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Abstract

The network of developers in distributed ledgers and blockchains open source

projects is essential to maintaining the platform: understanding the structure

of their exchanges, analysing their activity and its quality (e.g. issues

resolution times, politeness in comments) is important to determine how

“healthy” and efficient a project is. The quality of a project affects the trust

in the platform, and therefore the value of the digital tokens exchanged over

it.

In this paper, we investigate whether developers’ emotions can effectively

provide insights that can improve the prediction of the price of tokens. We

consider developers’ comments and activity for two major blockchain

projects, namely Ethereum and Bitcoin, extracted from Github. We measure

sentiment and emotions (joy, love, anger, etc.) of the developers’ comments

over time, and test the corresponding time series (i.e. the affect time series)

for correlations and causality with the Bitcoin/Ethereum time series of prices.

Our analysis shows the existence of a Granger-causality between the time

series of developers’ emotions and Bitcoin/Ethereum price. Moreover, using

an artificial recurrent neural network (LSTM), we can show that the Root

Mean Square Error (RMSE) – associated with the prediction of the prices of

cryptocurrencies – significantly decreases when including the affect time

series.

Keywords: blockchain; open source software development; data mining.

1 Introduction
The ecosystem of cryptocurrencies traded and exchanged every day has been ex-

ponentially growing over the past ten years. The platforms – distributed ledgers

and blockchains – cryptocurrencies rely upon to be created and transferred are

developed (in most cases) in the form of open source projects. Developers from

across the globe are constantly contributing to open source projects maintaining

the codes and software that ensure the platform’s correct functioning. According to

a Deloitte report[1], there are currently more than 6500 active projects connected to

distributed ledger technologies (DLT) and blockchains. The pioneering ones are the

[1]https://www2.deloitte.com/content/dam/insights/us/articles/4600_Blockchain-five-vectors/DI_

Blockchain-five-vectors.pdf

mailto:s.bartolucci@imperial.ac.uk
 https://www2.deloitte.com/content/dam/insights/us/articles/4600_Blockchain-five-vectors/DI_Blockchain-five-vectors.pdf
 https://www2.deloitte.com/content/dam/insights/us/articles/4600_Blockchain-five-vectors/DI_Blockchain-five-vectors.pdf
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Bitcoin and Ethereum projects, whose associated tokens also dominate the crypto

scene by market capitalisation.

Investors are attracted to this technology, not only by its future outlooks and

potential but also by the excess returns on their investments that can be achieved

by exploiting the highly volatile crypto-market. Nonetheless, valuation and pricing

of cryptocurrencies and digitally native tokens remains a non-trivial task, due to

the peculiarity of the platforms, users and investors in the space.

Quantitative investigations aimed at extracting information from the time series of

cryptocurrency prices and predicting prices drivers [1] or the next most likely jump,

range from theoretical models of pricing and adoption of digital tokens [2, 3, 4] to

machine learning [5, 6] and neural network-driven [7] forecasts of prices and returns.

Analyses of the cryptocurrency markets [8, 9, 10] yielded insights on their maturity,

efficiency and structure. A large body of literature is also looking at the volatility

of cryptocurrencies, from the model estimation point of view [11, 12] as well as by

extrapolating the mechanisms driving the fluctuations. Studies showed, for example,

a strong correlation with global economic activity [13, 14] and volume of trades [15].

In the crypto space, where everything is decentralised and shared in a peer-to-

peer fashion between users, developers and investors, “social” aspects appear to

play a crucial role: discussions about platforms’ quality are held over public forums

(e.g. Reddit), news about next developments are shared over the informal news

channel of Twitter and updates on development activities are publicly accessible

over open source development platforms such as Github. Investors’ sentiment and

trading activities, which in turn impact prices, are, therefore, inevitably informed

and influenced via those channels. For this reason, new types of data have been

recently used to improve models and predictions. “Social” sentiment is extracted

using data gathered from users’ online communities [16] – e.g. online forums such as

BitcoinTalk[2] – and from online news and tweets [17, 18, 19]. For instance, a suitably

built sentiment index can be used to test for speculative bubbles in cryptocurrency

prices [20]. More broadly, Google search data related to cryptocurrencies can be

relevant to characterise the set of Bitcoin users [21]. Temporal topic analysis of

Bitcoin and Ethereum discussions on Reddit also show correlations with variations

of cryptocurrency prices [22].

Developers in open source blockchain and DLTs projects are also crucial entities,

responsible for the maintenance and updates of the platforms. The idea that the

human aspects of software development are of paramount importance to ensure

high team productivity, software quality and developers satisfaction is already well-

established in software engineering [23, 24, 25]. These studies have shed light on

the importance of all the social and human aspects associated with the software

development processes, and empirically demonstrated how a positive environment

may have an impact on team productivity, software quality and developers’ satisfac-

tion [26, 27]. Moreover, standard metrics extracted from open source development

platforms such as Github[3] and Bitbucket[4] can be used to rank the top crypto

tokens [28]: metrics include number of commits and issues, forks and number of

contributors to the code.
[2]https://bitcointalk.org
[3]https://github.com
[4]https://bitbucket.org

https://bitcointalk.org
https://github.com
https://bitbucket.org
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Tools to extract sentiment specifically built for the software engineering domain

and language are also available. For example, Murgia et al. [25] demonstrated the

feasibility of a machine learning classifier using emotion-driving words and technical

terms to identify developers’ comments containing gratitude, joy and sadness. Islam

et al. [29] studied how developers’ emotions affect the software development process.

