
Strategic Private Experimentation∗

Mike FELGENHAUER†and Elisabeth SCHULTE‡

November 6, 2014

Abstract

We consider a model of persuasion in which an agent who tries to persuade a

decision maker can sequentially acquire imperfect signals. The agent’s information

acquisition is unobservable and he has the option to hide unfavorable signals. Nev-

ertheless, if the signal precision is sufficiently high, he can persuade the decision

maker by revealing a sufficiently large number of favorable signals. When the num-

ber of signals that can be transmitted to the decision maker is limited, persuasion

is impossible if the agent’s stakes are too high.
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1 Introduction

This paper studies a situation in which an agent tries to persuade a decision maker to

choose his preferred action by means of argumentation. We view arguments as verifiable

signals that are imperfectly informative about a decision-relevant state of the world.

We explore the effect of the agent’s strategic behavior on the value of his arguments

for the decision maker, and we illustrate how the decision maker can extract valuable

information from the agent.

To highlight the key properties of argumentation, consider the following examples.

(A) A lobby of car manufacturers wants to prevent stricter emission standards. The

policy maker wants to impose stricter regulation if it is technologically and eco-

nomically feasible to meet the standard, but refrain from stricter regulation oth-

erwise. The lobby argues: “There is an upward trend in average size and weight

of car drivers. Moving a larger mass and simultaneously reducing emissions is not

feasible.”1

(B) A girl wants to go out to a party. Her parents want to allow her to go only if the

party is at a safe place. The girl argues: “Ann and Susan are allowed to go.”

These arguments are not cheap talk, as their content is verifiable. They suggest that

the respective state is the one in which sender and receiver agree about the appropriate

course of action. However, the evidence that is provided is imperfect. In Example A,

the weight of the driver makes up only a part of the weight that the car has to move. In

Example B, Ann’s and Susan’s parents’ decisions only reveal that they think the party

is at a reasonably safe place, but not how sure they are about this assessment.

The acquisition of arguments, in particular the process of thinking, occurs in pri-

vate. Hence, unfavorable arguments can be concealed. The policy maker in Example A

may reasonably assume that the lobby has conducted additional research with potential

relevance for predicting emissions, and the girl’s parents in Example B may reasonably

assume that her daughter has asked several other friends if they are allowed to go to the

party. If the decision maker believes that the agent may have intensively searched for

arguments, she should be skeptical if the results of such efforts are not presented. As

the decision maker cannot observe the agent’s evidence acquisition efforts, the evidence

1An argument of this kind has been brought forward by the ACEA in its answer to the European

Commission’s consultation on CO2 emission standards in 2007, which is available at the commission’s

web page: http://ec.europa.eu/clima/consultations/0001/organisations/acea_en.pdf.
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that the agent brings forward may not be persuasive though taken at face value it could

be.

The process of thinking typically does not immediately stop if the agent does not

find a favorable argument at his first attempt. Rather, the incentive to continue or to

stop the search for arguments depends on the evidence already collected. The value of

the agent’s arguments for the decision maker is affected by (i) repeated private attempts

to find favorable arguments, (ii) selective revelation of the results, and (iii) a history-

dependent decision to stop the search for arguments.

In our model, the agent obtains arguments by running experiments. Examples for

experiments in the sense in which the word is used in this paper are the development

of a theoretical model, a regression analysis, drawing a random sample, or the agent’s

exploration of his knowledge base as in Aragones et al. (2005). An argument can be

deductive, i.e., a logical inference from a set of assumptions, or inductive, i.e., a reason

supporting the probable truth. It is in the nature of arguments that they are imperfectly

informative. A deductive argument is valid only within a set of restrictive assumptions

that are an imperfect description of reality. The imperfection of inductive arguments

is evident. We therefore assume that an experiment is subject to both types of errors,

false positives and false negatives. An experiment may yield a favorable argument in a

state in which it is not in the decision maker’s best interest to choose the agent’s favorite

action.2 It may as well yield an unfavorable argument in a state in which the decision

maker and the agent in fact agree.3 By running experiments, the agent learns about the

state of the world.

The question that this paper explores is whether it is possible to persuade a Bayesian

decision maker given that the agent acquires and reveals his arguments strategically. We

show that the agent can persuade her by bringing forward a sufficiently large number of

arguments. If a large number of arguments is needed to persuade the decision maker,

this deters experimentation in the state in which the decision maker and the agent

disagree, where it is less likely that an experiment yields a favorable argument. As the

agent learns from previous failed experiments, he stops experimentation unsuccessfully

when his interim belief becomes too pessimistic. Therewith, experimentation obtains an

informational value: The fact that the agent acquired the number of arguments needed

to be persuasive is in fact persuasive.

The value of an argument depends on the stakes of the speaker. An interested party

2Ann’s and Susan’s parents may be mistaken in their judgement of the safety of the place.
3The total weight of a car may decline and still it may be infeasible to reach the emission standard.
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with larger stakes or lower cost of experimentation has to provide more arguments in

order to be persuasive. We apply our model to the interaction between a researcher and

an editor, in which the former tries to persuade the latter to publish his work, and we

extend our model in two directions. First, we study a symmetric version of the problem.

A special feature of this application is that the decision maker may be persuaded to

choose the agent’s favorite action (to publish his paper) if she is sufficiently convinced

that the paper’s proposition is true, independently of the state of the world that the

proposition indicates. In such a problem, it is unambiguously beneficial for the decision

maker if the agent has strong incentives for experimentation. Second, in the context of

our application, it is reasonable to assume that the number of arguments that can be

transmitted to the editor is limited. In this case, if the researcher’s stakes are high or

the cost of experimenting is low, persuasion is impossible. The existence of a bound on

the number of transmittable arguments can rationalize restrictive scientific standards,

and it may trigger a barrier to new, objectively superior, methods.

2 Related literature

Our model relates to the literature on strategic experimentation, where the basic un-

derlying trade-off is between benefits from exploration and benefits from exploitation,

as in Rothschild (1974), Aghion et al. (1991), Bolton and Harris (1999), Keller et al.

(2005) and Rosenberg et al. (2007).4 Similar to these bandit problems the agent here

dynamically updates his belief about an exogenous state. At the same time our model

belongs to the class of persuasion games (e.g., Jovanovich, 1982, Milgrom and Roberts

1986, Glazer and Rubinstein 2001, 2004, 2006, Kamenica and Gentzkow, 2011) in which

the production of evidence is endogenous (e.g., Milgrom 2008). Papers that share fea-

tures of both strands of the literature and that are closely related to our work are Celik

(2003), Brocas and Carillo (2007) and Henry (2009).

Brocas and Carillo (2007) illustrate how an interested party can exert influence by

controlling a flow of public experiments.5 They also consider a case in which exper-

imentation is private, the agent sends a report about his posterior, and the report is

verifiable. In this setting, skeptical beliefs à la Milgrom and Roberts (1986) induce un-

raveling, and the same information is available to the decision maker as under public

4For a survey see Bergemann and Välimäki (2008).
5Gul and Pesendorfer (2012) study competing interested parties who provide a flow of public exper-

iments. Felgenhauer and Loerke (2014) build on the present framework and compare sequential public

and private experimentation, but with an endogenous precision of the experiments.
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experimentation. Henry (2009) studies private experimentation in a framework in which

the interested party ex ante chooses how much to invest in experimentation. Again an

unraveling argument applies and the agent’s report is fully revealing as the decision

maker in equilibrium deduces the optimal amount of experimentation. The assump-

tion that the agent is not able to adjust his decision to continue experimenting in the

experimentation phase is central for the result. In our paper the decision to continue

experimenting is history-dependent. As information acquisition occurs in private, this

is a natural assumption. In such a framework the decision maker can only anticipate

the optimal experimentation plan but not the actual number of experiments conducted.

The decision maker’s beliefs are not always degenerate such that skeptical beliefs are

not always helpful and there is no unraveling. In a similar setting, but with a continu-

ous action space for the decision maker and a Poisson evidence production technology,

Celik (2003) shows that no productive fully revealing equilibrium exists if the agent is

ex ante uninformed about the state. A feature of his evidence production technology

is that the agent’s interim belief evolves continuously between two experimental suc-

cesses, which occur randomly in time. Hence, it is impossible for the decision maker to

perfectly deduce the agent’s posterior from the presented evidence. In our model, the

decision maker’s action space is binary and evidence production is modeled as a series

of Bernoulli trials. Persuasion is possible, but in general communication is not fully

revealing. Only if the presentation of a single successful experiment suffices to persuade

the decision maker and a single failure deters further experimentation can the decision

maker deduce the agent’s posterior perfectly.

Glazer and Rubinstein (2001, 2004, 2006) analyze debates, assuming that the de-

baters are endowed with hard evidence and that they can only report a subset of their

evidence. If a debater cannot respond “appropriately” to his opponent’s argument, then

this suggests that his overall endowment of evidence is unfavorable. As a consequence,

evidence of the same quality (but different endogenous “appropriateness”) may have a

different value. In our paper instead, information acquisition is endogenous and we find

that exactly the same hard evidence (and not only evidence of the same quality) may

have a different value depending on who presents the evidence.

The agent’s reporting space in our model is similar to that in Dzuida (2011). In

Dzuida’s paper, a pool of arguments is exogenously given to the agent, but the decision

maker does not know how many arguments the agent has. Like in our paper, in order

to persuade the decision maker, the agent has to provide a sufficiently high number of

arguments in his favor. Dzuida shows that an opportunistic agent also reveals coun-
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terarguments, but these are ignored by the decision maker when updating about the

state. Two-sided argumentation is triggered by the incentive to pool with an honest

type.6 In the context of our model, an equilibrium with two-sided argumentation is

either Pareto-inferior or payoff equivalent to an equilibrium in which counterarguments

are not revealed.

Our work also relates to the literature on informational lobbying with evidence that

is to some extent hard (e.g., Austen-Smith, 1994). Related to our specific application,

there is an economic literature on academic research, e.g., Lewis and Ottaviani (2008),

Olszewski and Sandroni (2011), Aghion et al. (2008) and Stern (2004). To the literature

on the philosophy of science, e.g., Popper (1959) and Kuhn (1970), we add a rational-

ization of argumentation within a restrictive framework and of a possible barrier to new

methods.

