca-1+, 

cKit+, CD150-, CD48+, CD135-, CD34+) and MPP4 (Sca-1+, cKit+, CD150-, CD48+, 

CD135+, CD34+). 
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2.7 RNA extraction 

RNA was extracted from murine spleen tissues using the miRNeasy Mini Kit (Qiagen 

Ltd, Crawley U.K.) according to manufacturer’s guidelines, including the optional 

DNase I treatment step. RNA was extracted from murine sorted hematopoietic stem 

and progenitor cells using the following kits; the miRNeasy Mini kit (Qiagen Ltd, 

Crawley U.K.), the Single Cell RNA Purification Kit (Norgen Biotek Corp., Canada) and 

the ReliaPrepTM RNA MiniPrep Systems (Promega, Southampton, U.K.) according to 

manufacturer’s guidelines and including the optional DNase I treatment step. RNA was 

extracted from human bone marrow cells using the miRNeasy Mini Kit (Qiagen Ltd, 

Crawley U.K.) according to manufacturer’s guidelines. 

RNA quantity was measured using the NanoDrop 2000 spectrophotometer (Thermo 

Fisher Scientific, Paisley, U.K.). RNA quality was assessed using the 2200 

TapeStation (Agilent Technologies Ltd., Wokingham, UK) according to manufacturer’s 

protocol. 

2.8 RNA quantity and quality measurement 

RNA quantity was measured using the NanoDrop 2000 spectrophotometer (Thermo 

Fisher Scientific, Paisley, U.K.) according to manufacturer’s instructions. 

2.8.1 2200 TapeStation assessment 

RNA quality was assessing using the 2200 TapeStation (Agilent Technologies Ltd., 

Wokingham, UK) according to manufacturer’s instructions. Briefly, R6K Screentape 

and R6K Buffer were placed at room temperature for 30 min. 1 μl RNA sample was 

mixed with 4 μl R6K buffer in an 8 well strip (ABgene/Thermo Scientific, Paisley, U.K.). 

Samples were vortexed using a MixMate vortexer (Eppendorf UK Ltd., Stevenage, 

UK) at 2500 rpm for 15 sec and spun down at 3000 rpm using a Sigma 2-16P 

centrifuge (Sciquip Ltd. Newtown, UK). The strip was then placed at 72 °C for 3 min in 

a Thriller® thermoshaker-incubator (Peqlab Ltd., Sarisbury Green, UK) and cooled on 

ice for 2 min. The strip was again centrifuged for 1 min at 3000 rpm to collect sample 

from inside the lid. The strip was then placed on the Tapestation instrument for 

analysis, producing RNA Integrity Number equivalent (RINe) which indicated the level 

of RNA quality. 
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2.9 DNA extraction 

DNA was extracted from murine spleen tissue and human bone marrow cells using 

the DNeasy® Blood & Tissue kit (Qiagen, Manchester, UK) according to the 

manufacturer’s instructions. DNA quantity was measured by NanoDrop 2000 (Thermo 

Fisher Scientific, Paisley, U.K.) and quality assessed by agarose gel electrophoresis 

using 1.3% agarose gel. 

2.10  Agarose gel electrophoresis 

Agarose gel electrophoresis was used to assess DNA quality, to detect insertions and 

to assess PCR amplicons of primer designs. Briefly, 0.65 g of Certified Molecular 

Biology Grade Agarose (Bio-Rad Laboratories Ltd., Hemel Hempstead, UK) agarose 

was placed in a beaker with 50 ml 1X Tris-Borate-EDTA (TBE) buffer (Sigma-Aldrich, 

Dorset, UK) and heated in a microwave for 20 sec after which time the beaker was 

removed from the microwave and the contents gently shaken, followed by another 10 

sec on high power. After allowing to cool slightly, 5 μl GelRed Nucleic Acid Gel Stain 

10,000X (Cambridge Bioscience Ltd., Cambridge, UK) was added to the beaker, 

mixed by gently shaking and poured into an electrophoresis tray (Bio-Rad Laboratories 

Ltd., Hemel Hempstead, UK) and allowed to solidify for 45 min. The gel was then 

placed in a Mini-Sub® Cell GT electrophoresis system (Bio-Rad Laboratories Ltd., 

Hemel Hempstead, UK) with 1 X TBE buffer. 

To load the gel, 3 μl sample was mixed with 1 μl loading buffer, consisting of 40 % 

sucrose and 0.24% bromophenol blue (Sigma-Aldrich, Dorset, UK) in water, and 

pipetted into the gel wells with 1 μl 1 Kb Plus DNA ladder (Life Technologies) loaded 

into one lane. The gel was then run at 100 V for 40 min and viewed on a U:Genius3 

gel documentation system (Syngene Europe, Cambridge, UK). Good quality DNA was 

characterised by a strong band above the 12 Kb band with an absence or minimal 

amount of smearing throughout the gel. PCR products of specific primer designs were 

characterised by a single sharp peak at the appropriate band size. 

2.11 Array Comparative Genomic Hybridisation (aCGH) 

Both a custom-made array consisting of 1.4 M loci (NimbleGen Custom CGH 3 x 1.4 

M, Roche NimbleGen, Madisonm WI, USA) and G3 Mouse CGH Microarrays (4 x 180 
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K, Agilent Technologies, Wilmington, DE, USA) were used due to the discontinuation 

of the NimbleGen product. Briefly, 0.5 μg of AML DNA was labelled with a Cy3 

fluorescent dye and control DNA was labelled with a Cy5 fluorescent dye (NimbleGen 

Dual Colour DNA labelling kit, SureTag DNA labelling kit, Agilent Technologies) 

according to manufacturer’s instructions. Equal amounts of AML DNA and control DNA 

were mixed and added to the CGH array slide/mixer assembly according to 

manufacturer’s instructions. The slide was then placed in the Hybridisation System for 

the recommended time, washed with the appropriate buffer (NimbleGen Hybridisation 

Wash Buffer Kit, Agilent Oligo ACGH/ChIP-on-Chip Wash buffers) according to 

manufacturer’s instructions and dried using an Array-It slide dryer (Arrayit Corporation, 

Sunnyvale, CA, USA). Arrays were stored in a dark dessicator. Roche array slides 

were scanned using a NimbleGen MS 200 Microarray Scanner and Agilent slides were 

scanned with a SureScan Microarray scanner. Analysis using the Roche arrays was 

performed using DEVA software. Analysis using Agilent slides was performed using 

Genomics Workbench 7.0. aCGH analysis was performed on the 115 mouse spleen 

samples by Dr. Natalie Brown. 

2.12  Reverse transcription 

2.12.1 mRNA 

Reverse transcription reactions were performed using a High-Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Foster City, USA) according to the 

manufacturer’s protocol. In brief, 35 μl RNA sample (700 ng RNA/sample) was added 

to 5 μl reverse transcription buffer, 2 μl dNTP mix, 5 μl random primers, 2.5 μl 

Multiscribe® Reverse Transcriptase and 0.5 μl water. Reactions were performed on a 

Verti-96 well Thermal Cycler (Applied Biosystems, Foster City, USA), using the 

following conditions: 25 °C for 10 min, 37 °C for 120 min and 85 °C for 5 min. 

2.12.2 miRNA 

To prepare miRNA samples for first strand complementary DNA (cDNA) synthesis, 

samples were first polyadenylated using the qScriptTM microRNA cDNA Synthesis Kit 

(Quanta BioSciences, Gaithersburg, U.S.A.). A mixture of 100 ng total RNA in 7 μl 

RNase-free water, 2 μl Poly(A) Tailing buffer and 1 μl Poly(A) polymerase were added 

together on ice and placed in a thermocycler at 37 °C for 20 min and 70 °C for 5 min. 
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Following polyadenylation, a 10 μl cDNA synthesis master mix consisting of 9 μl cDNA 

buffer and 1 μl reverse transcriptase was added to each sample. The samples were 

placed in a thermocycler at 42 °C for 20 min and 85 °C for 5 min. Controls included a 

–RT reaction to identify genomic DNA contamination and a –poly(A) reaction to identify 

non-specific binding of universal primers. Samples were then diluted 50 times before 

QPCR analysis. 

2.13  DNA mutation and insertion sanger sequencing 

For DNA assays, a set of PCR primers were designed. Assays were designed using 

PrimerQuest software (Integrated DNA technologies, Leuven, Belgium). The primers 

were first checked against the Ensemble database 

(https://www.ensembl.org/index.html) to avoid the presence of SNPs. The primers 

were tested for specificity with a SYBR Green assay consisting of 1 μl cDNA, 5 μl 

PerfeCTa SYBR® Green SuperMix (Quanta Biosciences, Gaithersburg, USA), 0.15 μl 

(10 Μm) forward primer, 0.15 μl (10 μM) reverse primer and 3.7 μl RNase-free water 

and a control sample with 1 μl water in place of cDNA. The primers were run on a 

RotorGene (Qiagen, Manchester, UK) with cycling conditions of 95 °C for 2 min, 40 

cycles of 95°C for 10 sec and 60 °C for 60 sec followed by a melt curve. Melt curve 

results were examined for the presence of a single sharp peak in the cDNA sample 

and no peak in the control. The samples were run on a 1.3% agarose gel to examine 

for the presence of a single sharp band of appropriate size. Primer designs for human 

and mouse sanger sequencing are listed in appendices A and B, respectively. Primer 

designs listed also includes primers designed taken from Bonadies et al. and Finnon 

et al. (Bonadies, Pabst, and Mueller 2010; Finnon et al. 2012). 

For the PCR reaction, 1 µl of extracted DNA (25 ng DNA/µl) was used in 9 µl PCR 

master mix [1 µl 10x PCR buffer, 2 µl 5x Q-solution, 1.6 µl 1.25 mM dNTP, 3.15 µl 

dH20, 0.5 µl 10 µM forward   primer, 0.5 µl 10 µM reverse primer, 0.25 µl Taq DNA 

Polymerase (Qiagen, Manchester, UK) and amplified at the following conditions: 4 min 

at 95 °C, then 35 cycles of 30 sec at 95 °C, 30 sec at 57 °C and 30 sec at 72 °C, 

followed by 10 min at 72 °C. PCR product (1 ng/µl per 100 bp) and primers (3.2 

pmol/µl) were sent for sequencing by Source BioScience (University of Oxford, UK). 

Sequencing files were analysed using Chromas 2.6 software (Technelysium Pty Ltd, 

Brisbane, Australia). For detection of insertions, 2% agarose gels were prepared, and 

https://www.ensembl.org/index.html
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PCR products were run at 80 V to allow for the detection of an increase in amplicon 

size. 

2.14  Haloplex DNA sequencing 

Human DNA (225 ng) from 16 patients (6 de novo AML, 6 AML after chemotherapy, 3 

AML after radiotherapy, 1 AML after MDS) were sent to Oxford Gene Technology, 

Begbroke, Oxfordshire for sequencing analysis by HaloplexTM Targeted Enrichment 

System using the ClearSeq AML panel (Agilent Technologies Ltd., Wokingham, UK). 

Briefly, the DNA was fragmented by restriction enzymes and ClearSeq biotinylated 

probes specific to the target region were hybridized to the fragments forming circular 

DNA molecules. These circular molecules were separated from the rest of the sample 

using magnetic streptavidin beads and amplified by PCR ready for MiSeq 150bp PE 

Illumina sequencing analysis.  

2.15  Pyrosequencing 

2.15.1  Mutational analysis 

Human and mouse mutations were confirmed by pyrosequencing through use of the 

Pyromark Q48 (Qiagen, Manchester, UK) according to manufacturer’s guidelines. The 

PyroMark is a novel method of sequencing able to quantify the percentage of the 

mutation present in the sample which is based on the emission of light with each added 

nucleotide with sensitivity of detection down to 2%. Briefly, primers were designed by 

the Pyromark Q48 Advanced Software, validated by SYBRGreen analysis and 

amplified by PCR using Pyromark PCR Kit (Qiagen, Manchester, UK). Primer designs 

for human and mouse mutational pyrosequencing are listed in appendices C and D. 

Reactions consisted of 10 ng DNA, 12.5 ul PyroMark PCR Master Mix 2X, 2.5 ul 

CoralLoad Concentrate (Red) 10X, 0.5 ul forward primer, 0.5 ul reverse primer (one 

of the primers to be biotinylated) and RNase-free water to a volume of 25 ul. Reactions 

were performed on a Verti-96 well Thermal Cycler (Applied Biosystems, Foster City, 

USA), using the following conditions: 95°C for 15 min, 45 cycles of 94°C for 30 sec, 

60°C for 30 sec and 72°C for 30 sec. To confirm a strong single band of amplified 

product, 5 ul PCR product was run on an 1.3% agarose gel. PyroMark Q48 Advanced 

Reagents were loaded onto the PyroMark with 3 ul Magnetic Beads (Qiagen, 
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Manchester, UK) and 10 ul PCR reaction. During the reaction, solutions of A, C, G and 

T nucleotides were sequentially added and removed with an emission of light for the 

complementary pair and determination of the correct nucleotide. This process 

continued for the whole strand. Pyrosequencing for Sfpi1/Pu.1 mutational analysis was 

performed by Mrs. Lourdes CruzGarcia, CRCE, PHE. 

2.15.2  DNA methylation analysis 

DNA methylation was analysed by pyrosequencing through use of the Pyromark Q48 

(Qiagen, Manchester, UK) according to manufacturer’s guidelines. Briefly, primers 

were designed by the Pyromark Q48 Advanced Software and validated by 

SYBRGreen analysis. Primer designs for human and mouse DNA methylation 

pyrosequencing are list in appendices E and F. 

Bisulfite conversion was performed on 1 μg DNA using the EpiTect Fast Bisulfite 

Conversion Kit (Qiagen, Manchester, UK). Briefly, 140 μl bisulfite reactions were 

prepared with 20 μl DNA, 85 μl bisulfite solution, 35 μl DNA protect buffer in 200 μl 

PCR tubes (Thermo Fisher Scientific, Paisley, U.K.). Reactions were performed on a 

Verti-96 well Thermal Cycler (Applied Biosystems, Foster City, USA), using the 

following conditions: 95°C for 5 min, 60°C for 20 min, 95°C for 5 min and 60°C for 

20 min. Mixtures were then passed through MinElute DNA spin columns, washed and 

the methylated DNA eluted according to the manufacturer’s protocol. DNA methylation 

analysis was then performed on the PyroMark using 50 ng methylated DNA as 

described previously with cycling conditions of 95°C for 15 min, 45 cycles of 94°C for 

30 s, 56°C for 30 s and 72°C for 30 s. A universal methylated mouse DNA standard 

which was enzymatically methylated at all CpGs by M. Sssl methyltransferase from 

the CpGenome™ Universal Methylated Mouse DNA Standard Set (Merck Millipore, 

Darmstadt, Germany), was used as a positive control and bisulfite conversion 

efficiency was evaluated by using normal DNA without bisulfite treatment during 

pyrosequencing analysis. For human samples a positive and negative methylation 

control was used from the kit EpiTect Control DNA Set (Qiagen, Manchester, UK). 

Methylation of human controls was achieved using Sssl methylase. 
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2.16  Multiplex quantitative real time-PCR (MQRT-PCR) 

2.16.1 Assay designs 

For mRNA assays, a set of short PCR primers and a fluorescent probe were designed. 

Assays were designed using PrimerQuest software (Integrated DNA Technologies, 

Leuven, Belgium). When designing TaqMan assays, the primers were first checked 

against the Ensemble database (https://www.ensembl.org/index.html) to ensure 

maximum transcript coverage and to avoid the presence of SNPs. The primers were 

tested for specificity with a SYBR Green assay as previously described. 

For mRNA assays for single cell experiments a set of short PCR primers and a 

fluorescent probe were designed, with at least one primer spanning an exon-exon 

junction or on separate exons with an intro of at least 1000 bp in between, using Primer 

Blast software (https://www.ncbi.nlm.nih.gov/tools/primer-blast/). Primers were tested 

for specificity with a SYBR Green assay as previously described, testing for specificity 

on both cDNA and DNA. Designs were chosen which had a single sharp peak in the 

cDNA samples and no amplification in the DNA sample or control if possible. Designs 

were included if amplification in the DNA sample was at least 5 Ct after the 

amplification in the cDNA sample. The samples were also run on a 1.3% agarose gel 

to examine for the presence of a single sharp band of appropriate size. 3′6-

Carboxyfluorescein (FAM)/Black Hole Quencher 1 (BHQ1), 6-Hexachlorofluorescein 

(HEX)/BHQ1, Texas Red (TEX)/BHQ2, CY5/BHQ3, Atto 680/BHQ3 and Atto 

390/Deep Dark Quencher 1 (DDQ1) (Eurogentec Ltd, Fawley, UK) were used as 

fluorochrome reporters for the hydrolysis probes analysed in multiplexed mRNA 

reactions. All primers were ordered through IDT (Integrated DNA technologies, 

Leuven, Belgium) and all probes were ordered through Eurogentec (Eurogentec Ltd, 

Fawley, UK) except for CY5 probes which were ordered through Sigma (Sigma, 

Haverhill, UK). 

For miRNA assays, primer designs were obtained from the QuantaBio website 

(Quanta Biosciences, Gaithersburg, USA). 

Primer designs for human and mouse MQRT-PCR are listed in appendices G and H 

respectively. Primer design listed also includes primers designed by Dr Francois 

Paillier (bioMérieux Ltd, Rhône-Alpes, France). 

https://www.ensembl.org/index.html
https://www.ncbi.nlm.nih.gov/tools/primer-blast/


63 

 

2.16.2 Standard curve preparation 

Preparation of standard curve involved the use of the primers to amplify PCR products 

for each gene of interest. Standard curve PCR reactions consisted of 10 μl of 10 X 

PCR Buffer, 20 μl of 5 x Q solution, 4 μl of each deoxyribonucleotide triphosphate 

(dNTP) (Invitrogen, Carlsbad, USA), 31.5 μl water, 5 μl of each primer at 10 μM, 2.5 

μl of Taq Polymerase and 10 μl of cDNA. Reactions were performed on a Verti-96 well 

Thermal Cycler (Applied Biosystems, Foster City, USA), using the following conditions: 

94 °C for 3 min, 35 cycles of 30 s at 94 °C, 30 s at 60 °C, 30 s at 72 °C and 72 °C for 

10 min. All reagents unless otherwise stated were obtained from Qiagen (Qiagen, 

Manchester, UK). PCR products were loaded onto a 1.3% gel and run for 40 min at 

100 V. The bands were visualised on a UVT 400-M ultraviolet transilluminator 

(International Biotechnologies Inc., New Haven, Connecticut, USA) and the band of 

interest cut out and purified using the MinElute Gel Extraction Kit (Qiagen, 

Manchester, UK) according to the manufacturer’s guidelines. cDNA quantity was 

measured using the NanoDrop 2000 (Thermo Fisher Scientific, Paisley, U.K.) and 

molar mass of the PCR product was calculated using the online software Mongo Oligo 

Mass Calculator v2.06 (http://mods.rna.albany.edu/masspec/Mongo-Oligo).  

The number of PCR product copies per μl was calculated with the formula; 

𝑪𝒐𝒑𝒚 𝒏𝒖𝒎𝒃𝒆𝒓 𝒑𝒆𝒓 𝛍𝐥 =

𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏

𝑴

𝑵𝑨

  

Where M is the molar mass of PCR product and NA is Avogadro’s constant. 

The standard curve was prepared by adding 1.5625 x 109 molecules of each PCR 

product of each gene of interest to water in a total volume of 50 μl. This stock solution 

was then diluted 1600 times by serial dilution. The standard curve was prepared by 

using the diluted stock and a further eight 5-fold dilutions. 

2.16.3 TaqMan MQRT-PCR  

Real-time PCR was performed using a Rotor-Gene Q (Qiagen, Manchester, UK). 

Reactions were run in triplicate with primer and probe sets for target genes at 300 nM 

each and 2.5 μl cDNA in 30 μl reaction volume (PerfeCTa® MultiPlex qPCR SuperMix; 

Quanta Biosciences, Gaithersburg, USA). Cycling parameters were as follows: 2 min 

http://mods.rna.albany.edu/masspec/Mongo-Oligo
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at 95 °C and 45 cycles of (10 sec at 95 °C and 60 sec at 60 °C). Data was collected 

and analysed using Rotor-Gene Q Series software. Gene target cycle threshold (Ct) 

values were normalised to an internal control (Hypoxanthine-Guanine 

phosphoribosyltransferase 1; HPRT). Ct values were converted to transcript quantity 

using standard curves obtained by serial dilution of PCR-amplified DNA fragments of 

each gene and run in each reaction. The linear dynamic range of the standard curves 

covering six orders of magnitude (serial dilution from 3.2 x 10-4 to 8.2 x 10-10) gave 

PCR efficiencies between 93% and 103% for each gene with R2 >0.998.  

2.16.4 miRNA QPCR 

miRNA QPCR was performed using a Rotor-Gene Q (Qiagen, Manchester, UK). 

Assay reactions of 10 μl contained 5 μl PerfeCTa SYBR® Green SuperMix (Quanta 

Biosciences, Gaithersburg, USA), 0.3 μl Universal primer (Quanta BioSciences, 

Gaithersburg, U.S.A.), 0.3 μl Assay primer, 3.4 μl RNase-free water and 1 μl cDNA. 

All reactions were run in triplicate with cycling conditions of 95 °C for 2 min, 45 cycles 

of 95 °C for 10 sec and 60 °C for 30 sec followed by a melt curve. Data was collected 

and analysed using Rotor-Gene Q Series software. Housekeeping miRNA were 

identified and analysed through use of the NormFinder algorithm (Andersen CL, 2004) 

which determines the most stably expressed control genes and is located on the 

RefFinder website http://leonxie.esy.es/RefFinder/?type=reference. 

2.17  Low cell number/single cell analysis 

2.17.1 REPLI-g® Cell WGA & WTA kit 

Low cell numbers were amplified using REPLI-g® WGA & WTA Kit according to 

manufacturer’s guidelines. Briefly, cells were sorted by FACS into 12 well strips, 

topped up to 13 μl with H20 and 8 μl Lysis Buffer added. The tubes were mixed 

carefully and centrifuged briefly. gDNA was first removed from the whole transcriptome 

amplification (WTA) cell lysate by adding 2 μl gDNA wipeout buffer and incubating the 

mixture at 42 °C for 10 min. An RT master mix was prepared with 4 μl RT/polymerase 

buffer, 1 μl H20, 1 μl random primer, 1 μl oligo DT primer, 1 μl Quantiscript RT enzyme 

mix and 8 μl of the mixture added to the WTA cell lysate. A whole genome amplification 

(WGA) master mix was prepared with 4 μl RT/polymerase buffer, 2 μl gDNA wipeout 

buffer, 1 μl H2O, 1 μl random primer 1 μl oligo-dT primer, 1 μl WGA ready enzyme. 10 
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μl of the master mix was added to the WGA lysed cell sample. Both WTA and WGA 

samples were incubated at 42 °C for 60 min, 95 °C for 3 min and then cooled on ice. 

A ligation mix of 8 μl ligase buffer and 2 μl ligase mix was prepared and 10 μl ligation 

mix added to both WGA and WTA samples and incubated at 24 °C for 30 min and 95 

°C for 5 min. Finally, a REPLI-g SensiPhi amplification mix was prepared with 29 

REPLI-g sc reaction buffer and 1 REPLI-g SensiPhi DNA polymerase and 30 μl added 

to both WGA and WTA samples. The samples were then incubated at 30 °C for 2 h 

and 65 °C for 5 min. The amplified cDNA was diluted 1:100 before MQRT-PCR. 

2.17.2 REPLI-g® WTA Single Cell kit 

The REPLI-G® WTA Single Cell Kit was used to perform whole transcriptome 

amplification according to manufacturer’s guidelines. The protocol was as previously 

described for WTA in the REPLI-g® Cell WGA & WTA kit. 

2.17.3 CellsDirectTM modified Moignard et al. protocol 

Single cell MQRT-PCR analysis was performed using the CellsDirectTM One-Step 

qRT-PCR kit, with a pre-amplification step included as in Moignard et al. 2013 

(Moignard et al. 2013), on the Rotor-GeneQ (Qiagen, Manchester, UK). cDNA 

synthesis and specific target amplification (preamplification) of genes of interest were 

performed using the CellsDirectTM One-Step qRT-PCR Kit (Invitrogen, Carlsbad, 

U.S.A.). Single cells were sorted by FACS directly into 12 well strips of a 5 μl lysis mix 

consisting of 5 μl CellsDirect 2X reaction mix and 0.1 μl SUPERase RNase inhibitor. 

The strips were centrifuged at 300 x g, 4 °C for 5 min to let the cells go into the 

CellsDirect 2x reaction mix. The strips were sealed and stored at -80 °C to allow for 

better lysis efficiency. A Reverse Transcription Specific Target Amplification (RT-STA) 

master mix was prepared. Forward and reverse primers for each gene of interest were 

diluted to 20 μM in the same tube. 1.5 μl of each gene primer mix were pooled together 

and topped up to 150 μl with TE buffer to make up the Assay Mix. When thawed, a 

preamplification master mix of 2.5 μl Assay Mix, 1.3 μl TE buffer and 0.2 μl 

SuperscriptIII/Platinum Taq was added to the wells. Cycling parameters were 50 °C 

for 15 minutes, 95 °C for 2 minutes, 40–50 cycles of: 95°C for 15 seconds, 60 °C for 

4 min. The cDNA was diluted 1;5 with water and analysed by MQRT-PCR as 

previously described. 
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2.18  nCounter low input analysis 

Cells lineage-depleted bone marrow sub-populations were screened for specific 

cancer gene expression by use of the nCounter PanCancer Pathways Expression 

Assay Kit (NanoString Technologies®, Inc., Seattle, WA, USA) on the nCounter 

Analysis System (NanoString Technologies®, Inc., Seattle, WA, USA) according to 

the manufacturer’s guidelines. The nCounter miRNA Sample Preparation Kit involves 

the ligation of unique tags onto their target miRNAs which then allows detection of the 

miRNA signal. nCounter Analysis System then utilizes a novel digital colour-coded 

barcode technology, involving target-specific biotinylated capture probes and barcode 

containing reporter probes, which can count hundreds of transcripts in a single 

reaction and gives a direct measurement of gene expression. To screen gene 

expression in dormant, activating, MPP1, MPP2 and MPP3 populations, 300 cells of 

each population were sorted into a well with 0.5 μl of iScriptTM RT-qPCR Sample 

Preparation Reagent (Bio-Rad, Hemel Hempstead, U.K.). Samples were spun down 

to allow the cells to mix with the lysis buffer at the bottom of the tube and 2.5 μl water 

added. A reverse transcription master mix of 0.5 μl 10X RT enzyme mix and 0.5 μl 

10X RT primer mix was added to each sample. Cycling parameters were as follows: 

25 °C for 10 min, 42 °C for 60 min, 85 °C for 5 min. A gene specific amplification 

master mix of 1.5 μl 5X dT amp master mix and 1 μl of PanCancer Pathways Panel 

primers (IDT, Integrated DNA technologies, Leuven, Belgium) was added to each 

sample. PanCancer Pathways specific primers contain 1512 pooled oligos with 

0.25nm of each individual oligo in a mix at 0.5 μΜ in 500 μl of DTE buffer pH 7.5. 