They reconstructed the emotional variations by means of a sentiment analysis on

commit messages using the SentiStrength tool [30], showing how emotions influence

different typologies of software development tasks.

In this paper, we focus our investigation precisely on the impact of developers’

activities and emotions, sentiment and politeness on the cryptocurrencies issued and

transferred over the platform they contribute to develop. In particular, we consider

comments written by GitHub contributors of the two main blockchain projects,

Bitcoin and Ethereum, and we perform emotions mining (love, joy, anger, sadness),

sentiment analysis [25], politeness and VAD analysis[5] of the comments [24, 31]. In

the following, we will generally refer to emotions, sentiment, politeness and VAD

metrics as affect metrics, in line with recent works in psychology and computer

science (e.g. [32, 33]), where affect is an umbrella term for discrete emotional

states as well as emotional dimensions and moods. In Sec. 2, we will describe in

more details the meaning of the affect metrics and how they are measured.

The main idea of this study is to understand whether emotions mining, senti-

ment analysis, politeness, and VAD analysis can be used to improve the prediction

power of machine learning algorithms for the returns of the Bitcoin/Ethereum cryp-

tocurrency. More generally, these metrics could be useful to monitor the health and

quality of projects and platforms from a software engineering point of view.

We aim at understanding the interplay between developers’ affect and cryptocur-

rency returns and we will focus on the two following aspects:

• Does the affect of Bitcoin and Ethereum communities influence variations in

returns?

Using Granger causality tests we will show that the affect metrics extracted

from the contributors’ comments influence the cryptocurrency prices.

• Is the affect of Bitcoin and Ethereum communities able to improve the error

on the prediction of returns?

Using a LSTM neural network we will show that including the affect time

series as features in the training set significantly improves the prediction error.

This paper is organised as follows. In Sec. 2, we describe the dataset, the process

to construct the affect time series and the tools used for the analyses (Granger

causality test and Long-Short term memory for the prediction of returns). In Sec.

3, we present the results and their implications. In Sec. 4, we discuss the limitations

of this study. Finally, in Sec. 5 we summarise the main findings.

2 Dataset and Methods
In this section, we describe how affect time series are constructed using the com-

ments of Ethereum and Bitcoin developers on Github for the period of December

2010 to August 2017.

[5]Valence, Arousal and Dominance: these metrics are used to respectively evaluate

the (i) engagement, (ii) confidence and (iii) responsiveness of a person in conducting

a task or an activity. More details will follow in Sec. 2.1.
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Both the Bitcoin and Ethereum projects are open source, hence the code and all

the interactions among contributors are publicly available on GitHub [34]. Active

contributors are continuously opening, commenting on, and closing so-called “is-

sues”. An issue is an element of the development process, which carries information

about discovered bugs, suggestions on new functionalities to be implemented in the

code, or new features actually being developed. Monitoring the issues constitutes an

elegant and efficient way of tracking all the phases of the development process, even

in complicated and large-scale projects with a large number of remote developers

involved. An issue can be “commented” on, meaning that developers can start sub-

discussions around it. They normally add comments to a given issue to highlight

the actions being undertaken or to provide suggestions on its possible resolution.

Each comment posted on GitHub is timestamped, hence it is possible to obtain the

exact time and date and generate a time series for each affect metric considered in

this study.

An example of a developer’s comment extracted from Github for Ethereum can

be seen in Table 1. Quantitative measures of sentiment and emotions associated

with the comments, as reported in this example, are computed using state-of-the-

art tools of textual analysis (further details below). The affect metrics computed for

each comment are emotions such as love (L), joy (J), anger (A), sadness (S), VAD

(valence (Val), dominance (Dom), arousal (Ar)), politeness and sentiment (Pol and

Sent respectively).

Comment L J A S Val Dom Ar Pol Sent
Perhaps there’s simply noth-
ing new to translate? The rea-
son I updated Transifex in
the first place was to be sure
the strings with subtle English
changes (that don’t change
the meaning) didn’t reset the
translation - so those were im-
ported from the old transla-
tions. Though I seem to recall
at least one truly new string -
Transaction or such.

0 0 0 1 1.93 1.88 1.26 imp 1

Table 1: Example of comments and the corresponding values of affect (love (L), joy

(J), anger (A), sadness (S)), VAD (valence (Val), dominance (Dom), arousal (Ar)),

politeness and sentiment (Pol and Sent respectively).

The Bitcoin and Ethereum price time series were extracted from the API of Coin-

MarketCap[6] using daily closing prices.

2.1 Measuring Affects Metrics

In our analysis, we focus on four main classes of affect metrics: emotions (love, joy,

anger, sadness), VAD (valence, arousal, dominance), Politeness, Sentiment. As we

specify below, for each affect metric class, we use a tailor-made tool to extract it

from the text of the comments.

For the detection of emotions, we use the tool developed by Ortu et al. [35] and

extended by Murgia et al. [36]. This tool is particularly suited for our analysis as

[6]https://coinmarketcap.com/

https://coinmarketcap.com/
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the algorithm has been trained on developers’ comments extracted from Apache,

a Jira-based data repository, hence within the Software Engineering domain. The

classifier is able to detect love, anger, joy and sadness with an F1 score[7] close to

0.8 for all of them.