3 Model

We model information transmission from an interested agent to a decision maker with

state-dependent preferences. There are two ex ante equally likely states of the world,

s ∈ {0, 1}. The decision maker has the choice between two actions, x ∈ {0, 1}. The

decision maker’s utility is

u(x, s) s = 1 s = 0

x = 1 0 −pd

x = 0 −(1− pd) 0

with pd > 1/2. We call pd the decision maker’s “threshold of doubt”.7 She maximizes

her expected utility and prefers x = 1 if the probability that s = 1 passes her threshold

of doubt, and x = 0 otherwise. The agent prefers x = 1 regardless of the state of the

world. In case x = 1, the agent’s gross utility is U > 0 and otherwise it is 0. The agent

maximizes expected gross utility minus the expected cost of experimentation. The agent

and the decision maker hold the same prior belief about s.

The agent has access to an experimentation technology which can generate signals

yi, yi ∈ {0, 1}. He can conduct as many experiments as he wants. Conditional on the

6In a setting with uncertainty about the agent’s preferences and about his information endowment,

and with an exogenous limit on the number of arguments that can be transmitted, Le Quement (2012)

shows that the agent can use counter-arguments to signal a large (exogenous) endowment with signals.
7A similar formulation of preferences is used in the literature on committee decision making (e.g.,

Feddersen and Pesendorfer, 1998).
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state, experimental outcomes are drawn independently. We assume prob{yi = s′|s =

s′} = p, p ∈ (1/2, 1). If yi = 1, experiment i yields an argument (or evidence) in favor

of the agent, whereas yi = 0 is an argument against him. He can neither manipulate nor

invent experimental outcomes. In that sense, yi is “hard” information.8 However, the

agent can conceal experimental outcomes and he cannot prove that he did not conduct

a particular experiment. Each experiment costs c. Unless stated otherwise, we assume

c > 0. Let yt denote the outcome of the tth experiment. Denote with ht = (y1, . . . , yt)

the experimentation history after the first t experiments. The number of conducted

experiments cannot be observed by the decision maker. Denote with n0(ht) the number

of experiments with outcome 0 and with n1(ht) the number of experiments with outcome

1 after the tth experiment. Note that n0(ht)+n1(ht) = t. Hence, (n0, n1), with obvious

notation, summarizes all relevant information in a history ht.

After each experiment, the agent updates his assessment of the probability distri-

butions regarding the state of the world and future experimental outcomes and decides

whether to continue or to stop experimenting.

The experimentation phase is modeled as a time interval. If the agent conducts an

experiment at any given point in time, then he may still carry out as many experiments

as desired before the experimentation phase ends. Therewith, we exclude the possibility

of inferring information from the length of the experimentation phase.9 After the ex-

perimentation phase the agent publishes a report. Finally, the decision maker observes

the announcement and chooses x.

A strategy for the agent consists of an experimentation plan and an announcement

plan. For each possible experimentation history ht, the strategy specifies whether to

continue or to stop experimenting and, in the case of stopping, what (if anything) to re-

veal to the decision maker. Any announcement available to the agent can be summarized

by n̂ = (n̂0, n̂1), where n̂0 and n̂1 are the numbers of the announced unfavorable and

favorable results, respectively. The case that the agent does not make any announce-

ment is captured by n̂ = (0, 0). He cannot manipulate experimental outcomes nor invent

arguments. Hence, if the agent stops experimenting after t experiments, then the an-

nouncement has to satisfy n̂0 ≤ n0(ht) and n̂1 ≤ n1(ht). A strategy for the decision

maker is to choose x ∈ {0, 1} for each possible n̂. In equilibrium, players’ strategies are

8An argument, e.g., as a logical inference from a set of assumptions, cannot be manipulated.
9If the decision maker can deduce something from the time elapsed until he receives information,

a longer period suggests many failed experiments (see Hopenhayn and Squintani, 2011, in a different

context). Our model abstracts from these issues. In many situations experiments may differ with

respect to the time they require until completed and deducing failure from the time elapsed is difficult.
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sequentially rational and players update their beliefs according to Bayes’ Law whenever

possible.

4 Equilibrium analysis

We start our analysis with an introduction of our notion of equilibrium standards of

evidence. Then, we derive the agent’s optimal experimentation plan and subsequently

turn to the persuasiveness of the agent’s announcements. The proofs of our statements

can be found in the appendix.

4.1 Decision rule

The decision maker chooses x = 1 if and only if the probability that this is the correct

decision passes her threshold of doubt:

x∗ =

⎧
⎨

⎩
1, if prob{s = 1| n̂} ≥ pd

0, if prob{s = 1| n̂} < pd.

The above decision rule maximizes her expected utility, taking into account all the

information available to her. She forms beliefs regarding the experimental outcomes hid-

den from her according to the agent’s presumed strategy, applying Bayes’ Law whenever

possible. Upon observing an event which occurs with probability zero in equilibrium,

arbitrary beliefs are allowed. Ex ante, we have prob{s = 1} = 1/2 < pd. Without access

to additional information, the decision maker chooses x = 0. If she is confronted with an

announcement n̂, the decision maker takes into account the agent’s experimentation and

announcement strategy when assessing the informational value of n̂. An announcement

n̂ has an informational value if the decision maker’s posterior prob{s = 1|n̂} is different

from her prior 1
2 . The informational value of an announcement n̂ is the higher, the

larger |prob{s = 1|n̂}− 1
2 |.

There is a class of equilibria in which the decision maker always chooses x = 0.

She may, e.g., believe that for any argument in favor of the agent that he reveals, he

hides an argument against him. Thus, prob{s = 1| n̂} ≤ 1/2 for all n̂. As the decision

maker cannot be persuaded to choose x = 1, there is no point for the agent to collect

(costly) evidence. Hence, all announcements n̂ ̸= (0, 0) are out-of-equilibrium-events

and the decision maker’s beliefs are consistent. Note that there are many other out-of-

equilibrium-beliefs which support this equilibrium behavior.10

10This class of equilibria is similar to the “babbling”-equilibria in cheap talk games. There, the decision
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We are interested in equilibria in which the decision maker can sometimes be per-

suaded to choose in favor of the agent.

Definition 1 An equilibrium is a persuasion equilibrium if x∗ = 1 for at least one

announcement n̂ that is announced with positive probability.

Due to the power that out-of-equilibrium-beliefs have in this game, multiple persua-

sion equilibria may exist.

Definition 2 A persuasion equilibrium in which the decision maker uses the decision

rule

x∗ =

⎧
⎨

⎩
1, if n̂0 = 0, n̂1 ≥ n∗

0, else.
(1)

is an equilibrium with a standard of evidence n∗.

In the following we refer to n∗ as the “standard of evidence”, and we restrict attention

to the class of equilibria with a standard of evidence n∗. We consider this class of

equilibria as particularly relevant because the following proposition holds.

Proposition 1 (i) Any persuasion equilibrium coexists with a payoff-equivalent or Pareto-

dominant equilibrium with a standard of evidence n∗.

(ii) If an equilibrium with a standard of evidence n∗ exists, it Pareto-dominates any

equilibrium in which the decision maker always chooses x = 0.

Focussing on the class of equilibria with a standard of evidence n∗ allows us to

identify an equilibrium with a single number n∗. That way, we avoid case distinctions

in the proofs and qualifications in our statements. Note that the restriction to the

announcement n̂0 = 0 is harmless because it is available to the agent for any information

endowment.

4.2 Optimal experimentation

Assume that the decision maker applies decision rule (1), and note that it is optimal for

the agent to release all favorable arguments and to conceal all unfavorable arguments

maker believes that the agent sends the same message for any possible information endowment (giving

the sender no incentive to do otherwise). Observing a message off the equilibrium path, the decision

maker thinks that the message is not informative. Here, off the equilibrium path the decision maker

believes that the agent has searched too often and thus any hard evidence announced does not contain

sufficient information.
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that he has acquired. The agent’s experimentation strategy maps all possible histories

of experimentation outcomes ht into either of the two actions “stop experimenting”

or “continue experimenting”. His optimal experimentation plan can be characterized

by two sets of experimentation histories that occur with positive probability on the

equilibrium path, a set Hs(n∗) of histories that yield persuasive evidence, and a set

Hf (n∗) of histories after which experimentation is stopped unsuccessfully.11 For each

element ht of Hs(n∗) and Hf (n∗) it is optimal to continue experimenting after each

sub-history of ht.12 Conditional on having acquired a certain number of favorable and

adverse outcomes, the sequence of experimental outcomes does not matter for the agent’s

continuation decision. The relevant information at ht can be summarized by the number

of unsuccessful and successful experiments (n0, n1).

Denote with vn∗(n0, n1) the continuation value when the agent is endowed with a

stock of experimental evidence (n0, n1). The continuation value is the maximum of

vsn∗(n0, n1) and vcn∗(n0, n1), which denote the agent’s continuation value when stopping

and when continuing experimentation, respectively.

If n1 ≥ n∗, the decision maker can be successfully persuaded. Further experimenta-

tion is costly and does not yield a benefit. It is optimal for the agent to stop experiment-

ing at ht if n1 = n∗. ht ∈ Hs(n∗) if it is optimal for the agent to continue experimenting

for each sub-history of ht.

Consider (n0, n1) with n1 < n∗. As the acquired evidence does not persuade the

decision maker, the agent’s continuation utility when stopping experimentation is zero

at such an experimentation history. Continuing experimentation yields continuation

utility

vcn∗(n0, n1) = β(n0, n1)vn∗(n0, n1 + 1) + (1− β(n0, n1))vn∗(n0 + 1, n1)− c,

where β(n0, n1) = γ(n0, n1)p + (1 − γ(n0, n1))(1 − p) denotes the probability that the

next experiment yields a favorable outcome given the experimental evidence (n0, n1),

with γ(n0, n1) = prob{s = 1|(n0, n1)} = 1

1+( 1−p

p )n
1−n0 . If vcn∗(n0, n1) < 0 at ht, it is

optimal for the agent to stop experimenting. ht ∈ Hf (n∗) if it is optimal for the agent

to continue experimenting for each sub-history of ht.