Cycling parameters were as follows: 95 °C for 10 min, 8 cycles of 95 °C for 15 s and 

60 °C for 4 min. Samples were then incubated at 95 °C for 2 min and then snap cooled 

on ice for 2 min prior to hybridisation. 

A reaction mixture of the amplified PanCancer Pathways Panel samples was set up 

with 3 μl Reporter CodeSet, 5 μl hybridization buffer and 2 μl Capture ProbeSet and 

hybridized for 12-18 h at 65°C in a thermocycler. The samples were then loaded onto 

the PrepStation which added the mixture to a streptavidin-derivatized cartridge which 

bound with the biotinylated capture probe end, while washing away the unhybridised 

probes. An electrical field was then applied to align the complexes across the cartridge 

and the barcode containing reporter end was anchored was a second biotin-containing 

oligonucleotide. The cartridge was then placed into the Digital Analyzer and scanned 
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at 555 field of view (FOV). FOV is the area of the cartridge surface imaged by the 

Digital Analyzer, with 555 FOV being the most detailed scan. The Digital Analyzer 

counted each individual fluorescent barcode, with each barcode composed of seven 

spots made up of four colours, specific for each gene of interest. Data analysis was 

performed using the nSolver Software. The raw code count data was normalised, and 

background corrected using a standard curve of spike-in controls. The molecular 

counts were also normalised to internal controls and reference genes. 

2.19  nCounter miRNA analysis 

2.19.1 Bioanalyzer miRNA measurement 

The miRNA quantity was measured using the Small RNA Analysis Kit (Agilent 

Technologies Ltd., Wokingham, UK). RNA samples were diluted with RNase-free 

water to 20 ng/μl and heat denatured with the RNA ladder for 2 min at 70 °C. According 

to manufacturer’s instructions, 9 μl of a gel-dye mix was added to the Bioanalyser chip 

and using the chip priming station, the plunger was pressed down to exert pressure 

and held in place to spread the gel-dye mix across the chip. 9 μl RNA conditioning 

solution was added to the specified well and 5 μl RNA marker was added to all 11 

sample wells and the ladder well. 1 μl of prepared ladder and 1 μl of sample were 

added to their specified wells. The chip was then vortexed and run on the Agilent 2100 

Bioanalyzer instrument (Agilent Technologies Ltd., Wokingham, UK).  

2.19.2 miRNA concentration 

To concentrate miRNA in samples for nCounter analysis, the RNA Clean & 

ConcentratorTM-5 was used (Zymo Research, CA, U.S.A). According to 

manufacturer’s guidelines, 100 μl RNA Binding Buffer was added to 50 μl of sample. 

150 μl 100% ethanol was then added to the sample and mixed. The sample was 

passed through a Zymo-SpinTM IC Column by centrifugation for 30 seconds. The 

column was washed with 400 μl RNA Prep Buffer and centrifuged for 30 seconds, 

followed by 700 μl RNA Wash Buffer with a 30 second centrifugation and 400 μl RNA 

Wash Buffer with a 30 second centrifugation. The concentrated RNA was eluted with 

15 μl DNase/RNase-free water. 
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2.19.3 nCounter miRNA assay 

Mouse spleen RNA was screened for miRNA expression by use of the nCounter 

Mouse v1.5 miRNA Expression Assay Kit (NanoString Technologies®, Inc., Seattle, 

WA, USA) on the nCounter Analysis System (NanoString Technologies®, Inc., 

Seattle, WA, USA) according to the manufacturer’s guidelines. For the miRNA sample 

preparation protocol, 3 μl of each sample, at 5 ng each, was added to an annealing 

master mix (13 μl Annealing Buffer, 26 μl nCounter miRNA Tag Reagent and 6.5 μl 

miRNA Assay Controls) in a 12 well 200 μl strip. Annealing reactions were performed 

on a Verti-96 well Thermal Cycler (Applied Biosystems, Foster City, USA), using the 

following conditions: 94 °C for 1 min, 65 °C for 2 min, 45 °C for 10 min and then 

brought to 48 °C. 2.5 μl of a ligation master mix (19.5 μl PEG and 13 μl Ligation Buffer) 

was then added to each tube and the strip returned to the thermocycler for 5 min. 

While left in the thermocycler at 48 °C, 1 μl of ligase was added directly to the wells 

and the ligase protocol initiated using the following conditions: 48 °C for 3 min, 47 °C 

for 3 min, 46 °C for 3 min, 45 °C for 5 min, 65 °C for 10 min and held at 4 °C. For the 

purification protocol, 1 μl Ligation Clean-Up Enzyme was added to each well and 

placing into the thermocycler with the following cycling conditions; 37 °C for 1 hour, 70 

°C for 10 min and the samples were then cooled to 4 °C after which 40 μl RNase-free 

water was added to each sample. Before the hybridization step, the miRNA samples 

were denatured at 85 °C for 5 min and then quick-cooled on ice. A reaction mixture of 

a 5 μl aliquot of the ligated miRNA samples was set up with 10 μl Reporter CodeSet, 

10 μl hybridization buffer and 5 μl Capture ProbeSet and hybridized for 12-18 h at 65 

°C in a thermocycler and analysed by the nCounter system as previously described.  

2.20  Statistical analysis 

The deleterious impact of observed mutations to encoded amino acid in Kras protein 

in murine cases was checked using PredictSNP (Bendl et al. 2014) and PolyPhen-2 

(Adzhubei et al. 2010) algorithms. PredictSNP use integrative evaluation across all 

well-known methods for amino acid changes investigation while PolyPhen-2 use the 

sequence conservation in human as a leading metric in evaluation. The reference Kras 

FASTA sequence was NP_067259.4.” 
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Human mutations, identified by Haloplex DNA sequencing, were analyzed with a 

pipeline to evaluate different types of genetic modifications effects to protein function 

and human organism (Figure 1). The nonsynonymous SNP changes were investigated 

using PredictSNP. PredictSNP integrate results from several predictions algorithms 

giving compressed evaluation, thus it seems to be the most effective (Bendl et al. 

2014). The sequence change in gene coding regions, which does not affect amino 

acid sequence change (synonymous effect), were investigated by PredictSNP2 (Bendl 

et al. 2016). Its results can be supported by PROVEAN (PROtein Variation Effect 

ANalyzer) (Choi and Chan 2015) and VEP (Variant Effect Predictor) (McLaren et al. 

2016) algorithms. We suggest to first use PredictSNP2 as it integrates results from 

several other methods. Changes, which are located in non-coding regions, or those 

which cause protein termination but are not characterized as insertion or deletions 

(INDELS), were analyzed by PROVEAN and VEP. Finally, INDELS were evaluated by 

VEP algorithm, which was based only on biological rationality and no computational 

evaluation was performed. The sequences and mutations position were adjusted to 

each algorithm based on its reference genome. Analysis of mouse and human 

mutations by PolyPhen2 and PREDICT SNP algorithms was performed by Ms. Joanna 

Zyla, Silesian University of Technology, Poland.  

Statistical analysis of the biological stat was performed using Minitab 17. P Values ≤ 

0.05 were considered statistically significant. To test for significance, the data was first 

tested for normally using the Anderson-Darling test. Depending on whether the data 

was normally distributed, parametric (t-test) and non-parametric (Mann-Whitney) tests 

were used to test for significance. 

nCounter data was analysed further using BRB-ArrayTools, an excel add-in, to identify 

significantly expressed miRNA and mRNA. BRB-ArrayTools was developed by Dr. 

Richard Simon and the BRB-ArrayTools Development Team. 
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3.1 Human t-AML analysis 

 

 

 

 

 

 

 

 

 

 

 



72 

 

3.1.1 Introduction 

Radiation-induced AML has been widely reported in numerous studies on the atomic 

bomb survivors of Hiroshima and Nagasaki (Ron et al. 1994), the Techa River cohort 

(Krestinina et al. 2013), and radiologist workers (Yoshinaga et al. 2004). Nowadays, 

cases of radiation-induced AML primarily result from radiotherapy due to treatment for 

a primary cancer, which is increasing due to an aging population, the increased use 

of radiotherapy and increased treatment success allowing patients to survive for longer 

and allowing time for AML to develop. T-AML is of particular concern as the onset is 

very quick with the relapse rate being 3 times higher in t-AML in comparison to de 

novo AML and the overall survival and complete remission rates are also much lower 

(Schoch et al. 2004). Cancer treatment programs mainly consist of a combined 

approach using both chemotherapy and radiotherapy, and most studies on human t-

AML patients combine patients regardless of treatment type due to the varied range 

of chemotherapy agents and radiation doses. These large studies, although 

informative, do not allow investigation into the specific effects of radiotherapy alone.  

AML can be classified by the WHO classification system using information regarding 

karyotype, morphology and, more recently, genetic mutations. The addition of genetic 

mutations into the system has allowed a better assessment of prognosis but there 

remain cases of AML with a normal karyotype and no detection of previously identified 

mutations (Dohner and Dohner 2008). Further genetic and epigenetic analysis would 

allow for the identification of new mutations for better risk stratification, prognosis and 

better understanding of the mechanisms of radiation-induced AML leukaemogenesis. 

In order to fully investigate the development of radiation-induced AML we collected t-

AML patient bone marrow samples from de novo AML, AML after radiotherapy, AML 

after chemotherapy and AML after a combination of radiotherapy and chemotherapy. 

This allowed us to study genetic and epigenetic modifications in radiation-induced 

AML patients independently and to also compare them to different treatment groups. 

DNA samples from AML patients were obtained for 20 patients (8 de novo AML, 8 

AML after chemotherapy, 3 AML after radiotherapy and 1 secondary AML after MDS) 

from National Centre for Research “Demokritos” in Greece. It should be noted that the 

3 cases with AML after radiotherapy for a previous malignancy from National Centre 

for Research “Demokritos” in Greece could also have had chemotherapy or 
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hormonotherapy but, unfortunately, this information is not available. Bone marrow 

aspirate samples were obtained from 6 AML patients from an existing biobank in the 

Northern Institute for Cancer Research (NICR), Newcastle (5 de novo AML, 1 AML 

after radiotherapy and chemotherapy). Bone marrow aspirate samples were also 

obtained from 5 normal donors from AllCells®. Details of all patient samples are 

provided in Table 1. 

 
 

AML        
sub-type 

ID 
Primary 
cancer 

Age 
(y) 

Sex Karyotype 
BM 

blasts 

De novo AML 

1 N/A 11 F 45,ΧΧ,-7[20]/46,ΧΧ,-
7,+?22[2] 

  

2 N/A 86 M 45,X,-Y[22]/46,XY[2]   

3 N/A 50 M 46,ΧΥ,inv(16)(p13q22)[23]/46
,ΧΥ[2]  

80% 

4 N/A 46 M 45,Χ,-Υ,t(8;21)(q22;q22)[25] 30-
40% 

5 N/A 29 F 46,ΧΧ,t(15;17)(q22;q21)[25] 90% 

6 N/A 56 M 47,ΧΥ,+8[4]/46,ΧΥ[21] 70% 

7 N/A 60 F  
46,ΧΧ,inv(3)(q21q26)[17]/46,

ΧΧ[2]  

  

8 N/A 56 M 46,ΧΥ[25]   

9 N/A NA N/A No Cyto   

10 N/A NA F 46XX,t(15;17)(q24;q21.2)[8]   

11 N/A NA M XY,t(3;12)(q26;p13),+6,+13,+
22[10] 

  

12 N/A NA N/A No Cyto   
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13 N/A NA M 46,XY,t(11;19)(q23p13.3)MLL
T1 fusion 

  

AML after 
chemotherapy 

14 Unknow
n 

73 M 46,XY[20]   

15 CLL 55 M 46,XΥ[25]   

16 MDS 81 F 45,ΧΧ,der(14;22)(q10;q10)[9]
/44,XX,add(1)(p34~36),add(3

)(q27),-
5,add(13)(p11),del(13)(q22q3

4),-14,-16,-
17,del(17)(q11.2q21),add(19)

(q11),-
20,+mar1,+mar2,+mar3[6] 

  

17 CML 41 M 46,ΧΥ[25]    

18 Colon 
cancer 

73 M 46,ΧΥ,t(8;21)(q22;q22),del(9)
(q13q22)[25] 

30% 

19 MDS 74 F 47,ΧΧ,+del(22)(q11.2)[8]/47,
ΧΧ,del(12(p11,2),+del(22)(q1
1.2)[10]/47,XX,del(12)(p11.2),
del(20)(q11.2~13.1),+del(22)(

q11.2)[5] 
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20 MDS 84 F 46,ΧΧ,del(5)(q13q33)[9]/46,X
X,del(5)(q13q33),del(20)(q11.
2)[4]/46,XX,del(5)(q13q33),-

7[3]/46,ΧΧ[3] 

  

21 MDS 56 M 46,ΧΥ[24]   

AML after 
radiotherapy 

22 Breast 58 F 47,XX,+8,inv(9)(p12q13)[2]/4
6,ΧΧ,inv(9)(p12q13)[18]  

  

23 Breast 70 F 46,XX,inv(9)(p12q13)x2,t(15;
17)(q22;q21)[10]/46,ΧΧ,inv(9)

(p12q13)x2[6]  

  

24 Breast 69 F 45,ΧΧ,del(2)(p21),add(3)(q12
),-

4,del(7)(q22),+8,add(14)(q32)
,-16,-17,+mar1[17]/46,ΧΧ[3] 

  

AML after 
radiotherapy & 
chemotherapy 

25 ATLL 53 M 78-88,inc[5]/46,XY[3]   

s-AML 26 MDS 76 F 46,ΧΧ[30] 8% 

Normal donor 

27 N/A 30 M     

28 N/A 21 M     

29 N/A 33 F     

30 N/A 24 M     

31 N/A 23 M     
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Table 1. Age, gender, cytogenic details of 26 AML patients and 5 normal donors.  

The group denoted “AML after radiotherapy” may have also had chemotherapy or 

hormonotherapy. CLL=Chronic lymphocytic leukaemia, MDS=Myelodysplastic 

syndrome, CML=Chronic Myelogenous Leukaemia, ATLL= Adult T-cell 

leukaemia/lymphoma, s-AML: secondary AML, NA=Not available. 

 

3.1.2 Human AML Haloplex sequencing 

DNA from 16 AML patients (6 de novo AML, 6 AML from chemotherapy, 3 AML from 

radiotherapy and 1 AML after MDS) were sent to Oxford Gene Technology for 

Haloplex sequencing, which targets known mutational hotspots in AML. The 

algorithms Polyphen2, PREDICT SNP, PREDICT SNP 2, PROVEAN and VEP were 

used on the sequencing results to predict the effect of the mutation on the protein, 

depending on what type of mutation was present. As depicted in Figure 12, single 

nucleotide changes involve use of the algorithms Polyphen2, PREDICT SNP or 

PREDICT SNP 2 while longer mutations involve use of PROVEAN or VEP algorithms. 

All novel mutations with a predicted deleterious effect on the protein were listed as 

shown in Table 2. Mutations with a frequency of less than 5% were removed from the 

list as these mutations would not contribute to the progression of AML and were also 

difficult to confirm due to the sensitivity of the techniques. A total of 12 novel mutations 

were identified by Haloplex sequencing. These novel mutations were re-analysed by 

either Sanger sequencing or pyrosequencing for confirmation of their presence. Five 

of the novel mutations, consisting of three frameshift insertions and two point 

mutations, were confirmed in the four patients in the genes DNMT3A, serine and 

arginine rich splicing factor 2 (SRSF2), TET2 and RUNX1 (Figure 13).  5 of the novel 

mutations were not confirmed in the genes SET binding protein 1 (SETBP1), ASXL1, 

EZH2 and SRSF2 (Figure 14).  Clinical information of the patients with novel mutations 

are detailed in Table 3. All mutations, both previously known, and newly confirmed 

novel mutations are listed in Table 4. Novel mutations in the genes DNMT3A, SRSF2, 

TET2 and RUNX1 were identified, each predicting serious consequences to the 

protein function. 
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Figure 12. Algorithm flow chart.  

For each type of mutation present, a sequence of different algorithms was used to 

predict whether the effect on the protein was deleterious or not. The colour of algorithm 

panel represents its effectives. The darker the colour, the more effective the 

evaluation. 
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Table 2. Novel mutations in human AML cases from DNA sequencing analysis. 

Novel mutations identified in 6 de novo AML, 6 AML from chemotherapy, 3 AML from 

chemotherapy and 1 AML after MDS, detected using the Haloplex system. Mutated 

genes, frequency, codons affected, and algorithm predictions are listed. Algorithms 

predictions (Polyphen2, PREDICT SNP, PREDICT SNP 2, PROVEAN, VEP) are listed 

as being deleterious (D) or HIGH (high chance of the mutation being deleterious) with 

Ter (termination of protein) based on the type of algorithm used. 

ID Gene Ref->Seq HGVSp VarFreq Algorithm

5 ASXL1 C->A p.Gln623Lys 6.54 PREDICT SNP D:65%

22 ASXL1 C->A p.Gln623Lys 21.59 PREDICT SNP D:65%

15 DNMT3A AT->C p.Ile715ProfsTer64 40.36 VEP High

6 EZH2 T->A p.Phe290Leu 21.53 PREDICT SNP D:51%

8 EZH2 T->A p.Phe290Leu 21.65 PREDICT SNP D:51%

14 EZH2 T->A p.Phe290Leu 22.95 PREDICT SNP D:51%

15 EZH2 T->A p.Phe290Leu 24.86 PREDICT SNP D:51%

17 EZH2 T->A p.Phe290Leu 27.15 PREDICT SNP D:51%

23 EZH2 T->A p.Phe290Leu 26.13 PREDICT SNP D:51%

4 EZH2 T->- p.Phe290LeufsTer31 15.68 VEP High

26 EZH2 T->- p.Phe290LeufsTer31 17.69 VEP High

6 RUNX1  -> C p.Ala338ArgfsTer262 46.56 VEP High

26 RUNX1  -->GGCTGAGC p.Leu144ArgfsTer4 21.96 VEP High

1 SETBP1 TCAGA->TCGGG p.Glu1276Gly 98.97 VEP Moderate

3 SETBP1 TCAGA->TCGGG p.Glu1276Gly 99.77 VEP Moderate

5 SETBP1 TCAGA->TCGGG p.Glu1276Gly 99.84 VEP Moderate

6 SETBP1 TCAGA->TCGGG p.Glu1276Gly 99.16 VEP Moderate

15 SETBP1 TCAGA->TCGGG p.Glu1276Gly 98.92 VEP Moderate

20 SETBP1 TCAGA->TCGGG p.Glu1276Gly 100 VEP Moderate

23 SETBP1 TCAGA->TCGGG p.Glu1276Gly 99.15 VEP Moderate

24 SETBP1 TCAGA->TCGGG p.Glu1276Gly 99.45 VEP Moderate

19 SRSF2 C->T p.Pro96Leu 23.28 PREDICT SNP D:61%

4 SRSF2 GGGAC->TGGAT p.Arg47Leu 79.17 VEP Moderate

4 SRSF2 GGGAC->GGGCT p.Asp48Ala 79.17 VEP Moderate

21 SRSF2 AC->GT p.Asp48Gly 71.79 VEP Moderate

21 SRSF2 AC->CT p.Asp48Ala 71.79 VEP Moderate

22 SRSF2 GGGAC->TGGAT p.Arg47Leu 66.67 VEP Moderate

22 SRSF2 GGGAC->GGGCT p.Asp48Ala 66.67 VEP Moderate

6 TET2 C->T p.Gln821Ter 94.9 PREDICT SNP 2 D:81%
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Figure 13. Confirmation of novel mutations.  

(A) Sanger sequencing confirmation of the Gln821Ter (CAGTAG) TET2 mutation 

which results in termination of the protein. (B) Sanger sequencing confirmation of a 
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Ala338ArgfsTer262 mutation (C insertion) in RUNX1 in a de novo AML patient which 

results in termination of the protein. (C) Sanger sequencing confirmation of a 

Ile715ProfsTer64 mutation (AT->C) in DNMT3A in a patient who developed AML after 

chemotherapy, which results in termination of the protein. (D) A Pro96Leu mutation 

(C->T) in SRSF2 in a patient who developed AML after chemotherapy was confirmed 

by pyrosequencing showing a frequency of 48%. (E) A Leu144ArgfsTer4 

(GGCTGAGC insertion) in RUNX1 in a patient who developed AML after MDS was 

confirmed by pyrosequencing showing a frequency of 28%. An insertion of 

GCTCAGCC as reported on the reverse strand which corresponds to a GGCTGAGC 

insertion. Grey shaded regions for pyrosequencing results indicate the region where 

the presence of the wild-type and mutated change can be detected. 

 

 

Figure 14. No confirmation of novel mutations.  

(A) Sanger sequencing did not confirm a Glu1276Gly (TCAGATCGGG) mutation in 

SETBP1 in patient 1. In these samples a SNP has been identified at codon 1275 with 

the sequence being TCG instead of TCA, which does not change the a.a. from serine. 
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(B) Sanger sequencing did not confirm a Arg47Leu (GGGACTGGAT), Asp48Ala 

(GGGACGGGCT/ACGT/AC->CT) or Asp48Gly (GTAC) mutation in SRSF2 in 

patient 4. In these samples a SNP has been identified with the codon 48 being GAT 

instead of GAC, which does not change the a.a. from aspartate. (C) Pyrosequencing 

sequencing did not confirm a Gln623Lys (CA) mutation in ASXL1 in patient 5. (D) 

Pyrosequencing sequencing did not confirm a Phe290Leu (TA) mutation in EZH2 in 

patient 6. Grey shaded regions for pyrosequencing results indicate the region where 

the presence of the wild-type and mutated change can be detected. 

 

 

Table 3. Clinical data of AML patients with novel mutations.  

For FLT3 mutations, samples were screened for FLT3-ITD (internal tandem 

duplication) and FLT3-TKD (tyrosine kinase domain) mutations. NPM1 was screened 

for all mutations. WBC = white blood cell, PLT = platelet, Hb = haemoglobin, PB = 

peripheral blood, BM = bone marrow. 

Patient 6 Patient 15 Patient 19 Patient 26

AML De novo AML AML after 

chemotherapy

AML after chemotherapy s-AML 

Previous disease No CLL MDS MDS

Age (y) 56 55 74 76

Gender M M F F

Karyotype 47,ΧΥ,+8[4]/46, 

ΧΥ[21]

46,XΥ[25] 47,ΧΧ,+del(22)(q11.2)[8]/

47,ΧΧ,del(12(p11,2),+del

(22)(q11.2)[10]/47,XX,del

(12)(p11.2),del(20)(q11.2-

13.1),+del(22)(q11.2)[5]

46,ΧΧ[30]

NPM1 mutation Negative Positive Not available Negative

FLT3 mutation Negative Negative Not available Negative

FAB diagnosis M5 M5 Not available M5

WBC (per mm3) 81860 Not available Not available 32740

PLT (per mm3) 7000 Not available Not available 198000

Hb (g/dL) 6.3 Not available Not available 10.7

PB blasts % 24 Not available Not available 26

BM blasts % 70 25 Not available 8

Treatment Not available Allogeneic bone 

marrow 

transplantation

Not available Not available

Relapse Yes No Not available Yes

Survival 10 m / died of 

resistant disease

Still alive 84 m post 

diagnosis of AML

Not available 35 m / died of septic 

sock
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AML sub-type ID

1 TET2 Pro363Leu (53%)

TET2 Leu1721Trp (52%)

SETBP1 His1100Arg (53%)

CEBPA Pro189del (9%)

3 FLT3 Asp835Tyr (39%)

4 TET2 Leu1721Trp (100%)

5 TET2 Pro363Leu (50%)

TET2 Leu1721Trp (49%)

6 TET2 Gln821Ter (95%)

RUNX1 Ala338ArgfsTer262 (47%)

JAK2 Val617Phe (41%)

ASXL1 Glu635ArgfsTer15 (18%)

8 No mutation detected

14 TET2 Pro29Arg (55%)

TET2 Leu34Phe (49%)

TET2 His1778Arg (46%)

15 TET2 Leu1721Trp (48%)

DNMT3A Ile715ProfsTer64 (40%)

IDH2 Arg140Gln (39%)

NPM1 Trp288CysfsTer12 (20%)

17 No mutation detected

19 SRSF2 Pro96Leu (23%)

20 TET2 Leu1721Trp (53%)

TET2 Pro363Leu (50%)

21 RUNX1 Arg162Lys (73%)

SRSF2 Pro95Arg (33%)

22 DNMT3A Arg882His (43%)

NPM1 Trp288CysfsTer12 (40%)

23 FLT3 Asp835Val (15%)

24 No mutation detected

26 TET2 Pro29Arg (50%)

ASXL1 Gly646TrpfsTer12 (35%)

RUNX1 Leu144ArgfsTer4 (22%)

de novo AML

AML after 

chemotherapy

AML after 

radiotherapy

s-AML

Mutations
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Table 4. Total list of mutations in human AML patient samples. 

All mutations, including previously known mutations and confirmed novel mutations in 

6 de novo AML, 6 AML from chemotherapy, 3 AML from chemotherapy and 1 AML 

after MDS, detected using the Haloplex system. Mutated genes, codons affected and 

frequency are listed. Confirmed novel mutations are underlined. 

 

3.1.3 Human AML PU.1 SNPs 

We investigated the presence of four SNPs in two regions of the URE, a distal 

regulatory unite (DRU) and proximal regulatory unit (PRU), of the gene PU.1 by 

Sanger sequencing which have been linked to regulate PU.1 expression in 23 human 

AML cases (Steidl et al. 2007; Bonadies, Pabst, and Mueller 2010). SNPs were 

detected in each AML patient sample (Figure 15) and normal donor (Figure 16). In 

each patient the SNPs detected were either heterozygous or homozygous, but no 

patient had these SNPs at every SNP site. The number of detected SNPs were similar 

across DRU, PRU 1, PRU 2 and PRU 3 sites with PRU 2 showing a slightly higher 

number of SNPs. Homozygosity was only detected in six AML patients for DRU, PRU 

1 and PRU 2. These homozygous SNPs were in de novo AML, AML after 

chemotherapy and AML after radiotherapy patients. No homozygous SNPs were 

detected for PRU 3. In normal donors, a higher percentage of wild-type SNPs were 

reported, and homologous SNPs were reported at DRU 1 and PRU 2. The presence 

of these SNPs was detected in both human AML patient samples and normal donor 

samples, however, due to the lack of RNA, the effect of these SNPs on transcriptional 

expression could not be assessed. 
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Figure 15. Sanger sequencing of PU.1 SNPs in AML patients. 

