
Collision Detection for Articulated Deformable Characters

Nadine Abu Rumman ∗ Marco Schaerf † Dominique Bechmann ‡

Sapienza University of Rome, Italy Sapienza University of Rome, Italy University of Strasbourg, France

Figure 1: Real-time self-collision detection for an articulated character deformed by Position Based Skinning: an animated sequence of a
walking HORSE with a skeleton of 43 bones, 4K vertices and 6K tetrahedrons, all self-collisions are calculated in 2.1 ms per frame, where
self-collisions shown in red.

Abstract

In this paper, we present an efficient method for detecting colli-
sions and self-collisions on articulated models deformed by Posi-
tion Based Skinning. Position Based Skinning is a real-time skin-
ning method, which produces believable skin deformations, and
avoids artifacts such as the well-known “candy-wrapper” effect
and joint-bulging. The proposed method employs spatial hashing
with a uniform grid to detect collisions and self collisions. All the
mesh primitives are mapped to a hash table, where only primitives
mapped to the same hash index indicate a possible collision and
need to be tested for intersections. Being based on spatial hash-
ing, our method requires neither expensive set-up nor complex data
structures and is hence suitable for articulated characters with de-
formable soft tissues. We exploit the skeletal nature of the defor-
mation to only update the hash table when required. The resulting
algorithm is simple to implement and fast enough for real-time ap-
plications. We demonstrate the efficiency of our method on various
animation examples. A quantitative experiment is also presented to
evaluate our method.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: articulated characters, collision detection, deformable
bodies, spatial hashing

Links: DL PDF VIDEO

∗e-mail:aburumman@dis.uniroma1.it
†e-mail:marco.schaerf@uniroma1.it
‡bechmann@unistra.fr

1 Introduction

Collision detection is the problem of checking for all possible ge-
ometric intersections between models moving in a virtual environ-
ment. Solving the collision detection problem has become of major
interest in various application areas, ranging from games, anima-
tion and virtual reality to surgery simulation and robotics. More-
over, efficient and reliable collision detection is a critical part of al-
most all graphics applications. A significant amount of research has
been done to detect interfering objects moving in space or find ex-
act points of contact. Whereas most of the contributions have been
concentrated on collision detection for rigid body simulations, re-
cent approaches started focusing on deformable bodies, i.e. models
whose shape changes during the simulation, for example articulated
characters, soft tissues, cloth etc. Deformable collision detection is
a challenging problem, mainly because of its high computational
complexity. Thus, it is difficult to devise an efficient solution to ac-
commodate the rapid interaction speed demanded by users. This is
especially true when we are simulating the skin of a virtual charac-
ter, as self-collisions of the limbs can occur and have to be handled.
In this case, collision detection response requires specific informa-
tion, since it is not sufficient to just detect the collisions. Neverthe-
less, resolving self-collisions is essential to generate believable skin
deformation. Further, by simulating the skin contact in response to
collisions, the realism of character animation is highly enhanced.
This paper addresses the problem of detecting collisions and self-
collisions on articulated deformable characters. In practice, both
efficient collision detection and high-quality skinning are needed.
Therefore, we focus on collision detection for models deformed by
Position Based Skinning (PBS, [Abu Rumman and Fratarcangeli
2015]). PBS is a fast skinning technique that simulates the skin as
a soft body, where the deformation approach is based on Position
Based Dynamics (PBD, [Müller et al. 2007]). The resulting skinned
animations are unaffected by the well-known artifacts of classic in-
teractive skinning techniques, namely the “candy-wrapper” effect
1 and joint-bulging2. Despite offering interesting effects like sec-
ondary motions and volume preservation, PBS cannot guarantee the
absence of self-intersection deformations.

We propose a fast collision detection method, in which we employ
spatial hashing to detect collisions and self-collisions on skeletally

1the“candy-wrapper” effect is the skin collapsing artifact exhibited by
linear blend skinning [Magnenat-Thalmann et al. 1988].