The agent’s incentive to continue experimenting depends only on the number of

arguments still to be acquired, n∗−n1, and his assessment of the probability distribution

11If it is optimal for the agent not to start experimenting, i.e., Hs(n∗) = ∅, Hf (n
∗) contains the

“history” at which the experimentation phase starts, i.e., Hf (n
∗) ̸= ∅.

12The set of sub-histories of some history ht contains the empty history and the sequences of experi-

mental outcomes in ht up to the ξth experiment, ξ = 1, . . . , t− 1.
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of experimental outcomes, which is determined by the “net evidence”, n1 − n0. If both

are the same at any two histories in any two equilibria, the agent’s continuation utility

is the same, i.e., vcn∗+1(n
0 + 1, n1 + 1) = vcn∗(n0, n1).

Ceteris paribus, the more evidence the agent has to collect to meet the decision

maker’s standard of evidence, the lower is the continuation value as expected experi-

mentation costs increase, i.e., vcn∗+1(n
0, n1) < vcn∗(n0, n1).

If an experiment succeeds, the number of arguments still to be acquired to persuade

the decision maker decreases, and the probability that an experiment yields a favor-

able argument increases. Hence, the agent’s experimentation incentives improve after a

successful experiment, i.e., vcn∗(n0, n1 + 1) > vcn∗(n0, n1).

If an experiment fails, the probability that future experiments succeed decreases, and

the expected number of experiments yet to be conducted in order to be able to persuade

the decision maker increases. As a consequence, continuing experimentation becomes

less attractive the more experiments already failed, i.e., vcn∗(n0 + 1, n1) < vcn∗(n0, n1).

In particular, for each stock of favorable arguments n1, there exists ñ(n1) (possibly

infinity) so that the agent continues the search upon observing a sequence of unfavorable

outcomes if and only if n0 < ñ(n1). ñ(n1) is weakly higher in the stock of successful

experimental outcomes.

The number of experiments to be conducted to meet the standard of evidence follows

a negative binomial distribution with success probability p in state s = 1 and success

probability 1 − p in state s = 0. The expected number of experiments to meet the

standard of evidence given interim belief γ(n0, n1), is (1−2p)γ(n0,n1)+p
p(1−p) (n∗ − n1). Hence,

the continuation value of continuing experimentation given a stock of arguments (n0, n1)

is at least U − n∗
−n1

1−p
c, the expected utility associated with continuing the evidence

acquisition until the standard of evidence is met if the agent is sure that s = 0, i.e.

γ(·) = 0.

We summarize our findings in the following Lemma.

Lemma 1 Consider n1 < n∗. (i) vcn∗+1(n
0+1, n1+1) = vcn∗(n0, n1). (ii) vcn∗+1(n

0, n1) <

vcn∗(n0, n1). (iii) vcn∗(n0, n1 + 1) > vcn∗(n0, n1). (iv) vcn∗(n0 + 1, n1) < vcn∗(n0, n1). (v)

vcn∗(n0, n1) ≥ U − (1−2p)γ(n0,n1)+p
p(1−p) (n∗ − n1)c.

Part (v) of the lemma states a lower bound for the value of continuing experimenta-

tion. Note that as soon as the agent has obtained n1 ≥ n∗− (1−p)U
c favorable arguments,

he stops experimentation only when he meets the standard of evidence. On the other

hand, for any (n0, n1) with n1 < n∗ − (1−p)U
c , there exists a n′ such that if the next n′
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experimental outcomes are unfavorable, then the continuation value from experimenting

drops below zero and the agent stops experimentation unsuccessfully.

Resolving indifference in favor of continuing experimentation, the optimal experi-

mentation plan induced by a decision rule with a standard of evidence n∗ is unique.

As the agent stops experimenting only when he meets the standard of evidence if

n1 ≥ n∗ − (1−p)U
c

, we have Hf (n∗) = ∅ for n∗ ≤ (1−p)U
c

. If n∗ > (1−p)U
c

, we have

Hf (n∗) ̸= ∅.

The plan to unconditionally continue experimentation until the agent meets the

standard of evidence defines a lower bound for the expected utility from engaging in

experimentation: vc(0, 0) ≥ U − n∗

2p(1−p)c. Hence, a sufficient condition for Hs(n∗) ̸= ∅

is n∗ ≤ 2p(1−p)U
c

.

In the Appendix we describe an algorithm to determine the optimal experimentation

plan on the equilibrium path, and the associated sets Hs(n∗) and Hf (n∗) for a standard

of evidence n∗.

4.3 Persuasiveness

The statement n̂ = (0, n∗) has an informational value if and only if neither Hf (n∗) nor

Hs(n∗) are empty. In this case the decision maker can rule out some experimentation

histories upon the observation of n̂ = (0, n∗). Histories for which the agent optimally

stops experimenting without meeting the standard of evidence are more likely to occur

if s = 0 than if s = 1. If Hf (n∗) = ∅ instead, then no experimentation history yielding

the standard of evidence can be ruled out. The probability that the agent experiments

until he has acquired a set of evidence that allows the statement n̂ = (0, n∗) is one in

both states and the decision maker’s posterior is equal to her prior. In particular, a

standard of evidence n∗ < (1−p)U
c cannot be persuasive.

It is in the agent’s interest to sometimes stop the search for arguments which renders

his arguments informative. Given that ex ante, the agent has an incentive to search for

n∗ arguments, the failure to provide them means that the probability that the state of

the world is in his favor is actually lower than the prior. Consequently, a successful col-

lection of the evidence n∗ boosts the posterior above the prior. Persuasive evidence has

the property that the agent stops experimenting often enough such that the successful

collection of the evidence indicates the favorable state with a probability that passes the
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decision maker’s threshold of doubt, i.e.:

prob{s = 1|n̂ = (0, n∗)} =

∑

ht∈Hs(n∗)

prob{s = 1 ∪ ht}

∑

ht∈Hs(n∗)

prob{ht}
≥ pd. (2)

Any n∗ which induces an experimentation plan such that Hs(n∗) ̸= ∅ and (2) holds

specifies an equilibrium. The next question to address is under which conditions there

is such an n∗.

If U/c < 2, Hs(n∗) = ∅ for any n∗ ≥ 1. Even if a single argument suffices to

persuade the decision maker, it is too expensive to acquire. For these parameters there

is no persuasion equilibrium (see Proposition 2 (i) below). A necessary condition for

the agent to be willing to engage in experimentation is U/c ≥ 2. A necessary condition

for the evidence to be persuasive is that the agent sometimes stops experimentation

unsuccessfully. Suppose that U/c ≥ 2 and one favorable argument suffices to persuade

the decision maker. If U/c < 1/2p(1 − p), the agent optimally experiments once and

stops after observing a failure. Ex ante, the probability to find a persuasive argument is

high enough to make the investment worthwhile. After an initial failure, the probability

that the next experiment yields a success is too low. Suppose the agent reveals a

favorable argument. The decision maker updates prob{s = 1|n̂ = (0, 1)} = p. If

the agent does not bring forward a favorable argument, the decision maker updates

prob{s = 1|n̂ = (0, 0)} = 1−p. If pd ≤ p, she chooses x = 1 if and only if the agent reveals

a favorable argument. An equilibrium with a standard of evidence n∗ = 1 exists for such

a parameter constellation. (Only) in this persuasion equilibrium, the decision maker can

perfectly deduce the agent’s private information. Indeed, for any finite U/c ≥ 2, there

is a threshold for the signal’s precision such that the agent optimally stops searching if

the first experiment failed given that p exceeds the threshold, as it then becomes too

unlikely to obtain a favorable outcome. If in addition p ≥ pd, an equilibrium with a

standard of evidence n∗ = 1 exists (see Proposition 2 (ii) below).

If one argument suffices to persuade the decision maker and U/c ≥ 1/2p(1 − p),

it is optimal for the agent to continue experimentation after an initial failure. As a

consequence, the decision maker’s posterior is smaller than p when the agent reveals

a favorable argument. However, if U/c < 1/(1 − p), the agent has an incentive to

eventually stop experimenting as he becomes more and more convinced that s = 0

and further experimentation becomes too costly. Hence, the decision maker’s posterior

exceeds her prior when the agent presents a favorable argument. If pd is sufficiently close

to 1/2, an equilibrium in which the decision maker is persuaded by a single favorable
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argument exists as long as U/c < 1/(1 − p). The higher U/c, the stronger the agent’s

incentive for experimentation, and the (weakly) lower the decision maker’s posterior

upon the report of a successful experiment. Hence, the higher U or the lower c, the

(weakly) lower pd must be for an equilibrium with a standard of evidence n∗ = 1 to

exist. If U/c ≥ 1/(1 − p), Hf (1) = ∅, and an equilibrium with a standard of evidence

n∗ = 1 fails to exist.

We know from Lemma 1 (ii) that the decision maker can deter excessive experimen-

tation by requiring a larger number of arguments. If the agent has to acquire a larger

number of arguments in order to persuade the decision maker, this depresses his exper-

imentation incentives at all experimentation histories. Hence, a too high standard of

evidence may completely deter experimentation. From Lemma 1 (v) we can deduce that

if U/c ≥ n∗/2p(1− p), a standard of evidence n∗ induces experimentation on part of

the agent. As n∗/2p(1− p) < n∗/(1− p), we can always find U/c such that Hs(n∗) ̸= ∅

and Hf (n∗) ̸= ∅. If pd is sufficiently close to 1/2, the fact that Hf (n∗) ̸= ∅ suffices to

render the evidence n∗ persuasive. For such parameters an equilibrium with a standard

of evidence n∗ exists (see Proposition 2 (iii)).

On the other hand, as Proposition 2 (iv) shows, if U/c is too high to render n∗

persuasive, then an equilibrium with a higher standard of evidence exists if p is suffi-

ciently high. Increasing n∗ deters excessive private experimentation by rendering the

search more expensive after adverse histories. However, p needs to be sufficiently high

to eventually allow for separation, i.e., to deter experimentation at some, but not at

all experimentation histories. If p is close to 1/2, the ad interim success probability of

the next experiment is close to 1/2 at all experimentation histories. Hence, the agent’s

incentives to continue experimenting are almost exclusively driven by the number of

arguments (still) to be collected. For certain parameter constellations where p is too

low, any standard of evidence may only either trigger the agent’s unconditional experi-

mentation until the set of evidence is complete or induce no experimentation at all. For

such a parameter constellation, no persuasion equilibrium exists.13

A special case is c = 0. If experimentation is costless, the agent could identify the

state almost with certainty at zero costs. However, there is no equilibrium in which

the decision maker can be persuaded with hard evidence (Proposition 2 (v)). Suppose

in contrast that she could be persuaded with some set of evidence. The agent’s best

response is to search until he meets the standard of evidence, which happens almost with

13Remember that due to Proposition 1, non-existence of an equilibrium with a standard of evidence

n∗ implies that persuasion is impossible.
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certainty as p < 1. The decision maker in such a hypothetical equilibrium anticipates

that the standard of evidence is met regardless of the state. But then the evidence does

not have an informational value and should not be persuasive, leading to a contradiction.