Sanger sequencing analysis of 4 SNPs located in the URE of PU.1 in the bone marrow 

of 23 AML patient samples. SNPs were located in both the distal regulatory unit (DRU 

1) and the proximal regulatory unit (PRU 1, 2, 3). Percentages of wild-type (WT), 

heterozygous (Het) and homozygous (Hom) SNPs are displayed. 
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Figure 16. Sanger sequencing of PU.1 SNPs in normal control donors. 

Sanger sequencing analysis of 4 SNPs located in the URE of PU.1 in the bone marrow 

of 5 control patient samples. SNPs were located in both the distal regulatory unit (DRU 

1) and the proximal regulatory unit (PRU 1, 2, 3). Percentages of wild-type (WT), 

heterozygous (Het) and homozygous (Hom) SNPs are displayed. 

 

3.1.4 Human AML PU.1 promoter DNA methylation 

DNA methylation analysis of the PU.1 promoter in 5 normal bone marrow donors and 

20 AML patients (10 de novo AML patient samples, 7 AML after chemotherapy patient 

samples, 2 AML after radiotherapy patient samples and 1 AML after MDS patient 

sample) was assessed by pyrosequencing. PU.1 pyrosequencing primers were first 

designed to target the 4 CpG sites in the promoter previously shown to regulate PU.1 



86 

 

expression (Tatetsu et al. 2007). Validation of the primers by pyrosequencing with 

human methylation controls showed an average 2% level of DNA methylation in an 

unmethylated control and an average 82% level of DNA methylation in a methylated 

control (Figure 17). 

AML patients had a slightly higher mean level of methylation for each CpG site, which 

was not significant, in comparison to normal donors. The range of methylation levels 

was much larger for all AML patients in comparison to normal donors with a portion of 

AML patients showing a greater than 60% methylation level (Figure 18). No significant 

difference in DNA methylation among the AML patient sub-groups (Figure 19) or 

among gender (Figure 20). This sub group with a high level of DNA methylation was 

composed of 3 male and 2 female AML patients of de novo AML, AML after 

chemotherapy and AML after radiotherapy groups. Age, however, may be a 

contributing factor as 5 out of the 6 samples with a > 59% methylation level were all 

aged 70 or older (Figure 21). For the 6th sample with a >59% methylation level, the 

age of the AML patient was unknown. In these AML patient samples, a sub-group of 

patients have a high level of DNA methylation of the PU.1 promoter, indicating possible 

transcriptional repression. 

 

 

Figure 17. Pyrosequencing of PU.1 CpGs. 

Pyrosequencing pyrograms of CpG sites in the PU.1 promoter in human bisulfite 

treated unmethylated negative control DNA (A) and methylated positive control DNA 

A

 
B
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(B). PU.1 CpG regions are identified by a blue shading while a bisulfite control is 

identified by an orange shaded region. Percentage of methylation is indicated by a 

percentage above each CpG site. 
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Figure 18. PU.1 DNA methylation levels in control and AML samples. 

DNA methylation was measured in bone marrow control samples from 5 control 

samples from normal donors and 20 AML patient samples by pyrosequencing at 4 

CpG sites the promoter region of PU.1. Standard deviation and mean of the DNA 

methylation levels of each CpG are displayed. 
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Figure 19. PU.1 DNA methylation levels grouped by treatment type. 

DNA methylation levels in bone marrow samples from 10 de novo AML patient 

samples, 7 AML after chemotherapy patient samples, 2 AML after radiotherapy patient 

samples and 1 AML after MDS patient sample. Standard deviation and mean of the 

DNA methylation levels of 4 CpG sites in the PU.1 promoter is displayed. 
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Figure 20. PU.1 DNA methylation levels grouped by gender. 
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DNA methylation levels in bone marrow samples from 10 male and 8 female AML 

patient samples at the 4 CpG sites of the PU.1 promoter. Mean of the DNA methylation 

levels of each CpG are displayed. 
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Figure 21. PU.1 DNA methylation levels grouped by age.  

DNA methylation levels in the PU.1 promoter of AML patients separated in the age 

groups of 0-35 years old (n=1), age group 35-65 years (n=5) and the age group >65 

years old (n=9). 

 

3.1.5 Human AML PU.1 transcriptional expression 

Transcriptional expression was assessed in human AML patient samples where DNA 

methylation of the promoter was performed and where there was sufficient RNA for 

MQRT-PCR. Two AML patients (12, 13), which had no increase in DNA methylation, 

showed levels of PU.1 expression similar to control bone marrow samples (Figure 22). 

PU.1 expression was reduced in two AML patients (9, 11), one of which (patient 11) 

was reported in a previous figure to have a high level of PU.1 promoter DNA 

methylation. This was a 3.5- fold reduction in patients 9 and 11 comparison to the 

mean of the control donor. This reduction is still a 2- fold reduction in transcription in 
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patients 9 and 11 in comparison to the lowest expressed control donor. Although more 

AML patient samples are required, this work indicates that PU.1 expression could be 

lower in some AML patient samples. 
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Figure 22. MQRT-PCR expression of PU.1 in human AML. 

PU.1 expression was analysed in 5 bone marrow donor control samples and 4 de novo 

AML patient samples (patient 9, patient 11, patient 12 and patient 13). Expression 

levels were normalised to HPRT. Error bars are displayed using the standard 

deviation. 

 

Discussion and future directions 

Overall this work identified novel AML mutations, investigated the presence of SNPs 

upstream of PU.1/Sfpi1 and illustrated the epigenetic changes, particularly 

transcription expression and DNA methylation, in human AML cases, highlighting the 

role of PU.1 in AML development. 
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The discovery of novel mutations is essential in the investigation of leukaemogenesis 

development and better understanding of the pathways of leukaemogenesis. Here we 

identified 5 novel mutations in the genes TET2, DNMT3A, SRSF2 and RUNX1, all of 

which have been predicted to have a deleterious effect on the protein. TET2 proteins 

function in DNA methylation by converting 5-methyl-cytosine to 5-

hyroxymethylcytosine (5hmC) and may also result in DNA demethylation by removing 

the methyl group from the cytosine base (Feng et al. 2019). TET2 mutations have 

been identified in a range of haematological malignancies such as AML, CML and 

MDS (Delhommeau et al. 2009). These mutations occur in 8-12% of de novo AML 

cases (Cancer Genome Atlas Research et al. 2013; Chou et al. 2011; Gaidzik et al. 

2012). TET2 mutations are located all along the gene, most of which are single 

nucleotide mutations, found to result in loss of function of generating 5hmC (Aslanyan 

et al. 2014). The novel Gln821Ter mutation found in patient 6 in our study was present 

in 95% of the bone marrow sample by Haloplex sequencing and, confirmed by Sanger 

sequencing, where a high mutational peak was observed (T) with a very small wild-

type peak (G). This mutation was identified in a patient where 70% of bone marrow 

cells were blasts. This frequency suggests that TET2 Gln821Ter probably occurred 

early in the process and is likely to be a driver mutation. The fact that this novel TET2 

mutation was found in 95% of the sample while the blasts of the patient was lower 

(70%) is in line with other studies which have reported that TET2 mutations are 

associated with clonal haematopoiesis in healthy elderly people, are early events in 

leukaemogenesis and are frequently increased with age (Bullinger, Dohner, and 

Dohner 2017). This patient also had mutations in RUNX1, janus kinase 2 (JAK2) and 

ASXL1. A pairwise mutation was therefore detected in patient 6 between TET2 and 

ASXL1, which has been previously reported (Chou et al. 2011). This patient suffered 

a relapse and at 10 months died of resistant disease. The effect of a TET2 mutation 

on survival from other studies is unclear. There are conflicting reports as in some 

studies it has been reported to significantly affect overall survival in AML patients 

(Aslanyan et al. 2014; Gaidzik et al. 2012), particularly in cases with an intermediate 

karyotype (Chou et al. 2011) while in other studies it has shown no significant 

difference in survival (Weissmann et al. 2012). In this case, interestingly the patient 

unfortunately died of resistant disease, possibly related to this new TET2 mutation 

found in most if not all blast cells. This would need to be further investigated. 
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DNMT3A is a DNA methyltransferase responsible for the addition of a methyl group to 

cytosine, forming 5-methylcytosine which is essential for embryonic development 

(Okano et al. 1999). DNMT3A is commonly mutated in around 22% of human AML 

cases, with a lower frequency reported in Asian populations (Yamashita et al. 2010; 

Hou et al. 2012). DNMT3A mutations have been identified as preleukemic mutations 

that arise early in AML evolution and persist in time of remission (Medinger and 

Passweg 2017). Mutations are most frequently found in the methyltransferase 

(MTase) region of the gene, where R882 is located (Ley et al. 2010). The mutation 

R882 mutation is the most common mutation, accounting for 60% of all DNMT3A 

mutations (Ley et al. 2010; Hou et al. 2012). The R882H mutation was found to reduce 

the enzymatic activity of DNMT3A by 50% (Yamashita et al. 2010), and although no 

global DNA methylation changes could be detected (Ley et al. 2010), it is also 

associated with an up-regulation of HOX family members and HOX cofactor MEIS1 

(Yan et al. 2011; Ferreira et al. 2016). In this study two DNMT3A mutations were 

reported, a R882 mutation in patient 22 and a novel mutation in patient 15. In patient 

15, this novel mutation in DNMT3A at codon 715 is located in the MTase region. It is 

present in 40% of the sample cells and is predicted to have a deleterious effect on the 

protein, as it results in its termination. Mutations in DNMT3A have been found to be 

associated with FLT3, IDH1, IDH2 and NPM1 (Ley et al. 2010; Hou et al. 2012; Cancer 

Genome Atlas Research et al. 2013). Importantly, this association is also seen in this 

study as patient 15 has DNMT3A, TET2, IDH2 and NPM1 mutations and patient 22 

has DNMT3A and NPM1 mutations. DNMT3A mutations, whether a R882 mutation or 

not, are associated with poor overall survival (Ley et al. 2010; Hou et al. 2012; 

Aslanyan et al. 2014). Interestingly, patients with DNMT3A mutations have been 

reported to respond well to the DNA methylation inhibitor decitabine with a recent 

study reporting 75% of DNMT3A-mutated patients achieving complete remission after 

treatment while 34% of wild type DNMT3A patients achieved complete remission, 

although the size of the study was small at just 46 patients (Metzeler et al. 2012). In 

this case however patient 15 was still alive at 84 months post diagnosis of AML.  This 

surprisingly long survival result could be due to the patient also having an NPM1 

mutation which has been associated with favourable survival (Dohner et al. 2005). 

The gene SRSF2 is a splicing factor (Krainer, Conway, and Kozak 1990). SRSF2 is 

most commonly mutated in chronic myelomonocytic leukaemia or MDS cases, rather 



93 

 

than AML cases (Yoshida et al. 2011). Spliceosome genes are found to be mutated in 

5% of AML patients, with mutations in SRSF2 found in 1% (Kihara et al. 2014; Yoshida 

et al. 2011). Frequent persistence of SRSF2 mutations has been found in intensively 

treated AML patients in first complete remission (Rothenberg-Thurley et al. 2018). The 

most common point mutation is at codon Pro95 (Arbab Jafari et al. 2018), which is 

located in the RNA recognition motif forms a bond with RNA (Daubner et al. 2012). 

Two SRSF2 mutations were reported in this study at codon Pro95 in patient 21 and a 

novel SRSF2 mutation in patient 19. The novel mutation reported here in patient 19 in 

SRSF2 occurs at Pro96 at a frequency of 23% with a predicted strong deleterious 

effect and so possibly interfering with RNA binding. Pyrosequencing analysis has 

found the mutation to occur at a higher level in 48% of the sample cells but 

unfortunately the number of blasts present in the bone marrow is not available for this 

patient. Of interest, both patients were diagnosed with AML following chemotherapy 

treatment for MDS; this is in line with the observation that SRSF2 mutations are found 

especially in secondary AML patients (Bullinger, Dohner, and Dohner 2017). 

Unfortunately, we do not have further patient information on relapse and survival.  

The next mutation found was in RUNX1, which is a transcription factor which activates 

genes involved in haematopoiesis. RUNX1 is essential in early development with 

homozygous mutations in mice resulting in embryonic death (Okuda et al. 1996). 

RUNX1 mutations have been frequently reported in MDS patients, and in AML cases. 

RUNX1 mutations are included as a provisional category “AML with mutated RUNX1” 

in the 2017 recommendations from the European LeukemiaNet (Dohner et al. 2017). 

A higher frequency of RUNX1 mutations was reported in cases which have developed 

from MDS (24%), rather than in de novo AML cases (9%) (Gaidzik et al. 2016). Two 

novel RUNX1 mutations were found in patients 6 and 26 in this study and one 

previously reported RUNX1 mutation in patient 21. In this study, the novel RUNX1 

mutation is present in exon 4, located in the Runt homology domain (RHD) which is 

responsible for DNA binding and one of the most commonly mutated exons in RUNX1 

(Gaidzik et al. 2016) and exon 8 in the transactivation domain (TAD) which binds with 

various growth factors, signalling molecules and transcription activators. The most 

common type of mutation is a frameshift mutation (Gaidzik et al. 2016; Schnittger et 

al. 2011), which we identified in 2 out of the 3 RUNX1 mutations in this study. These 

novel mutations are also frameshift mutations, present in 22% and 47% of the samples 
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leading to termination of the protein. Pyrosequencing analysis of the RUNX1 

frameshift at codon 144 also found a similar frequency of the mutation at 28% of the 

sample cells. RUNX1 mutations have shown a significant association with ASXL1 

mutations (Gaidzik et al. 2016), which is confirmed in both patient 6 and patient 26 in 

this study. Mutual exclusivity was also seen in patients that had RUNX1 mutations and 

those that had FLT3 and NPM1 mutations, which has also been previously reported 

(Cancer Genome Atlas Research et al. 2013). Overall survival is significantly lower in 

patients with a RUNX1 mutation (Gaidzik et al. 2016; Schnittger et al. 2011; Jalili et al. 

2018) and in this study patients 6 and 26 with novel RUNX1 mutations relapsed and 

died of resistant disease at 10 months and 35 months, respectively. 

When looking at the mutations across all samples, the most commonly mutated gene 

was TET2 which was mutated in 8 out of 16 patients screened and 3 of these patients 

had two TET2 mutations, while one patient had three TET2 mutations. TET2 mutations 

were also present in a large proportion of the sample, usually 50% or more, which 

again illustrates its occurrence in early leukaemogenesis. As has been previously 

reported in the literature, mutations in this study involving genes functioning in DNA 

methylation (DNMT3A, TET2, IDH2) myeloid transcription factors (RUNX1, CEBPA), 

chromatin modifiers (ASXL1) and activated signalling (JAK2, FLT3) co-occurred 

across all AML sub-types. When comparing AML sub-types, AML patients after 

radiotherapy had the least mutations with a DNMT3A and NPM1 mutation for patient 

22, an FLT3 mutation for patient 23 and no mutation for patient 24. Overall, however, 

no distinguishable feature could be detected which was specific for a particular AML 

sub-group. All AML sub-groups had varying amounts of chromosomal aberrations, 

point mutations, frame-shifts, PU.1 polymorphisms and high PU.1 promoter DNA 

methylation levels. This is likely due to the small number of samples in each sub-

group. Also, it is important to note that after sequencing analysis, there were still 3 

patients (patient 8, patient 17, patient 24) with no mutations detected and two of these 

patients had a normal karyotype. This highlights the need for further investigation into 

identifying mutations of interest. 

Although Sfpi.1 is commonly mutated in the CBA/Ca mouse model, in humans the 

gene, known as PU.1, is rarely mutated. A study by Mueller et al. (Mueller et al. 2002) 

reported PU.1 mutations present in 7% of 126 cases of AML patients. This high 

occurrence however, has not been repeated with studies involving 77 AML cases 
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(Lamandin et al. 2002) and 60 AML cases (Vegesna et al. 2002) reporting no PU.1 

coding region mutations, this discrepancy is possibly due to the Japanese cohort used 

by Mueller et al. A study by Dohner et al involving 112 AML patients did find mutations 

in 2 AML patients, illustrating that PU.1 mutations are not a common mechanism for 

AML induction. Other methods of PU.1 disruption have since been investigated. 

Polymorphisms in the URE have been identified which leads to reduced PU.1 

expression with a deletion in this URE region identified in a remission case of an AML 

patient (Steidl et al. 2007; Bonadies, Pabst, and Mueller 2010). One of these SNPs 

(DRU) has been shown to reduce the enhancer activity of the URE and interfere with 

the binding of the PU.1 transcription regulator, special AT-rich sequence binding 

protein 1 (SATB1). 

In this study, these polymorphisms were detected in human AML patient samples at 

each SNP site. Unlike previous studies however, homozygosity for these SNPs was 

not detected for all SNPs in any patient (Bonadies, Pabst, and Mueller 2010). This is 

most likely due to the very low numbers of patient samples in this study. No 

homologous PRU 3 SNP was detected in any AML patient but it has been previously 

reported to occur at a low frequency (<5%) (Steidl et al. 2007). These SNPs, whether 

heterozygous or homozygous, also occur in normal human control samples and further 

investigation into the effect of these SNPs show that the SNP DRU1 reduces PU.1 

expression in specific cell types, such as GMPs and MEPS, rather than stem cells, 

and they appear to contribute to AML development rather than having a role in its 

initiation (Steidl et al. 2007). The data obtained on SNP analysis was not linked to 

transcriptional expression due to the fact that RNA was not available from the same 

patients. Although transcriptional analysis could not be performed and compared to 

SNPs, the potential effect of this SNP data on transcriptional changes could be further 

investigated. The URE and promoter region are locations where transcription factors 

bind to regulate gene expression and these SNPs could possibly occur in one of these 

binding sites. A number of transcription factors such as GATA-1 and RUNX1 have 

been reported as PU.1 transcription factors (Gupta et al. 2009). Future work could 

analyse the DNA sequence of this region for transcription factor recognition 

sequences. Transcription factors are commonly reported as mutated in AML cases, 

such as RUNX1 (Cancer Genome Atlas Research et al. 2013), therefore detection of 
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transcription factor binding sites among the SNPs could indicate that their effect is 

lessened as a result. 

DNA methylation levels among AML patients showed a range of methylation levels, 

which can be separated into those with a high or with a low PU.1 methylation level. 

The difference in DNA methylation between these two groups was significant (Mann 

Whitney, p=0.019). This high level of PU.1 promoter methylation was not due to 

classification of AML (de novo, AML after chemotherapy or AML after radiotherapy) or 

gender. Analysis of the age of the AML patients revealed that the patient samples with 

a high level of DNA methylation were all aged > 65 years. Within the > 65 year age 

group, there appears to be 2 sub-groups, one with a high level of DNA methylation 

and another with a low level of DNA methylation. Previous work has shown that 

transcriptional PU.1 levels in 87 AML patients could also distinguish patients with a 

high PU.1 methylation level from those with a low PU.1 methylation level (Will et al. 

2015). Gene expression profiles of those with a lower PU.1 expression level sharing 

more similarly dysregulated genes to a mouse model UREhetMsh-/- designed to 

represent a phenotype representative of aging HSCs (Will et al. 2015), although the 

UREhetMsh-/-  mouse model resulted in development of MDS-like disorder rather than 

AML.  

In this study, the numbers of samples in these groups, however, are limited and so 

this work needs to be confirmed in a larger cohort. Unfortunately, for many of the AML 

samples, only DNA was available. For the samples where RNA was available, patient 

11 showed a high level of PU.1 methylation. Transcriptional analysis also showed a 

reduction of PU.1 expression in patient 11 in comparison to the normal donor samples. 

This separation of AML patients with high or low PU.1 DNA methylation levels could 

perhaps represent different pathways through which AML developed which, in cases 

with a higher DNA methylation level, involved repression of PU.1 transcription with 

preference in an older age group. The high level of DNA methylation in these patients 

could be due to upstream mutations in epigenetic regulators, resulting in aberrant DNA 

methylation. DNA sequencing analysis was only performed in 2 patient samples with 

high DNA methylation levels (patient 20 and 23) and these patients also had mutations 

in the genes FLT3 and TET2 (Rasmussen and Helin 2016). Mutated or loss of TET2 

has been reported to result in decreased 5-hmC levels in the DNA of myeloid cancer 

patients (Ko et al. 2010) and hypermethylation of enhancers leading to 
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leukaemogenesis (Rasmussen et al. 2015). Therefore, in patient 20, mutation of TET2 

could have resulted in the hypermethylation of the PU.1 URE due to low 5-hmC levels 

with reduction of PU.1 transcriptional expression could possibly be the mechanism of 

blocking myeloid development in these samples in patient 20. The exact effect of TET2 

mutations, however, is currently not well understood. The FLT3 Asp835 mutation in 

patient 23 is located within the kinase domain of the FLT3 receptor and results in 

constitutively activation of the kinase causing proliferation of cells (Yamamoto et al. 

2001).  In this patient the high DNA methylation of the PU.1 promoter could have 

produced leukemic blast cells with enhanced proliferation by the FLT3 Asp835 

mutation. A reduction of PU.1 expression was also seen in a patient sample (patient 

9) which had a low level of DNA methylation. This decrease in transcription does not 

appear to be caused by DNA methylation and may have another, as yet unidentified, 

mechanism of reducing transcription. It may be that the reduction of PU.1 expression 

is caused by miR-155, a known negative regulator of PU.1 (Vigorito et al. 2007) which 

has been previously reported to be upregulated in AML patient samples (Salemi et al. 

2015). Even though this increase in PU.1 promoter DNA methylation and decrease in 

PU.1 transcription can only be demonstrated in one patient sample due to lack of RNA 

material, this illustrates the significance of PU.1 in human AML development and the 

need to study this gene in more detail in human AML cases. 
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3.2 Mouse rAML sequencing and gene expression 

analysis 
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3.2.1 Introduction 

The CBA/Ca mouse serves as an invaluable source of information in the investigation 

of development of radiation-induced AML. There are close histopathological 

similarities between humans and mice in the development of AML (Major 1979), 

however, there have been questions about the use of the mouse for investigation into 

human AML due to the well-established presence of the Sfpi1 mutation in the mouse 

which has not been often reported in human cases of t-AML (Suraweera et al. 2005). 

A PU.1 R235 mutation is a rare event in human AML with many studies unable to 

detect the presence of any PU.1 coding mutations (Lamandin et al. 2002; Vegesna et 

al. 2002). 

However, recent studies have reported a reduced expression in PU.1 levels clearly 

evident in de novo AML cases (Basova et al. 2014; Steidl et al. 2006). Development 

of AML through the dysregulation of PU.1 seems to be a dominant pathway in murine 

cases which needs further investigation in human cases (Verbiest et al. 2015). Here 

we aim to use both mouse and human AML samples induced by radiation and 

investigate an inter-species comparison.  

Historical rAML samples available in the laboratory from different studies were 

combined. They are composed of spleen samples from CBA/H and F1 CBA/H x 

C57BL/Lia mice which were exposed to either X rays or neutrons but all of which were 

diagnosed with radiation-induced AML. The CBA mouse model is used to study 

radiation leukaemogenesis mechanisms with chromosome 2 Sfpi1 deletion and point 

mutation already identified as driving events during AML development.  In this study, 

our aim was to screen a total of 123 historical radiation-induced AML spleen samples 

for genes commonly mutated in human AML cases, to identify both genetic and 

epigenetic changes in the development of leukaemogenesis, aiming to better 

characterise the molecular mechanisms of rAML induction and to further establish if 

the CBA mouse is a good model of radiation-induced leukaemogenesis. 

 

3.2.2 DNA mutations  

In order to compare human AML with mouse AML, a literature review identified genes 

of interest which are well-known to contain hot spots of mutation in human AML such 

as DNMT3A, IDH1, IDH2, FLT3, NPM1, KRAS, NRAS, CKIT and CEBPA (Cancer 
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Genome Atlas Research et al. 2013; Fernandez-Mercado et al. 2012; Fried et al. 2012; 

Lindsley et al. 2015) (Table 5). The presence of a mutation in Sfpi1 at codon R235 

was included due to its common occurrence in the CBA mouse. PCR primers were 

designed to amplify the identified affected region for each gene in the mouse. A total 

of 123 historical CBA/H mouse rAML samples were sequenced by Sanger sequencing 

for the detection of these common mutations. CGH analysis was also performed on 

116 samples to identify chromosome 2 deletions. 

The most common alternation to occur in the rAML cases was the chromosome 2 

interstitial deletion, always including Sfpi1 in 94 samples (Table 6), of which 79 have 

been previously reported (Brown et al. 2015). A total of 3 genes were found to be 

mutated in the CBA/H spleen samples; mutations at codon R235 in the myeloid 

transcription factor Sfpi1/PU.1, insertions at exon 14 in the receptor tyrosine kinase 

Flt3 and mutations at codon G12 in the signalling factor Kras with accompanying CGH 

data for chromosome 2. No mutations were found in the remaining locations 

sequenced; Npm1 exon 12 mutation, Idh1 R132, Idh2 R140, Dnmt3a R882, Nras G12, 

C Kit exon 17 and Cebpa exon 1 frame shift. Full details for each murine case are 

detailed in Table 7. 

 

Gene Mutation Reference 

FLT3 Exon 14 Fernandez-Mercado et al. 2012 

DNMT3A R882 Fried et al.2012 

IDH1 R132 Ley et al. 2013 

IDH2 R140 Ley et al. 2013 

NRAS G12 Fernandez-Mercado et al. 2012 

KRAS G12 Fernandez-Mercado et al. 2012 

C-KIT Exon 17 Lindsley et al. 2015 

CEBPA Exon 1 Lindsley et al. 2015 

NPM1 Exon 12 Fernandez-Mercado et al. 2012 

 

Table 5. Commonly mutated human AML genes.  

Genes were identified by a literature search and references of the mutations listed. 
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Table 6. Mutations in Sfpi1 R235, Flt3-ITD and Kras G12 in murine rAML samples. 

List of the mutations and associated protein changes found by Sanger sequencing in 

the DNA of 123 mice diagnosed with rAML, the number of mice the mutations were 

found to be present in and also including chromosome 2 deletion information. 