2joint-bulging is an unnatural skin bulging effect produced by dual
quaternion skinning [Kavan et al. 2007] while bending.

http://doi.acm.org/10.1145/2822013.2822034
http://portal.acm.org/ft_gateway.cfm?id=2822034&type=pdf
https://vimeo.com/138406933

Figure 2: Self-collision detection. Left. The space is implicitly subdivided into small cells, where red cells contain fully or partially the
self-colliding primitives. Middle. The red patches indicate self-collisions, in which intersections are quickly found with an O(1) cell query.
Right. Zoomed view of self-colliding primitives (in red).

deformable meshes. We use animated skeleton to drive the char-
acter’s motion, where collisions occur due to the movement. The
character’s skin is modelled in a two-level representation. First,
a fine representation consists of triangles defining the geometry
and used for visualization purposes. Secondly, a coarse volumet-
ric representation, which is based on tetrahedral mesh. Tetrahedral
meshes are used for collision detection, as well as for calculating
deformation. Our method was inspired by the work of [Teschner
et al. 2003], but adapted for articulated characters. Unlike highly
deformable bodies such as clothes, articulated characters have lim-
ited deformation. This deformation is restricted to a function of an
underlying skeletal structure, where self-collisions typically occur
in very localized regions of meshes. We exploit the skeletal nature
of the deformation to obtain real-time self-collision detection for
models deformed by Position Based Skinning (Fig. 1). We implic-
itly subdivide the space into uniform grids of axis-aligned bound-
ing boxes (AABBs), called cells. All mesh primitives (vertices and
tetrahedra) are classified with respect to these grids according to
their position. Instead of using complex 3D data structures, such as
kd-trees, octrees or BSP trees, a hash function is used to project the
3D cells into a finite 1D hash table. Only primitives mapped to the
same hash index indicate a possible collision and need to be tested
for intersections. The hash index can contain more than one primi-
tive for the same mesh, which allows us to detect self-collisions as
well (Fig. 2). Our method focuses on skeletal characters, where we
use a lazy procedure that updates the hash table in an on demand
way. Therefore, it is not necessary to update the hash table in each
time step. Instead, it is only updated when required by collision de-
tection algorithm. This is not only memory efficient, but also leads
to a significant improvement in performance. The intersection test
is then carried out by computing the barycentric coordinates of a
vertex with respect to a penetrated tetrahedron. Thereby, it pro-
vides the exact position of a vertex inside a penetrated tetrahedron
and this information can be used for collision response.

2 Related Work

Because of its importance, a substantial amount of research in com-
puter animation is related to collision detection. In this section,
we mainly focus on those methods, which detect collisions and
self-collisions of deformable bodies or models undergoing specific
types of deformation, such as skeletal deformation. For a more
thorough treatment of the collision detection literature, we refer the
reader to the following surveys [Lin and Manocha 2003; Ericson
2004; Teschner et al. 2005].

Bounding Volume Hierarchies (BVHs) have been commonly used
to accelerate collision detection algorithms. By using a BVH,