Valence, Arousal and Dominance (VAD) represent conceptualised affective dimen-

sions that respectively describe the interest, alertness and control a subject feels in

response to a certain stimulus. In the context of software development, VAD mea-

sures may give an indication of the involvement of a developer in a project as well

as their confidence and responsiveness in completing tasks. Warriner et al.’s [37] has

created a reference lexicon containing 14,000 English words with VAD scores for Va-

lence, Arousal, and Dominance, that can be used to train the classifier, similarly to

the approach by Mantyla et al. [31]. In [31], the authors extracted valence-arousal-

dominance (VAD) metrics from 700,000 Jira issue reports containing over 2,000,000

comments. They showed that issue reports of different type (e.g., feature request

vs bug) had a fair variation in terms of valence, while an increase in issue priority

would typically increase arousal.

For politeness detection, we use the tool proposed by Danescu et al. [38], which

output a binary classification of the text as polite or impolite. This tool is particu-

larly suitable in the context of our analysis as the algorithm has been trained using

over 10,000 manually labelled requests from Wikipedia and StackOverflow. Indeed,

in both data sources–but more specifically StackOverflow–contributors make use of

technical terms and jargon, similarly to conversations among developers in online

forum or development platforms.

Finally, the sentiment is measured using Senti4SD tool [39]. The algorithm ex-

tracts the degree of positive (ranging from 1 to 5), neutral (0) and negative (ranging

from -1 to -5) sentiment in short texts. This tool is also trained on developers’ com-

ments.

2.2 Affect Time Series

Once numerical values of the affect metrics are computed for all comments (as

shown in the example in Table 1), we consider the timestamps (i.e. dates when the

comments were posted) to build the corresponding affect time series. The affect time

series are constructed by aggregating sentiment and emotions of multiple comments

published on the same day. For a given affect metric, e.g. anger, for a specific day,

we construct the time series by averaging the values of the affect metric over all

comments posted on the same day.

In Table 2 and 3 we report the summary statistics of the affect time series for

Bitcoin and Ethereum respectively. Plots of all the affect time series concerning

Bitcoin and Ethereum are also available within the Supplementary Material (see

Figure 1, 2).

In Figure 1, we also show the boxplots of the data distributions for each affect

time series for the Bitcoin and Ethereum cases.

The box width gives an indication of the sample’s variability. In the Bitcoin case,

all the affect metrics show a small variance, particularly if we consider anger, joy

[7]The F1 score tests the accuracy of a classifier and it is calculated as the harmonic

mean of precision and recall.



Bartolucci et al. Page 6 of 19

Statistic sentiment arousal valence dominance anger sadness joy love

mean -0.043081 0.984999 1.431276 1.442303 0.040907 0.244030 0.077308 0.049961
std 0.807408 0.541344 0.821061 0.805969 0.227526 0.595813 0.291157 0.227564
min -4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
25% 0.000000 0.750000 1.080000 1.100000 0.000000 0.000000 0.000000 0.000000
50% 0.000000 1.040000 1.470000 1.490000 0.000000 0.000000 0.000000 0.000000
75% 0.000000 1.270000 1.840000 1.860000 0.000000 0.000000 0.000000 0.000000
max 4.000000 6.150000 7.890000 7.220000 12.000000 38.000000 12.000000 4.000000

Table 2: Summary statistics of affect metrics for Bitcoin. Mean, standard

deviation, min-max values considering all Github comments for sentiment, arousal,

valence, dominance, anger, joy, love.

Statistic sentiment arousal valence dominance anger sadness joy love

mean 0.039835 1.271606 1.831578 1.829091 0.035780 0.224817 0.056057 0.132588
std 0.794382 0.837046 1.264279 1.188470 0.217238 0.547257 0.273674 0.365146
min -3.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
25% 0.000000 0.900000 1.290000 1.300000 0.000000 0.000000 0.000000 0.000000
50% 0.000000 1.150000 1.640000 1.660000 0.000000 0.000000 0.000000 0.000000
75% 0.000000 1.420000 2.050000 2.060000 0.000000 0.000000 0.000000 0.000000
max 4.000000 5.570000 8.210000 7.000000 6.000000 15.000000 14.000000 3.000000

Table 3: Summary statistics of affect metrics for Ethereum. Mean, standard

deviation, min-max values considering all Github comments for sentiment, arousal,

valence, dominance, anger, joy, love.

Figure 1: Distributions of the affect time series. Boxplot of the Bitcoin

(top panel) and Ethereum (bottom panel) distributions for all affect metrics and

all Github comments.

and love time series. Moreover, all distributions are symmetric, except that for

the anger, joy, sadness and love samples. For Ethereum, instead, the time series of

sentiment, arousal, valence and dominance present a broader distribution compared

to the corresponding Bitcoin ones. Further analyses of the stationarity of the time

series can be found in the Supplementary Material (Sec. 1).
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2.3 Granger Causality test

The Granger causality test is a statistical hypothesis test useful to assess whether

a given time series shows some potential predictability power on another time se-

ries. In the Granger-sense, a time series X Granger-causes Y if X is able to im-

prove the prediction of Y with respect to a forecast, considering only past val-

ues of Y [40]. Equivalently, if we define Γ′τ as the information set of the form

(xt, ..., xt−τ , yt−1, ..., yt−τ ) (where τ is the number of lags or observations included

in the regression), then xt Granger-causes yt if the variance of the optimal linear

predictor of yt based on Γ′τ is smaller than the variance of the optimal linear pre-

dictor of yt based on the information set Γτ = (yt−1, ..., yt−τ ) of lagged values of yt

only:

σ2(yt|yt−τ , xt−τ ) < σ2(yt|yt−τ ),∀τ ∈ N . (1)

The procedure of the Granger-causality test is as follows.