*Previously published in Finnon et al. 2012. ** Previously published in Finnon et al. 

2012 and only Flt3-ITD information included for this sample. Percentages for Flt3-ITD 

are calculated from 124 mice. 

 

Strain Dose Gender Chr 2 Sfpi1 Flt3  Kras Diagnosis 

CBAgfp/gpf 3 Gy Xrays F No Del R235 No ITD G12 
10 

Months 

  3 Gy Xrays F No Del R235 ITD G12 
13 

Months 

  3 Gy Xrays F No Del R235 ITD G12 
13 

Months 

  3 Gy Xrays F No Del R235 No ITD G12 
23 

Months 

  3 Gy Xrays F Del R235 No ITD G12 
14 

Months 

  3 Gy Xrays M Del R235H No ITD G12 
15 

Months 
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  3 Gy Xrays M Del R235H No ITD G12 
17 

Months 

  3 Gy Xrays M Del R235C No ITD G12 
19 

Months 

  3 Gy Xrays M Del R235H No ITD G12 
20 

Months 

  3 Gy Xrays M Del R235H No ITD G12 
14 

Months 

  3 Gy Xrays M Del R235S No ITD G12 
15 

Months 

  3 Gy Xrays M Del R235C No ITD G12 
15 

Months 

  3 Gy Xrays M Del R235 No ITD G12 
14 

Months 

  3 Gy Xrays M Del R235H No ITD G12 
19 

Months 

  3 Gy Xrays M Del R235H No ITD G12 9 Months 

  3 Gy Xrays M Del R235C No ITD G12 
16 

Months 

  3 Gy Xrays M Del R235H No ITD G12 
16 

Months 

  3 Gy Xrays M Del R235 No ITD G12 
11 

Months 

  3 Gy Xrays M Del R235 No ITD G12 
13 

Months 

  3 Gy Xrays M No Del R235C No ITD G12 
22 

Months 

  3 Gy Xrays M Del R235 No ITD G12 
15 

Months 

CBA/H 3 Gy Xrays M Del R235C No ITD G12 
14 

Months 

  3 Gy Xrays M Del R235H No ITD G12 
15 

Months 

  3 Gy Xrays M Del R235C No ITD G12 
15 

Months 

  3 Gy Xrays M Del R235L No ITD G12 
16 

Months 

  3 Gy Xrays M Del R235H No ITD G12 
16 

Months 

  3 Gy Xrays M Del R235H No ITD G12 
18 

Months 

  3 Gy Xrays M Del  R235C No ITD G12 
19 

Months 

  3 Gy Xrays M Del R235C No ITD G12 
15 

Months 

  3 Gy Xrays M Del R235C No ITD 
G12D 

(Case 1) 
22 

Months 

  4.5 Gy Xray M Unknown R235 No ITD G12 
12 

Months 

  4.5 Gy Xray M No Del R235 No ITD G12 
13 

Months 

  4.5 Gy Xray M No Del R235 No ITD G12 
14 

Months 

CBA/H 1 Gy N  M Unknown R235C No ITD G12 Unknown 

  1 Gy N  M Del R235C No ITD G12 Unknown 

  1 Gy N  M Del R235H No ITD G12 Unknown 

  1 Gy N  F Del R235 No ITD G12 Unknown 

  1 Gy N  M Del R235H No ITD G12 Unknown 
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  1 Gy N  F Del  R235H No ITD G12 Unknown 

  1 Gy N  M Del R235H No ITD G12 Unknown 

  1 Gy N  M Del R235S No ITD G12 Unknown 

  1 Gy N  M Del  R235 No ITD G12 Unknown 

  1 Gy N  F Del  R235C No ITD G12 Unknown 

  1 Gy N  Unknown No Del R235C No ITD G12 Unknown 

  0.5 Gy N  M Del  R235 No ITD G12 Unknown 

  0.5 Gy N  Unknown Del R235 No ITD G12 Unknown 

  0.5 Gy N  F Del R235H No ITD G12 Unknown 

  0.5 Gy N  Unknown No Del R235 No ITD G12 Unknown 

  1 Gy N  Unknown No Del R235 No ITD G12 Unknown 

  1 Gy N  M Del R235C No ITD G12 Unknown 

  1 Gy N  M Del R235H No ITD G12 Unknown 

  1 Gy N  F Del R235C No ITD 
G12D 

(Case 2) Unknown 

  1 Gy N  F Del R235L No ITD G12 Unknown 

  1 Gy N  M Del R235C No ITD G12 Unknown 

  1 Gy N  M Del R235H No ITD G12 Unknown 

  1 Gy N  Unknown Del R235L No ITD G12 Unknown 

  0.5Gy +1Gy N  F Del R235S No ITD G12 Unknown 

  0.5Gy +1Gy N  Unknown No Del R235 No ITD G12 Unknown 

  0.5Gy +1Gy N  M Del R235H No ITD G12 Unknown 

  0.5Gy +1Gy N  Unknown Del R235 No ITD G12 Unknown 

  0.5Gy +1Gy N  M Unknown R235S No ITD G12 Unknown 

  0.5Gy +1Gy N  M No Del R235H No ITD G12 Unknown 

  0.5Gy +1Gy N  F Del R235 No ITD G12 Unknown 

  0.1 + 1 Gy N  Unknown Del R235 No ITD G12 Unknown 

  0.1 + 1 Gy N  F Del R235 No ITD G12 Unknown 

  0.1 + 1 Gy N  Unknown No Del R235 No ITD G12 Unknown 

  0.1 + 1 Gy N  F No Del R235H No ITD G12 Unknown 

  0.1 Gy + 0 N  F No Del R235 No ITD G12 Unknown 

  0.1 Gy + 0 N  M Del R235C No ITD G12 Unknown 

  
0.1Gy + 1Gy 

N  M Del R235C No ITD G12 Unknown 

  
0.1Gy + 1Gy 

N  M Del R235H No ITD G12 Unknown 

  
0.1Gy + 1Gy 

N  F Del R235S No ITD G12 Unknown 

  
0.1Gy + 1Gy 

N  M Del R235S No ITD G12 Unknown 

  
0.1Gy + 1Gy 

N  M Del R235C No ITD G12 Unknown 

  
0.25Gy + 1Gy 

N  F Del R235H No ITD G12 Unknown 

  
0.25Gy + 1Gy 

N  M Del R235S No ITD G12 Unknown 

  
0.25Gy + 1Gy 

N  F Del R235C No ITD G12 Unknown 

  0.5+ 1 Gy N  F Del R235S No ITD G12 Unknown 

  0.5+ 1 Gy N  Unknown No Del R235 No ITD G12 Unknown 
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  1Gy + 0 Gy N  F Del R235C No ITD G12 Unknown 

  1Gy + 0 Gy N  M Del R235C No ITD G12 Unknown 

  0.5Gy + 0 N  F Del R235C No ITD G12 Unknown 

  0.5Gy + 0 N  F Del R235 No ITD G12 Unknown 

  0.5Gy + 0 N  Unknown No Del R235 No ITD G12 Unknown 

  1Gy + 1Gy N  M Unknown ATGC No ITD G12 Unknown 

  0.25 + 0Gy N  M Unknown R235C No ITD G12 Unknown 

  0.25 + 0Gy N  M Del R235H No ITD G12 Unknown 

  0.25 + 0Gy N  Unknown Del R235 No ITD G12 Unknown 

  0.25 + 0Gy N  F No Del R235 No ITD G12 Unknown 

  1Gy + 1 Gy N  M Del R235H No ITD G12 Unknown 

  1Gy + 1 Gy N  F Del R235C No ITD G12 Unknown 

  0.25 + 1Gy N  F Unknown R235 No ITD G12 Unknown 

  0.25 + 0Gy N  M Unknown R235H No ITD G12 Unknown 

  0.25 + 1Gy N  M Unknown R235C No ITD G12 Unknown 

  0.5 + 0Gy N  M Del R235H No ITD G12 Unknown 

F1 CBA/H 3 Gy Xrays F No Del R235 ITD G12 Unknown 

x  3 Gy Xrays F No Del R235 No ITD 
G12R 

(Case 3) Unknown 

C57BL/Lia 3 Gy Xrays F Del R235C No ITD G12 Unknown 

  3 Gy Xrays M Del R235C No ITD G12 Unknown 

  3 Gy Xrays M Del R235C No ITD G12 Unknown 

  3 Gy Xrays M Del R235C No ITD G12 Unknown 

  3 Gy Xrays M Del R235C No ITD G12 Unknown 

  3 Gy Xrays M Del R235S No ITD G12 Unknown 

  3 Gy Xrays M Del R235C No ITD G12 Unknown 

  3 Gy Xrays M Del R235S No ITD G12 Unknown 

  3 Gy Xrays M Del R235C No ITD G12 Unknown 

  3 Gy Xrays F Del R235C No ITD G12 Unknown 

  3 Gy Xrays Unknown Del R235C No ITD G12 Unknown 

  3 Gy Xrays F Del R235C No ITD G12 Unknown 

  3 Gy Xrays F No Del R235 ITD G12 Unknown 

  3 Gy Xrays M Del R235 No ITD G12 Unknown 

  3 Gy Xrays M Del R235 No ITD G12 Unknown 

  3 Gy Xrays F Del R235 No ITD G12 Unknown 

  3 Gy Xrays F Del R235 No ITD G12 Unknown 

  3 Gy Xrays M Del R235C No ITD G12 Unknown 

  3 Gy Xrays F Del R235C No ITD G12 Unknown 

  3 Gy Xrays F Del R235H No ITD G12 Unknown 

  3 Gy Xrays F Del R235H No ITD G12 Unknown 

  3 Gy Xrays F Del R235H No ITD G12 Unknown 

  3 Gy Xrays M Del R235C No ITD G12 Unknown 

  3 Gy Xrays M Del R235 No ITD G12 Unknown 

  3 Gy Xrays M Del R235S No ITD G12 Unknown 

  3 Gy Xrays M Del R235C No ITD G12 Unknown 
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Table 7. Details of strain, radiation dose, gender, chromosome 2 deletion, 

mutation and date of AML diagnosis for all rAML cases. 

List of 123 rAML murine cases with strain, dose, gender, chromosome 2 deletion 

information from CGH arrays and Sfpi1, Flt3 and Kras mutation details. Mutations are 

colour coded depending on the amino acid change. N = neutrons, Del = deletion. 

 

As expected, Sfpi1 was found to be the most commonly mutated gene with both codon 

R235 mutations and chromosome 2 deletions frequently identified. A total of 4 different 

types of missense mutations affecting codon R235 and one silent mutation affecting 

codon L134 were identified, affecting 68% of all cases in total. Mutations at codon 

R235 result in a conversion of arginine to either cysteine (R235C), histidine (R235H), 

serine (R235S) or leucine (R235L) with cysteine being the most common change at 

32.5%. A high level of Sfpi1 chromosome 2 deletions has previously been reported to 

occur in 90% of rAML cases with R235 mutations in 70% of these (Silver et al. 1999; 

Cook et al. 2004). Here, in the largest study to be reported so far, we report a lower 

level of chromosome 2 deletions, 81% in samples analysed by CGH, with 89% of them 

also containing a R235 mutation. 

Flt3 was the next most commonly mutated gene with 5 different insertions in 5 CBA/H 

mice with these insertions in three mice previously reported (Finnon et al. 2012). An 

ITD was detected by the presence of two bands after PCR amplification of Flt3 with 

one band amplifying the 333bp product and another larger band amplifying the 

amplicon with an insertion. Insertions in two of these mice (AML C, AML D) have been 

previously reported, while a fifth case was only reported in Finnon et al. (Finnon et al. 

2012) and here we expanded on this work by reporting two new additional cases (AML 

A, AML B) (Figure 23 A). DNA Sanger sequencing revealed these insertions to be 24bp 

(AML A) and 33bp (AML B) in length with both being heterozygous for the mutation 

(Figure 23 B). These insertions are predicted to lead to a 6 and 11 amino acid insertion 

in the juxta membrane domain of Flt3 (Figure 23 C), as is seen in human AML (Small 

2006). Flt3-ITDs occurred in 4% of all cases with all four cases being female with the 

further fifth case from Finnon et al. also being female. Using Fisher’s exact test for 

proportions, the presence of the Flt3-ITDs significantly occurred in 5 female mice with 

p=0.0045 when comparing its presence in 39 female with 72 male mice without Flt3-
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ITDs being detected. Importantly, these cases, although small in number, indicate a 

female specific pathway with the presence of an Flt3-ITD.  

 

 

Figure 23. Analysis of Flt3-ITD in murine rAMLs.  

(A) Agarose gel electrophoresis of Flt3-ITD PCR of a panel of murine rAMLs on a 2% 

gel. A normal amplicon is represented by a single band of 333 bp while and Flt3-ITD 

has an additional larger band. The gel is loaded as indicated in the image. “CBA” and 

“C57” refer to normal spleen DNA from CBA/H and C57BL6, respectively; “Brain” 

refers to brain tissue from the animal in which AML A developed and represents a 

normal tissue control; and AMLs E-G refer to independent AML samples.  Flt3-ITDS 

in AMLs C and D have been previously analysed in Finnon et al. 2012. The presence 
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or absence of an Flt3-ITD and chromosome 2 deletion are stated below the gel for 

each sample (Flt3-ITD: + presence and – absence; del2: + presence and – absence. 

(B) CBA/H sequence of exon 14 on chromosome 5 showing Flt3-ITDs in AML A at 

nucleotide 2017 (24bp) and in AML B at nucleotide 2035 (33bp). (C) Predicted CBA/H 

Flt3 protein sequence with ITDs of AML A (aa.598) and AML B (aa.604). 

 

Three Kras G12 mutations, two G12D and one G12R, were also identified occurring 

in 2% of all samples overall. The two cases with Kras G12D mutations also carried 

Sfpi1 R235C while the Kras G12R mutation case did not have any co-occurring Sfpi1 

R235 mutation. To our knowledge, this is the first time a GlyArg mutation at codon 

12 in Kras has been reported in the CBA mouse model. To assess the influence of this 

mutation on the protein function, these amino acid changes in Kras were analysed 

using both PolyPhen2 and PredictSNP algorithms (Table 8). Data mining assessment 

of these mutations reported a predicted deleterious impact for protein function using 

both PolyPhen2 (possibly damaging/Sens=0.75/Spec=0.87) and PredictSNP 

(deleterious: 87%) algorithms. PolyPhen-2 calculated 75% sensitivity and 87% 

specificity of the prediction in gaining the deleterious effect (for both amino acid 

changes). While PolyPhen-2 tested the amino acid conservation in the human 

organism, PredictSNP was run to verify those findings for the mouse model. The 

PredictSNP algorithm confirmed PolyPhen-2 predictions with 87% confidence. Thus, 

using two independent bioinformatic methods we expect the deleterious impact on 

protein function from the observed mutations. 

 

 

Table 8. PolyPhen2 and PredictSNP analysis of Kras in murine AML.  

Kras mutations in CBA/H mice with AML were analysed with predicted amino acid 

change effect. 

 

Gene Chromosome Ref->Seq AA change PolyPhen - 2 PredictSNP

GGT-->GAT Gly-->Asp (G12D) posDEM/S=0.740/Sens=0.85/Spec=0.92 D:87%

GGT-->CGT Gly-->Arg  (G12R) posDEM/S=0.884/Sens=0.82/Spec=0.94 D:87%

a.a. prediction

Kras 6
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The mutations affecting codon G12 in the gene Kras and codon R135 in the gene 

Sfpi1 detected by Sanger sequencing were confirmed by pyrosequencing using the 

PyroMark Q48 (Figure 24). The 3 mouse samples with Kras mutations were analysed 

and the percentage of each mutation was calculated as illustrated in Table 9. The 

frequency of the Sfpi1 mutation is high, present in 69-70% of the sample, indicating 

that it is a driver mutation. The frequency of the Kras mutations is lower at 30-46%, 

indicating that the Kras G12 mutation is a secondary mutation, similar to previously 

suggested reports that it acts as a co-operating mutation, not capable of initiating AML 

by itself (Chang et al. 2015; Nakagawa et al. 1992; Zhao et al. 2014). The sequence 

of mutational events in case 1 and case 2 illustrate a model of clonal expansion in 

rAML. The novel Gly-->Arg mutation has been confirmed in the CBA/H mouse by two 

techniques, Sanger sequencing and pyrosequencing, at a frequency of 38-39% and 

is present in the absence of a Sfpi1 mutation. This suggests that there is another factor 

driving AML development which currently has not been identified. Overall, this work 

shows that in murine rAML cases the most common genetic alteration is a 

chromosome 2 deletion with a Sfpi1 point mutation, with minor cases with Flt3-ITDs 

and Kras mutations. 
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Figure 24. Analysis of Sfpi1/PU.1 R235 and Kras G12 codons by Sanger 

sequencing and pyrosequencing in three rAML cases.  

Case 1 and case 2 have Sfpi1 R235C mutations of CGCTGC and Kras G12D 

mutations of GGTGAT, while case 3 was unmutated for Sfpi1 but has a Kras G12R 

mutation of GGTCGT. 

 

Sample Kras G12 mutation Sfpi1 R235 mutation % Kras mutation % Sfpi1 mutation 

Case 1 GGT>GAT CGC>TGC 45-46 70 

Case 2 GGT>GAT CGC>TGC 30-31 69-70 

Case 3 GGT>CGT CGC 38-39 0 

Control GGT CGC 0 0 

Table 9. Analysis of Kras and Sfpi1 mutations in murine AML. 
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The percentage of these mutations in 3 CBA/H mice with AML and 1 CBA/H without 

AML was quantified by pyrosequencing.  

 

3.2.3 mRNA expression 

Transcriptional expression of Sfpi1 in rAML mouse spleen samples was measured to 

analyse the level of expression associated with the presence or absence of a R235 

mutation. MQRT-PCR was performed on 69 rAML spleen samples with a mutation in 

codon R235, 35 rAML spleen samples without a mutation in codon R235 and on three 

bone marrow control samples from control CBA/H mice. Importantly, samples without 

a mutation in codon R235 had a significantly lower expression level of Sfpi1 when 

compared to control bone marrow samples and AML samples with a R235 mutation 

(Figure 25). In the 3 samples which had a Kras mutation, the two which had a Sfpi1 

R235 mutation had a high level of Sfpi1 expression (case 1 and case 2), while the 

sample which did not have a Sfpi1 R235 mutation (case 3) had a very low level of 

Sfpi1 expression at 0.13. Hence, the repression of Sfpi1 could therefore be driving 

AML development for all cases in the absence of a Sfpi1 mutation, but specifically for 

case 3.  

For samples that had no Sfpi1 R235 mutation, there was a significantly lower level of 

Sfpi1 expression, however a few samples showed a high level of expression. These 

included samples with an Flt3-ITD. Out of the four Flt3-ITD cases, two cases had a 

low level of Sfpi1 expression, while the other two cases had the highest levels of Sfpi1 

expression. Gene expression analysis of Flt3 expression itself in all samples did show 

a significant increase in expression in samples with an ITD (Figure 26). Although an 

inverse relationship between PU.1 and FLT3 expression has previously been reported 

(Inomata et al. 2006), a negative correlation was not seen in this study (Figure 27). 

Overall, murine rAML samples with a Sfpi1 R235 mutation had a higher level of 

expression and cases that had no Sfpi1 R235 mutation had a lower level of expression. 
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Figure 25. MQRT-PCR expression of Sfpi1 in murine rAML samples.  

Expression was analysed in 3 CBA/H bone marrow control samples (dashed line 

represents the median of expression level), 69 samples mutated in codon R235 (green 

circles) and 35 wild type samples (blue circles) including 4 samples with an Flt3-ITD 

(orange triangles). Expression of Sfpi1 in case 1, 2 and 3, as depicted in Figure 2, are 

circled in red. Chromosome 2 deletion information is also represented by a half full 

circle while samples with unknown chromosome 2 information are represented by a 

square box. Expression levels were normalised to Hprt. Significance (p≤0.001) was 

calculated by performing a Mann Whitney test on gene expression data and indicated 

with asterisks (**). 
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Figure 26. MQRT-PCR expression of Flt3 in murine rAML samples.  

Expression was analysed in 3 CBA/H bone marrow control samples (dashed line 

median expression), 4 samples with an Flt3-ITD (orange triangles) and 100 samples 

without an Flt3-ITD (blue circles). Expression levels were normalised to Hprt. 

Significance (p≤0.001) was calculated by performing a Mann Whitney test on gene 

expression data and indicated with asterisks (**). 
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Figure 27. Correlation analysis of Sfpi1 against Flt3 transcriptional expression.  

Correlation analysis was performed using linear regression analysis in 104 rAML 

cases. Correlation analysis was performed using GraphPad Prism 7 with R
2
 values 

displayed. 

 

3.2.4 miRNA expression 

To assess if specific epigenetic modifications could be responsible for the overall lower 

expression of Sfpi1 in samples without a R235 mutation, miRNA expression analysis 

was performed. miRNA expression was assessed by the nCounter miRNA Expression 

Panel by Nanostring. Analysis of the data by BRBArrayTools software identified 

significantly expressed miRNA of interest between groups with the use of a class 

comparison analysis. Using a stringent significance threshold of p≤0.001 and p≤0.05, 

miRNAs of interest were identified (Figure 28). Comparison of samples with and 

without a Sfpi1 mutation showed a significantly higher level of miR-1983 and miR-582-

5p expression (p≤0.05) in samples with the mutation (Figure 28 A). Samples with an 
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Flt3-ITD showed a significantly lower level of miR-582-5p and miR-467c (p≤0.001) in 

comparison to samples with a Sfpi1 mutation (Figure 28 B).  

 

 

Figure 28. nCounter system miRNA expression in rAML samples.  

A class comparison analysis was performed on samples using BRB-ArrayTools 

developed by Dr. Richard Simon and the BRB-ArrayTools Development Team. (A) 

miRNA expression in 9 unmutated Sfpi1 R235 and 8 mutated Sfpi1 R235 samples 



115 

 

where p≤0.05. (B) miRNA expression in 4 samples with an Flt3-ITD and 8 mutated 

R235 Sfpi1 samples where p≤0.001 and p≤0.05. 

 

Housekeeping genes are constitutively expressed in all cells and so are used in QPCR 

as controls to normalise the data. They correct for differences in cDNA quantities 

among the samples caused by technical errors such as pipetting and so play an 

important part in a study design. However, the consistency of housekeeping genes 

can vary across tissue types so it is important to reassess for each new study design 

(Bustin and Nolan 2004). To identify a suitable housekeeping gene for normalisation, 

the expression of RNU6, SNORD47 and SNORD66 was analysed by QPCR. 

NormFinder was then used to establish which gene was the most stable (Figure 29). 

The NormFinder algorithm analyses QPCR data to look at the variability across the 

data and identifies the optimal normalisation gene among a set of candidates by 

ranking them with the lowest value indicating the most stable. RNU6 was identified as 

the most stable with the lowest value and so used for QPCR analysis of the miRNA of 

interest. 

 

Figure 29. NormFinder gene stability results. 

These results show the stability rating of RNU6, SNORD47 and SNORD66 miRNA 

expression in rAML samples. 
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The expression of miR-1983, miR-582-5p, and miR-155 in 104 rAML samples (69 

Sfpi1 mutated samples and 35 Sfpi1 unmutated samples) was confirmed by QPCR 

(Figure 30). miR-1983 and miR-582-5p showed a significant upregulation in Sfpi1 

R235 mutation cases in comparison to control bone marrow samples (dashed line) 

(Figure 30 A and B). This upregulation in cases with a Sfpi1 R235 mutation was also 

significant in comparison to Sfpi1 wildtype cases. miR-155, a regulator of Sfpi1 

expression, was significantly upregulated in all rAML samples in comparison to control 

bone marrow samples (Figure 30 C). This upregulation, however, was not significantly 

higher in samples that were unmutated for Sfpi1 in comparison to Sfpi1 wildtype cases. 

The expression of miR-582-5p, and miR-467c in 73 rAML samples (69 Sfpi1 mutated 

samples and 4 Flt3-ITD samples) was also compared (Figure 31). Both miRNA show 

a significant upregulation in Sfpi1 R235 mutated samples and a significant down-

regulation in Flt3-ITD samples in comparison to control bone marrow. This difference 

in expression between Sfpi1 R235 mutated samples and Flt3-ITD samples was 

significant for both miR-582-5p (Figure 31 A), and miR-467c (Figure 31 B). This work 

identified the miRNA, miR-1983, miR-582-5p and miR-467c, which may be involved in 

the pathway of cases with a Sfpi1 R235 mutation. 
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Figure 30. QRT-PCR expression of (A) miR-1983, (B) miR-582-5p and (C) miR-

155-3p in murine rAML samples.  

Expression was analysed in 3 CBA/H bone marrow control samples (dashed line 

median expression), 69 samples mutated in codon R235 (green circles) and 35 wild 
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type samples (blue circles) including 4 samples with an Flt3-ITD (orange triangles). 

Expression of Sfpi1 in case 1, 2 and 3, as depicted in Figure 1, are circled in red. 

Expression levels were normalised to RNU6 gene. Significance was calculated by 

performing a Mann Whitney test on gene expression data and indicated with an 

asterisk (*=p ≤0.05, ** p=≤0.001). 
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Figure 31. QRT-PCR expression of (A) miR-582-5p and (B) miR-467c in murine 
rAML samples.  

Expression was analysed in 3 CBA/H bone marrow control samples (dashed line 

median expression), 69 samples mutated in codon R235 (green circles) and 4 samples 

with an Flt3-ITD (orange triangles). Expression of Sfpi1 in case 1 and 2, as depicted 
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in Figure 1, are circled in red. Expression levels were normalised to RNU6 gene. 

Significance was calculated by performing a Mann Whitney test on gene expression 

data and indicated with an asterisk (*=p ≤0.05, ** p=≤0.001). 

 

3.2.5 DNA methylation 

To further investigate the repression of Sfpi1 in unmutated R235 samples, DNA 

methylation was next analysed. Here, DNA methylation primers were designed to 

analyse 4 CpG sites in the promoter region and 5 CpG sites in the URE by 

pyrosequencing (Figure 32), which have been shown to regulate Sfpi1 transcriptional 

expression (Chen, Ray-Gallet, et al. 1995; Li et al. 2001). These primer designs, two 

primer sets for the URE region and one primer set for the promoter region, were first 

validated by use of a commercial positive DNA methylated mouse control, with DNA 

methylation levels of 90% to 100% reported (Figure 33). 
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Figure 32. Genomic location of methylated CpG sites in Sfpi1 in the mouse.  