the time complexity of a geometric query can be reduced from,
i.e. O(n) to O(logn). Many types of bounding volumes (BVs)
have been investigated, e.g., spheres [Spillmann et al. 2007], axis-
aligned bounding boxes (AABBs) [Bridson et al. 2002], oriented
bounding boxes (OBBs) [Gottschalk et al. 1996], discrete oriented
polytopes (DOPs) [Klosowski et al. 1998], boxtrees [Zachmann
1995]. Widely used hierarchies are those based on simple BVs
such as spheres and AABBs [He et al. 2015]. For a comprehensive
discussion on bounding volume hierarchies, we refer the reader to
[Zachmann and Langetepe 2002]. In contrast to rigid objects, de-
formable bodies change their shapes almost at each time step of
the simulation. Therefore, their hierarchies must be updated ac-
cordingly and the cost of these updates can be high. Traditional
approaches require O(n) operations for each update, where n is
the number of object primitives. Several techniques have been pro-
posed to speed up the updates, including refitting algorithms [Lars-
son and Akenine-Möller 2006; Zachmann and Weller 2006] and dy-
namic restructuring [Otaduy et al. 2007]. In order to further reduce
the computational complexity, on-demand refitting algorithms have
been proposed. These algorithms exploit information provided by
the deformation model, in which bounding volumes are only re-
computed when required by the collision detection algorithm. Such
refitting is presented in [James and Pai 2004] for reduce deforma-
tion model, in [Larsson and Akenine-Möller 2003] for morphing,
in [Kavan and Zara 2005] for linear blend skinning and in [Ka-
van et al. 2006] for spherical blend skinning. On the other hand,
deformable bodies often suffer collisions against themselves and
detecting self-collisions is usually a bottleneck for real-time simu-
lations. Self-collision queries with BVHs are executed by starting a
recursive query on the root BV against itself. Unfortunately, BVHs
lose all their advantages in this case, because tests between triangles
adjacent to each other cannot be culled away at high levels in the hi-
erarchy. Thus, detecting the self-collisions is still computationally
expensive using BVHs. Moreover, BV approaches typically detect
the intersections, but they require an additional processing step to
compute the penetration depth for collision response. In order to
address these problems, various approaches have been introduced,
which are based on surface normals and curvature [Volino and
Thalmann 1994; Schvartzman et al. 2009] or based on star-shaped
decomposition in [Schvartzman et al. 2010]. An efficient algo-
rithm to handle self-collisions is proposed in [Govindaraju et al.
2005], where they employed both visibility-based culling and chro-
matic decomposition to radically improve the performance of self-
collision detection using BVHs.

Spatial Subdivision Representations are simple and fast ap-
proaches to speed up collision and self-collision detection on de-
formable bodies. These methods have similarities with bound-
ing volume hierarchies, however, the idea here is subdividing the

space not the objects. Several spatial subdivision schemes have
been proposed for collision detection, such as octrees-like struc-
tures [Madera et al. 2006], BSP trees [Luque et al. 2005], kd-trees
[Teller and Sequin 1991], uniform grids [Zhang and Yuen 2000]
and spatial hashing [Teschner et al. 2003; Alcantara et al. 2009].
An important structure to be highlighted here is spatial hashing,
because it has become widely used for collision detection of de-
formable bodies [Sud et al. 2006; Eitz and Lixu 2007]. Instead
of using complex data structure and explicitly performing a spa-
tial subdivision, a hash function is used to map 3D cells into a hash
table. In [Maciel et al. 2007] a spherical hash is used to detect colli-
sions on biomechanical models. Despite that this method has shown
a fast performance in the main processing stage, there is a draw-
back: In case the objects deform in a non-radial direction, the pre-
processing stage must be repeated and it is slow. Jund et al. [Jund
et al. 2009] presented an efficient collision detection method based
on spatial subdivision, which supports geometric and topological
changes on deformable bodies. As mentioned in the introduction,
we decided to employ spatial hashing [Teschner et al. 2003] to
detect collisions on models deformed by Position Based Skinning.
Despite the simple data structure, the main advantage of using spa-
tial hashing is that it allows to carry out collision and self-collision
detection at the same time and in one single pass. Moreover, the
collision information provided by the spatial hashing algorithm can
directly be used to compute collision response. Our goal is to de-
tect collisions for models deformed by Position Based Skinning in
an arbitrary posture. Therefore, we exploit special properties of
skeletally animated models to speed up the collision detection.