1 The time series of cryptocurrency returns (e.g. BTC returns) (yt) is regressed

on its past values excluding the metric series in the regressors. The so-called

restricted regression can be written as

yt = α+

τ∑
i=1

ρiyt−i + ξt , (2)

where α is a constant and the error term ξt is an uncorrelated white-noise

process. We, then, calculate the restricted sum of squared residuals (SSRr)

SSRr(τ) =

N∑
i=1

[
yi − ŷi

(
Γτ
)]2

, (3)

where N is the number of observations, τ is the number of lags included in

the regression, Γτ is the information set, and ŷi are the predicted values.

2 We compute a second regression including the lagged values of the affect time

series in the regressors. This unrestricted regression reads

yt = α+

τ∑
i=1

ρiyt−i +

τ∑
i=1

γixt−i + ξ′t . (4)

As before, we evaluate the unrestricted sum of squared residuals (SSRu) as

follows

SSRu(τ) =

N∑
i=1

[
yi − ŷi

(
Γ′τ
)]2

. (5)

3 Finally, if SSRu < SSRr the affect time series considered for the analysis

Granger-causes the cryptocurrency returns series.

To determine the presence of (direct and reverse) Granger causality between affect

and return time series we use a two-step approach: (i) we first tested the null-

hypothesis rejecting it if the p-values are below the chosen significance level and then
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(ii) we restricted the set of time series to the ones minimising also the information

loss (using the Akaike criterion specified below). Both approaches are standard tools

used for the optimal lag selection in the econometric literature [41, 42, 43]. For the

sake of completeness, and since in the literature issues and biases in lag estimation

have been extensively discussed, in the Supplementary Material we also provide an

independent estimation of the time lag parameter using the Bayesian Information

Criterion (BIC) [44], which for instance is known to be biased in favour of more

parsimonious models in terms of number parameters [41]. Nonetheless, in general,

the AIC criterion appears to perform better when compared to other tests [41, 45].

It is worth highlighting that due to the different search procedures employed by

the various methods, we should expect different lag lengths being deemed optimal

[46]. Nonetheless, the main goal of our analysis is not to precisely estimate the time

lag for the causality – which would be an unrealistic task – but rather to demonstrate

via independent statistical tests that a non-spurious causality relationship between

the affect and the return time series does exist.

For this analysis we have implemented the grangercausalitytest test using the

statsmodels Python library [47]. This tool tests for Granger non-causality of two

time series, i.e. the null hypothesis H0 is that the chosen affect metric series does not

Granger-cause the Bitcoin or Ethereum returns series. We reject the null hypoth-

esis if the p-values are below a desired size of the test, choosing a 5% significance

level. The p-values are computed using the Wald test as per the standard Python

statsmodel libraries [48, 47]. The number of lags included in the regression models

can be tuned by the τ parameter. For any fixed value of τ , a Granger causality test

is computed for all lags up to τ .

The two possible outcomes of the Granger test are:

• The observed p-values are less than the 5% significance level: rejection of the

null hypothesis H0. The affect time series Granger cause the cryptocurrency

returns one.

• The observed p-values are greater than the 5% significance level: H0 cannot

be rejected. The affect time series does not Granger cause the cryptocurrency

returns one.

In presence of significant causality between returns and affect time series, then

the AIC metric is monitored for the two models (direct and reverse causality) for

each lag value to check for consistency with the results obtained via the Granger

causality test. The Akaike Information Criterion (AIC) is a statistical tool, based

on information theory, that can be used for model selection.

The AIC metric provides an estimate of the quality of a given model, based on

the loss of information: the best model minimises the information loss. AIC for

least squares model fitting can be mathematically defined as

AIC = 2(k + 1) + n log(SSR) , (6)

where n is the sample size and k is the number of parameters [49]. We then look

for the lag value for which the AIC is minimal. If this predicted value is compatible

with the lag estimated using the p-values, we can further corroborate that the

Granger causality test has not highlighted a spurious, non-statistically significant
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correlation. Therefore, we restrict the set of affect time series effectively showing

Granger causality with returns, to the ones for which not only the p-value is below

the chosen significance level but also the AIC is minimal.

We perform the Granger test on the stationary affect time series selected via

the analysis available in Sec. 1 of the Supplementary Material. According to our

analysis, the stationary affect time series that we will consider for the Bitcoin case

are sentiment, sadness, arousal, valence, love and dominance. For the Ethereum case

we will use sentiment, anger, arousal, valence, love, dominance, joy and politeness.

It is worth noting that the Granger causality test is sensitive to the number of

lags input in the model. For this reason, we have analysed a large range of lags, of

the order of five months. More specifically, the τ parameter was set to 150.

2.4 Long Short-Term Memories and predictions

For our prediction task of the cryptocurrency prices, we use a Recurrent Neural

Network (RNN). A RNN, at its most fundamental level, is simply a type of densely

connected neural network. However, the key difference with respect to normal feed-

forward networks is the introduction of time, with the output of the hidden layer in

a recurrent neural network being fed back into itself. RNNs are often used in stock-

market predictions [50, 51, 52] and more recently also for Bitcoin and cryptocurrency

prices [53, 52].