(A) Sfpi1 is located on chromosome 2 (2qE1). The gene Sfpi1 consists of five exons 

(E1 – E5) and two upstream regions which control its expression, an upstream 

regulatory element which is located 14kb upstream of the transcription start site and a 

promoter region. Five CpG sites were analysed in the upstream regulatory element 

while 4 CpG sites were analysed in the promoter. 
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Figure 33. Pyrosequencing of Sfpi1 in the mouse using a positive control. 

Pyrosequencing pyrograms of methylated mouse control DNA in the promoter region 

(A), URE region 1 (B) and URE region 2 (C) of Sfpi1. CpG regions are identified by a 

blue shading. A bisulfite control, which checks the efficiency of the bisulfite conversion 

of unmethylated cytosine to thymine by the insertion of a cytosine into the sequence 

before a thymine, is identified by an orange shaded region. Percentage of methylation 

is indicated by a percentage above each CpG site. 

 

DNA methylation levels in the samples mutated for Sfpi1 R235 showed a low level of 

DNA methylation, averaging 15% across all cases (Figure 34). In samples which were 

unmutated for Sfpi1 R235, a higher level of DNA methylation was observed. This is 

particularly evident for case 3 which has a very high level of DNA methylation 

averaging 76% and reaching 91% at one CpG site. For case 3, DNA methylation may 

well be the factor causing repression of Sfpi1 gene expression. Overall, DNA 

A

 

B

 

C
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methylation levels were significantly higher at each of the 5 CpGs in the URE and the 

4 CpGs in the promoter region in samples without a Sfpi1 R235 mutation when 

compared to samples with a Sfpi1 R235 mutation and control bone marrow (Figure 

35).  
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Figure 34. Heatmap analysis of DNA methylation in rAML samples.  
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69 samples mutated in codon R235 (top) and 45 samples unmutated in codon R235 

(bottom) of Sfpi1 were analysed by pyrosequencing at 5 CpG sites in the upstream 

regulatory element (URE) and 4 CpG sites in the promoter region. DNA methylation 

of case 3, as depicted in Figure 1, is identified. 
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Figure 35. DNA methylation levels in rAML mouse samples. 

DNA methylation was measured in 3 CBA/H bone marrow control samples, 69 

samples mutated in codon R235 and 35 samples unmutated in codon R235 by 

pyrosequencing at 5 CpG sites in the upstream regulatory element (URE) and 4 CpG 

sites in the promoter region. Significance was calculated by performing a Mann 

Whitney test on gene expression data and indicated with an asterisk (*=p ≤0.05, ** 

p=≤0.001). 

 

To investigate if the change in DNA methylation levels is linked to the change in Sfpi1 

transcriptional levels, correlation analysis was performed (Figure 36). An inverse 

correlation between DNA methylation levels and Sfpi1 transcriptional expression was 
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evident, which showed a strong correlation for the URE CpG 1 (A), URE CpG 2 (B), 

URE CpG 4 (D), URE CpG 5 (E) and promoter CpG 3 (H) in particular of R2=0.28, R2= 

0.24, R2= 0.25, R2= 0.21 and R2= 0.21 respectively. DNA methylation has been widely 

studied as a factor of aging with studies reporting global hypomethylation in CD4+ T 

cells with increasing age (Heyn et al. 2012) and also local hypermethylation at specific 

sites (Beerman et al. 2013). To investigate if age at diagnosis was causing this inverse 

relationship, correlation analysis was performed on samples whose date of sacrifice 

was known, however no correlation was seen (Figure 37). Samples with known age 

at diagnosis however, were limited at just 33 mice and most were of similar age at 

sacrifice of 15 months, only 4 mice were sacrificed at a younger age (i.e. less than 12 

months) and only 4 mice sacrificed at greater than 20 months. Overall, DNA 

methylation levels were significantly higher in rAML cases without a Sfpi1 R235 

mutation when compared to cases with a mutation. 
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Figure 36. Correlation analysis of Sfpi1 mRNA expression against DNA 

methylation.  

Correlation analysis was performed on 104 rAML cases for URE CpG 1 (A), 2 (B), 3 

(C), 4 (D) and 5 (E) and promoter CpG 1 (F), 2 (G), 3 (H) and 4 (I). Correlation analysis 

using linear regression shows a linear relationship between mRNA expression and 

DNA methylation in particular for CpG 4 and 5 in the URE and CpG 3 in the promoter 

of Sfpi1. Correlation analysis was performed using GraphPad Prism 7 with R
2
 values 

displayed. 
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Figure 37. Correlation analysis of age at rAML diagnosis against DNA 
methylation.  

Correlation analysis was performed for URE CpG 1 (A), 2 (B), 3 (C), 4 (D) and 5 (E) 

and promoter CpG 1 (F), 2 (G), 3 (H) and 4 (I) in 33 rAML samples. Correlation analysis 

using linear regression shows no relationship between age at diagnosis and DNA 

methylation. Correlation analysis was performed using GraphPad Prism 7 with R
2
 

values displayed. 
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Discussion and future directions 

In this study, we have screened a large cohort of mouse rAML samples for commonly 

mutated genes in human AML identifying 3 mutated genes, Sfpi1, Flt3 and Kras, 

further validating the use of the CBA mouse for radiation-induced AML studies. This 

work illustrates the central role Sfpi1 dysregulation plays in rAML development in the 

CBA mouse with Sfpi1 being affected by with chromosome 2 deletion and point 

mutation or else DNA methylation of the Sfpi1 promoter with a decrease in 

transcription expression. 

Sfpi1 chromosome 2 deletions has previously been reported to occur in 90% of rAML 

cases, with R235 mutations occurring in 70% of cases with a chromosome 2 deletion 

(Azumi and Sachs 1977; Silver et al. 1999) (Cook et al. 2004). Here in this large study 

a slightly lower frequency of chromosome 2 deletions is reported in 81% of samples 

analysed by CGH with 89% also containing a R235 mutation. Intriguingly, cases with 

a chromosome 2 deletion appear to consist mainly of male mice. When comparing the 

presence of a chromosome 2 deletion relative to gender, deletions were identified in 

61 out of 65 male mice and in 27 out of 37 female mice. A two-sample t-test between 

proportions showed a significant difference in the presence of chromosome 2 deletions 

between gender (p=0.006). It is worth considering that this significance may be 

influenced by the 4 female mice with Flt3-ITDs, all of which have no chromosome 2 

deletions and when removed from the study, show no significant difference in 

chromosome 2 deletions between gender. Previous studies analysing chromosome 2 

deletions were mainly performed only using male mice. One study using both male 

and female mice reported no difference in the occurrence of chromosome 2 deletions 

based on gender (Clark et al. 1996), however, the numbers of rAML mice in this study 

was small at just 15 mice. There were no differences in the presence of chromosome 

2 deletions by radiation type. This was expected as chromosome 2 deletions has 

previously been assessed in a sub-set of these cases and also found no difference 

between radiation type (Brown et al. 2015). 

As previously reported in the CBA/H or CBA/Ca mouse model (Cook et al. 2004), a 

Sfpi1 R235 mutation was the most commonly reported mutation occurring in 68% of 

all cases analysed. A cytosine to thymine mutation was the most frequent mutation at 

codon R235. This mutation has commonly been seen in many other cancers in both 
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mouse (Cook et al. 2004) and human cases (Alexandrov et al. 2015; Welch et al. 

2012). It is likely due to the presence of a CpG site in the codon. The first cytosine in 

the codon which when methylated as 5-methylcytosine, can spontaneously deaminate 

to form thymine (Shen, Rideout, and Jones 1994). If this deamination remains 

unrepaired and cell replication occurs, this C>T mutation will remain in the genome.  

FLT3 mutations are the most common mutation in human de novo AML and FLT3-

ITDs are commonly present in around 20% of patients (Thiede et al. 2002; Cancer 

Genome Atlas Research et al. 2013; Kihara et al. 2014). In this study, Flt3-ITDs were 

reported to occur in 4% of samples and importantly appears to be a significantly female 

specific pathway. Sex differences have long been investigated with a recent 

investigation in preleukaemic cells revealing a sex imbalance in the target cell of 

mutation. CBA/Ca mice were screened for chromosome 2 deletions after radiation 

exposure with a myeloid and lymphoid phenotype more common in males compared 

to females (36% and 22%, respectively) while a lymphoid phenotype was more 

common in females compared to males (38% and 16%, respectively) (Verbiest et al. 

2018). This work suggested the target cell of AML development to be a naïve 

hematopoietic stem cell or progenitor in male mice, giving rise to myeloid leukaemia 

and preferentially a common lymphoid progenitor in female mice. The female sex 

preference for Flt3-ITDs reported in this study, however, is not reflected in human de 

novo AML cases (Shen et al. 2011) and so appears to be a specific pathway present 

in the CBA/H mouse or possibly a specificity of radiation leukaemogenesis, very 

difficult to confirm in humans.  

Comparison of this study with t-AML patients, however, shows a similar outcome. In a 

study of 140 t-AML/t-MDS patients, FLT3-ITDs were found in 7% of all cases, 8 out of 

10 were females, and FLT3 mutations were significantly associated with previous 

radiotherapy only and a normal karyotype (Christiansen et al. 2005). The incidence of 

Flt3-ITD in female t-AML patients and female rAML mice therefore may be a 

consequence of radiation exposure. Sex-specific gene expression changes in genes 

coding for growth factors, protein kinases, nuclear DNA-binding proteins, Wnt 

signalling pathway members have been identified after X-ray irradiation in mice 

(Kovalchuk et al. 2004; Besplug et al. 2005). Spleen samples from C57BL/6 mice 

showed a significant upregulation of tumour necrosis factor receptor superfamily 

member 5 (TNFRSF5), which plays important roles in apoptosis and proliferation, in 
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female mice and a downregulation in male mice after acute 0.5 Gy irradiation (Besplug 

et al. 2005). Sex-specific dysregulation of pathways by radiation could result in the 

selective advantage of certain sub-populations, possibly by sex hormones. The 

incidence of rAML in mice has previously been seen to occur at a higher rate in males 

in comparison to females, with the removal of the ovaries increasing the occurrence 

of rAML and the removal of the gonads slightly decreasing rAML, although these 

changes are not significant (Upton et al. 1958). Sex differences in regulation of 

hematopoietic stem cell cycle regulation have been identified with estrogen reportedly 

increases hematopoietic stem cell self-renewal in female mice (Nakada et al. 2014). 

Also, as previously reported in human cases, these Flt3-ITDs did not occur with Sfpi1 

mutations (Inomata et al. 2006), confirming that both seem to be exclusive to each 

other and this further establishes the mechanism of AML development between human 

and mouse AML. 

In this study, three Kras mutations, consisting of two G12D mutations and one G12R 

mutation, were identified occurring in 2% of all cases which is within range of the rates 

in human AML of 1.5%-9% (Tyner et al. 2009) (Stirewalt et al. 2001; Neubauer et al. 

1994; Illmer et al. 2005). Two cases had a Kras G12D mutation which has been 

previously reported in human AML (Neubauer et al. 1994; Tyner et al. 2009) and 

mouse lymphomas (Guerrero et al. 1984). KrasG12D mice have been shown to develop 

a lethal haematopoietic disease characterised by leucocytosis, splenomegaly and 

increased leukaemic blasts in the peripheral blood and bone marrow (Kelly et al. 

2019). A novel amino acid change of GlyArg was also found in one mouse. Similarly, 

in humans a G12D mutation has been the most commonly reported (Tyner et al. 2009; 

Neubauer et al. 1994),  with a G12R mutation being less frequently mutated (Stirewalt 

et al. 2001). To our knowledge, this is the first time a Kras G12R mutation, previously 

reported in human AML (Bolouri et al. 2018), has been reported in the mouse. 

The frequency at which these mutations occurred, as detected by pyrosequencing, 

gives us an insight into the development of rAML. The Sfpi1 mutation at codon R235 

occurred at a high frequency in the sample and so appears to be one of the initiating 

mutations. This codon is located in the DNA binding domain and it is assumed that a 

mutation, or deletion, results in a block in myeloid development producing immature 

blast cells, thought of as the first hit in AML. The Kras G12 mutation occurs at a lower 

frequency and so is predicted to occur later in leukaemogenesis. This mutation is an 
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activating mutation and so gives the immature blast cells a growth advantage. The 

RAS proto-oncogene belongs to a small family of GTPases which function in signal 

transduction pathways. Mutations in codons 12, 13 and 61 can result in an amino acid 

change which leads to a resistance of the protein to GTPase-activating proteins, 

leaving it bound to GTP and so remaining in an active state. Mutations in the G12 

codon up-regulate mRNA and protein expression in the bone marrow (Zhao et al. 

2014;Guerrero et al, 1984) with a glycine to aspartic acid (GD) mutation being the 

most common (Stirewalt et al. 2001; Neubauer et al. 1994). RAS mutations are not 

considered to be the initiating event in radiation leukaemogenesis, as mice expressing 

oncogenic RAS rarely develop AML spontaneously (Li et al. 2011) and mutations have 

only been found in murine leukaemic cases with an overt phenotype, not in cases with 

limited accumulation of leukaemic blast cells in tissue (Rithidech et al. 1996). KrasG12D 

has been shown to co-operate with other mutations, such as loss of Dnmt3a to 

progress leukaemia development (Chang et al. 2015). Here, we illustrate the clonal 

expansion of AML through acquisition of a Sfpi1 R235 driver mutation followed by a 

secondary Kras G12 mutation which probably contribute to leukaemia progression. 

Previous work has shown that reduced expression of Sfpi1 in HSCs and progenitors 

down to 20% of wild type levels will result in the development of AML within 3-8 months 

(Rosenbauer et al. 2004). Transcriptional analysis of rAML samples showed a 

significant reduction of Sfpi1 expression specifically in AML cases with an absence of 

a R235 mutation. Transcriptional reduction of Sfpi1 expression, a necessary step in 

this model, could therefore be driving AML development in these cases without a R235 

mutation. PU.1/Sfpi1 is a myeloid transcription factor responsible for development of 

the myeloid lineage and its expression is tightly regulated during differentiation. PU.1 

functions as a master regulator of hematopoiesis, controlling HSC levels through the 

transcription of multiple cell-cycle regulators (Staber et al. 2013). PU.1 is expressed 

at a low level in HSCs but its expression increases during myeloid differentiation, 

particularly in granulocytes (Cheng et al. 1996; Chen, Zhang, et al. 1995). PU.1 binds 

to the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor α 

promoter and, together with C/EBP α, regulates the expression of GM-CSF in myeloid 

development (Hohaus et al. 1995). Pu.1 and C/EBP α also bind to the granulocyte 

colony-stimulating factor (G-CSF) receptor (Smith et al. 1996) and the macrophage 

colony-stimulating factor (M-CSF) (Zhang et al. 1994). PU.1 also interacts with other 
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co-factors such as Satb1 and Runx1 to regulate early T cell development (Hosokawa 

et al. 2018). A decrease in PU.1 levels, by deletion of the URE, has been shown to 

lead to malignant myeloid transformation (Rosenbauer et al. 2004).  Transcription 

factor levels is therefore thought to determine cell fate, with normal levels leading to 

differentiation of cells and reduced levels leading to a preleukemic phase of poor 

differentiation before developing into AML (Rosenbauer et al. 2005). 

A low level of PU.1 is thought to be required to maintain the basic stem cell functions 

of HSC such as self-renewal and differentiation. In a RUNX1/Eto9a-dependent 

leukemia mouse model PU.1 levels were decreased which resulted in a delayed onset 

of leukemia (Staber et al. 2014). Also, in mixed lineage leukemia (MLL), PU.1 is 

involved in crosstalk with MEIS1 and HOXA9 to drive an aggressive form of leukemia 

(Zhou et al. 2014). In cells from MOZ-TIF2-induced leukemia, PU1. Is essential in 

maintaining the AML phenotype by interacting with MOZ-TIF2 to stimulate expression 

of macrophage colony-stimulating factor receptor (CSF1R) (Aikawa et al. 2010). A 

reduced level of PU.1 expression, therefore, appears to play an important role in 

leukemogenesis. A significant down-regulation of Sfpi1 has also been reported by 

Salemi et al. 2015 in Flt3 mutated cases of human AML (Salemi et al. 2015). In our 

Flt3-ITD samples, 2 cases had a low expression of Sfpi1 while 2 cases had a high 

expression of Sfpi1 in comparison to wild-type levels. This difference in transcriptional 

expression may be due to the CBA/H and F1 CBA/H x C57BL/Lia strain differences 

between samples or perhaps be due to a targeting of different downstream pathways 

by Flt3 involving yet more pathways of development. For samples that do not have a 

reduced expression of Sfpi1, including two Flt3-ITD samples, it is possible that myeloid 

development is blocked by affecting a different myeloid factor, although in this mouse 

model it would be rare. In these Flt3-ITD samples, Flt3 may not function to decrease 

Sfpi1 but instead target signal transducer and activator of transcription 5 (Stat5) or 

Ras to produce abnormal cell growth. Although human AML may have a low rate of 

PU.1 mutations, the gene can be targeted for disruption by an alternative route such 

as miR-155, SPI1 URE methylation (Verbiest et al. 2015), and therefore, as illustrated 

in this study, further establish the link between human and mouse AML. An increase 

in FLT3 gene expression has been previously reported in FLT3 mutated human AML 

samples (Carow et al. 1996; Ozeki et al. 2004). The presence of the ITDs disrupt the 

negative regulatory function of the juxta membrane region, resulting in phosphorylation 
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of the receptor and an increase in tyrosine kinase activity (Kiyoi et al. 1998). Here, as 

in human AML, we also report and confirm an increase in Flt3 expression in all 4 rAML 

samples with an ITD. FLT3 has many downstream targets, including PU.1, and there 

is work to indicate an inverse relationship between them, however it is unclear in this 

study (Inomata et al. 2006).  

Several epigenetic mechanisms, such as the role of miRNA, were investigated in this 

study in order to identify miRNA of interest in rAML development. We identified miR-

1983, miR-582-5p and miR-467c which all show different levels of expression among 

the rAML mutated sub groups. miR-1983 showed a significant up regulation in Sfpi1 

R235 mutated samples. This increase, however, may be due to hypokalaemia, which 

is a result of the bloods potassium levels being too low. Hypokalaemia is frequently 

seen in human AML cases and can result in a decrease in the hormone alderstone, a 

regulator of miR-1983 (Edinger et al. 2014). Both up and down-regulation of miR-582-

5p has been reported in a number of human cancers, however the information 

regarding miR-582-5p in leukaemia is limited with a study by Schotte et al. (Schotte et 

al. 2009) reporting up-regulation of miR-582-5p in ALL while a study by Zhang et al. 

(Zhang et al. 2009) reporting downregulation of miR-582-5p in ALL and AML cases. 

miR-582 is reportedly up-regulated in colorectal cancer (Li and Ma 2018) and 

promotes cancer progression by decreasing expression of the tumour-suppressor 

phosphatase and tensin homolog (PTEN) (Song et al. 2017). miR-582-3p has been 

shown to reduce mRNA and protein levels of negative regulators of the Wnt/β-catenin 

signalling pathway such as axin 2 (AXIN2), dickkopf WNT signaling pathway inhibitor 

(DKK) and secreted frizzled related protein 1 (SFRP1) in human lung cancer cells 

resulting in the up-regulation of Wnt pathway downstream targets (Fang et al. 2015). 

The high expression of miR-582-5p in samples with a Sfpi1 R235 mutation may 

indicate that the Wnt pathway is activated in these AML cases. For AML development, 

the link of 582-3p and 582-5p to the Wnt/β-catenin signalling pathway in human lung 

cancer (Jin et al. 2017) is of particular interest as activation of the Wnt/β-catenin 

signalling pathway is essential in the development of leukaemic cells (Staal et al. 2016; 

Wang et al. 2010).  

miRNA analysis of miR-155 was also analysed as it has been previously reported to 

directly target the gene Sfpi1/Pu.1 (Vigorito et al. 2007). It was suggested to have an 

oncogenic role being upregulated in B cell lymphoma (Eis et al. 2005), Hodgkin 
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lymphoma (Kluiver et al. 2005) and AML carrying FLT3-ITD mutations (Faraoni et al. 

2012) but more recently, evidence of an anti-leukaemic role has been also identified 

by induction of apoptosis and differentiation (Palma et al. 2014). An increased 

expression of miR-155 has been reported in human AML samples with an FLT3-ITD 

(Salemi et al. 2015) and FLT3-ITDs have been shown to upregulate miR-155 

expression by approximately 10-fold in a murine bone marrow cell line (Gerloff et al. 

2015). However, an increase of miR-155 in Flt3-ITD samples was not observed here. 

An up-regulation in miR-155 expression, although not significant, was seen in Sfpi1 

R235 mutated samples in comparison to Sfpi1 wildtype samples. Therefore, as a 

negative regulator of Sfpi1 expression, this microRNA may have a role in the down 

regulation of Sfpi1 expression in R235 mutated samples in this study, however, it does 

not appear to be the main cause. 

When looking in more detail at global miRNA expression among Sfpi1 mutated and 

Flt3-ITD AML groups, the expression of two microRNA 582-5p and 467c showed 

distinct patterns among the two groups. Both microRNA showed significant down 

regulation in samples with an Flt3-ITD and significant up-regulation in samples with a 

Sfpi1 R235 mutation in comparison to the control (Figure 31). These microRNA appear 

to be dysregulated in rAML but by different methods. miR-582-5p has been reportedly 

both up and down regulated in human leukaemia cases which may be representative 

of different pathways of development.  

As previously mentioned, the high expression of miR-582-5p in Sfpi1 R235 cases 

could be activating the Wnt pathway through repression of Wnt negative regulators. 

Although surprising, the low expression of miR-582-5p in rAML cases with an Flt3-ITD 

cases could be acting in a different pathway. Forkhead box c1 (Foxc1) is a target of 

miR-582-5p and so a downregulation of miR-582-5p could cause an increase in 

expression and activity of Foxc1. Upregulation of FOXC1 has been reported in human 

AML cases, specifically in those with an Flt3-ITD, and has been shown to collaborate 

with Hoxa9 to block macrophage differentiation and enhance clonogenic potential 

(Somerville et al. 2015). As of yet, little has been reported on miR-467c expression in 

cancer, with studies reporting an increase in miR-467c expression in tuberous 

sclerosis (Cai et al. 2017) and a link to apoptosis (Druz et al. 2013), however studies 

are limited. 
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To assess if other epigenetic modifications could be responsible for the overall lower 

expression of Sfpi1 in samples without a R235 mutation, DNA methylation analysis 

was also performed as previous studies have demonstrated a link between DNA 

methylation and PU.1 transcriptional expression. Treatment of a T-cell line, which does 

not express PU.1, with the demethylating agent 5-azacytidine resulted in the RT-PCR 

expression of PU.1 (Amaravadi and Klemsz 1999). An increase in expression of PU.1 

was also seen after treatment with 5-Aza-2’-deoxycytidine in murine erythroleukaemia 

(MEL) cells (Fernandez-Nestosa et al. 2013) and in human myeloma cells (Tatetsu et 

al. 2007). These studies suggest that DNA methylation is controlling the expression of 

PU.1 and may be playing a part in the down-regulation of PU.1 in oncogenesis. 

Expression of Sfpi1/Pu.1 is maintained by a promoter and by a highly conserved 

upstream regulatory element (URE), a kb -14 site in mice (Li et al. 2001) and a kb-17 

site in humans (Tatetsu et al. 2007). Binding sites for PU.1 have been demonstrated 

in both the PU.1 promoter and URE, illustrating a possible autoregulation loop (Okuno 

et al. 2005; Chen, Ray-Gallet, et al. 1995). Epigenetic analysis has revealed the 

promoter and -17 kb upstream regulatory element of the PU.1 gene to be highly 

methylated in human classical Hodgkin lymphoma cells (Yuki et al. 2013), human 

myeloma cells (Tatetsu et al. 2007) and MEL cells, resulting in a block in cell 

differentiation (Shearstone et al. 2011; Fernandez-Nestosa et al. 2013).  

Here, DNA methylation analysis of the 4 CpG sites in the promoter region and 5 CpG 

sites in the URE also showed up-regulation in all rAML CpG sites in comparison to the 

bone marrow control. A significant up-regulation in DNA methylation was evident in all 

CpG sites in rAML samples unmutated for Sfpi1 R235 in comparison to R235 mutated 

samples. A correlation between DNA methylation and Sfpi1 expression was strongest 

at URE CpG 1, CpG 2, CpG 3, CpG 4 and promoter CpG 3. These CpG sites are 

possibly the most important if methylated as they correlate strongest to transcriptional 

expression. The URE is possibly more important than the promoter with 4 of its CpG 

sites showing a strong correlation to gene expression in comparison to one CpG in the 

promoter. In vitro work has shown the URE to increase PU.1 promoter activity 

specifically in stably transfected human and murine myeloid cell lines (Li et al. 2001). 

The URE may be specifically targeted for DNA methylation during AML development 

as the URE increases promoter activity in myeloid cells. The URE is necessary for 

PU.1 expression with a previous study showing that disruption of the URE leads to an 
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80% decrease in PU.1 gene expression in murine bone marrow (Rosenbauer et al. 

2004). In human AML erythroleukaemia cell lines, recent work has highlighted the 

importance of the URE as a binding site for GATA-1 which recruits DNMT1 to regulate 

PU.1 expression (Burda et al. 2016). This mechanism, however, was not seen in 

murine erythroleukaemia cases. Analysis of human myeloma cell lines revealed three 

out of four cell lines with transcriptional down-regulation of PU.1 also had very highly 

methylated 17-kb upstream regions, while a cell lines with up-regulation of PU.1 had 

no DNA methylation. In contrast, the promoter region had varying levels of DNA 

methylation across all cell lines (Tatetsu et al. 2007). The 17-kb upstream region, 

therefore, shows a strong correlation to PU.1 transcriptional expression and may have 

a greater influence than the promoter. 

Importantly, in case 3, the methylation level was very high at all CpG sites, reaching 

91%. Correlation analysis revealed an inverse relationship between DNA methylation 

and Sfpi1 expression in a few of the CpG sites. It seems that the high level of DNA 

methylation, particularly in case 3, repressed Sfpi1 expression, showing for the first 

time that a promoter methylation can be driving AML development, specifically in the 

absence of a Sfpi1 R235 mutation. Although a rare event, the development of AML in 

case 3 clearly seems to involve Sfpi1 disruption through promoter DNA methylation 

and transcriptional repression followed by a Kras G12R mutation, reported for the first 

time in the CBA/H mouse (Figure 38).  