3 Method Overview

The inputs to our method are a fine surface mesh and an animated
skeleton. From the surface mesh, we generate a tetrahedral mesh
using [Si 2015], which preserves the original outer surface geom-
etry and consists of tetrahedrons of roughly the same size. Tetrahe-
dral meshes are used for collision detection, as well as for calculat-
ing deformation. The method is composed of the following phases:
in the initialization phase, the vertices of the original skin mesh
are mapped to the tetrahedral elements by using barycentric coor-
dinates. Then, at every animation frame, in the deformation phase,
the skin is deformed with Position Based Skinning (for an exhaus-
tive explanation of the PBS method, please refer to [Rumman
and Fratarcangeli 2014; Abu Rumman and Fratarcangeli 2015]).
Although PBS is unaffected by the artifacts of classic interactive
skinning techniques, it cannot guarantee self-intersection free de-
formations. To detect the self-intersections, in the collision detec-
tion phase (Section 4), the algorithm gets the deformed vertices
as input and computes the colliding vertices, however, the vertices
are moved during the constraints solving step of PBS and may en-
counter new collisions. Therefore, we also detect the collisions in-
side of the solver loop. The collision detection algorithm proceeds
in two steps: first, we map all mesh primitives (vertices and tetra-
hedra) into a hash table according to their position. However, the
reconstruction of the hash table is done in an on demand way and it
depends on the underlying skeleton. Then, only primitives mapped
to the same hash index indicate a possible collision and need to be
tested for intersections, which is preformed in the second step.

4 Collision Detection

In order to detect collisions and self-collisions within the Position
Based skinning method, we employ the spatial hashing procedure
with temporal marks introduced in [Teschner et al. 2003] (Section
4.1). To speed up the self-collision detection, we exploit the skeletal
nature of the deformation to only update the hashing table when
required. This on-demand hashing operation is the key part of our

fast self-collision detection algorithm (Section 4.2).

4.1 Spatial Hashing

The use of a regular partition is suitable for our system, since all the
tetrahedrons of the meshes have about the same size. Therefore, we
implicitly subdivide the space R3 into uniform grids composed of
small axis-aligned bounding boxes (AABBs), called cells. Each
cell maintains a list of the mesh primitives (vertices and tetrahe-
drons) that are fully or partially contained in the cell. Rather than
using complex 3D data structures, a hash function is used to map
these cells to a finite number of hash table entries. The algorithm
proceeds in two phases:

Hashing Phase: in this phase, all mesh primitives are classified
with respect to cells and mapped into hash table entries in uniformly
random fashion. Hence, all vertices are mapped into their cell, and
all tetrahedrons are also mapped into the cells touched by their
bounding box (Fig. 3). This hashing process is dependent on the
following parameters:

Table size: the optimal size is related with the number of prim-
itives in the scene, and must be a high prime number in or-
der to minimize the risk of mapping different positions to the
same hash index.

Grid cell width: influences the number of mesh primitives that
are mapped to the same hash index. Thus, a reasonable choice
is to employ the tetrahedron’s average edge length.

Hash function: a function that maps a cell to an arbitrary hash
table address. A Simple and fast to execute hash function is
preferable for spatial hashing. The following function is used:

h = hash(i, j, k) = (i u⊕ j v ⊕ k w) mod n (1)

where ⊕ stands for exclusive-or operation, i, j, k are grid co-
ordinates, u, v and w are high prime numbers and n is the
hash table size.

For example, a vertex with position p = (x, y, z) is mapped into
a hash table of size n by computing its table index h as follows:
h =

[(
bx
d
c · u

)
⊕
(
by
d
c · v

)
⊕
(
bz
d
c · w

)]
mod n, where for

u, v, w we use the prime numbers 73856093, 19349663, 83492791,
respectively. The value d is the cell size.

Intersection Phase: in a second phase, if a tetrahedron interferes
with a cell, all associated vertices of that cell are checked for col-
lision with the tetrahedron. To speed up the intersection test: we
first test vertex v against the bounding box of tetrahedron t. If v
is inside the bounding box of t, then an actual vertex/tetrahedron
intersection test has to be performed. If an intersection of a vertex
v with a tetrahedron is detected and v is part of the same mesh, a
self-intersection has been detected, but only if v is not part of the
penetrated tetrahedron itself. The actual intersection test computes
barycentric coordinates of a vertex with respect to the tetrahedron
in order to detect whether a vertex collides with the tetrahedron or
not. This step detects all colliding vertices in the scene and pro-
vides the exact position of a vertex inside a penetrated tetrahedron.
This information can be employed to handle collisions by adding
inequality constraints to the system of constraints within the Posi-
tion Based Skinning method.