In this analysis, we use a Long-Short Term Memory (LSTM) RNN to predict

Bitcoin and Ethereum returns. In our model, we use the previous day returns and

affect metrics for the prediction of the returns of the current day (1-day forecast

horizon). We decided to use this short forecast horizon model – which is normally

a benchmark of more sophisticated prediction algorithms – as we are mostly con-

cerned about demonstrating a possible improvement in Root Mean Square Error

(RMSE)[8] when inputting in the model the affect time series rather than building

a sophisticated prediction model.

The affect time series used for this analysis are the ones that showed Granger-

causality with the Bitcoin and Ethereum returns time series. Indeed, the test as-

sessed whether a given affect time series had some potential predictive power over

the cryptocurrency returns time series. As reported in Sec. 3.1, we selected senti-

ment and sadness for Bitcoin and sentiment, anger, arousal, dominance, valence

and love for Ethereum.

We designed the LSTM with 50 neurons in the first hidden layer and 1 neuron in

the output to predict the cryptocurrency returns. To configure the LSTM, we use

a sigmoid activation function, we calculate the Mean Absolute Error (MAE) loss

function and we use the efficient Adam version of stochastic gradient descent [54]

for the optimal choice of models’ parameters. We train the LSTM, first, using only

data related to the cryptocurrency (Ethereum or Bitcoin) returns time series and,

then, we incrementally add the correlated (via Granger-causality) affect metrics

features.

[8]The RMSE is defined as the standard deviation of the residuals or prediction

errors, i.e. RMSE =
√

1
n

∑n

i=1
(yi − ŷi)2, where n is the number of observation, yi, i =

1, . . . , n are the observed values and ŷi, i = 1, . . . , n, the predictions.
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Figure 2: RNN Loss against number of epochs. Panel (a) RNN trained with

Bitcoin only data (1) first and then sequentially adding sentiment

(2) and sadness (3).

Panel (b) RNN trained with Ethereum returns data only (1), then adding

sequentially sentiment (2), anger (3), arousal (4), valence (5), dominance (6),

love (7).

We first apply the LSTM using only the cryptocurrency returns (Bitcoin or

Ethereum returns time series) as a feature, i.e. solving in this case a univariate

regression problem. Then, we incrementally add the affect metrics, i.e. considering

a multivariate regression problem, to analyse potential effects on the RMSE asso-

ciated with the predictions. Our analysis is performed by training the LSTM for

50 epochs and recording for each epoch the corresponding RMSE value. Figures 2a

and 2b show the loss of the RNN models against the epochs. We can see that after

50 epochs the loss converges to a stationary value for all models. Finally, all models

where trained using 70% of data for training and 30% for testing.

3 Results
In this section, we summarise the results of our analysis concerning testing for

(i) causality between affect time series and cryptocurrency returns and (ii) im-

provement in Root Mean Square Error (RMSE) for the prediction of returns when

including affect time series.

3.1 Does the affect of Bitcoin and Ethereum communities influence variations in

returns?

In this section, we focus on understanding if there exists a causal relationship be-

tween affect time series and the time series of Bitcoin/Ethereum returns. The anal-

ysis is performed using the Granger causality test [40], which informs on whether

changes in a time series – in our case the returns time series – are induced or

connected to a variation in a second correlated time series – in our case the af-

fect time series. Details on the Granger test can be found in Sec. 2.3. As we will

show in the following, the Granger test is detecting significant Granger-causality
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(both direct and reverse causality) between affect time series and cryptocurrency

returns. Via this analysis, we are also able to give an estimate of the time lag or

delay after which effects of variations in the affect time series are “visible” in the

cryptocurrency returns time series.

3.1.1 Granger causality test - Bitcoin

Let us start with the Bitcoin returns time series analysis. The Granger test high-

lights that only sentiment and sadness metrics Granger-cause the Bitcoin series.

According to the test, instead, there is no causal relationship between the Bitcoin

returns and arousal, valence, love and dominance time series, for any considered

lag value. In order to select the time lag for the Granger causality, we monitor

the p-values as a function of the time lag and select – among the time lags with p-

values falling below the significance level – the time lag associated with the minimal

p-value.

As an illustration, we show in Fig. 3 the p-values obtained for each lag value, up

to the chosen τ for the two affect time series that displayed statistically significant

Granger causality with the Bitcoin returns time series.

Figure 3: Bitcoin direct causality - p-values as a function of lags.

Left: Bitcoin returns - sadness time series direct causality. Right: Bitcoin returns -

sadness time series direct causality.

A reverse Granger-causality test was also conducted, in order to test whether

cryptocurrency prices influence the affect time series, hence developers’ behaviour

and feelings. Specifically, we obtain that Bitcoin returns Granger-cause only sen-

timent and sadness affect metrics. In this case we therefore deal with a bidirec-

tional causality, whereby sadness and sentiment series increase the prediction of

the Bitcoin price returns and vice versa. Table 4 contains the minimal p-values and

associated time lags for all affect metrics for direct and reverse causality.