To summarize, we confirmed the main pathway and identified new pathways of 

radiation leukaemogenesis (Figure 39). The major pathway consists of a previously 

described chromosome 2 deletion with a Sfpi1 R235 mutation. A sub-pathway reveals 

that AML can develop where there is a chromosome 2 deletion and significant increase 

in Sfpi1 DNA methylation with reduction of Sfpi1 transcriptional expression in the 

absence of a R235 mutation on the second Sfpi1 allele. A newly identified minor 

pathway neither requires chromosome 2 deletion nor Sfpi1 R235 mutation, but rather 

a significant increase in Sfpi1 DNA methylation with reduction of Sfpi1 transcriptional 

expression and this occurs predominantly in female cases. Minor pathways include 

Flt3-ITD, Sfpi1 R235 or Kras G12 mutations. The cases of Flt3-ITD clearly appear to 

have a sex bias with all cases so far, 4 seen here a fifth case reported in Finnon et al. 

but not analysed here, presenting in females. The minor pathway presenting in case 

3 represents a novel pathway consisting of site specific DNA methylation associated 
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with reduced Sfpi1 transcription and a Kras G12 mutation. For the first time we 

identified a case where an epigenetic mechanism can be the first driving modification 

followed by a Kras G12 mutation. Overall this work provides new insight into the 

pathways leading to rAML development, involving genetic mutations as well as 

epigenetic changes and, for the first time, specific gene DNA methylation. 

 

 

Figure 38. Proposed model of leukaemogenesis for case 3.  

After exposure to irradiation in a hematopoietic stem or progenitor cell, an increase in 

Sfpi1 URE and promoter methylation occurred in 76% of the sample, leading to a 

reduced expression of transcriptional Sfpi1, producing immature blast cells. At a later 

stage a G12R mutation in Kras occurred, present in 39% of the sample, giving the 

immature blast cells a growth advantage leading to full AML development. 
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Figure 39. Genetic and epigenetic pathways of radiation-induced AML in CBA 
mice.   

After irradiation exposure, there appears to be two main pathways of rAML 

development. The major pathway consists of a chromosome 2 deletion with a Sfpi1 

R235 mutation while a minor pathway consists of no chromosome 2 deletion and no 

Sfpi1 R235 mutation but instead a significant increase in Sfpi1 DNA methylation 

leading to a reduction of Sfpi1 transcriptional expression. Percentages for 

chromosome 2 deletion gender data are calculated from 88 mice with a deletion and 

14 mice with no deletion where gender was known. 
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3.3  Mouse HSPC transcriptional analysis 
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3.3.1 Introduction 

Hematopoietic stem cells have been widely studied and characterised over the past 

few decades and cell surface markers established for isolation of HSC and MPP 

populations. The expression profiles of HSPCs have been investigated in recent years 

to further characterise these cells to identify regulatory pathways that control HSC self-

renewal, dormancy and differentiation. The expression of genes such as HoxB4 

(Antonchuk, Sauvageau, and Humphries 2001), BMI1 proto-Oncogene, polycomb ring 

finger (Bmi1) (Park et al. 2003) and Wnt (Reya et al. 2003) and Notch pathways 

(Varnum-Finney et al. 1998) have been associated with the renewal of HSCs. 

Transcriptional profiles in HSPC sup-populations has identified genes associated with 

quiescence, adhesion and cytoprotection as important for HSCs while genes 

associated with differentiation, proliferation and chemotaxis are expressed among 

MPP populations (Forsberg et al. 2005). Previous studies have shown that long-term 

HSC reside in the BM CD34- fraction (Osawa et al. 1996). Transcriptional profiling of 

the CD34- and CD34+ fractions of the LSK population has revealed 210 differentially 

expressed genes between HSC subsets (Zhong et al. 2005). Very few differentially 

expressed genes were in common with previous transcriptional studies of HSC 

however this could be due to different cell surface markers used, highlighting the 

heterogeneity among populations and need for further characterisation.  

 A large study analysing the proteome, transcriptome and methylome of murine HSCs 

and MPPs was performed by Cabezas-Wallscheid et al. alongside in vivo 

reconstitution experiments. Using cell surface markers previously identifying the 

populations as HSC and MPP1-MPP4 (Wilson et al. 2008), gene ontology analysis 

revealed transcriptional signatures such as oxidation reduction and response to 

hypoxia were enriched in HSCs while DNA replication and cell proliferation were 

overrepresented in MPP1 (Cabezas-Wallscheid et al. 2014). This work illustrates the 

processes keeping the HSC in a quiescent state while the MPPs proliferative and enter 

the cell cycle ready for differentiation. Transcriptional expression will provide further 

information on the regulation of the hematopoietic process but also can identify 

transcriptional changes in cancer cells, developing a pre-leukemic transcriptional 

profile. 
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Gene expression signatures have shown to have prognostic features. Transcriptional 

analysis of human AML leukemic stem cells and non-leukemic HSCs identified a core 

transcriptional program in both which associated with clinical outcome (Eppert et al. 

2011). Particularly, in cytogenetically normal AML cases high expression of these core 

genes negatively correlated with complete remission. This is particularly important for 

CN-AML as they lack cytogenetic prognostic markers and so are classified as 

intermediate risk even though variations in remission among cases have been seen. 

This work was further developed by Metzeler et al. in a large study involving 364 

cytogenetically normal AML patient samples and combined gene mutations, gene 

expression and miRNA analysis to develop a signature (Metzeler et al. 2013). A 

signature including mutations such as FLT3-ITD, WTI and RUNX1 mutations, wild-

type CEBPA and TET2 and high erythroblast transformation-specific transcription 

factor ERG (ERG), BAALC binder of MAP3K1 and KLF4 (BAALC) and MIR-155 

expression was associated with a low complete remission rate and shorter disease-

free survival (Metzeler et al. 2013). Gene expression profiling of therapy-related AML 

patient samples has identified subtypes within this AML patient group. CD34+ 

hematopoietic stem cells were analyzed by Affymetrix arrays using probes for 12,600 

genes and identified 61 genes which could separate the patients into 2 major groups 

based on gene expression levels (Qian et al. 2002). These groups also had different 

chromosomal aberrations, with chromosome 7 deletions in group A and complex 

karyotypes in group B, identifying potentially separate pathways of AML development 

characterised by mutations affecting different genes functioning differentiation and 

proliferation. Patient prognosis was not investigated in this study. Recent work has 

tried to establish a genetic profile between AML subgroups. A custom AML-array was 

designed to try to distinguish transcriptional profiles between AML subgroups M1 and 

M2 (Handschuh et al. 2018). Although 83 genes were differentially expressed between 

the AML patients and healthy normal patients, a signature was not identified between 

AML sub-types, possibly due to the pre-selection of genes on the custom set and the 

fact that these sub-types are closely related.  

Despite progress, isolation of a sufficient amount of murine hematopoietic stem cells 

for molecular studies remains a challenge due to the low abundance of these cells, 

estimated at just 5000 cells per mouse (Mayle et al. 2013). Isolation of HSPC sub-

populations can be achieved through the use of cell surface markers in flow cytometry, 
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first by lineage depletion of differentiated cells and then by isolation using markers 

known to be expressed on HSPCs such as c-Kit+ and Sca-1+ (Spangrude, Heimfeld, 

and Weissman 1988). Other cell surface markers can also be included, such as SLAM 

family receptors, which have been shown to further separate hematopoietic stem cells 

from progenitor cells (Kiel et al. 2005). Studies involving the isolation of HSCs using 

these markers have mainly been carried out using C57BL/6 mice. However, studies 

using the CBA mouse model are even more challenging due to the weak expression 

of Sca-1 surface marker in this mouse strain allowing isolation of only very small 

numbers of HSCs (Spangrude and Brooks 1993). 

In order to avoid this problem, the use of alternative cell surface markers CD27 and 

CD201 have been investigated. These markers allow the isolation of a much larger 

number of HSCs, demonstrated from transplantation assays into lethally irradiated 

recipients and these markers are expressed even following hematopoietic injury 

(Vazquez, Inlay, and Serwold 2015). Here the first aim was to develop a method of 

analysing transcriptional changes in HSPCs at different time-points after irradiation. 

Once a method was established, the second aim was to analyse the transcriptional 

changes after irradiation in the radiation sensitive AML mouse model CBA/Ca, and the 

non-radiation sensitive C57BL/6 mouse, to identify long-term transcriptional markers 

of radiation exposure and strain differences. 

 

3.3.2 Hematopoietic stem and progenitor cell numbers 

The number of cells in HSPC populations using the markers CD27 and CD201 were 

first determined. CBA/Ca mice were irradiated with 0 and 1 Gy and sacrificed at 1 

week. This time-point was chosen as it is well known that irradiation results in bone 

marrow depletion in the days following radiation for high doses and by 1 week bone 

marrow numbers are starting to return to original levels after high doses of radiation 

(Oben et al. 2017). A dose of 1 Gy was chosen as it is a dose high enough to cause 

AML development in CBA mice while sparing enough cells allowing stem cell studies 

after irradiation. Male mice were used for all HSPC cell sorting experiments. 

Using the cell surface markers CD27 and CD201, the cell numbers for CD27-, CD201-

, CD27+, CD201-, CD27-, CD201+ and CD27+, CD201+ populations were determined 
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from approximately 25 x 106 lineage depleted bone marrow cells from a combination 

of 3 CBA/Ca mice (Figure 40). Each population had different numbers of cells. The 

largest cell population sorted, at approximately 250,000 cells was for the CD27-

CD201- population, followed by the CD27+CD201- population which isolated around 

140,000 cells. The lowest numbers of cells obtained was from the CD201+CD27- 

population, amounting to 3,000 cells per mouse while for the CD201+CD27+ 

population, thought to contain the long-term HSCs, the cell number was higher at 

approximately 30,000 cells. After radiation exposure however, this number had 

decreased to approximately 7,000 cells. The cell numbers are below the 

recommended cell number for many RNA extraction kits so testing of RNA extraction 

kits specific for low cell numbers and pre-amplification kits is therefore required. 
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Figure 40. Sorted cell numbers of lineage depleted bone marrow in CBA mice 

using the cell surface markers CD201 and CD27.  

CBA/Ca mice were irradiated in vivo with doses of 0 Gy and 1 Gy and sacrificed 7 

days after IR with 1 mouse per dose. Error bars represent the standard deviation of 

cell numbers from 4 experiments. 
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3.3.3 RNA extraction 

Due to the low numbers of cells isolated using the CD27 and CD201 cell surface 

markers and, in order to isolate the maximum amount of RNA for several downstream 

applications, different RNA extraction kits were tested. The miRNeasy Kit from Qiagen 

was tested for the isolation of both mRNA and miRNA from the same sample. Two 

extraction kits, Single Cell RNA Purification Kit from Norgen Biotek Corp and 

ReliaPrepTM RNA Miniprep Systems from Promega, were tested for RNA extraction 

from very small numbers of cells. The miRNeasy kit states that the minimum amount 

of starting material is 100 cells depending on the cell type but advises to start with 3-

4 x106 cells. The ReliaPrepTM RNA Miniprep Systems from Promega state that it 

extracts mRNA from 100 to 5 x106 cultured cells, however, this does not include 

miRNA. The Single Cell RNA Purification kit states that it extracts total RNA including 

miRNA, from 1 to 200,000 cells. 

miRNeasy RNA Extraction 

RNA was extracted from 4 cell quantities 1,000,000, 500,000, 50,000 and 10,000 cells 

using the miRNeasy RNA Extraction Kit (Table 10). The kit produced good quality RNA 

with RIN values of 9.8 to 10 for all samples. The quality could only be assessed for 

samples that had a high concentration within range of the Tapestation (25-100ng/µl) 

(Figure 41). At 50,000 cells or below, the RNA was not at the concentration required 

for reliable reading on the Tapestation or on the Nanodrop. The total amount of RNA 

extracted of 50 ng from 10,000 cells was also at the limit of reverse transcription for 

many kits. The High Capacity Reverse Transcription Kit claims to be able to perform 

RT down to 20 ng, however low amounts of mRNA starting material can lead to high 

Ct values and a lack of reproducibility (Stahlberg et al. 2004). 

With a minimum expected yield of a few thousand cells per mouse per population 

using the CD27 and CD201 cell surface markers, the RNA yield using the miRNeasy 

RNA Extraction kit would be insufficient. Therefore, pooling of a larger number of mice 

would be necessary to use this kit. 
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Table 10. RNA quantity from different HSPCs cell numbers extracted using the 

Qiagen miRNeasy RNA Extraction kit.  

RIN values and corresponding lane numbers after Tapestation analysis are also 

provided. Exclamation marks denote lanes where the sample concentration is below 

the recommended range for the Tapestation. 

 

 

Figure 41. RNA screentape analysis by the Tapestation of samples of different 

cell numbers extracted using the miRNeasy kit.  

Lane sample details are given in Table 10. The yellow triangle with exclamation mark 

indicates the sample concentration is below the recommended range for the 

Tapestation. 

Cell No. Total RNA (ng) RIN Tapestation Lane

1,000,000 985 9.2 A1

500,000 540 9.5 B1

50,000 192 9.5 ! C1

10,000 50 9.7 ! D1
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ReliaPrepTM RNA Miniprep Systems 

The ReliaPrep kit from Promega was tested alongside the Single Cell RNA Purification 

Kit from Norgen as kits for extraction of RNA from lower numbers of cells. The RNA 

quality again showed high RIN values which was out of range of the Tapestation and 

the quantity of RNA extracted was still at the limit for downstream applications (Table 

11).  

 

 

Table 11. RNA quantity from different HSPCs cell numbers extracted using the 

ReliaPrepTM RNA Miniprep Systems.  

RIN values after Tapestation analysis are also provided. Exclamation marks denote 

lanes where the sample concentration is below the recommended range for the 

Tapestation. 

 

Single Cell RNA Purification Kit 

Extraction of RNA using a specified kit for low cell numbers, the Single Cell RNA 

Purification Kit, did give a slightly higher yield of RNA and the highest yield overall 

(Table 12). These samples had high RIN values of 9.9 to 10 showing that this kit 

produces good quality RNA, although it was again out of the optimum range of the 

Tapestation system.  

 

 

Table 12. RNA quantity from different HSPCs cell numbers extracted using the 

Single Cell RNA Purification Kit.  

Cell No. Total RNA (ng) RIN Tapestation Lane

20,000 72 9.9 ! A1

10,000 51 9.8 ! B1

Cell No. Total RNA (ng) RIN Tapestation Lane

20,000 89 10 ! A1

10,000 65 9.9 ! B1
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RIN values after Tapestation analysis are also provided. Exclamation marks denote 

lanes where the sample concentration is below the recommended range for the 

Tapestation. 

 

As the Single Cell RNA Purification Kit produced the highest RNA yield with good 

quality, it was therefore used to extract RNA from all cell populations using the markers 

CD27 and CD201 (Figure 42). The Single Cell RNA Purification Kit extracted around 

200 – 400 ng RNA from the largest cell populations CD27-CD201- and CD27+CD201-

. For the smaller cell populations, CD27-CD201+ and CD27+CD201+, the kit extracted 

less than 100 ng per experiment, with 46 ng being the lowest amount of RNA extracted 

from a CD27-CD201+ 0Gy sample. Although this approach would avoid the bias 

introduced with using an amplification kit, the RNA extracted using this kit could result 

in insufficient material for the project. In order to obtain sufficient material more mice 

would be required, or experiments would need to be repeated. Use of amplification 

kits would have to be investigated which could provide information using fewer cells 

and allow rarer HSC populations using the widely studied SLAM markers to be 

investigated. 
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Figure 42. Total RNA extracted from CBA HSPC sub-populations by the Single 

Cell RNA Purification Kit.  
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CBA/Ca mice were irradiated with doses of 0 Gy and 1 Gy and sacrificed 1 week after 

irradiation with one mouse per dose. HSPC sub-populations were sorted using the cell 

surface markers CD27 and CD201. The data represent the mean standard deviation 

of four independent biological replicates. 

 

3.3.4 Amplification kits 

Due to the low RNA yield obtained using traditional RNA extraction kits, the use of 

three pre-amplification kits were analysed. The kits included the REPLI-g® WGA & 

WTA Kit, which can amplify cDNA and DNA from a minimum of 25 cells for use in DNA 

sequencing and QPCR, the REPLI-g® WTA Kit, which can amplify cDNA from a single 

cell, and the CellsDirect One Step qRT-PCR Kit, which can also amplify cDNA from a 

single cell. A previous publication by Moignard et al. has demonstrated amplification 

of cDNA from a single cell using a modified protocol of the CellsDirect One Step qRT-

PCR Kit including a pre-amplification step (Moignard et al. 2013). 

The REPLI-g® WGA & WTA Kit was tested with 25 and 100 lineage-depleted bone 

marrow cells (Figure 43). A positive control sample was included which were cells 

reverse transcribed into cDNA without pre-amplification. The stated minimum number 

of cells produced detectable up-regulation, however it varied from 28 - 38 Ct. A larger 

number of cells, 100 cells, produced a higher Ct value of 26 Ct. Therefore, a larger 

number of cells than the minimum 25 would be required in each sample to obtain 

consistent amplification, which would not be feasible for long-term HSPC populations. 

To further test the limit of such amplification kits, the REPLI-G® WTA Single Cell Kit, 

which can amplify cDNA from 1 cell, was tested. MQRT-PCR was performed on these 

samples with 1 and 10 cells using the housekeeping gene Hprt. Amplification was 

detected from the sample containing 10 cells at 29 Ct and for the single cell samples 

amplification was detected at 34 – 39 Ct (Figure 44). Samples containing at least 10 

cells would be required for use with this kit. 

The CellsDirect One Step qRT-PCR Kit was also tested using a modified protocol from 

Moignard et al. Amplification of single cells was detected in 11 out of 15 single cell 

samples at 17 – 25 Ct (Figure 45). This kit produced the lowest Ct value out of the 3 

kits and the protocol included a stopping point after cell collection, shortening the 
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length of the total cell sorting protocol to 11 hours in comparison to 15 hours using the 

REPLI-G® kits. The CellsDirect One Step qRT-PCR Kit using the modified protocol 

from Moignard et al was therefore selected due to it allowing single cell studies, the 

flexibility of the stopping point and the shorter cell collection time. 

 

 

Figure 43. Gene expression of Hprt in cells amplified using the REPLI-g WGA & 

WTA kit. 

QRT-PCR amplification plot of CBA/Ca cDNA from 15 samples with 25 cells and 5 

samples with 100 cells amplified with the REPLI-g WGA & WTA kit. A positive control 

sample consisting of RNA extracted with the miRNeasy kit and reverse transcribed 

using the High Capacity Reverse Transcription Kit is labelled. 
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Figure 44. Gene expression of Hprt in cells amplified using the REPLI-g WGA & 

WTA kit. 

QRT-PCR amplification plot of CBA/Ca cDNA from 5 samples with 10 cells and 10 

samples with 1 cell amplified with the REPLI-g WTA kit for the gene Hprt. A positive 

control sample consisting of RNA extracted with the miRNeasy kit and reverse 

transcribed using the High Capacity Reverse Transcription Kit is labelled. 

 

 

Figure 45. Gene expression of Hprt in single cells amplified with the 

CellsDirectTM kit. 
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QRT-PCR amplification plot of CBA/Ca cDNA from 15 single cells amplified with the 

Cells Direct kit including a pre-amplification step as detailed in Moignard et al. A 

positive control sample consisting of RNA extracted with the miRNeasy kit and reverse 

transcribed using the High Capacity Reverse Transcription Kit is labelled. 

 

3.3.5 Single cell protocol validation 

The selected amplification step involving single cells allows the use of more stringent 

cell surface markers which isolates smaller, although more distinct, populations of 

stem cells. A recent paper by Wilson et al. isolated HSCs based on the use of the cell 

surface markers c-Kit, Sca1, CD48, CD150, CD34 and CD135 which allowed for 

HSPCs to be separated into 1 HSC and 4 multipotent progenitor populations (Wilson 

et al. 2008). These populations consist of a HSC population with an LSK CD34- CD48- 

CD135- CD150+ phenotype. This HSC develops into MPP1 with the acquisition of 

CD34. The MPP1 then develops into MPP2 upon acquisition of CD48. Loss of CD150 

leads to the development into MPP3 and finally acquisition of CD135 leads to the 

development of MPP4. These markers were used to isolate the 5 HSPC populations 

as in Wilson et al.  

Primer design in single cell experiments must ensure that mRNA, and not DNA, is 

amplified, which here is crucial as there is no DNase step. For genes of interest, 

primers were therefore designed to specifically span exon boundaries. Primers were 

first tested by a SYBR green melt curve analysis to ensure the primers were specific.  

SYBR green analysis of the Hoxb5 design is illustrated in Figure 46. Designs were 

also tested by SYBR green analysis on both cDNA and DNA samples. Primers were 

selected which showed upregulation in cDNA samples and not DNA samples and, if 

upregulation was observed in DNA samples, the design was accepted if at least 5 Ct 

difference was seen between cDNA and DNA samples.  

Designs for the genes Hprt and Hoxb5 had a Ct difference of less than 5 Ct between 

cDNA and DNA amplification (Figure 47). The design for sestrin 2 (Sesn2) had a Ct 

difference of 9 Ct between cDNA and DNA amplification. The Hprt and Hoxb5 designs 

were further tested on 500 sorted cells which were pre-amplified using the primer 

designs including minus RT controls to test for DNA amplification (Figure 48). A Ct 
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difference of greater than 5 Ct was detected, and the designs validated. Furthermore, 

a minus RT control was also included on each QRT-PCR plate to detect any DNA 

contamination. 

 

Figure 46. Melt curve analysis of QPCR primers for the gene Hoxb5.  

The melt curve shows one sharp peak with a melting temperature of 85 oC which 

means that the primers are specific to the area of interest and do not amplify unspecific 

products. 

 

 

Figure 47. QPCR expression of the genes Hprt, Hoxb5 and Sesn2 in cDNA and 

DNA samples. 

cDNA samples are labelled in green and DNA samples in red. 

 
                                      Hprt                                                                      Hoxb5 

  
                                   Sesn2                                                                         
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Figure 48. QPCR expression of the genes Hprt and Hoxb5 in cDNA and minus 

RT controls. 

MQRT-PCR expression was pre-amplified from 500 sorted HSPCs using the 

CellsDirect Kit. cDNA samples are labelled in green and minus RT control samples in 

red. 

 

In order to determine if a cell was present in the well and calculate the efficiency of the 

cell sorting protocol, a single cell was deemed present if the expression of Hprt could 

be detected in the well. A total of 30 single cells were used for each QPCR with one 

well retained as a minus RT control. The number of wells where Hprt was detected 

was measured for both CBA/Ca and C57/BL6 mice (Figure 49). No difference in the 

number of wells with Hprt expression was detected between strains or between sub-

populations. Overall a mean of 25 out of 29 wells was determined to have Hprt 

expression. 

 
                                      Hprt                                                                      Hoxb5 
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Figure 49. Single cell amplification efficiency. 

The number of cell sorting wells in which a single cell was present, as indicated by the 

expression of Hprt, in both CBA/Ca and C57BL/6 strains.  

 

In order to validate that the sorted cells belong to the specified sub-populations, we 

tested the expression of a known marker for long-term hematopoietic stem cells, 

Hoxb5 (Chen, Miyanishi, et al. 2016). Using the same markers as this study, Hoxb5 

has previously been shown to be highly expressed in hematopoietic stem cells while 

expressed at a much lower level in multipotent progenitors populations (Cabezas-

Wallscheid et al. 2014). In CBA/Ca HSPCs using these cell surface markers, 

expression of Hoxb5 could be clearly seen in HSCs, even though the number of cells 

expressing Hoxb5 was limited (Figure 50). The detection of Hprt expression was used 

to confirm the presence of a single cell. The limited numbers of cells expressing Hoxb5 

are not due to technical issues, as Hprt expression was confirmed, but rather could be 

due to the difference between the previously reported bulk transcriptional expression 

(Chen, Miyanishi, et al. 2016) and single cell expression. For the remining activating 

MPP cell populations, there was little to no Hoxb5 expression, with a significant 

reduction seen in MPP2. Although the number of cells expressing Hoxb5 are few, the 
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expression of Hoxb5 shows that these cell surface markers are specifically able to 

isolate HSCs. 
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Figure 50. Hoxb5 expression in CBA HSPCs populations HSCs, MPP1, MPP2, 

MPP3 and MPP4.  

Data represent the endogenous expression of 29 single cells for each population in 

CBA/Ca mice normalised to Hprt. Error bars represent the minimum and maximum 

values. Significance was calculated by a Mann Whitney test and indicated by an astrix 

where p≤0.05. 

 

To further validate this single cell protocol and ensure that the expression changes 

normally detected during QPCR without amplification are still accurately detected in 

single cells with amplification, QPCR analysis was performed comparing gene 
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expression changes in total bone marrow in comparison to single cell amplification 

QPCR. CBA/Ca and C57/BL6 mice were irradiated with 2 Gy, total bone marrow 

isolated at 24 hr post exposure and transcriptional changes in validated DNA damage 

response marker genes analysed.  

Expression of the gene Sesn2 is upregulated in both human and mouse following 

exposure to radiation. Sesn2 is regulated by p53 in response to DNA damage (Kabacik 

et al. 2011) and in human ex vivo irradiated blood samples, shows an up-regulation 

after X-ray exposure (Brzoska and Kruszewski 2015). Sesn2 was also upregulated in 

mouse blood samples following X-ray exposure (Kabacik et al. 2011). 

After exposure to a 2 Gy dose of ionising radiation, Sesn2 expression was significantly 

up-regulated 1.7 and 1.8-fold, respectively, in both CBA/Ca and C57BL/6 total bone 

marrow at 24 hr (Figure 51). Following single cell analysis, Sesn2 was up-regulated 

both CBA/Ca and C57BL/6 strains (Figure 52). In CBA/Ca HSPCs, Sesn2 was 

significantly up-regulated in HSC, MPP2, MPP3 and MPP4 populations. In C57/BL6 

HSPCs, Sesn2 was significantly up-regulated in two populations, MPP1 and MPP2 

and, although not significant, was up-regulated in all other populations.  

 



157 

 

0 
hr

24
 h

r 
0.00

0.05

0.10

0.15

0.20

0.25

Sesn2
E

n
d

o
ge

n
o

u
s 

e
xp

re
ss

io
n

 r
e

la
ti

ve
 t

o
H
p
rt

CBA

C57
* *

 

Figure 51. Sesn2 expression in CBA and C57 bone marrow at 24 hr following a 

2 Gy dose.  

Error bars represent the standard deviation of 3 mice per dose. A t-test was performed 

to test for significance between time-points and indicated by an astrix where p=0.05. 
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Figure 52. Sesn2 expression in CBA (A) and C57 (B) HSPC populations.  
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MQRT-PCR analysis in HSCs, MPP1, MPP2, MPP3 and MPP4 populations at 24 hr 

following a 0 Gy and a 1 Gy dose. Each population contains 29 single cells which were 

individually analysed by QMRT-PCR. A Mann Whitney test was performed to test for 

significance between control and irradiated samples and indicated by an astrix where 

p=0.05. 