4.2 On-demand Hashing

Construction of the hash structure is performed in the hashing
phase. This phase maps all primitives into a hash table and it takes

Figure 3: An example of 3D spatial hashing for an arm . Left. The
arm mesh is embedded in a spatial partitioning. The zoomed view
shows a tetrahedron (in blue), its bounding box (in red) and all cells
affected by the tetrahedron’s bounding box (in green). Right. In the
hashing phase, all vertices of the arm mesh are mapped into their
cell and the hash table indices are computed for all cells covered
by the tetrahedron’s bounding box. Therefore, in the intersection
phase, the tetrahedron is checked for intersection with all vertices
found at these hash indices.

O(n). While the intersection phase takes O(n · p · q) where p
is the average number of cells intersected by a tetrahedron and q
is the average number of vertices per cell. In order to avoid con-
structing the hash table in each simulation step, which would re-
duce the efficiency in case of large tables. We use temporal marks
or so called timestamps to label each cell, where these marks are
associated with the moment each cell was last updated. Thus, an
intersection with primitives inside a given cell is considered only if
it was updated in the current iteration. In other words, inserted ver-
tices are not removed from the table, instead vertices are relocated
whenever they move to another hash index. Our goal is to detect
self-collisions on models deformed by Position Based Skinning in
an arbitrary posture. Self-collision is the most time consuming part
of the collision detection. Hence, to speed up the self-collision de-
tection process, we exploit the skeletal nature of the deformation.
In particular, we exploit the fact that the only thing that changes the
shape of the deformed skin during the animation are the bone rota-
tions Tj (all other data are constant). It is therefore possible to base
the hashing procedure solely on the actual bone rotations. More-
over, most movement modes of skeletal models require rotation of
a body part around an axis that passes through the center of a joint,
and such movements are called angular movements. The common
angular movements involve either an increase or a decrease in the
angle between the articulating bones. The principal angular move-
ments are flexion, extension, abduction and adduction. Flexion mo-
tion refers to a decrease in joint angle between articulating bones,
while extension is the motion of increasing the joint angle between
articulating bones (Fig. 4). Abduction is movement of the limbs
away from the body, and adduction is movement toward the body
(Fig. 5). Self-collisions for skeletal meshes occur in very local-
ized regions, which are often found near joints. In addition to that,
we observed that self-collisions usually happen during the flexion
and adduction movements. Therefore, the main idea behind our on-
demand hashing operation is to update the data structure (incremen-
tally reconstruct the hash table using the timestamps) only during
the flexion and adduction motions. Accordingly, we consider the
angles θi between articulating bones during the animation, and we
check if such angles would allow self-collisions. Since the number
of bones is usually orders of magnitude smaller than the number
of primitives, we perform a quick test based on the angles between
the articulating bones (angular displacement of the bones during

the animation). Thus we are able to discard reconstruction the hash
table when such angles would not allow self-collisions. This is of
course much more efficient than performing the hashing operation
each time step. This quick test, in case of flexion motion, relies
on the relative angles between the articulating bones. In case of
adduction, it depend on the angles between the bone segment and
the midline of the character. The midline is estimated based on the
bounding box of the body.

Figure 4: Examples of flexion and extension motions. Flexion
brings two adjoining long bones closer to each other. While exten-
sion denotes rotation in the opposite direction of flexion. (a), (b)
and (c) Show flexion and extension movements of the knee, elbow
and neck joint, (d) shows the angle joint of the knee during flexion,
where the angle α2 is indicating a possible self-collision. The hash
table is partially reconstructed by considering only the cells that are
affected by the bounding box of the part that indicates collisions (in
green).

Figure 5: Examples of abduction and adduction motions. Ab-
duction is the movement of a limb away from the midline. While
adduction is the movement toward the midline. We compute the an-
gle between the bone segment and the midline, in order to check
whether the angle indicates a possible collision.