Proposition 2 summarizes the results of the above discussion.

Proposition 2 (i) For U/c < 2, there is no equilibrium with some standard of evidence

n∗.

(ii) For 2 ≤ U/c < ∞, pd ≤ p and p ≥ p′, p′ < 1, an equilibrium with a standard of

evidence n∗ = 1 exists.

(iii) For each n∗, there are U and C, such that an equilibrium with a standard of evidence

n∗ exists if U ∈ U , c ∈ C, and pd is sufficiently close to 1
2 .

(iv) For 2 ≤ U/c < ∞ and pd sufficiently close to 1
2 , if there is no equilibrium with a

standard of evidence n∗ = 1, there is an equilibrium with a standard of evidence n∗ > 1

if p ≥ p′′, p′′ < 1.

(v) For c = 0, there is no persuasion equilibrium.

If there are multiple integers between (1−p)U/c and 2p(1−p)U/c and pd is sufficiently

close to 1
2 , multiple equilibria with different standards of evidence exist. A higher stan-

dard of evidence renders persuasion less likely, but is associated with a higher posterior

that s = 1 if the agent succeeds to persuade.

Proposition 3 The probability that s = 1 if x = 1 increases in the equilibrium standard

of evidence.

Consider a parameter constellation such that an equilibrium with some standard of

evidence n∗ exists and denote with n the lowest standard of evidence and with n the

highest standard of evidence attainable in equilibrium for this parameter constellation.

In an equilibrium with n, the decision maker’s posterior just passes her threshold of

doubt when the agent announces n̂ = (0, n). In an equilibrium with n the agent just

has an incentive to start experimentation.

Proposition 4 Any natural number between n and n is an equilibrium standard of

evidence.

The agent unambiguously prefers equilibria with lower standards of evidence, because

he persuades the decision maker with a higher probability at a lower expected cost. As

the agent fails to persuade the decision maker more often in an equilibrium with a higher

standard of evidence, one may conjecture that x = 0 is the wrong decision more often.

Example 1 below illustrates that this need not always be the case.
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Example 1 Let p = 7
8 , let U/c ∈ (20657 ,

32
7 ) and let pd < p.

(a) There is an equilibrium with a standard of evidence n∗ = 1.

Hf (1) = {(0)}, Hs(1) = {(1)}. prob{x = 1} = 1/2, prob{s = 1|x = 1} = p, prob{s =

1|x = 0} = 1− p.

(b) There is an equilibrium with a standard of evidence n∗ = 2.

Hf (2) = {(0), (1, 0, 0)}, Hs(2) = {(1, 1), (1, 0, 1)}. prob{x = 1} = 1
2 (1 − p(1 − p)),

prob{s = 1|x = 1} = p2(2−p)
p2(2−p)+(1−p)2(1+p) , prob{s = 1|x = 0} = 1− p.

From an ex ante point of view, the agent’s experimentation induces a lottery over the

decision maker’s posteriors with one outcome above pd and one outcome below pd. As the

decision maker’s expected utility is weakly convex in her posterior (it is piecewise linear

with a kink at pd), she strictly prefers lotteries with more extreme outcomes. Hence,

she strictly prefers the equilibrium with a higher standard of evidence in Example 1.

In Example 2, a higher standard of evidence gives rise to a trade-off: Decreasing the

probability of wrongfully choosing x = 1 comes at the cost of increasing the probability

to wrongfully choose x = 0. As the decision maker is more averse to the first type of

error, she strictly prefers the higher standard of evidence in Example 2.

Example 2 Let p = 7
8 , let U/c ∈ (327 ,

50
7 ) and let pd < 21

26 .

(a) There is an equilibrium with a standard of evidence n∗ = 1.

Hf (1) = {(0, 0)}, Hs(1) = {(1), (0, 1)}. prob{x = 1} = 1/2 + p(1 − p), prob{s = 1|x =

1} = p(2−p)
1+2p(1−p) , prob{s = 1|x = 0} = (1−p)2

(1−p)2+p2 .

(b) There is an equilibrium with a standard of evidence n∗ = 2.

Hf (2) = {(0), (1, 0, 0, 0)}, Hs(2) = {(1, 1), (1, 0, 1), (1, 0, 0, 1)}. prob{x = 1} = 1/2(p2(1−

p(1 − p)) + (1 − p)2(1 + p)), prob{s = 1|x = 1} = p2(2−p+(1−p)2)
p2(2−p+(1−p)2)+(1−p)2(1+p+p2) ,

prob{s = 1|x = 0} = 1−p+p(1−p)3

1+p(1−p)3+p3(1−p) .

In both examples, the decision maker and the agent have diametrically opposed

preferences over the set of equilibria. In Example 1 (a) the agent’s information provision

is unbiased in the sense that from an ex ante viewpoint, the decision maker can be

persuaded to choose the agent’s preferred option with a probability equal to the ex ante

probability that this decision is best for her. In Examples 1 (b) and 2 (b), information

provision is biased against the agent, and it exhibits a bias in favor of the agent in

Example 2 (a). Note that for given parameters the higher n∗, the more often the agent

stops his evidence acquisition unsuccessfully. Hence, the higher n∗, the less often the

agent persuades the decision maker. If there is bias in favor of the agent for n∗ = n and a

bias against him for n∗ = n, then there is a threshold standard of evidence, below which
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optimal experimentation yields a bias in favor of the agent and above which information

provision is biased against him.

U/c can be viewed as an indicator for the size of an interested party. We now study

how the informational value of n̂ = (0, n∗) depends on U/c for a given n∗ ∈ [n, n]:

Proposition 5 If n∗ is an equilibrium standard of evidence for U/c = U ′′/c′′ and U/c =

U ′/c′, with U ′′/c′′ > U ′/c′, then prob{s = 1|n̂ = (0, n∗)} is weakly lower if U/c = U ′′/c′′

than if U/c = U ′/c′.

The higher the agent’s stakes U or the lower his cost of experimentation c are, the

stronger are his experimentation incentives. Hence, the maximum standard of evidence

that he is willing to provide (weakly) increases in U/c. At the same time, additional ex-

perimentation by the agent, in particular after having observed adverse experimentation

histories, reduces the informational value of n̂ = (0, n∗). Consequently, the minimum

standard of evidence that persuades the decision maker (weakly) increases in U/c. The

following proposition summarizes these findings.

Proposition 6 n and n are weakly increasing in U/c.

In the attempt to convince a decision maker of his position, an agent with a high

valuation for his preferred action typically has to provide more evidence in support for

his position than an agent with a low valuation. For instance, a small group of envi-

ronmentalists can be more persuasive with a given set of evidence than a big firm with

the same set of evidence. Our analysis offers an explanation for this phenomenon. The

value of the evidence that an interested party provides depends on the experimentation

incentives. An interested party with a high valuation for the preferred decision has

stronger incentives to acquire favorable arguments even if it already encountered a lot

of counterarguments during the search. As we have seen above, this dilutes the value

of the arguments that are finally presented to the decision maker. Consequently, the

value of the same hard evidence may be different, depending on the type of interested

party presenting it. If the valuations of interested parties differ sufficiently, then the

corresponding intervals [n, n] do not overlap and an interested party with a high val-

uation has to provide strictly more evidence for persuasion in order to deter excessive

experimentation. An analogous argument holds with respect to experimentation costs.

17



5 Extensions

In this section, we study two extensions of our model in the context of a particular appli-

cation. We consider a researcher who tries to persuade the editor of a scientific journal

to publish his work in her journal. We assume that the researcher faces high-powered

publication-based incentives such that he always prefers his work to be published (x = 1).

The editor, on the other hand, needs to be sufficiently convinced that the researcher’s

hypothesis is true in order to be willing to publish his work.

In the context of this application, we can distinguish “symmetric” problems from

“asymmetric” ones. An example for an asymmetric problem is the question whether

a certain surprising, unanticipated effect exists. Rejecting existence typically does not

merit publication in a top journal. Such asymmetries are widespread. An asymmetric

problem gives rise to the persuasion game that we already studied. We can directly apply

the results of our analysis above. If the researcher cares sufficiently about institutional

incentives (i.e., if U is high), then due to the opportunity of private experimentation

and selective revelation of experimental outcomes, the arguments brought forward can-

not be taken at face value. Our comparative statics results suggest that ceteris paribus

more arguments have to be provided for successful persuasion if the researcher’s stakes

are higher and/or the experimentation costs are lower. Technical innovations like the

internet, faster computers and better mathematics programs have decreased experimen-

tation costs. As a consequence, more arguments (e.g., robustness checks, or various

specifications of a regression analysis) may have to be provided to persuasively support

a hypothesis.14

In a symmetric problem, the acceptance and the rejection of the hypothesis under

consideration are equally interesting, and both findings may be considered for publica-

tion in a top journal. In our first extension, we study the game under the alternative

specification of the decision maker’s preferences.

Applying our model to the publication of research articles, it is plausible to assume

an upper bound on the number of arguments that the agent can bring forward in favor

of his findings. For instance, there may be a limit to the number of pages of a research

article, or the editor may not be willing to handle an unlimited number of arguments.