 

To identify long term biomarkers of irradiation exposure in the bone marrow, cells from 

HSCs and the progenitor populations MPP1, MPP2, MPP3 and MPP4 were analysed 

using the nCounter system which can assess transcriptional levels of up to 800 genes. 

CBA/Ca and C57BL/6 mice were irradiated with 1 Gy and bone marrow isolated at 1 

month, 3 month and 6 months following exposure (Figure 53). Approximately 300 cells 

from each population were pooled and analysed using the Mouse PanCancer 

Pathways Panel on the nCounter system. The PanCancer Pathways Panel was used 

as it measures the expression of 770 genes from cancer associated pathways such 

as MAPK, STAT, PI3K, RAS cell cycle, apoptosis, Hedgehog, Wnt, DNA damage 

control, transcriptional regulation, chromatin modification and transforming growth 

factor beta (TGF-β).  

 

 

Figure 53. Single cell experimental plan.  

CBA/Ca and C57/BL6 mice, 3 mice per strain, were irradiated with 0 Gy and 1 Gy and 

bone marrow isolated at 1 month, 3 month and 6 month time-points. 
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The molecular barcode counts from the nCounter system could also add further 

information on transcriptional expression of specific genes within each HSPC sub-

population and validate the sorting protocol. Previous studies identified many genes, 

such as suppressor of cytokine signaling 2  (Socs2) (Zhong et al. 2005), cyclin 

dependent kinase inhibitor 1c (Cdkn1c),  integrin subunit alpha 6 (Itga6), mixed-

lineage leukaemia 4 (Mllt4), PBX homeobox 1 (Pbx1), Cyclin D3 (Ccnd3), Cyclin A2 

(Ccna2), Cyclin B1 (Ccnb1) and interleukin 1 receptor type 1 (Il1r1) (Forsberg et al. 

2005), which had differential expression between murine HSCs and MPPs, and these 

genes were also included on the PanCancer Pathways panel, allowing a comparison 

between previous studies and between CBA/Ca and C57BL/6 strains to be made 

(Figure 54). When analysing the molecular counts of these genes a strong expression 

of the genes Itga6, Socs2, Mllt4, Pbx3, Cdkn1c and Ccnd3 in HSCs was detected with 

a lower expression in MPP populations (Figure 54 A and B). Also, a strong expression 

of the genes Ccna2, Ccnb1 and Il1r1 was reported in MPP populations with a lower 

expression in HSC (Figure 54 C and D). This analysis is consistent with the previously 

published studies. 
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Figure 54. Transcriptional analysis of CBA (A, C) and C57 (B, D) HSC, MPP1, 

MPP2, MPP3 and MPP4 populations.  

The data represent molecular barcode counts, measured by the nCounter system, for 

the genes Cdkn1c, Itga6, Mllt4, Pbx1, Ccnd3 and Soc2 which have a high level of 

expression in HSC and a lower level of expression in MPPs (A, B) and genes Ccna2, 

Ccnb1 and Il1r1 which have a low level of expression in HSC and a higher level of 

expression in MPPs (C, D). Data represent the endogenous molecular counts of 300 

cells for each population normalised to Hprt. 

 

Genes of interest were identified using the BRB array tools algorithm which identified 

genes whose transcription was significantly altered after irradiation (Figure 55). The 

gene Stat1 was the second most significantly expressed gene at 1 month between all 

CBA/Ca 0 Gy and 1 Gy cell populations with a 3-fold up-regulation at p=0.001. Another 

gene Jak3, which is another member of the Jak/Stat pathway was found to be 

significantly expressed in MPP cells. These genes were analysed further at each time-

point. 
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Other interesting genes were found to have a significantly differentially expressed level 

following radiation exposure, such as Fanconi anaemia, complementary group A 

(Fanca) and Dnmt3a. Mutations in the gene FANCA are associated with Fanconi 

anaemia and, also, acute myeloid leukaemia (Alter 2014). Transcriptional analysis of 

FANCA expression in human AML patients suggests that mutations and reduced 

expression of FANCA may be associated with AML (Tischkowitz et al. 2004). Here, a 

strong upregulation was identified after radiation exposure which may be due to its 

role in replication repair or cell cycle checkpoint (Benitez et al. 2018). The nCounter 

analysis also revealed a decreased in Dnmt3a expression which has previously been 

reported in DNMT3A protein levels in C57BL/6 thymus 10 days after fractionated and 

acute radiation exposure (Pogribny et al. 2005). Also, 4 weeks after exposure to 56Fe 

ions, a decrease in the transcriptional expression in the Dnmt genes Dnmt1, Dnmt3a 

and Dnmt3a was reported in C57/BL6 HSPCs (Miousse et al. 2014). As a 

methyltransferase involved in DNA methylation, decrease in expression of Dnmt3a 

could play an important role in the development of and further investigation would be 

of interest. The nCounter molecular counts of Fanca and Dnmt3a, however, were very 

low and so analysis by single cell MQRT-PCR might not be possible. 

Perhaps of concern, the gene Kit, also one of our cell surface markers in the single 

cell isolation protocol, showed a significant decrease in transcriptional expression at 1 

month after a 1 Gy dose. Previous studies have reported an initial decrease in Kit 

expression in murine HSCs after irradiation which eventually returned to control levels 

after 10 weeks (Simonnet et al. 2009). However, a recent study by Chen et al. has 

shown that a down-regulation of Kit did not affect the ability of the HSPCs to be 

transplanted (Chen, Faltusova, et al. 2016). Therefore, although a down-regulation is 

evident at 1 month, there is no evidence to suggest that it affects the function of the 

HSPCs. 
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Figure 55. BRBArray Tools analysis of nCounter PanCancer Pathways Panel 

data.  

A class comparison analysis was performed on samples using BRB-ArrayTools 

developed by Dr. Richard Simon and the BRB-ArrayTools Development Team. 

Analysis of CBA/Ca HSC, MPP1, MPP2, MPP3 and MPP4 populations, each 

containing data from approximately 300 cells, at 1 month identify 45 genes which have 

a significant molecular count of p≤0.05 between 0 Gy and 1 Gy. The level of 

expression is indicated by a colour chart with a light blue indicating low expression 

and a dark blue indicating high expression. 
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In CBA/Ca mice, Stat1 was also significantly expressed when analysing MPP 

populations alone (p=0.002) (Figure 56 A). This up-regulation was still found at 3 

months, although not significant. Interestingly, when analysing C57/BL6 1 month cell 

populations, Stat1 was not found to be differentially expressed between 0 Gy and 1 

Gy samples at any time-point (Figure 56 B). The gene Jak3 was also significantly up-

regulated 2.9-fold when analysing CBA/Ca MPP populations at 1 month following 0 

Gy and 1 Gy (p=0.02) (Figure 57 A) and again this was not found in C57/BL6 samples 

(Figure 57 B). Since these genes are both present in the Jak/Stat pathway, they were 

identified as genes of interest and primers were designed to try to validate this 

expression on a single cell level by QPCR. 

Q-PCR primers were designed for Stat1 and Jak3 and single cells were first pre-

amplified and then analysed by Q-PCR. Single cells from CBA/Ca and C57/BL6 strains 

were isolated after 0 Gy and 1 Gy at 1 month, 3 months and 6 months for 5 HSPC 

populations (HSCs, MPP1, MPP2, MPP3 and MPP4). QPCR analysis validated the 

nCounter results with a significant up-regulation in Stat1 expression in CBA/Ca 

samples after 1 Gy at 1 month in HSCs, MPP2 and MPP4 populations (Figure 58 A) 

while no significant increase in expression was found in C57/BL6 samples at 1 month 

(Figure 58 B). At 3 months this up-regulation was still found to be significant in HSCs, 

MPP1 and MPP2 populations in CBA/Ca samples (Figure 58 C) while in C57/BL6 

samples a significant down-regulation was found in MPP3 (Figure 58 D). At 6 months 

the response is still found to be up-regulated in MPP1 and MPP3 and significantly up-

regulated in the MPP4 population for CBA/Ca (Figure 58 E), while for C57/BL6 up-

regulated in MPP2 and is significantly up-regulated in MPP3 cells (Figure 58 F). Jak3 

meanwhile does not have as strong a response as Stat1. CBA/Ca cells show a 

significant up-regulation in expression at 1 month in HSCs and a down regulation in 

expression in MPP4 cells (Figure 59 A). At later timepoints of 3 and 6 months, no 

CBA/Ca cell population showed a significant change in expression (Figure 59 C, E). 

In C57BL/6 cells there was no significant change in expression at 1 month (Figure 59 

B) and, at 3 months, MPP4 had a significant down-regulation (Figure 59 D) while at 6 

months MPP2 had a significant up-regulation in expression (Figure 59 F). 

Overall, this QPCR data validates the response seen using the nCounter system, that 

CBA/Ca HSPCs have a strong up-regulation in Stat1 expression that persists 6 

months after X-ray exposure. Importantly, this response is not seen in C57BL/6 mice 



165 

 

and is clearly a strain and HSC specific response which could be associated with an 

overexpressed pathway in the CBA/Ca mouse model. 
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Figure 56. Long term nCounter Stat1 expression in CBA and C57 HSPCs.  

Stat1 expression in CBA/Ca (A) and C57/BL6 (B) HSCs, MPP1, MPP2, MPP3 and 

MPP4 populations at 1 month, 3 months and 6 months after 0 Gy and 1 Gy X-rays. 
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Data represent the endogenous molecular counts of 300 cells for each population 

normalised to Hprt. Data represent results of a single experiment for each time point 

and strain. Boxes with an X represent timepoints where no sample was available. 
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Figure 57. Long term nCounter Jak3 expression in CBA and C57 HSPCs.  
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Jak3 expression in CBA/Ca (A) and C57/BL6 (B) HSCs, MPP1, MPP2, MPP3 and 

MPP4 populations at 1 month, 3 months and 6 months after 0 Gy and 1 Gy X-rays. 

Data represent the endogenous molecular counts of 300 cells for each population 

normalised to Hprt. Data represent results of a single experiment for each time point 

and strain. Boxes with an X represent timepoints where no sample was available. 
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Figure 58. Long term MQRT-PCR Stat1 expression in CBA and C57 HSPCs.  

Stat1 expression in CBA/Ca (A, C E) and C57BL/6 (B, D, F) HSCs, MPP1, MPP2, 

MPP3 and MPP4 populations at 1 month (A, B), 3 months (C, D) and 6 months (E, F) 

after 0 Gy and 1 Gy X-rays. Data represent the endogenous expression of 29 single 
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cells for each population normalised to Hprt. Error bars represent the minimum and 

maximum values. Data represent results of a single experiment for each time point 

and strain. Significance was calculated by a Mann Whitney test and indicated by an 

astrix where p≤0.05. 
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Figure 59. Long term MQRT-PCR Jak3 expression in CBA and C57 HSPCs.  

Jak3 expression in CBA/Ca (A, C E) and C57BL/6 (B, D, F) HSCs, MPP1, MPP2, 

MPP3 and MPP4 populations at 1 month (A, B), 3 months (C, D) and 6 months (E, F) 
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after 0 Gy and 1 Gy X-rays. Data represent the endogenous expression of 29 single 

cells for each population normalised to Hprt. Error bars represent the minimum and 

maximum values. Data represent results of a single experiment for each time point 

and strain. Significance was calculated by a Mann Whitney test and indicated by an 

astrix where p≤0.05. 

 

Discussion and future directions 

The overall challenging goal was to study the in vivo transcriptional response of 

individual cells from bone marrow compartment progenitors and stem cells to 

irradiation. This work developed a single cell QPCR protocol and in long-term 

experiments identifies the JAK/STAT pathway, with Stat1 in particular, as being 

upregulated in response to irradiation in the CBA mouse strain. 

In order to develop a working protocol for analysis of transcriptional changes in HSPC 

populations, standard RNA extraction kits were first tested. A protocol with standard 

RNA extraction and reverse transcription would allow genes of interest to be analysed 

without the introduction of another step, such as pre-amplification, which may 

introduce further variability into the experiment. The cell surface markers 

CD201+CD27+ were used allowing the isolation of a larger HSPC population in the 

CBA mouse and overcoming the problem of using SLAM markers in CBA mice due to 

the lack of Sca-1. RNA extraction using standard RNA extraction kits and kits specific 

for low amounts of cells, however, did not provide sufficient RNA for reverse 

transcription. The Single Cell RNA Purification Kit extracted the greatest amount of 

RNA from the smallest number of cells, however this amount was just 45 ng from one 

population. Although the CD27 and CD201 markers can isolate more HSPCs than the 

traditional SLAM markers, pooling of many mouse samples would be required due to 

the low numbers of cells isolated.  

The use of pre-amplification kits was next investigated and the use of the markers c-

Kit, Sca-1, CD48, CD150, CD34 and CD135 allowing the isolation of 5 HSPC sub 

populations; HSCs, MPP1, MPP2, MPP3 and MPP4. The development of a single cell 

protocol, or protocol involving few cells, allows the isolation of rarer HSPC populations. 

SLAM markers were therefore chosen for single cell sorting due to their validated use 
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for isolation of HSCs and MMP. A pre-amplification protocol by Moignard et al. using 

the Cells Direct Kit and primers specific for the genes of interest was determined to be 

the best protocol for the isolation of single cells (Figure 60). The REPLI-g WGA & WTA 

kit and REPLI-g WTA kit worked best with cell numbers of 100 and 10, respectively, 

while the use of smaller cell numbers resulted in Ct values greater than 35 Ct. 

 

 

Figure 60. Validation of RNA amplification kits. 

The kits were tested with 25 cells (REPLI-g Cell WGA & WTA Kit) and single cells 

(REPLI-g WTA Single Cell Kit and CellsDirectTM One Step QRT-PCR Kit) and only the 

CellsDirectTM One Step QRT-PCR Kit resulted in single cell amplification using a 

modified protocol by Moignard et al. 

 

To confirm that the HSC populations isolated are indeed long-term, expression of the 

gene Hoxb5, a gene previously reported to be expressed in long term HSCs (Chen et 

al. 2016), was investigated and found to have a higher expression in the HSC 

population. This expression was significant in comparison to the MPP2 population. 

Significance could not be determined for MPP3 and MPP4 populations as there was 

only one cell in each population that expressed Hoxb5. However, with only one cell 
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expressing a low level of Hoxb5 in each MPP3 and MPP4, the difference is clear. To 

ensure that the transcriptional expression in single cell analysis is representative of 

bulk RNA transcriptional expression, the expression of a known DNA damage 

response gene, Sesn2, was analysed 24 hr after radiation exposure in total bone 

marrow using standard QPCR in comparison to single cell analysis of HSPCs. A 

significant up-regulation was detected in both CBA/Ca and C57/BL6 mice. At single 

cell level a significant up-regulation was also detected in MPP populations of CBA/Ca 

and C57/BL6 mice demonstrating that the single cell protocol does represent the 

transcriptional changes seen in bulk RNA samples and is therefore validated. 

Another step was also taken to validate the protocol by comparing molecular counts 

obtained using the nCounter system to the transcriptional profile of previously 

published studies. The genes Itga6, Socs2, Mllt4, Pbx3, Cdkn1c and Ccnd3 are highly 

expressed in HSCs, as previously reported (Zhong et al. 2005; Forsberg et al. 2005), 

with expression gradually reducing in each MPP population each with interesting 

possible roles. Itga6 is a potential stem cell marker and HSC cell surface expression 

of Itga6 has been previously reported (Wagers, Allsopp, and Weissman 2002). Socs2 

is a cytokine suppressor with its reduction in MPP populations possibly allowing 

cytokine signalling for the differentiation of HSCs and Mllt4 is an actin filament-binding 

protein. The gene Pbx3 interacts with Hox genes and so its expression could be co-

operating with Hoxb5 expression as detected by the MQRT-PCR expression. With 

regards cell proliferation, previous work has shown that HSCs cell proliferation is 

possibly regulated by cell cycle inhibitors Cdkn1c and Ccnd3 (Forsberg et al. 2005), 

as also reported in this study. The genes Ccna2, Ccnb1 and Il1r1 have previously 

been reported to have a low level of expression in HSC and a higher level of 

expression in MPPs (Forsberg et al. 2005), which again can be seen in this study. 

Ccna2 and Ccnb1 are involved in cell cycle proliferation and have a high level of 

expression in MPP populations, probably due to the increased proliferation of the cells 

as they differentiate. Il1r1 is a cytokine receptor and its higher level of expression in 

MPPs may be due to the differentiation signals needed by the cells. When comparing 

the expression between strains, although slight variations in expression levels 

between strains was evident the response was very similar considering that only one 

sample was used per population. Overall, the expression analysis by the nCounter 
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PanCancer Pathways panel further validates the isolation of HSPC populations in this 

study and confirms previously reported transcriptional analysis of these populations. 

To investigate gene expression changes in this study, nCounter data were first 

analysed to examine expression levels. Since the nCounter protocol for low input RNA 

already has an amplification step, the final counts give an indication of the level of 

expression expected after QPCR analysis and identify genes of interest with a low 

level of expression. nCounter data of Stat1 and Jak3 reported counts of approximately 

500 or higher which, in comparison to other genes, seemed to give a high level of 

expression. Hprt expression allowed the identification of the presence of a single cell 

after sorting. However, difficulties in the detection of mRNA using single cell 

techniques has been well documented (Stahlberg and Kubista 2018). This preliminary 

step of analysing nCounter counts increased the possibility of detectable QPCR 

expression in the samples and avoiding dropout issues. Other techniques could also 

be used which could overcome issues with detection. Digitial droplet PCR (DDPCR) 

is a fluidic system, based on water-oil emulsion droplet technology, available through 

either RainDance’s RainDrop Digital PCR System or Bio-Rad’s Droplet DigitalTM PCR 

System. A sample is fractionated into approximately 20,000 droplets and then the 

template in each individual droplet is amplified by PCR. Each individual droplet is then 

passed through a detection system. The system reduces error rates by removing the 

amplification efficiency reliance of qPCR. Another emerging technique is the MinION 

from Nanopore Technologies, which utilises an electric current to detect the passing 

of transcripts through 512 channels, can provide direct RNA sequencing, eliminating 

PCR bias. New technologies could be used in future analysis to quantify with 

increasing accuracy the Stat1 and Jak3 changes in expression. 

Validation of the single cell protocol allowed for long-term single cell experiments to 

be performed at 1 month, 3 months and 6 months after irradiation in vivo. The 

nCounter system allowed for the identification of genes of interest by analysing 

approximately 300 cells from each HSPC sub-population with the Low RNA Input Kit 

and the PanCancer Pathways Panel. Two genes of interest were identified using the 

nCounter system, Stat1 and Jak3, showing significant changes in expression after 

irradiation in some of the CBA/Ca HSPC populations while not showing the same 

response in C57BL/6 HSPC populations. Stat1 has more HSPC populations with 

significant changes in transcription after irradiation in comparison to Jak3, but both are 
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of interest as they are both involved in the JAK/STAT pathway. The increased 

transcriptional expression of Stat1 in CBA/Ca mice and not in C57BL/6 mice was of 

particular interest as CBA/Ca is prone to developing AML after radiation exposure 

while the C57BL/6 strain does not. Remarkably, this Stat1 expression, although more 

pronounced at 1 and 3 months, is still expressed at 6 months after IR in CBA/Ca mice 

and so may be important for AML development, as has been previously reported 

(Kovacic et al. 2006). 

The Jak/Stat pathway is a signalling pathway involved in processes such as immune 

response, cell proliferation and apoptosis. The pathway is usually activated by 

cytokines, such as interferons (IFNs) and interleukins (ILs), that bind to cell surface 

receptors and cause JAKs to phosphorylate tyrosine residues on the receptor which 

creates docking sites for STAT proteins (Figure 61). The STAT proteins are then 

tyrosine-phosphorylated by JAKs which results in dissociation of STAT from the 

receptor and formation of a STAT dimer which enters the nucleus to transcribe target 

genes. As a transcription factor, STAT1 binds to and co-operates with a number of co-

activators such as CREB binding protein (CBP), p300, minichromosome maintenance 

complex component 5 (Mcm5), n-Myc and STAT interactor (Nmi), breast cancer type 

1 susceptibility protein 1 (BRCA1), specificity protein 1 (SP1), Jun and nuclear factor 

kappa B subunit 1 (NFκB) (Ramana et al. 2000). It targets B-cell lymphoma 2 (Bcl-2) 

family members Bcl-2 and Bcl-Xl (Cao et al. 2015; Stephanou et al. 2000) and 

caspases 1, 2, 3 and 8 (Kumar et al. 1997; Fulda and Debatin 2002) to regulate 

apoptosis, cell cycle regulators p21, p27, c-myc and cyclins (Chin et al. 1996; Dimberg 

et al. 2003) to regulate cell cycle arrest and also the tumour suppressor transcription 

factor p53 (Townsend et al. 2004). Some other members of the JAK/STAT pathway 

were also included on the PanCancer Pathways panel such as Jak1, Jak2, Stat3 and 

Stat4. Some show differential levels of expression both after irradiation and between 

strains. They have not yet been analysed due to difficulties in primer design and may 

not be feasible because of low molecular barcode counts indicating very low levels of 

expression. However, these will be further assessed in future studies. 
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Figure 61. The JAK/STAT pathway.  

Activation of the JAK/STAT pathway begins with (1) binding of a ligand to a cell surface 

receptor such as cytokine receptors, G protein coupled receptors, growth factor 

receptors or tyrosine kinase receptors. This results in (2) JAKs to phosphorylate 

tyrosine residues on the receptor. (3) STATs are then recruited to the receptor and 

phosphorylated and can form dimer complexes (4). The STAT dimer can enter the 

nucleus and activate STAT target genes. 
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The Jak/Stat pathway is of interest as protein levels of STAT1 has previously been 

found to be constitutively activated in human AML cell lines (Spiekermann et al. 2001), 

blood samples from AML patients (Gouilleux-Gruart et al. 1996) and AML leukemic 

cells (Aronica et al. 1996; Weber-Nordt et al. 1996). In another study, STAT1 protein 

was found to be constitutively activated in primary AML blasts in 12 out of 16 AML 

patients (Spiekermann et al. 2002). Other JAK/STAT family members have also been 

found to be differentially expressed in AML cells such as STAT3 and STAT5 

(Spiekermann et al. 2001; Gouilleux-Gruart et al. 1996; Benekli et al. 2002). Activation 

of STAT1 is not limited to AML and has also been detected in other cancers such as 

breast cancer (Perou et al. 1999) and lung cancer (Chen et al. 2007). The JAK/STAT 

pathway is clearly activated in AML, however, specific sub groups show higher 

activation that others. Mouse models of AML with AML-associated fusion proteins 

PML/RARa and DEK/NUP214 show a clear enhanced level of STAT5 expression in 

comparison to non-leukemic cells (Oancea et al. 2014). Enhanced phosphorylation 

STAT5 was confirmed in primary t(6;9) AML patient samples in comparison to healthy 

donors, with no difference, however, of STAT1 phosphorylation levels between groups 

(Oancea et al. 2014). The relevance of STAT activation in the development of normal 

cells to leukemic cells has also been demonstrated by the increased colony growth in 

NIH 3T3 cells transfected with the constitutively activated tyrosine kinase v-src and 

Stat3 plasmids, and the decrease in colony formation with dominant negative Stat3 

mutants  (Bromberg et al. 1998). 

In HSCs, the JAK/STAT pathway plays a vital role in HSC functions such as 

differentiation and self-renewal. STATs are essential for the differentiation of myeloid 

derived cells from in vitro studies, with STAT5 mutant HSCs producing proliferative 

multilineage cells (Stine and Matunis 2013; Kato et al. 2005), however, recent in vivo 

work using STAT knockout mice has questioned the role STAT1, STAT3 and STAT6 

play in myeloid differentiation (Coffer, Koenderman, and de Groot 2000). STATs also 

play a role in leukemic HSCs self-renewal. Transplantation assays have revealed that 

STAT5 deficient stem cells failed to sufficiently repopulate the blood, spleen, thymus 

or bone marrow of irradiated recipient mice (Snow et al. 2002). Also, STAT 1, 3 and 5 

expression was enhanced in the AML oncogene model MN1/HOXA9, while Stat5b-

null MN1/HOXA9 cells had a reduced proliferative rate compared to wild-type cells 
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(Heuser et al. 2009). Similarly, in human AML patients, enhanced expression of STAT 

genes was also found in patients with a MN1 and HOXA9 co-overexpression (Heuser 

et al. 2009). STAT1 knockout mouse models have illustrated the importance of Stat1 

in leukemic formation. STAT1-/- cell lines showed a decrease in leukemic 

development in recipient RAG2-/- mice with a decrease in spleen and liver leukemic 

infiltration (Kovacic et al. 2006).  

Expression of STAT1 is mainly considered to have a tumour suppressor function, 

however, in recent years, studies reported conflicting results on its function. A 

constitutive activation of the JAK/STAT pathway has been demonstrated in leukemic 

cells. The function of Stat1 in AML cells appears to be different to that in normal 

functioning cells. The JAK/STAT1 pathway has been targeted in the treatment of AML 

with the drug Atiprimod decreasing phosphorylation of Stat3 and Stat5, inhibiting cell 

proliferation and inducing apoptosis of AML cell lines (Faderl et al. 2007). STAT1 has 

also been shown to promote the proliferation of AML cell lines with suppression of 

STAT1 phosphorylation by the CDK8 inhibitor cortistatin A (CA) resulting in growth 

arrest (Nitulescu et al. 2017). STAT1 overexpression has also been identified in a 

radiation-resistant human tumour xenograft in comparison to a radiosensitive SCC-61 

tumour (Khodarev et al. 2004). Moreover, transfection of STAT1 vectors into the 

radiosensitive SCC-61 tumour cells increased cell survival after 3 Gy in comparison to 

cell survival of SCC-61 cells alone and so conferring a radioresistant phenotype 

(Khodarev et al. 2004). The function of Stat1 therefore seems to be multifaceted, 

depending on cell type and requires further investigation. 