The relative angle is computed automatically as the arc cosine of

the dot product of the two vectors: θ = arccos
a · b
‖a‖‖b‖ . If the

angle is decreasing (i.e. θ2 < θ1 in Fig. 4 (d)) and less than a pre-
specified tolerance angle α, then hash table is reconstructed and all
primitives in same AABBs are tested for collisions. The tolerance
angle α is in the range

[π
3
, π
]
, is defined by the user, and may

be dependent on the character. Instead of entirely reconstructing
the hash table, we reconstruct the table only in the part where an
angle is indicating a possible self-collision. Thus, the hash table
is partially reconstructed by only considering the primitives, which
are in the cells that affected by the bounding box of the potentially
colliding part (Fig. 4 (d)).

scene # vertices # tetra # bones CTskinning [ms] CTon−demandHashing [ms] CTtotal [ms] # iterations fpson−demandHashing CTspatialhashing fpsspatialhashing
HUMAN 9528 4998 25 6.807 3.93 10.737 12 93.136 5.593 80.64

ARM 4211 4400 3 4.112 1.702 5.814 8 171.998 2.53 150.557
ARM + RIGID BODY 4284 4532 3 3.792 2.52 6.312 8 158.429 3.10 145.095

LEG 3990 4339 3 4.108 1.7 5.808 8 172.176 2.47 152.021
HORSE 3833 6126 43 7.69 2.1 9.79 12 102.145 3.35 90.579

Table 1: Performance comparison of our on-demand collision detection and optimized spatial hashing. #vertices: number of ini-
tial vertices in the render mesh, #tetra: number of elements in the tetrahedral mesh, CTskinning : avg. skinning computation time and
CTon−demandHashing : avg. computation time of our collision detection method during 1 sec simulation, where (CTtotal = CTskinning +
CTon−demandHashing), fpson−demandHashing : avg. frame rate of our method to detect collisions on models deform by position based skinning.
CTspatialhashing : avg. computation time of optimized spatial hashing, fpsspatialhashing : avg. frame rate of using optimized spatial hashing to
detect collisions on models deform by position based skinning.

5 Results

All experiments described in this section have been performed on
a mass-market laptop equipped with an Intel i5 2.50 GHz proces-
sor and 4GB RAM. We implemented our method in C++, and we
tested it on a variety of articulated characters. The animations are
adapted from ([Abu Rumman and Fratarcangeli 2015]). The grid
width that we employed was slightly higher than the tetrahedron’s
average edge length. Figs. 1, 2 and 6 show the HORSE and HUMAN
models animated with a walking cycle. Fig. 7 shows ARM and LEG
models while bending, where the number of iteration was 8. All
colliding vertices are detected in real-time and the mean computa-
tion times are reported in Table 1. Please refer to the enclosed video
for the animated results. The last scenario is a posture of a bending
ARM and a RIGID BODY (Fig. 8), where our method successfully
detected collisions between the ARM model and the RIGID BODY,
as well as self-collision on the ARM model. We have evaluated our

Figure 6: A back view of a walking HUMAN with a skeleton of 25
bones, 9K vertices and 5K tetrahedrons. All the colliding vertices
are computed in 3.93 ms per frame. The red patches indicate self-
collisions.

on-demand collision detection method on a variety of examples.
We also compare the performance of our method with the spatial
hashing algorithm [Teschner et al. 2003]. Spatial hashing updates
the whole hash table after every frame, which can be inefficient. On
the other hand, our method uses a lazy procedure that updates the
hash table in an on-demand way, which outperforms spatial hashing
(see Table 1).

6 Conclusion

We present a simple and fast collision detection method for ar-
ticulated deformable meshes. During the animation, the skin is
deformed with Position Based Skinning, where the deformation
model preserves the volume, allows for passive jiggling behavior
and avoids the artifacts of classic interactive skinning techniques.
Then, the collision detection algorithm gets the deformed vertices

Figure 7: Top row: an animated sequence of a bending ARM, all
self-collisions are calculated in 1.702 ms per frame. Bottom row:
an animated sequence of a bending LEG, all colliding vertices are
computed in 1.7 ms per frame. (self-collisions shown in red).