In our second extension, we impose an upper bound on the number of arguments that

can be transmitted.
14The appendix of a paper published in Econometrica in 1985 constitutes on average roughly 6% of

the paper. In 2009, it is roughly 21%. The average length of an article in Econometrica in 1985 is

roughly 19 pages and in 2009, it is roughly 37.
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5.1 Symmetric problems

We adjust the model as follows. After the experimentation phase, the agent writes a

paper in which he either claims that s = 1 or he claims that s = 0. If the agent claims

that s = 1, the decision maker’s utility when choosing x in state s is:

u1(x, s) s = 1 s = 0

x = 1 0 −pd

x = 0 −(1− pd) 0

If the agent claims that s = 0, the decision maker’s utility when choosing x in state

s is:

u0(x, s) s = 1 s = 0

x = 1 −pd 0

x = 0 0 −(1− pd)

It is optimal for the decision maker to choose x = 1 if her assessment of the probabil-

ity that s = 1 exceeds pd and the agent argues in favor of s = 1, or if her assessment of

the probability that s = 0 exceeds pd and the agent argues in favor of s = 0. Otherwise,

it is optimal for her to choose x = 0. The agent, as before, is only interested in x. If

the decision rule is symmetric, the agent chooses to argue for the state that he considers

more likely. We focus on equilibria in which counterarguments are not required in or-

der to persuade the decision maker and in which she treats evidence in both directions

symmetrically. The decision maker uses the rule

x∗ =

⎧
⎨

⎩
1, if n̂0 = 0, n̂1 ≥ n∗ or n̂0 ≥ n∗, n̂1 = 0

0, else.

Consider a given n∗ and suppose that it is optimal for the agent to engage in experi-

mentation. Then, he will stop experimentation if and only if max{n0, n1} = n∗. For any

experimentation history, the chances to meet the standard of evidence are better than

ex ante as the stock of arguments that will be used for persuasion is higher. Hence, the

number of arguments to be acquired is lower, and the probability to acquire a favorable

outcome with the next trial is (weakly) higher as well. Thus, the optimal experimen-

tation plan is to either keep on experimenting until the standard of evidence is met or

not to start experimenting at all. The expected cost of the former experimentation plan

is increasing in n∗. There exists a c′(n∗), decreasing in n∗, such that it is optimal to

engage in experimentation if and only if c < c′(n∗).

The agent stops if and only if he has successfully acquired n∗ arguments (pro or

contra). Unlike in the asymmetric case, n∗ does not obtain its informational value from
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the agent’s stopping behavior, i.e., by ruling out experimentation histories which do not

occur under optimal experimentation. Instead, n∗ has an informational value because

the agent chooses to argue for the position for which he has acquired more arguments.

The agent’s posterior that he is arguing for the truth is strictly increasing in the “net”

evidence |n1 − n0| he is endowed with. The probability that the decision maker assigns

to the agent arguing for the truth is equal to the ex ante expected value of all the agent’s

possible posteriors. The higher n∗, the more probability mass is on large realizations of

|n1 − n0|, i.e., the higher is the informational value of the agent’s announcement. If the

informational value of an announcement n∗ exceeds pd and c < c′(n∗), an equilibrium

with a standard of evidence n∗ exists. In particular, if pd < p and c ≤ U , there is

an equilibrium in which the agent conducts a single experiment and reports the result

to the decision maker, who is persuaded by the evidence. The decision maker strictly

prefers equilibria with higher standards of evidence, whereas the agent strictly prefers

lower standards.

In the symmetric case, a higher experimentation cost c deters experimentation if the

number of arguments needed to persuade is too high. However, the experimentation

cost has no effect on the informational value of an announcement n∗. Our conclusion is

that for symmetric problems, low experimentation costs are desirable in order to make

engagement in research attractive.

5.2 A bound on n

In this subsection, we introduce an exogenous maximum amount of evidence N that the

agent can transmit to the decision maker. In the context of the asymmetric problem,

we have pointed out that excessive experimentation can be counteracted by demanding

more evidence. However, if the amount of evidence that can be brought forward is

limited, demanding more evidence becomes infeasible at that point.

If c ≤ U(1−p)
N , no persuasion equilibrium exists. Suppose that there is a n′ ≤ N

such that the decision maker chooses x = 1 if the agent announces n̂ = (0, n′). If

c < U(1−p)
n′ , the agent has an incentive to experiment until he has acquired n′ favorable

arguments even if he is sure that the state of the world is 0. Thus, a necessary condition

for n′ to have an informational value is that c > U(1−p)
n′ . If c ≤ U(1−p)

N
, this condition

cannot be satisfied. Hence, the announcement n′ is equally likely in both states such

that prob{s = 1| n̂ = (0, n′)} = 1/2 and the decision maker is better off choosing x = 0.

If the amount of evidence that is necessary to be persuasive exceeds the limit due to

low c or high U , then no persuasion equilibrium exists. Excessive private experimenta-
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tion can be deterred by making the acquisition of arguments sufficiently expensive. In

the context of our application, the scientific community can increase the costs, e.g., by

imposing restrictions on arguments that are admissible. It tends to be harder to find

arguments given such restrictions. This reduces private experimentation and increases

the value of evidence such that the limit is not binding.

Our analysis offers an explanation for the observation that the use of new methods

tends not to be well received by the scientific community.15 If a researcher deviates from

standard methods, then the additional degree of freedom offers more scope for excessive

private experimentation. Even if new methods have a higher explanatory power at face

value, the lower costs of finding arguments can decrease their overall value due to the

incentive to experiment excessively.16

In his influential book, Kuhn (1970) states that in “normal times” researchers solve

puzzles with the methods inherent in the current paradigm. When addressing a research

question, researchers expect certain solutions which match with the paradigm. In the

context of our model, we may want to view normal times as times in which researchers

predominantly work on “asymmetric problems”. In normal times, new methods are not

welcome. Kuhn further says that as over time more and more anomalies appear, doubt

is cast on the current paradigm and eventually a scientific revolution is triggered. New

schools emerge and battle each other until a new paradigm evolves. The appearance of

too many anomalies makes the scientific community reflect more on the methods that

are used. At this stage the “threshold of doubt” may be lowered and/or problems may

be viewed as more symmetric. Both would encourage the use of new methods.

6 Conclusion

When trying to find arguments for the preferred course of action, private experimen-

tation and a selective revelation of the results are common practice. The process of

thinking about arguments typically occurs in private. Due to an incentive to hide coun-

terarguments, arguments cannot always be taken at face value.

Excessive private experimentation can be deterred by requiring a sufficiently large

number of arguments. With each counterargument that an interested agent encounters,

he becomes more and more pessimistic that he can acquire a set of persuasive arguments

within the next few trials. As each trial is costly, the agent stops experimentation if the

15Kuhn (1970) documents ample evidence that new methods are not welcome in what he calls “normal

times”.
16A formal argument supporting this claim can be found in the appendix.
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number of arguments that he still needs to acquire in order to persuade is too large and at

the same time the probability to encounter a favorable argument is too small. The fewer

experiments are conducted in private, the more valuable are the agent’s arguments for

the decision maker. The informational value of a certain number of favorable arguments

is the higher, the higher the experimentation costs and the lower the agent’s stakes.

Our theory contributes to explaining why the interpretation of hard evidence may

depend on whether it is presented by an agent with high stakes or by an agent with low

stakes. If the former gives up experimentation unsuccessfully less often, the value of the

(identical) hard evidence provided is lower.

In applications, in which time or capacity constraints impose an upper bound on the

number of arguments that can be submitted to the decision maker, excessive private

experimentation can depress the informational value of any feasible number of argu-

ments so much that persuasion is impossible. Our paper offers an explanation why

restrictive standards on arguments can have a value in the presence of such capacity

constraints. Restrictions tend to increase experimentation costs and thereby reduce pri-

vate experimentation. This can increase the arguments’ informational value such that

they eventually become persuasive.

In this paper, we model arguments as imperfect evidence for a certain state of the

world that are acquired privately and sequentially. In future work it would be interesting

to further explore the key properties of arguments and their implications in settings of

strategic information transmission. In particular, it could be fruitful to take account of

the possibility to support one’s position with logical arguments in a mechanism design

framework.

APPENDIX

Proof of Proposition 1. Part (i) follows from Lemmata A1–A3 below. Part (ii): In

an equilibrium in which the decision maker always chooses x = 0 the agent’s expected

payoff is zero. In an equilibrium with a standard of evidence n∗, zero payoff is attainable

by not experimenting and announcing nothing. As the agent does not choose this action,

he must be weakly better off. The agent’s possible announcements induce a (possibly

degenerate) lottery over the decision maker’s posteriors. Her expected utility is piecewise

linear and weakly convex in the posterior, and exhibits a kink at pd. She is indifferent

between all equilibria in which only posteriors smaller than (or equal to) pd realize with

a positive probability, and she strictly prefers an equilibrium in which a posterior greater

than pd realizes with a positive probability. Q.E.D.
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Lemma A 1 Suppose there exists a persuasion equilibrium in which x∗ = 1 if n̂0 =

a, n̂1 = b, with a > 0. Then there exists a persuasion equilibrium in which x∗ = 1 if

n̂0 = 0, n̂1 = b. The latter is either payoff-equivalent or Pareto-dominant.

Proof. Whenever the agent’s information endowment allows him to make the

announcement (a, b), he can also make the announcement (0, b). If his information

endowment allows him to make the announcement (0, b), but not (a, b), then it is more

likely that the state is 1 than if the latter announcement is available. Thus, if the decision

maker is persuaded if the agent announces (a, b), it should also be possible to persuade

her with the announcement (0, b). If the decision maker is persuaded by (0, b) in the

supposed equilibrium, then the implication in the lemma as well as payoff-equivalence

immediately follows. Suppose that she is not persuaded upon the announcement (0, b).

Then the announcement (0, b) must be an out-of-equilibrium-event attached with adverse

beliefs. Then, there exists another equilibrium in which the decision maker chooses

x = 1 for all the announcements for which she does so in the original equilibrium, and,

in addition, for the announcement (0, b). In the latter equilibrium, the agent makes

persuasive announcements more often, and the probability that s = 1 conditional on the

agent making a persuasive statement is also higher. Hence, the decision maker obtains a

higher expected payoff. The agent is better off because he persuades the decision maker

more often to choose his preferred alternative and incurs a lower experimentation cost.

Q.E.D.

Lemma A1 allows us to focus on equilibria in which counterarguments are not needed

in order to convince the decision maker. The next lemma further reduces the set of

equilibria under consideration to those where the announcement of counterarguments

would be harmful.