STAT1 transcriptional expression can be upregulated by interferon-alpha, interferon-

gamma (Lehtonen, Matikainen, and Julkunen 1997),  epidermal growth factor receptor 

(EGFR) and human epidermal growth factor (HER2) (Han et al. 2013) and potentially 

controlled by STAT1 distal regulatory elements (Yuasa and Hijikata 2016). STAT1 and 

STAT1-dependent genes have been shown to be activated by IR in mouse head and 

neck cancer and breast cancer tumour xenografts  (Khodarev et al. 2007) and has 

been identified as a radiation responsive gene in the peripheral blood of radiotherapy 

patients (Amundson et al. 2004). Activation of Stat1 by interferons remains possibly 

the most widely studied pathway of activation. Stat1 was initially thought to be a 

tumour-suppressor as Stat1 deficient mice were found to be tumour-prone (Kaplan et 

al. 1998). This may have been more to do with the IFN activation of Stat1 rather than 
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Stat1 itself as tumours were found to grow faster in IFN deficient mice than controls, 

while Stat1-/- mice showed a decrease in leukemic formation in comparison to Stat1+/- 

mice (Kovacic et al. 2006). For decades interferon-α therapy was used for the 

treatment of AML due to its proapoptotic and antiproliferative effects however, the 

clinical outcomes were variable and success was achieved only in a minority of 

patients (Smits, Anguille, and Berneman 2013). This clinical failure of interferon 

therapy highlighted the need to investigate other activated pathways in AML and other 

possible treatment options. 

Another factor to activate STAT1 is EGFR. A recent study demonstrated how STAT1 

transcriptional expression is upregulated by nuclear EGFR in cooperation with STAT3 

(Han et al. 2013). EGFR amplification has been seen predominantly in glioblastoma 

multiforme (GBM) but also in breast, ovarian, prostate and lung carcinomas (Kuan, 

Wikstrand, and Bigner 2001). Enhanced expression of receptors has been implicated 

in the progression of cancers but the mechanism of EGFR amplification, however, is 

unclear. Larger studies in GBMs have identified a mutation in EGFR, known as 

EGFRvIII, which is commonly present in GBMs with EGFR amplification. EGFRvIII is 

a gain of function mutation which is constitutively activated (Greenall and Johns 2016). 

The presence of EGFRvIII has not been widely investigated in AML cases, however 

recent reports have identified EGFR expression in 15-33% of AML patients (Sun et al. 

2012; Mahmud et al. 2016) and in a murine AML tumour (Ben-Ishay 2014). EGF 

inhibitors such as erlotinib and gefitinib have had mixed results with erlotinib treatment 

leading to complete remission of AML in two patients (Chan and Pilichowska 2007; 

Pitini, Arrigo, and Altavilla 2008) while gefitinib treatment had no effect on patient 

outcome (Deangelo et al. 2014). Further research into the biological mechanisms of 

EGFR expression in AML is therefore required. 

In recent years, however, a wider range of methods of STAT1 protein activation has 

been identified. STAT1 can be activated by erythropoietin (Kirito et al. 2002), hypoxic 

conditions (Lee et al. 2006) and mutated kinases. The Philadelphia chromosome 

translocation, which results in a constitutively activated tyrosine kinase BCR-ABL, has 

also been shown to target STAT family members for protein activation (Ilaria and Van 

Etten 1996) and results in the development of leukaemia in murine cases (Daley, Van 

Etten, and Baltimore 1991). The BCR-ABL fusion oncogene has mostly been reported 

in chronic myelogenous leukaemia but since 2016 has been included in the WHO 
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classification as a rare subtype of AML (Neuendorff et al. 2016). Another chromosomal 

translocation at t(9;12)(p24;p13) produces a TEL-JAK2 fusion protein results in a 

constitutively active tyrosine kinase (Lacronique et al. 1997). TEL-JAK2 has been 

reported to induce strong activation of STAT1, STAT3 and STAT5 in HEK 293 cells 

(Spiekermann et al. 2002). Long-term activation of STAT1 may be the result of 

autocrine stimulation from, for example, IL-6 from leukemic blasts which results in 

Stat3 phosphorylation (Schuringa et al. 2000). STAT3 has been shown to cooperate 

with nuclear EGFR to increase STAT1 expression (Han et al. 2013), and so 

interleukins may also be responsible for activation of STAT1. However in vitro studies 

has shown Il-6 to modulate clonogenic blast cell growth in AML cells showing both 

proliferative and antiproliferative effects depending on the presence of different 

hematopoietic growth factor combinations (Koistinen et al. 1997). 

Activation of Stat1, therefore, can occur by many different mechanisms and 

expression of Stat1 can have different consequences. It has been proposed that a 

threshold level of Stat1 expression can occur whereby low levels of Stat1 expression 

leads to activation of cytotoxic genes and high levels of expression leads to activation 

of pro-survival genes (Khodarev et al. 2007). This theory is also supported by 

investigations into the clinical failure of interferon- therapy to treat AML. Interferon 

treatment of AML showed a higher success rate when high doses (3000 IU/ml) were 

used during a prolonged period (Benjamin et al. 2007). This prolonged high serum 

level can be achieved by modification of IFN by conjugation to a polyethylene glycol 

moiety (pegylated-IFNα), which was not used in previous clinical trials. Use of 

pegylated IFNα has since resulted in complete remission of AML in two recorded 

cases, highlighting the rationale for its use in future clinical trials (Smits, Anguille, and 

Berneman 2013). The role of STAT1 in the development of solid cancers has recently 

been reviewed and mechanisms by which it achieves this (Meissl et al. 2017). Tumour 

promoting functions of STAT1 were highlighted, such as, generation of an 

immunosuppressive tumour microenvironment by mobilisation of myeloid derived 

suppressor cells and infiltration of tumour-associated macrophages, and promoting 

tumour growth and invasiveness by interaction with the oncoprotein mucin 1 (MUC1) 

which is associated with reduced patient survival as well as radio-resistance (Meissl 

et al. 2017). This overexpression of STAT1 and its role in cancer progression however 

has been investigated in cell lines and cancer tissues. Little work has been done on 
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its role in normal or preleukemic cells. Although much of the research of AML 

development involves analysis using AML cell lines and primary AML, this work may 

identify a pathway of interest in the development of preleukemic AML which is still 

activated in AML at diagnosis. The difference in Stat1 expression in CBA/Ca and 

C57BL/6 strains could perhaps be explained by the consistent upregulation in CBA/Ca 

at 1, 3 and 6 month time-points after irradiation representing a consistent activation of 

cytotoxic genes. Although a high expression of Stat1 is not detected in the C57BL/6 

strain, perhaps the response is of shorter duration, before 1 month, with pro-survival 

genes already activated.  

A role for Jak3 in the development of AML is unclear. Previous work has shown that 

activation of STAT1 without affecting the phosphorylation of JAK3 (Jiang et al. 2011). 

Also, JAK3 was not found to be constitutively activated in AML cell lines (Spiekermann 

et al. 2001). In the acute megakaryoblastic leukaemia (AMKL) cell line CMK, JAK3 

downregulation was shown to inhibit CMK cell growth and silencing of JAK3 increased 

apoptosis (Walters et al. 2006). Activating JAK3 mutations, resulting in the constitutive 

activation of the JAK3 protein have been identified in AMLK patients but JAK mutations 

in AML patients have only been in JAK1 and JAK2 (Lee et al. 2013). JAK3 therefore 

does not appear to play a vital role in AML development.  

The mechanism of Stat1 activation in CBA/Ca HSPCs has yet to be determined. In 

human AML cell lines STAT1 has been found to be activated by TEL-JAK2, TEL-ABL 

and BCR-ABL and not activated by FLT3-ITD (Spiekermann et al. 2002). Other 

common AML features such as PML-RARα showed no change in STAT1 expression 

and RAS mutations also appeared to have no effect on STAT1 protein levels 

(Spiekermann et al. 2002). The presence of these translocations, mutations such as 

EGFRvIII and autocrine interleukin activation should all be investigated as 

mechanisms of Stat1 induction in the CBA/Ca mouse after IR. Also DNA methylation, 

with members of the JAK/STAT pathway identified as having different DNA 

methylation levels in leukemic samples in comparison to case controls, is also of 

interest (Jiang et al. 2014). 

 

 



184 

 

 

 

 

 

 

 

 

 

4 General discussion and future perspectives 
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AML is an acute cancer of the blood with often limited treatment options. T-AML is a 

subset of AML which is increasing in number due to increased use of chemotherapy 

and radiotherapy for a previous malignancy, increased survival of cancer patients with 

improving cancer treatment and an aging population (Leone et al. 1999). A diagnosis 

of t-AML has quite a poor prognosis. Options are limited with many studies finding 

chemo resistance to affect treatment, leaving stem cell transplantation as a final 

option, however, at this stage many patients are too ill for this treatment. Upon 

diagnosis, cytogenetic analysis provides the main and most established method of 

prognosis and risk assessment. However, around 50% of AML patients have a normal 

karyotype (Byrd et al. 2002; Grimwade et al. 1998) and even with cytogenetic analysis, 

patients can be classified as having an intermediate risk where outcome can vary. To 

improve on this classification system other changes such as mutations have been 

investigated. Genetic analysis has identified many mutated genes such as FLT3, 

NPM1 and CEPBA now also included into the WHO system (Khasawneh and Abdel-

Wahab 2014). An understanding of the molecular mechanisms of AML development 

and the originating leukemic cell is vital in order to develop the appropriate treatment. 

Here, in order to better characterise rAML, we investigated the genetic and epigenetic 

alterations that are present in AML samples in human and murine samples taking an 

in depth look at mutations, gene expression, miRNA expression and DNA methylation. 

This study has further demonstrated the common disruption of PU.1 expression in 

both murine and human AML. In this study, DNA methylation of the PU.1 promoter in 

human AML patients was evident with a reduction of PU.1 expression also found in 

one patient. This is also seen in murine cases where a minor pathway without a PU.1 

mutation but with down-regulation of PU.1 expression has been established. This work 

clearly validates the use of the CBA mouse as a model of leukemogenesis and the 

importance of further work into PU.1 regulation in AML development. The CBA 

leukemogenic mouse model is characterised by a chromosome 2 deletion, which 

affects one allele of PU.1 and a point mutation in the DNA binding domain of the 

second allele. In contrast, this mutation is rare in human AML, however 

downregulation of PU.1 is evident in human AML cases. Dysregulation of PU.1 is 

clearly a common path in both human and murine AML. In this study murine cases of 

rAML without a PU.1 mutation showed transcriptional downregulation. Further 
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research is needed to identify how this downregulation is caused and if it is a similar 

mechanism to human AML. 

Expression of Sfpi1 is regulated by many transcription factors such as RUNX1, GATA-

1, Oct-1 and Spi-B and it also interacts with many cofactors such as c-Jun, CBP and 

c-Myb (Gupta et al. 2009). Its dysregulation in the CBA mouse could be due to a 

number of factors regulating its expression. PU.1 is a major downstream target of 

RUNX1. RUNX1 binds to sites within the URE of PU.1 and can positively and 

negatively regulate PU.1 expression (Huang et al. 2008). RUNX1 is also commonly 

mutated in human AML cases by point mutations and translocations (Osato et al. 

1999; Osato 2004; Harada et al. 2004). PU.1 expression is also regulated by a number 

of factors such as Notch1 (Schroeder et al. 2003) with Notch signalling silenced in 

human primary AML cells (Lobry et al. 2013) and down-regulation of NOTCH-1 shown 

to directly decrease PU.1 signalling in human AML cell lines (Chen et al. 2008). GATA-

1 and PU.1 are transcription factors for the development of cells into the erythroid or 

myeloid lineage and mutually inhibit each other. GATA-1 can inhibit PU.1 expression 

through its promoter (Chou et al. 2009) and, in co-operation with DNMT1, by binding 

to the URE leading to DNA methylation and H3K9-trimethylation (Burda et al. 2016). 

The downregulation of PU.1 in AML could therefore be caused by GATA-1, RUNX1 or 

NOTCH-1. 

The DNA methylation analysis in this study highlights the strong epigenetic changes 

occurring in AML. Histone modifications should also be investigated in rAML cases, in 

particular in cases with a high level of DNA methylation, to fully investigate if there is 

a structural change to the chromatin in these cases. Mutations in genes involved in 

epigenetic modifications such as DNA methylation and chromatin modification has 

been reported in AML and so the DNA methylation changes in the murine rAML and 

human AML cases in this study could be indicating a modification of the chromatin 

structure by dysregulated upstream chromatin modifiers. 

Single cell transcriptional analysis of the increased Stat1 expression in the CBA mouse 

after irradiation exposure. This work indicates that Stat1 expression is specific to a 

CBA response to irradiation. Whether it contributes to AML development in the CBA 

model remains to be seen. Stat1 expression has been found to be highly expressed 

in human AML patient samples and its dysregulation is a key event in a number of 
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hematological malignancies (Furqan et al. 2013). Indeed, STAT5 has been shown to 

drive AML development alongside overexpression of HOXA9 in T-cell acute 

lymphoblastic leukemia (de Bock et al. 2018). The potential role of JAK/STAT 

dysregulation in murine cases is not well understood. The JAK/STAT and PU.1 

pathway may be both instrumental in AML development. A connection between both 

pathways is not well established, although PU.1 has previously been shown to co-

operate with Stat1 in the activation of the FCGR1 gene (Aittomaki et al. 2000). An 

increase in PU.1 expression has also been seen with an overexpression of JAK2 in 

JAK2 V617F mutated cells, possibly through STAT3, STAT5A or STAT5B (Irino et al. 

2011). The possibility of a link between Stat1 and Pu.1 expression in the CBA RAML 

cases, however, requires further investigation. 

In this work, the identification of activated members of the JAK/STAT pathway 

following radiation exposure is an exciting finding in HSPC characterisation. Further 

studies are needed to fully investigate its role. Activity of STAT1 inhibitors, including 

SOCS, protein inhibitors of activated STATs (PIAS) and nuclear ubiquitin E3 ligases 

also require investigation. Methylation of the promoter of SOCS1 was found in the 

leukemic cells of 60% of AML patients in a study involving 53 patients (Chen et al. 

2003). Expression of other JAK/STAT members such as Stat3, Stat5 and Jak2 need 

to be investigated along with identification of its upstream activator to further 

characterise the activated pathway. Interaction of STAT1 with STAT3 is of particular 

interest as STAT3 has been consistently identified as constitutively activated 

alongside STAT1 in many AML cases (Spiekermann et al. 2001; Spiekermann et al. 

2002; Weber-Nordt et al. 1996; Gouilleux-Gruart et al. 1996). They are considered to 

have opposing roles with STAT-1 initiating proapoptotic functions by inhibiting 

prosurvival genes Bcl-2 and Bcl-x and STAT3 promoting proliferation by activating 

them (Stephanou et al. 2000). Their relationship is complex, at times showing 

opposing functions and at other times reportedly working together in tumour growth, 

angiogenesis and tumour-associated inflammation (Avalle et al. 2012). In this study 

the transcriptional levels of Stat1 expression were analysed but future work must also 

analyse the protein levels of STAT1 and other Jak/Stat pathway members. Use of 

mouse models, such as the mCherry mouse model, could be used to study the Stat1 

expression in mice with a chromosome 2 deletion. The CBA Sfpi1GFP/mCh mouse model 

has previously been used to study chromosome 2 deletion after irradiation, indicated 
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by the loss of mCherry expression (Verbiest et al. 2018). To confirm its role in 

preleukemic cells in AML development Stat1 expression could be analysed in CBA 

Sfpi1GFP/mCh mice at different time points after irradiation. Stat1 expression in 

chromosome 2 deleted cells, indicated by loss of mCherry expression, could be 

studied using the single cell MQRT-PCR protocol developed in this work and 

compared to Stat1 expression in mCherry positive cells for the HSC and MPP 

populations. Its role could be further analysed by analysing Stat1 expression in 

immunodeficient mice after irradiation. It would be of great interest to study and identify 

the ligand triggering the activation of the JAK/STAT pathway, possibly a chronic 

inflammation enhanced expression of a cytokine. Further research into this 

relationship will no doubt shed light on the pathway of leukemic development in 

hematopoietic stem cells.  

Characterisation of the genetic mutations and epigenetic changes in murine AML 

cases in this work has identified new pathways of mutation. This work focused on 

specific mutations in commonly mutated genes in human AML. Other mutations could 

still be contributing to AML development. Whole genome DNA sequencing is needed 

to fully investigate the mutational landscape of CBA AML cases and the samples could 

also be screened for transcriptional changes using the mouse PanCancer Pathways 

panel to identify pathways of interest. Changes in transcriptional expression was 

detected but protein analysis must also be analysed in future work. This work has 

confirmed chromosome 2 deletion and PU.1 mutation as a major pathway of AML 

development as well as minor pathways of interest, which could also be investigated 

further. In human AML patients with FLT3-ITD, a high expression of WT1 was also 

detected (Handschuh et al. 2018). Transcriptional analysis of WT1 could be analysed 

in murine cases to investigate if this minor pathway is similar between human and 

murine cases. 

In this study, work on human AML samples was limited by the type and amount of 

sample received. Human samples of AML, and t-AML in particular, are difficult to 

obtain due to a bone marrow aspirate procedure being required to obtain a sample. A 

full patient treatment history is needed to identify t-AML and, more specifically, rAML. 

This proved to be a difficult task as it requires time and effort to go through confidential 

files and build a full retrospective treatment history. To continue this work, bone 

marrow aspirate samples would ideally be obtained for a source of DNA and RNA. 
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With a larger amount of human AML samples, the DNA methylation and transcriptional 

level of PU.1 could be fully investigated. This work would further validate the use of 

the CBA mouse as a model of leukaemogenesis, if proved true. Samples from different 

types of AML patients allowing for a comparison between treatment types would also 

be needed. Mutational and epigenetic analysis could identify signatures specific to the 

treatment and could add further insights into AML development, chemoresistance and 

patient prognosis. 

Continuation of this work is vital to fully understand the molecular mechanisms 

occurring in the development of radiation-induced AML, and AML in general. Full 

investigation of the genetic and epigenetic landscape of AML samples is needed to 

understand the pathways affected in leukaemogenesis. This information would also 

improve patient prognosis and risk stratification. By understanding the sequence of 

these events in AML progression, preleukemic clones could also be identified, allowing 

the development of AML to be interrupted earlier and treatment administered. Patients 

could also be monitored for AML progression if preleukemic markers could be 

determined. Identifying the cell population where AML develops will help the 

development of specific therapeutic drugs and the targeting of leukaemic cells. This 

tailored treatment would improve treatment success rates and also patient outcome 

as it would specifically target leukaemic cells hence avoiding damage to normal HSCs. 

Further investigation into the development of AML is therefore vital for improved 

patient treatment and survival. 

In summary, we have further established a link between human and murine AML, 

identifying a rare Kras mutated pathway in mouse AML and validated the use of the 

CBA mouse as a model of leukaemogenesis by illustrating a possible common 

occurrence of PU.1/Sfpi1 promoter methylation and transcriptional repression, an 

alternative pathway to PU.1 mutations in human AML cases. This work also identified 

JAK/STAT as an affected pathway after radiation exposure, particularly in the CBA 

strain which may be a pathway required for radiation induced AML development. 

Overall this work highlights the interplay between genetic and epigenetic factors, 

including point mutations, DNA methylation and transcription, driving both human and 

mouse radiation-induced leukaemogenesis. 
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Appendices 

Appendix A 

Primers sequences for human DNA sanger sequencing 

Gene Name Sequence 5'->3' 

SETBP1 F primer GAGTAGCGCAGACAAAGAG 

  R primer TACGTTCCAAAGCCTTCATAG 

TET2 F primer GCGAGTTCGAGACTCATAAT 

  R primer ACTTCTGCTCCTGTTCTTG 

SRSF2 F primer GTGGACAACCTGACCTAC 

  R primer GCATCCATAGCGTCCTC  

KRAS F primer CGATGGAGGAGTTTGTAAATGAA 

  R primer TTCGTCCACAAAATGATTCTGA 

EZH2 F primer TGGACCAAATGCTAAATCTGTTCA 

  R primer CACTTACGATGTAGGAAGCAGTCA 

DNMT3A F primer GACTTCTTTGCCAAGTTCAC 

  R primer TATCCAAGGAGGAAGCCTAT 

RUNX1 F primer GGTATAGCATCCTGGGTAATC 

  R primer CGTAGTACAGGTGGTAGGA 

PU.1 DRU(Bonadies et al.2010) F primer AGAGGAAACTGAGGCCAAGTG 

  R primer TGGCAGTCCTCACTGAGGCCATTG 

PU.1 PRU(Bonadies et al. 2010) F primer CAATGGCCTCAGTGAGGACTGCCA 

  R primer TCTTGGCGGAAGCTGTTAGGGAAG 

 

 

 

 

 

 

 

 

 

 



221 

 

Appendix B 

Primers sequences for mouse DNA sequencing 

Gene Name Sequence 5'->3' 

Npm1 F primer TAAATAGGGCTGACCCACAG  

  R primer ACCAAGTAAAGGGTGGAGTT 

Sfpi1 F primer GTGGACAAGGACAAAGGTA 

  R primer CCATAGCATTAACCCGTCG 

Flt3 (Finnon et al. 2012) F primer GCAATTTAGGTACGAGAGTCAGC 

  R primer CTTTTAGCATCTTCACCGCCACC 

Idh1 F primer CTGTCTTCAGGGAAGCTATTAT 

  R primer GGAGCTAAAGGTCTGTGAAA 

Idh2 F primer TGGTGGGTCTATTGTACCT 

  R primer AATCTGTGGCCTTGTACTG 

Dnmt3a F primer AACTAACATCCGCCATCAC 

  R primer TCATCACTACTTCAGTTTGCC 

Kras F primer CAACAAAGAATACCGCAAGGGT 

  R primer AGAGCAGCGTTACCTCTATCG 

Nras F primer GCAAGGAATGCTATGTTTCTG 

  R primer CCTCTATGGTGGGATCATATTC 

Cebpa F primer CTATAGACATCAGCGCCTAC 

  R primer GCTCTTGTTTGATCACCAG 

C Kit F primer TCGGAGAGCTGAAATGAATG 

  R primer GTGACATTACAAGGTAGGAGTT 
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Appendix C 

Primers sequences for human DNA sequencing by pyrosequencing 

Gene Name Sequence 5'->3' 

ASXL1 F primer ATCATCCCCACCACGGAGT 

  R primer TGGTGGCCGCCTCTCTATG 

  
Pyrosequencing 
primer AAAGCCCGTGCTCTG  

SRSF2 F primer ACCGCTACACCAAGGAGTCCC 

  R primer GGCGGCTGTGGTGTGAGT 

  
Pyrosequencing 
primer CGCTACGGCCGCCCC 

RUNX1 F primer TGTGATGGCTGGCAATGA 

  R primer CGACAAACCTGAGGTCATTAAAT 

  
Pyrosequencing 
primer GGCTGCGGTAGCATTT 
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Appendix D 

Primers sequences for mouse DNA sequencing by pyrosequencing 

Gene Name Sequence 5'->3' 

Sfpi1 F primer GCATCCAGAAGGGCAACC 

  R primer TCGCCTGTCTTGCCGTAGT 

  Pyrosequencing primer CCTGTCTTGCCGTAGT 

Kras F primer GTAAGGCCTGCTGAAAATGACTGA 

  R primer TATCGTCAAGGCGCTCTTGC 

  Pyrosequencing primer CGCTCTTGCCTACGC 
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Appendix E 

Primers sequences for human DNA methylation by pyrosequencing 

Gene Name Sequence 5'->3' 

PU.1 Promoter F primer GGTTTTTGTAGTTTAGGGGGTAG 

  R primer ACCCTAACTTCCCACTAATAAC 

  
Pyrosequencing 
primer GTAGTTTAGGGGGTAGGT 

PU.1 URE F primer GGGATTGAGTTGAGAGTTTAGAAGAAG 

  R primer AACTACAACTACCCCTATTTCCA 

  
Pyrosequencing 
primer ATTTTTTTGTAGGTTTGGTTTA 
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Appendix F 

Primers sequences for mouse DNA methylation by pyrosequencing 

Gene Name Sequence 5'->3'     

Sfpi1 Promoter F primer AGGGTTTATAGGAAGAGTTAAGT 

  R primer AAATAATCCACTATTCTTTTAACCTAA 

  Pyrosequencing primer AAATTTATTTTTAAAATTAGGGA 

Sfpi1 DRU Upper F primer TGGGTGTTTTAGGTTGTTGTTT 

  R primer ACCTAAAAAAACCTATATTCCTTCAAC 

  Pyrosequencing primer TTGTTGTTTGGTAGGT   

Sfpi1 DRU Lower F primer AAGGTAGGGTATGGGGATTAG 

  R primer ACCTACTTTACCCTCTATCCA 

  Pyrosequencing primer GGTATGGGGATTAGG   

Sfpi1 PRU  F primer TGGGGAGGTAGAGTATATATGTTTTT 

  R primer CACTCCCTTCTAAACAAAATCAAAAT 

  Pyrosequencing primer AGTATATATGTTTTTTGTGGTG 
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Appendix G 

Primers sequences for human MQRT-PCR 

Gene Name Sequence 5'->3' 

HPRT (F Pallier) F primer GGACAGGACTGAAAGACTTG 

  R primer TAATCCAGCAGGTCAGCAAA 

  Probe CCCTTGAGCACACAGAGGGCCACA 

PU.1 F primer CCCTATGACACGGATCTATAC 

  R primer CCCAGTAATGGTCGCTATG 

  Probe AACGCCAAACGCACGAGTATTACC 
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Appendix H 

Primers and probe sequences for mouse MQRT-QPCR 

Gene Name Sequence 5'->3'   

Hprt (F Pallier) F primer GGACAGGACTGAAAGACTTG 

  R primer TAATCCAGCAGGTCAGCAAA 

  Probe CCCTTGAGCACACAGAGGGCCACA 

Sfpi1 F primer AGAAGCTGATGGCTTGGAGC     

  R primer GCGAATCTTTTTCTTGCTGCC     

  Probe TGGGCCAGGTCTTCTGCACGG     

Flt3 F primer GCAGCTACTTTGAGATGAGTA     

  R primer CAGGTGTAATATCCGGTGTC     

  Probe 
CCTACTCCACAAACAGGACCATG
A     

Hoxb5 F primer CTCGAGCACAGCCAGAG 

  R primer CTGGCCCAGTCATATCGT 

  Probe CCTGGATGAGGAAGCTTCACATCA 

Sesn2 (F Pallier) F primer CGTTTTGAGCTGGAGAAGTCA     

  R primer GTGGAGAAGGCTCCAGGATA     

  Probe AGCCTGCTGGTGACCCCCTCAGC 

Stat1 F primer CGAGAACATACCAGAGAATCC 

  R primer GGTTCTGGTGCTTCCTTT 

  Probe ATAATACTTCCCAAAGGCGTGGTC 

Jak3 F primer TGATGGGAATCCACCTTTC 

  R primer TCTGTCGGTGAGCATTTC 

  Probe ATTAAGCTGAGTGATCCTGGTGTC 
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