as input and finds all colliding vertices. Detecting the collisions is
based on spatial hashing [Teschner et al. 2003], and is performed
before and inside the constraint enforcement loop of Position Based
Skinning. Thus, our method does not miss collision events during
the solver loop. Being based on spatial hashing, our method does
not rely on any preprocessing and it does not impose requirements
on the characteristics of the meshes. We exploit the skeletal na-
ture of the deformation to incrementally reconstruct the hash table
only when required using the on-demand hashing operation. This
on-demand hashing operation speeds up the full collision detection
considerably when compared to the optimized hashing operation.
The intersection test provides the exact position of a vertex inside
a penetrated tetrahedron and this information can be employed to
compute collision response. The Collision response can be done
by generating temporary inequality constraints on-the-fly and in-
cluding them into the system of constraints inside PBS framework,
which is ongoing work. To further improve the performance of our
method, you will investigate the use of parallel position based dy-
namics [Fratarcangeli and Pellacini 2015].

References
ABU RUMMAN, N., AND FRATARCANGELI, M. 2015. Position-based skinning for

soft articulated characters. Computer Graphics Forum, n/a–n/a.

ALCANTARA, D. A., SHARF, A., ABBASINEJAD, F., SENGUPTA, S., MITZEN-
MACHER, M., OWENS, J. D., AND AMENTA, N. 2009. Real-time parallel hashing
on the gpu. In ACM SIGGRAPH Asia 2009 Papers, ACM, New York, NY, USA,
SIGGRAPH Asia ’09, 154:1–154:9.

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust treatment of colli-
sions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3 (July),
594–603.

Figure 8: A bending ARM and a RIGID BODY, consisting of 4400
tetrahedrons and 132 tetrahedrons, respectively. Both the collisions
and the self-collisions of the arm are detected in 2.52 ms.

EITZ, M., AND LIXU, G. 2007. Hierarchical spatial hashing for real-time collision
detection. In Proceedings of the IEEE International Conference on Shape Modeling
and Applications 2007, IEEE Computer Society, Washington, DC, USA, SMI ’07,
61–70.

ERICSON, C. 2004. Real-Time Collision Detection (The Morgan Kaufmann Series
in Interactive 3-D Technology) (The Morgan Kaufmann Series in Interactive 3D
Technology). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

FRATARCANGELI, M., AND PELLACINI, F. 2015. Scalable partitioning for parallel
position based dynamics. Computer Graphics Forum 34, 2, 405–413.

GOTTSCHALK, S., LIN, M. C., AND MANOCHA, D. 1996. Obbtree: A hierarchical
structure for rapid interference detection. In Proceedings of the 23rd Annual Con-
ference on Computer Graphics and Interactive Techniques, ACM, New York, NY,
USA, SIGGRAPH ’96, 171–180.

GOVINDARAJU, N. K., KNOTT, D., JAIN, N., KABUL, I., TAMSTORF, R., GAYLE,
R., LIN, M. C., AND MANOCHA, D. 2005. Interactive collision detection between
deformable models using chromatic decomposition. ACM Trans. Graph 24, 991–
999.

HE, L., ORTIZ, R., ENQUOBAHRIE, A., AND MANOCHA, D. 2015. Interactive con-
tinuous collision detection for topology changing models using dynamic clustering.
In Proceedings of the 19th Symposium on Interactive 3D Graphics and Games, San
Francisco, CA, USA, February 27 - March 01, 2015, 47–54.

JAMES, D. L., AND PAI, D. K. 2004. Bd-tree: Output-sensitive collision detection for
reduced deformable models. In ACM SIGGRAPH 2004 Papers, ACM, New York,
NY, USA, SIGGRAPH ’04, 393–398.

JUND, T., CAZIER, D., AND DUFOURD, J.-F. 2009. Particle-based forecast mecha-
nism for continuous collision detection in deformable environments. In SPM ’09:
2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, ACM,
New York, NY, USA, 147–158.

KAVAN, L., AND ZARA, J. 2005. Fast collision detection for skeletally deformable
models. Computer Graphics Forum 24, 3, 363–372.