Lemma A 2 Suppose there exists a persuasion equilibrium in which x∗ = 1 iff n̂0 ∈

N0, n̂1 ≥ b, where N0 is a set of natural numbers including 0. Then there exists a

payoff-equivalent persuasion equilibrium in which x∗ = 1 iff n̂0 = 0, n̂1 ≥ b.

Proof. The agent does not experiment more than necessary to persuade the

decision maker. He stops (latest) if he has found b arguments in his favor. Hence,

regarding experimentation, he best-responds in the same way to both decision rules. If

he finds arguments against him during that search, he does not prefer any (feasible)

announcement to n̂0 = 0. Hence, his best responses to both decision rules yield the

same utility. As the agent’s search behavior is identical and his announcement behavior
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equivalent, the decision maker makes the same inferences (now attaching adverse beliefs

to out-of-equilibrium-announcements n̂0 > 0). Hence, if the first decision rule is a best

response, then the second one is a best response as well. The decision maker attains the

same payoff in both cases. Q.E.D.

The last step is to identify a persuasion equilibrium with the minimum number of

arguments needed to convince the decision maker.

Lemma A 3 Suppose there exists a persuasion equilibrium in which x∗ = 1 iff n̂0 =

0, n̂1 ∈ N1, where N1 is a set of natural numbers and n∗ is the smallest of them. Then

there exists a payoff-equivalent persuasion equilibrium in which x∗ = 1 iff n̂0 = 0, n̂1 ≥

n∗.

Proof. Given that n∗ arguments are enough to persuade the decision maker,

the agent never collects more than n∗ arguments in equilibrium. The decision rule for

announcements n̂1 > n∗ is not relevant neither for the agent’s experimentation and

announcement strategy nor for the players’ payoffs. Q.E.D.

Proof of Lemma 1. (i) The number of arguments still to be acquired is the same,

the agent’s assessment of the probability distribution of experimental outcomes is the

same. Hence, the continuation utility is the same.

(ii) Suppose n∗ arguments suffice to persuade the decision maker. Suppose the agent

executes the experimentation plan that is optimal for acquiring n∗ + 1 arguments at

histories ht : n1 < n∗, and stops at histories ht : n1 = n∗. This (possibly suboptimal)

experimentation plan yields a higher expected utility for the agent than that associated

with optimal experimentation if he needs n∗ + 1 arguments to persuade the decision

maker as he persuades her with a (weakly) higher probability and faces strictly lower

expected costs of experimentation.

(iii) With a larger stock of favorable arguments, there are less arguments still to be

acquired. Moreover, ceteris paribus, favorable experimental outcomes are more likely.

(iv) The probability that an experiment yields a favorable outcome is ceteris paribus

lower if the number of unfavorable arguments is higher. Hence, expected experimenta-

tion costs are higher and/or the probability to persuade is lower.

(v) The number of experiments to be conducted to meet the standard of evidence

follows a negative binomial distribution with success probability p in state s = 1 and

success probability 1 − p in state s = 0. With success probability π, the expected

number of experiments to be conducted until n∗ − n1 successes are obtained is n∗
−n1

π .
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Kn0

n∗−1
;n∗−1

Figure 1: Steps of the algorithm in case n∗ = 4

Ad interim, the probability that the success probability is p is γ(n0, n1) at history

(n0, n1). With probability 1 − γ(n0, n1), the success probability is 1 − p. Hence, the

interim expected number of experiments to be conducted until the standard of evidence

is met is γ(n0, n1)n
∗
−n1

p
+ (1 − γ(n0, n1))n

∗
−n1

1−p
= (1−2p)γ(n0,n1)+p

p(1−p) (n∗ − n1). Optimal

experimentation yields at least the continuation utility U − (1−2p)γ(n0,n1)+p
p(1−p) (n∗ − n1)c.

Q.E.D.

Algorithm for the identification of the equilibrium experimentation plan and

the associated sets of successful and unsucessful histories

We illustrate the algorithm with the help of Figure 1, which depicts the steps of

the algorithm for n∗ = 4. Each “node” Kn0;n1 in Figure 1 corresponds to a stock of

failed and successful experiments (n0, n1). Note that multiple experimentation histories

can lead to a particular node. The posterior and the number of favorable outcomes still

needed to persuade the decision maker at a particular Kn0;n1 is the same for all histories

leading to this Kn0;n1 . Therefore, the continuation value at a particular Kn0;n1 is the

same for all histories leading to this Kn0;n1 .

Figure 1 depicts all the histories in Hs(n∗ = 4) and Hf (n∗ = 4) associated with the

agent’s optimal experimentation plan. The agent starts experimenting with a stock of

arguments (0, 0), i.e., at node K0;0. The line down from K0;0 indicates that the first
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experiment fails. The line up (of the same length) indicates that the first experiment is

successful. According to the experimentation plan depicted in Figure 1, the agent stops

unsuccessfully in case the first experiment fails, i.e., at K1;0. He continues searching

if the first experiment is successful, i.e., at K0;1. The following lines are interpreted

analogously. As n∗ = 4 in Figure 1, the agent stops searching successfully if he has

acquired four favorable pieces of evidence. (These are the histories ending at upward-

pointing lines.)

The first step is to identify the critical stock of failed experiments n0
n∗−1, with the

property that it is optimal for the agent to continue searching only once more for the

last piece of favorable evidence, i.e., to continue searching at Kn0

n∗−1
;n∗−1 and to stop

searching unsuccessfully at Kn0

n∗−1
+1;n∗−1.

17 In order to enable us to determine optimal

stopping for all n1 < n∗ − 1, we next calculate the continuation values at all Kn0;n∗−1,

with n0 < n0
n∗−1. This corresponds to step 2. We then need to identify the number

of failed experiments n0
n∗−2, where it is optimal for the agent to continue searching

at Kn0

n∗−2
;n∗−2, and to stop searching if Kn0

n∗−2
+1;n∗−2. This corresponds to step 3.

In order to determine optimal stopping for all n1 < n∗ − 2, we need to calculate the

continuation values at all Kn0;n∗−2, with n0 < n0
n∗−2. This corresponds to step 4. The

procedure is then continued analogously for all n1 < n∗ − 2.

Step 1: Calculate n0
n∗−1, the largest n0, such that the agent is just willing to continue

searching once more if he lacks one last favorable piece of evidence for persuasion,18 i.e.,

the largest n0 for which the following inequality holds.

β(n0, n∗ − 1)U + (1− β(n0, n∗ − 1))0− c ≥ 0,

where β(n0, n∗ − 1) = γ(n0, n∗ − 1)p + (1 − γ(n0, n∗ − 1))(1 − p) with γ(n0, n∗ − 1) =

prob{s = 1|(n0, n∗ − 1)} = 1

1+( 1−p

p )n
∗−1−n0 and n0 is the only unknown. The solution

is n0
n∗−1. The continuation value at Kn0

n∗−1
;n∗−1 is equal to vcn∗(n0

n∗−1, n
∗ − 1) =

17For expositional convenience, we use the notation n0
n1

in this algorithm as the maximum number

of failed experiments for which the agent is willing to conduct a further experiment given his stock

of successful experiments n1. Note that if ñ(n1) is finite, then n0
n1 = ñ(n1) − 1. If there is no finite

number n0
n∗−1, start with the largest stock of favorable outcomes ň1 < n∗ − 1 for which the agent

sometimes optimally stops the search unsuccessfully.
18Suppose that U , c and p are such that the agent wants to stop searching for the last remaning

favorable outcome if the posterior is too low. Otherwise, the algorithm starts by identifying ň1, the

highest stock of favorable outcomes such that the agent stops searching unsuccessfully for some finite

stock of unfavorable outcomes ň0+1 (see the previous footnote). With a stock of ň1 favorable outcomes

and ň0 unfavorable ones, the continuation value if the next experiment is successful is then not U but

equal to U − (1−2p)γ(ň0 ,ň1+1)+p
p(1−p) (n∗ − ň1 − 1)c. The remaining part of the algorithm is analogous.
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β(n0
n∗−1, n

∗ − 1)U − c.

Step 2: Start with calculating the continuation value at Kn0

n∗−1
−1;n∗−1. The con-

tinuation value after a successful experiment is U and it is obtained with probability

β(n0
n∗−1 − 1, n∗ − 1). The continuation value after a failed experiment is equal to

vcn∗(n0
n∗−1, n

∗ − 1), i.e., the continuation value derived in step 1. This value is reached

with probability (1− β(n0
n∗−1 − 1, n∗− 1)). The continuation value at Kn0

n∗−1
−1;n∗−1 is

vcn∗(n0
n∗−1−1, n∗−1) = β(n0

n∗−1−1, n∗−1)U+(1−β(n0
n∗−1−1, n∗−1))vcn∗(n0

n∗−1, n
∗−

1) − c. The continuation values for all Kn0;n∗−1 with n0 < n0
n∗−1 − 1 are successively

determined analogously.

Step 3: Note that it cannot be optimal to continue searching at some Kn0;n∗−2 with

n0 > n0
n∗−1, as the agent has to find more evidence in his favor than above and the

posterior that s = 1 is lower than at Kn0

n∗−1
;n∗−1. Start with the hypothesis that the

agent is willing to continue searching at Kn0

n∗−1
;n∗−2. This holds true if

β(n0
n∗−1, n

∗ − 2) · vcn∗(n0
n∗−1, n

∗ − 1) + (1− β(n0
n∗−1, n

∗ − 2)) · 0− c ≥ 0,

where vcn∗(n0
n∗−1, n

∗ − 1) was calculated in step 2. Otherwise, successively move to

smaller n0 for given n1 = n∗ − 2, until the continuation value gets positive, using the

continuation values vcn∗(n0, n∗ − 1) determined in step 2.

Step 4: Continue analogously to step 2 for n1 = n∗ − 2 and n0 smaller than the

critical level derived in step 3. Continue analogously for n1 < n∗ − 2.

The sets of histories Hs(n∗) and Hf (n∗) directly follow from the above procedure:

All histories that end with a successful experiment are elements of Hs(n∗). All histories

that end with an unsuccessful experiment are elements of Hf (n∗).

Proof of Proposition 2. (i) The incentive to experiment is strongest if a single

argument suffices to persuade the decision maker. The incentive is strongest at the

first attempt, where the probability to succeed is 1/2. In subsequent trials, the success

probability is lower than 1/2. For U/c < 2, the first attempt to acquire a favorable

argument yields negative expected utility.