We have also checked the AIC values of the models to ascertain that the Granger

test was not capturing spurious effects. AIC values as a function of the time lags can

be found for all affect metrics Granger-causing the Bitcoin returns in Sec. 2 of the

Supplementary Material. An estimation of the time lag using a different information

criterion, namely the BIC is also provided in the Supplementary Material (Sec. 2).
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Table 4: Bitcoin Granger Causality tests. Minimum observed p-values and

corresponding lag values for sadness and sentiment times series. We highlight in

green the cases showing significant (direct or reverse) Granger-causality.

The Granger test results, shown in table 1, suggest that in the Bitcoin case
we deal with a bidirectional causality, namely a mutual causality between Bitcoin
price series and sadness, sentiment a↵ect metric series.

Green cells highlights test positivity.

Granger Causality Test Reverse Granger Causality Test
Series p-value lag value p-value lag value

sadness 0.019 87 9.504e-8 41
sentiment 0.003 132 0.040 137
arousal 0.111 99 0.056 134
valence 0.112 106 0.058 44
dominance 0.132 106 0.091 44
love 0.072 71 0.140 50

Table 1: Bitcoin Granger Causality tests - Minimum observed p-values and
corresponding lag values.

Table 2 summarise the results of the Granger test for the Ethereum returns
time series. In this case, we find significant Granger-causality between the
anger, sentiment, valence, arousal, love and dominance metrics series and the
Ethereum returns time series. Instead, we can conclude that joy and politeness
metrics do not Granger cause the Ethereum returns series. The reverse Granger-
causality test results highlight that joy, valence, arousal, love and dominance
a↵ect metric influences the prediction of the Ethereum returns.

In the Ethereum case, we therefore have a unidirectional Granger-causality
from anger, sentiment, valence, arousal, love and dominance series to Ethereum
returns and a reverse unidirectional causality from Ethereum returns to joy,
valence, arousal, love and dominance metric series.

Granger Causality Test Reverse Granger Causality Test
Series p-value lag value p-value lag value

joy 0.207 4 0.011 1
love 0.002 19 0.039 113
anger 0.041 72 0.290 16
valence 0.028 2 0.025 1
arousal 0.018 2 0.040 1
sentiment 0.006 134 0.248 1
dominance 0.024 2 0.022 1
politeness 0.056 17 0.053 56

Table 2: Ethereum Granger Causality tests - Minimum observed p-values and
corresponding lag values for di↵erent a↵ect time series.

1 Minimum p-values, AIC and BIC with cor-
responding lags

1

3.1.2 Granger causality test - Ethereum

We repeat the analysis for the Ethereum returns time series. In this case, we find sig-

nificant (direct) Granger-causality between the anger, sentiment, valence, arousal,

love and dominance metrics series and the Ethereum returns time series. Instead,

we can conclude that joy and politeness metrics do not Granger cause the Ethereum

returns series.

As an illustration of the process for lag selection, we show in Fig. 4 the p-values

obtained for each lag value, up to the chosen τ , for the affect time series that are

correlated with the Ethereum returns (direct causality).

Figure 4: Ethereum direct causality - p-values as a function of lags.

Left: p-values for the direct causality tests between sentiment, anger, love affect

time series and returns. Right: p-values for the direct causality tests between

valence, arousal and dominance affect time series and returns.

The reverse Granger-causality test results highlight, instead, that joy, valence,

arousal, love and dominance affect metric influence the returns of Ethereum.

As for the Bitcoin analysis, we select as time lag for the Granger causality, the

value associated with the minimal significant p-value. In Table 5 we provide the

minimal p-values and the associated time lags for all affect metrics for direct and

reverse causality.
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As for the Bitcoin case, we compute the AIC values associated with each time

lag, selecting the models with minimal AIC.

As an example, we show here the analysis for the love metric. In Figure 5 we report

the AIC values as a function of the lag parameter. We notice that the lowest values

of AIC (corresponding to minimal information loss) are recorded in correspondence

with the time lag values (∼ 19) associated with the lowest p-value. This analysis

is, therefore, consistent with the Granger test results. Similar conclusions can be

drawn for other affect time series “Granger-causing” the Ethereum returns. AIC

values as a function of the time lags can be found for all affect metrics Granger-

causing the Ethereum returns in Sec. 2 of the Supplementary Material. We have

also checked of the AIC values of the models to ascertain that the Granger test

was not capturing spurious effects. AIC values as a function of the time lags can

be found for all affect metrics Granger-causing the Bitcoin returns in Sec. 2 of the

Supplementary Material. As for Bitcoin, we also estimate the time lag using the

BIC criterion and results are provided in the Supplementary Material (Sec. 2).

Figure 5: Ethereum - Love AIC and p-values. AIC values (see Eq. (6))

(blue line) and p-values (red lines) as a function of the number of lags.

The final set of time series showing a robust Granger (direct and/or reverse)

causality with Ethereum returns according to both the p-value and the AIC tests

is reported in Table 5. As before, we summarise the results of the Granger test,

including time lags and the associated p-values.

To summarise, in this case, we have a unidirectional Granger-causality from anger,

sentiment, valence, arousal, love and dominance series to Ethereum returns and a

reverse unidirectional causality from Ethereum returns to joy, love, valence, arousal

and dominance metric series.

3.1.3 General remarks for the Bitcoin and Ethereum analysis

In general, for both cryptocurrencies, the observed p-values are well below the cho-

sen 5% significance level. In particular, the p-values obtained for the sentiment

metric is even below the 1% significance level, in both the Bitcoin and Ethereum

analysis.
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Table 5: Ethereum Granger Causality tests. Minimum observed p-values and

corresponding lag values for different affect time series. We highlight in green the

cases showing significant (direct or reverse) Granger-causality.

The Granger test results, shown in table 1, suggest that in the Bitcoin case
we deal with a bidirectional causality, namely a mutual causality between Bitcoin
price series and sadness, sentiment a↵ect metric series.

Green cells highlights test positivity.

Granger Causality Test Reverse Granger Causality Test
Series p-value lag value p-value lag value

sadness 0.019 87 9.504e-8 41
sentiment 0.003 132 0.040 137
arousal 0.111 99 0.056 134
valence 0.112 106 0.058 44
dominance 0.132 106 0.091 44
love 0.072 71 0.140 50

Table 1: Bitcoin Granger Causality tests - Minimum observed p-values and
corresponding lag values.

Table 2 summarise the results of the Granger test for the Ethereum returns
time series. In this case, we find significant Granger-causality between the
anger, sentiment, valence, arousal, love and dominance metrics series and the
Ethereum returns time series. Instead, we can conclude that joy and politeness
metrics do not Granger cause the Ethereum returns series. The reverse Granger-
causality test results highlight that joy, valence, arousal, love and dominance
a↵ect metric influences the prediction of the Ethereum returns.

In the Ethereum case, we therefore have a unidirectional Granger-causality
from anger, sentiment, valence, arousal, love and dominance series to Ethereum
returns and a reverse unidirectional causality from Ethereum returns to joy,
valence, arousal, love and dominance metric series.

Granger Causality Test Reverse Granger Causality Test
Series p-value lag value p-value lag value

joy 0.207 4 0.011 1
love 0.002 19 0.039 113
anger 0.041 72 0.290 16
valence 0.028 2 0.025 1
arousal 0.018 2 0.040 1
sentiment 0.006 134 0.248 1
dominance 0.024 2 0.022 1
politeness 0.056 17 0.053 56

Table 2: Ethereum Granger Causality tests - Minimum observed p-values and
corresponding lag values for di↵erent a↵ect time series.

1 Minimum p-values, AIC and BIC with cor-
responding lags

1

In terms of time lag, the test highlights that the Bitcoin returns time series seems

to be affected by sadness metrics and developers sentiment only after a period of

the order of 3− 5 months (see Tables 4, 5). Similar considerations can be made in

the case of Ethereum for the Anger and Sentiment affect time series. Dominance,

Arousal, Valence and Love metrics series appears, instead, to have short-term effects

on the Ethereum returns time series.

We could speculate that the short-term and long-term nature of the effects of affect

metrics on returns is related to the nature of cryptocurrencies itself. For instance,

on the Ethereum platforms, developers can issue multiple tokens with different

features and often the developers themselves are those advertising the tokens and

making transactions to increase their values. As highlighted in a recent research[9]

a dominant fraction of the transactions on the Ethereum blockchain appears to be

handled by token teams giving new tokens for free (airdrops) to Ethereum users,

therefore possibly impacting the total valuation of the platform.

In the Bitcoin case, the long-term effect of changes in developers’ affect metrics

may be correlated with the market efficiency. Indeed, in [10, 12] the authors show

that the Bitcoin market is not efficient, i.e. that all information is not instantly

incorporated into prices, hence the large time lag of the causality.

Finally, disagreements among developers of a platform may signal and lead to a

fork event, which in turn generates price movements as shown in [55]. From the

onset of a disagreement within the community to the actual fork attempt there is

generally a significant time lag, possibly of weeks or months, compatible with our

results.

Regarding the reverse causality, in the Bitcoin case we notice rather high lag values

(as for the direct causality, i.e. affect metrics → Bitcoin returns), hence the Bitcoin

community does not react immediately to price news. In Ethereum, instead, price

movements impact the community with a time lag of 1-day. We could speculate that

this effect is once again related to the different uses of the two blockchain platforms

(e.g. multiple tokens issued on the Ethereum blockchain). In a related study on topic

analysis of tech forums on Reddit [22], authors also find that topics on “fundamental

[9]https://research.tokenanalyst.io/classifying-ethereum-users-using-blockchain-data/

https://research.tokenanalyst.io/classifying-ethereum-users-using-blockchain-data/
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cryptocurrency value” are very frequent in the Ethereum community threads and

are correlated with increase in prices.

3.2 Is the affect of Bitcoin and Ethereum communities able to improve the error on

the prediction of returns?

As we discussed in the previous analysis, the decisions taken by the community of

developers may have a non-negligible impact on the crypto-market. In this section,

we further investigate the predictive power of the affect time series over the cryp-

tocurrency returns. In particular, we use a deep learning algorithm to predict the

cryptocurrency returns in two scenarios, (i) using only the cryptocurrency returns

as a feature or (ii) incrementally adding the affect metrics to determine whether

the additional affect metrics features yield an improvement in the prediction of

the Root Mean Square Error (RMSE). By prediction of the RMSE we mean the

average squared error of the correct estimation of the daily returns compared with

the actual returns. The details of the algorithm we used were described previously

in Sec. 2.4.

The results obtained for the RMSE of the predictions (measured at the end of

the test phase, i.e. after 50 training epochs) are summarised in Table 6 and 7 for

Bitcoin and Ethereum respectively. We compute the RMSE value by varying the

number of features used in the algorithm. We consider as features the affect time

series that showed direct Granger causality with the Bitcoin returns (see Table 4).