(ii) As U/c > 2, it pays to conduct an experiment which succeeds with probability

1/2. Suppose the experiment fails. The probability that the next trial yields a success

is 2p(1− p). The agent has no incentive for further experimentation if 2p(1− p)U < c,

i.e., if p > 1
2 +

√
1
4 − c

2U := p′. Note that p′ < 1 for finite U/c. If p > p′, prob{s = 1|n̂ =

(0, 1)} = p ≥ pd, such that the decision maker can be persuaded with one argument.

(iii) A sufficient condition for engaging in experimentation is U/c ≥ n∗

2p(1−p) . A

sufficient condition for Hf (n∗) ̸= ∅ is U/c < n∗

(1−p) .
n∗

2p(1−p) < n∗

(1−p) ensures that some
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U/c satisfies both conditions. Hf (n∗) ̸= ∅ implies that prob{s = 1|n̂ = (0, n∗)} > 1
2

such that the decision maker is optimally persuaded by n∗ if pd is sufficiently close to 1
2 .

(iv) Consider first a standard of evidence n′ > 1 and suppose that Hf (n′) = ∅. We

show that there is n′′ > n′ such that the agent stops experimenting for some history.

We need to make sure that Hs(n′′) ̸= ∅. If the standard of evidence is increased by one,

n∗ = n′+1, the agent still has an incentive to engage in experimentation if U/c ≥ n′+1
2p(1−p) .

As Hf (n′) = ∅, we know that U/c ≥ n′

(1−p) . The latter inequality implies the former if

p ≥ n′+1
2n′ . For n′ = 2, the agent’s incentive for excessive experimentation when he has

to acquire two arguments implies that he is willing to engage in the search for three

arguments if p ≥ 3
4 . The higher n′, the lower the threshold above which p must lie to

apply the argument. If Hf (n′ + 1) = ∅, we can successively increase the standard of

evidence without deterring experimentation completely until the agent sometimes stops

experimentation unsuccessfully and the evidence becomes persuasive. Now, consider

n′ = 1 and suppose Hf (1) = ∅. Consider n∗ = 2, and consider the agent’s expected

utility when he engages in experimentation, and (sub-optimally) stops as soon as he

observes a negative outcome or he meets the standard of evidence n∗ = 2. Then, the

probability to persuade the decision maker is 1
2 (1 − 2p(1 − p)) and the expected cost

of experimenting is 1
2 (c + 2c). This experimentation plan is better than not engaging

in experimentation if U/c ≥ 3
1−2p(1−p) . The inequality is implied by U/c < 1

1−p
if

p >
√

17
16 − 1

4 := p′′.

(v) If experimentation is costless, Hf (n∗) = ∅ for all n∗. prob{s = 1| n̂ = (0, n∗)} = 1
2

such that the decision maker cannot be persuaded. Q.E.D.

Preliminaries for the proof of Proposition 3. For the proof of Proposition

3 we need to define the probability that s = 1 given that the decision maker observes

persuasive evidence and where she knows that the agent at some point had a stock

of evidence (n0, n1), i.e., that the history leading to the persuasive evidence passed

through node Kn0;n1 .19 Denote this probability by prob{s = 1|ht ∈ Hs(Kn0;n1)}, where

Hs(Kn0;n1) contains all the histories of Hs(n∗) that pass through node Kn0;n1 . ñ(n1)

is the cutoff number of failed experiments such that the agent continues the search at

node Kn0;n1 if and only if n0 < ñ(n1).

For the proof we need the following Lemma, which provides an order of prob{s =

1|ht ∈ Hs(Kn0;n1)} for subsequent nodes.

19The notation Kn0;n1 was introduced in the algorithm for the identification of the equilibrium

experimentation plan.
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Lemma A 4 Consider the nodes Kn0;n1 that are reached with a positive probability

according to a given plan. We have

(i) prob{s = 1|ht ∈ Hs(Kn0;n1)} is strictly decreasing in n0.

(ii) If ñ(n1−1) is finite and n0 = ñ(n1−1)−1, then prob{s = 1|ht ∈ Hs(Kn0;n1−1)} =

prob{s = 1|ht ∈ Hs(Kn0;n1)}.

(iii) If ñ(n1−1) is finite and n0 < ñ(n1−1)−1, then prob{s = 1|ht ∈ Hs(Kn0;n1−1)} <

prob{s = 1|ht ∈ Hs(Kn0;n1)}.

(iv) If ñ(n1 − 1) is infinite, then prob{s = 1|ht ∈ Hs(Kn0;n1−1)} < prob{s = 1|ht ∈

Hs(Kn0;n1)}.

Proof of Lemma A 4. (i) It is convenient to determine the relation between the

conditional probabilities backwards in the experimentation plan as follows.

(1) Start with the nodes at which the agent has collected all the evidence n1 = n∗

required for persuasion. Clearly, prob{s = 1|ht ∈ Hs(Kn0;n∗)} = pn
∗

(1− p)n
0

/(pn
∗

(1−

p)n
0

+ (1− p)n
∗

pn
0

) is strictly decreasing in n0. This proves the statement for n∗ = 1.

(2) For n∗ > 1, consider next all nodes Kn0;n∗−1. If the agent is at a node Kn0;n∗−1,

then two things may happen with a strictly positive probability. Either the next ex-

periment is successful, in which case the conditional probability is prob{s = 1|ht ∈

Hs(Kn0;n∗)}. Or the next experiment is a failure, in which case the conditional proba-

bility is prob{s = 1|ht ∈ Hs(Kn0+1;n∗−1)}, which is weakly lower than prob{s = 1|ht ∈

Hs(Kn0+1;n∗)}. As prob{s = 1|ht ∈ Hs(Kn0;n∗)} > prob{s = 1|ht ∈ Hs(Kn0+1;n∗)}

according to Step (1), we have prob{s = 1|ht ∈ Hs(Kn0;n∗−1)} > prob{s = 1|ht ∈

Hs(Kn0+1;n∗−1)}.

(3) Analogously, for n∗ > 2, we can derive the order of prob{s = 1|ht ∈ Hs(Kn0;n1)}

at subsequent nodes for all other nodes working backwards through the experimentation

plan.

(ii) If ñ(n1−1) is finite and n0 = ñ(n1−1)−1 we have prob{s = 1|ht ∈ Hs(Kn0;n1−1)} =

prob{s = 1|ht ∈ Hs(Kn0;n1)} as all the histories through node Kn0;n1−1 potentially lead-

ing to successful persuasion must pass through Kn0;n1 .20

(iii) Let n0 < ñ(n1 − 1)− 1. At such a node Kn0;n1−1 two things may happen with a

strictly positive probability. Either the next experiment is successful, in which case the

conditional probability is prob{s = 1|ht ∈ Hs(Kn0;n1)} or the next experiment is not

successful, in which case the conditional probability is lower than at Kn0;n1 according

to (i). Hence, prob{s = 1|ht ∈ Hs(Kn0;n1)} > prob{s = 1|ht ∈ Hs(Kn0;n1−1)}.

20This is illustrated in an example experimentation plan in Figure 2 below.
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Figure 2: Relations between the nodes in experimentation plan P

(iv) Analogous to (iii). Q.E.D.

Figure 2 illustrates the relative size of prob{s = 1|ht ∈ Hs(Kn0;n1)} at subsequent

nodes in an example experimentation plan, where a “>” between two nodes Kn0;n1 and

Kn0′;n1′ indicates that prob{s = 1|ht ∈ Hs(Kn0;n1)} > prob{s = 1|ht ∈ Hs(Kn0′;n1′)}.

A “=” is interpreted analogously.

Proof of Proposition 3. Denote the optimal experimentation plan for a given

standard of evidence n∗ by P (n∗). We construct a plan P ′(n∗ + 1) that is identical

to P (n∗) up to the collection of n∗ favorable outcomes, but then the agent searches

for the (n∗ + 1)th favorable outcome until he finds it. It follows that prob{s = 1|ht ∈

Hs(P (n∗))} = prob{s = 1|ht ∈ Hs(P ′(n∗ + 1))}.21 Note that for each node where the

agent optimally continues experimenting in P (n∗+1), the agent continues experimenting

in P ′(n∗ + 1).22 The reverse however is not true. Indeed, there must be some histories

for which P ′(n∗ + 1) prescribes to continue, but it is optimal for the agent to stop

experimenting according to P (n∗ +1). We can approximate P ′(n∗ +1) with a sequence

of modified experimentation plans based on P (n∗ + 1) and show that prob{s = 1|ht ∈

Hs(.)} decreases with each modification. Set P 0 = P (n∗ + 1). Each element P τ of

21Hs(P (.)) is the set of histories containing persuasive evidence if the agent searches according to

experimentation plan P (.).
22See Lemma 1 (ii).
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the sequence differs from its follower P τ+1 only at some node Kn0;n1 up to which the

agent continues experimenting for both plans. At Kn0;n1 , he stops searching according

to P τ but continues searching according to P ′(n∗ + 1). P τ+1 is such that the agent

now continues searching at Kn0;n1 as follows: (i) If the next experiment is a failure,

then he stops searching. (ii) If the next experiment is successful, then he continues

searching according to P τ . Hence, all new histories leading to persuasive evidence must

pass through node Kn0;n1+1 of P τ and, from Kn0;n1+1 onwards, the agent’s continuation

decisions are as in P τ .23

Note that prob{s = 1|ht ∈ Hs(Ki;j)} and, hence, the relations between the condi-

tional probabilities depend on the experimentation plan under consideration.24 As we

aim to compare P τ with the modified plan P τ+1, we need to make sure that we do not

confuse prob{s = 1|ht ∈ Hs(Ki;j)} (and hence the relations between them) from differ-

ent plans. It is therefore important to note that the part of the experimentation plan

P τ+1 that follows node Kn0;n1+1 equals the part of the experimentation plan P τ that

follows node Kn0;n1+1. As all the histories through Kn0;n1 that yield persuasive evidence

according to P τ+1 must pass through Kn0;n1+1 we have prob{s = 1|ht ∈ Hs(Kn0;n1)} =

prob{s = 1|ht ∈ Hs(Kn0;n1+1)} where, importantly, the right hand side of the equality

refers to plan P τ .