For the Bitcoin analysis (Table 6), the 1-feature case corresponds to including only

the time series of Bitcoin returns, while the 3-feature case includes the return time

series together with the sadness and sentiment time series. We proceed in a similar

way for the Ethereum case, where we incrementally include affect time series to

the prediction model for the returns (considering the affect metrics that showed

causality with the returns, summarised in Table 5).

Features RMSE

1 0.129
2 0.032
3 0.013

Table 6: Bitcoin prediction errors. Root Mean Square Error (RMSE) of predic-

tions considering (1) only Bitcoin returns and then sequentially adding sentiment(2)

and sadness (3) time series as features.

Interestingly, we find that including the affect time series in models (based on

LSTM neural networks) for the prediction of cryptocurrency returns yield a decrease

in the RMSE. This result holds true for the prediction of the time series of both the

Bitcoin and Ethereum returns. Indeed, in both Table 6, 7, we can see that when

adding all the affects metrics, the RMSE of the predictions is significantly improved,

from 0.129 to 0.013 (90% of improvement) for Bitcoin and from 0.178 to 0.048 (73%

of improvement) for Ethereum.

We compared the distributions of the RMSEs for the 1-feature model (including

only cryptocurrency returns) and the final model with all the features. The distribu-

tions of RMSEs include the RMSE values for each one of the 50 training epochs for
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Features RMSE

1 0.178
2 0.082
3 0.113
4 0.114
5 0.114
6 0.114
7 0.048

Table 7: Ethereum prediction errors. Root Mean Square Error (RMSE) of pre-

dictions considering Ethereum returns (1), then adding sequentially sentiment (2),

anger (3), arousal (4), valence (5), dominance (6), love (7) time series.

the two models (including 1-feature only or all affect metrics respectively). For this

comparison we used the Wilcoxon Rank-Sum test, a nonparametric test that does

not assume specific characteristics of the distributions, e.g. normality, compared to

equivalent tests (e.g. the Welch test) [56]. We find that the two distributions are

statistically different with a p− value of 0.0002 for Bitcoin (effect size of 0.56) and

0.00001 for Ethereum (effect size 0.48).

To summarise, we show that (i) by aggregating all the features (i.e. all affect met-

rics) we obtain – for both Bitcoin and Ethereum – a significant increase in predictive

power than when considering them separately. Moreover, (ii) we provide examples

of cases where also the partial aggregation (using only some of the affect metrics

that Granger-cause the returns, e.g. considering Ethereum returns and the anger

time series) is better than inputting only the time series of returns for the prediction

task. These examples are non-exhaustive of all possible combinations of affect time

series and returns as input of the neural network, but serve as illustrations that a

decrease in prediction error can be induced by the addition of the affect metric.

4 Threats To Validity
Threats to external validity concern the generalisation of our results. In this study,

we analysed comments from GitHub for Bitcoin and Ethereum open source projects.

Our results cannot be representative of all other cryptocurrencies and this could,

indeed, affect the generality of the study. Replication of this work on other open

source cryptocurrency-related projects is needed to confirm our findings. Addition-

ally, the politeness tool can be subject to bias due to the domain used to train the

machine learning classifier.

Threats to internal validity concern confounding factors that can influence the

obtained results. Based on empirical evidence, we assume a relationship between

the emotional state of developers and what they write in issue reports [57]. Since

the main goal of developers’ communication is the sharing of information, the conse-

quence of removing or camouflaging emotions may make comments less meaningful

and cause misunderstandings. This work is focused on sentences written by devel-

opers for developers. To illustrate the influence of these comments, it is important

to understand the language used by developers. We believe that all the tools used

for measuring the affect metrics are valid in the software development domain. The

comments used in this study were collected over an extended period from devel-

opers unaware of being monitored, therefore, we are confident that the emotions,

sentiment, politeness and VAD metrics we analysed are genuine ones.
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Threats to construct validity focus on how accurately the observations describe

the phenomena of interest. The detection of emotions from issue reports presents

difficulties due to vagueness and subjectivity. Emotions, sentiment and politeness

measures are approximated and cannot perfectly identify the precise context, given

the challenges of natural language and subtle phenomena like sarcasm.

5 Conclusions
Blockchain development processes have deep foundations within the community,

with the community itself being the “heart and brain” of all critical decisions around

the improvements and changes on the platforms. Investors and crypto-market play-

ers look at the development activities and read the technical reports of the de-

velopers to try to predict the success of the platforms they are betting on. There

is, indeed, a connection between the development activities and the valuation of

cryptocurrencies. In this paper, we uncovered this connection using quantitative

approaches based on sentiment, politeness, emotions and VAD analysis of Github

comments of two major blockchain projects, Ethereum and Bitcoin. According to

our investigation affect time series do carry predictive power over the prices of cryp-

tocurrencies. Indeed, this pioneering analysis will be extended in the near future to

include other major cryptocurrencies and token development projects (e.g. ERC20

Ethereum-based tokens, ZCash or Monero) to confirm the presence of similar cor-

relation patterns and impact of affect metrics on prices. When - in the darkness of

their own rooms - blockchain developers lash out at or “wow” colleagues on Github,

they might not even suspect that such simple actions could lead – months later and

miles away – other people to make or lose money.
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