We need to show that prob{s = 1|ht ∈ Hs(P τ+1)} < prob{s = 1|ht ∈ Hs(P τ )},

where prob{s = 1|ht ∈ Hs(P τ )} = prob{s = 1|ht ∈ Hs(K0;0)}. As the set of successful

histories of plan P τ+1 consist of the “old” successful histories originating from node

K0;0 of plan P τ and the “new” (additional) successful histories through Kn0;n1 , which

pass through Kn0;n1+1 of plan P τ , it is straightforward that the inequality holds if the

posterior based on persuasive evidence of the “new” successful histories is lower than

the posterior based on persuasive evidence of the “old” successful histories. I.e., the

inequality holds if prob{s = 1|ht ∈ Hs(K0;0)} > prob{s = 1|ht ∈ Hs(Kn0;n1+1)}, where

both conditional probabilities in the latter inequality refer to plan P τ .25 By exploiting

the relative size of the conditional probabilities according to Lemma A 4 (see also Figure

2) we indeed have prob{s = 1|ht ∈ Hs(K0;0)} > prob{s = 1|ht ∈ Hs(Kn0;n1+1)}.

In order to ensure that the cutoff number of failed experiments at which the agent

23Note that, as P ′(n∗+1) prescribes to continue searching for the final favorable outcome ad infinitum,

we may need an infinite sequence of such modifications to construct P ′(n∗ + 1).
24For example, at node K0;0, i.e., where experimentation starts, prob{s = 1|ht ∈ Hs(K0;0)} differs

for P (n∗) and P (n∗ + 1).
25By construction prob{s = 1|ht ∈ Hs(Kn0;n1)} of plan P τ+1 is equal to prob{s = 1|ht ∈

Hs(Kn0;n1+1)} of plan P τ .
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stops experimenting unsuccessfully is monotonic in his stock of successful experiments,

the sequence of modified plans is constructed as follows: We subsequently increase ñ(n1)

by one at nodes where P (n∗+1) and P ′(n∗+1) differ, starting at the node with a stock

of evidence (ñ(n∗), n∗) (assuming that ñ(n∗) is higher under P ′(n∗+1)), then ñ(n∗− 1)

is increased by one (again assuming that the cutoff is higher under P ′(n∗ + 1)) and so

on. Once ñ(0) is reached, the second round is started by increasing ñ(n∗) by one more

unit, working backwards through the experimenation tree again and so on. Q.E.D.

Proof of Proposition 4. The proof proceeds in three steps. In part (i) it is shown

that prob{s = 1|n̂ = (0, n∗)} ≥ pd in each hypothetical equilibrium with n∗ > n. In

part (ii) we argue that the failure to provide the equilibrium standard of evidence n∗,

n∗ > n yields a decision against the agent. In part (iii) we show that the agent has an

incentive to start searching in each hypothetical equilibrium with n∗ < n. These three

parts directly imply the statement.

(i) As n by definition constitutes an equilibrium standard of evidence, the provision

of this evidence passes the decision maker’s threshold of doubt in an equilibrium with

n∗ = n. According to Proposition 3 the probability that s = 1 if x = 1 increases in the

equilibrium standard of evidence.

(ii) In an equilibrium with n∗ > n, the failure to meet the standard of evidence implies

that the agent stopped searching unsuccessfully, which only happens if his posterior belief

suggests that state s = 1 is less likely than ex ante. The decision maker can thus deduce

that s = 0 is more likely and it is optimal to decide against the agent.

(iii) Consider two equilibria with standards of evidence n∗ = n′ and n∗ = n′′ with

n′ < n′′. In an equilibrium with n′ the agent has the option to (sub-optimally) follow

the same experimentation plan as in an equilibrium with n′′. Given this (suboptimal)

plan he can make the announcement n̂ = (0, n′), if he has found n′ favorable arguments.

The optimal experimentation must yield a weakly higher ex ante payoff. Therefore, the

incentive to start experimenting decreases in n∗. Q.E.D.

Verification of equilibria presented in Examples 1 and 2. (1) To verify that

(a) and (b) describe equilibrium behavior, we check the agent’s incentives to stop ex-

perimenting for each history in Hf (n∗) and his incentive to continue experimenting for

each sub-history up to the last experiment in Hs(n∗) (note that this set of histories

contains the set of sub-histories in Hf (n∗)). For the histories for which the agent stops

unsuccessfully, we have γ = 1− p. As U/c ≤ 1
2p(1−p) = 32

7 , it does not pay for the agent

to try to find neither two nor one remaining piece of evidence. For the histories for
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which he continues experimenting, γ is at least 1/2. Hence, his incentives to continue

experimenting stay intact for these histories given that he started. The incentive to

start experimenting is weaker in (b) than in (a). It pays to execute the experimentation

plan in (b) if U/c ≥ 3+2p(1−p)
1−p(1−p) = 206

57 . Note that prob{s = 1|n̂ = (0, n∗)} ≥ p in (a) for

n∗ = 1 and (b) for n∗ = 2. It follows from pd < p that the decision rule is optimal for

the decision maker.

(2) Consider first (a). It is optimal for the agent to stop experimenting when the

first two experiments fail if β(2, 0)U − c < 0, i.e., if U/c < 1−2p(1−p)
p(1−p) = 50

7 . It is

optimal to continue experimenting after one initial failure if β(1, 0)U − c ≥ 0, which

yields U
c

≥ 1
2p(1−p) = 32

7 . Given that it is optimal to continue after one failure, it is

optimal to start ex ante. Hence, the experimentation plan is optimal for the parameter

range under consideration. Given the experimentation plan, prob(s = 1|n̂ = (0, 1)) =
1

2
(p+(1−p)p)

1

2
(p+(1−p)p)+ 1

2
((1−p)+p(1−p))

= p(2−p)
1+2p(1−p) = 21

26 > pd. Hence, it is a best response for the

decision maker to choose in favor of the agent if he provides a single favorable outcome.

Consider next (b). It pays to execute the suggested experimentation plan if 1
2 (p

2 +

(1− p)2)(U − 2c) + 1
2 (p

2(1− p) + (1− p)2p)(U − 3c) + 1
22p

2(1− p)2(U − 4c) + 1
2 (−c) +

1
2 (p(1 − p)3 + (1 − p)p3)(−4c) ≥ 0, i.e., if U/c ≥ 3(1+p(1−p))

1−p(1−p)(1−2p(1−p)) = 6816
1873 , which

is satisfied for the given parameters. After an initial success, the agent’s incentive to

experiment stays intact. Note that after an initial success followed by a failure, the agent

is in the same strategic situation as in Example 2(a). Hence, it is optimal for him to

continue experimenting at history (1, 0, 0) and to stop at history (1, 0, 0, 0). It remains

to verify that stopping is optimal after an initial failure. The agent anticipates that he

optimally stops after history (0, 0) (this is implied by the fact that it is optimal to stop

the search for only one argument, as shown above), and that he optimally continues after

history (0, 1), subsequently following the plan as described in Example 2(a). Hence, his

continuation utility after an initial failure is (1−p)[p2(U −2c)+p2(1−p)(U −3c)− (1−

p)c−p(1−p)23c]+p[(1−p)2(U−2c)+p(1−p)2(U−3c)−pc−p2(1−p)3c], which is negative

if U/c < 1+3p(1−p)
p(1−p)(1+2p(1−p)) = 2720

273 . This is satisfied for the given parameters. Hence, it is

optimal to stop experimenting after an initial failure. Given this experimentation plan,

we have prob{s = 1|n̂ = (0, 2)} = p2+p2(1−p)+p2(1−p)2

p2+p2(1−p)+p2(1−p)2+(1−p)2+(1−p)2p+(1−p)2p2 = 4088
4257 ,

which is greater than pd. Q.E.D.

Proof of Proposition 5. The larger the agent’s utility and/or the lower the costs,

the stronger is his incentive to engage (further) in experimentation at any history ht. If

U/c = U ′′/c′′, he may continue experimentation at a history ht with n0 > n1 for which
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he stops experimentation if U/c = U ′/c′. Thus, an analogous reasoning as in the proof

of Proposition 3, i.e., to construct a sequence of experimentation plans, can be applied

to prove Proposition 5. Q.E.D.

Proof of Proposition 6. Consider first n. The larger the agent’s stakes and/or

the lower c, the stronger is his incentive to engage (further) in experimentation at any

history ht. Hence, if he continues experimentation if U/c = U ′/c′ at a particular history

ht, then he does so if U/c = U ′′/c′′. Consequently, the maximum standard of evidence

that the agent is willing to provide is weakly higher.

Consider next n. Consider U ′/c′ and U ′′/c′′, with U ′′/c′′ > U ′/c′. Due to Propo-

sition 5, the probability that s = 1 conditional on reaching one of the histories in

Hs(P ∗(n∗, U ′′/c′′)) is lower than the probability that s = 1 conditional on reaching one

of the histories in Hs(P ∗(n∗, U ′/c′)), where P ∗(n∗, U/c) is the optimal experimentation

plan given n∗ and U/c. Hence, the lowest standard of evidence that persuades the de-

cision maker is weakly higher, the higher U/c. Q.E.D.

Derivation of a possible barrier to new methods. Consider two experimentation

technologies 1 and 2, with p1 < p2. Suppose upon observing an experimental outcome,

the decision maker knows with which experimentation technology it was generated. We

show that there are parameter constellations such that technology 1 can be used to

persuade the decision maker, but technology 2 cannot be used to persuade the decision

maker.

We prove the claim by construction. Assume that only one argument can be transmitted

to the decision maker, i.e., N = 1. Let pd < p1, such that the decision maker can be

persuaded if the agent stops experimenting unsuccessfully after the first failed trial

using technology 1. Suppose that c1 > 2p1(1 − p1)U , such that the agent indeed stops

experimenting after the first failed trial. Suppose further that c1 < U/2 such that the

agent has an incentive to engage in experimentation. Hence, an equilibrium in which

the agent persuades the decision maker with an argument acquired with technology 1

exists. If c2 < U(1 − p2), the agent does not stop the search for a favorable argument

with technology 2 until he has obtained one if the decision maker can be persuaded by

such an argument. Hence, he obtains such an argument with probability one in either

state of the world, such that it does not have an informational value. No equilibrium

with a standard of evidence n∗ = 1 exists.
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