KAVAN, L., O’SULLIVAN, C., AND ŽÁRA, J. 2006. Efficient collision detection for
spherical blend skinning. In Proceedings of the 4th International Conference on
Computer Graphics and Interactive Techniques in Australasia and Southeast Asia,
ACM, New York, NY, USA, GRAPHITE ’06, 147–156.

KAVAN, L., COLLINS, S., ZÁRA, J., AND O’SULLIVAN, C. 2007. Skinning with dual
quaternions. In Proceedings of the 2007 Symposium on Interactive 3D Graphics
and Games, ACM, New York, NY, USA, I3D ’07, 39–46.

KLOSOWSKI, J. T., HELD, M., MITCHELL, J. S. B., SOWIZRAL, H., AND ZIKAN,
K. 1998. Efficient collision detection using bounding volume hierarchies of k-dops.
IEEE Transactions on Visualization and Computer Graphics 4, 1 (Jan.), 21–36.

LARSSON, T., AND AKENINE-MÖLLER, T. 2003. Efficient collision detection for
models deformed by morphing. The Visual Computer 19, 2-3, 164–174.

LARSSON, T., AND AKENINE-MÖLLER, T. 2006. A dynamic bounding volume
hierarchy for generalized collision detection. Comput. Graph. 30, 3 (June), 450–
459.

LIN, M. C., AND MANOCHA, D. 2003. Collision and Proximity Queries. CRC Press
LLC, Boca Raton, FL, ch. 35.

LUQUE, R. G., COMBA, J. A. L. D., AND FREITAS, C. M. D. S. 2005. Broad-
phase collision detection using semi-adjusting bsp-trees. In Proceedings of the
2005 Symposium on Interactive 3D Graphics and Games, ACM, New York, NY,
USA, I3D ’05, 179–186.

MACIEL, A., BOULIC, R., AND THALMANN, D. 2007. Efficient collision detection
within deforming spherical sliding contact. IEEE Transactions on Visualization
and Computer Graphics 13, 3 (May), 518–529.

MADERA, F. A., DAY, A. M., AND LAYCOCK, S. D. 2006. Collision Detection for
Deformable Objects using Octrees. In Theory and Practice of Computer Graphics
2006, The Eurographics Association, L. M. Lever and M. McDerby, Eds.

MAGNENAT-THALMANN, N., LAPERRIÈRE, R., AND THALMANN, D. 1988. Joint-
dependent local deformations for hand animation and object grasping. In Proceed-
ings on Graphics Interface ’88, Canadian Information Processing Society, Toronto,
Ont., Canada, 26–33.

MÜLLER, M., HEIDELBERGER, B., HENNIX, M., AND RATCLIFF, J. 2007. Position
based dynamics. J. Vis. Comun. Image Represent. 18, 2 (Apr.), 109–118.

OTADUY, M. A., CHASSOT, O., STEINEMANN, D., AND GROSS, M. 2007. Balanced
hierarchies for collision detection between fracturing objects. Proc. of the IEEE
Virtual Reality Conference, 83–90.

RUMMAN, N. A., AND FRATARCANGELI, M. 2014. Position based skinning of
skeleton-driven deformable characters. In Proceedings of the 30th Spring Confer-
ence on Computer Graphics, ACM, New York, NY, USA, SCCG ’14, 83–90.

SCHVARTZMAN, S. C., GASCÓN, J., AND OTADUY, M. A. 2009. Bounded normal
trees for reduced deformations of triangulated surfaces. In Proceedings of the 2009
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, New
York, NY, USA, SCA ’09, 75–82.

SCHVARTZMAN, S. C., PÉREZ, A. G., AND OTADUY, M. A. 2010. Star-contours
for efficient hierarchical self-collision detection. ACM Trans. Graph. 29, 4 (July),
80:1–80:8.

SI, H. 2015. Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Trans.
Math. Softw. 41, 2 (Feb.), 11:1–11:36.

SPILLMANN, J., BECKER, M., AND TESCHNER, M. 2007. Efficient updates of
bounding sphere hierarchies for geometrically deformable models. Journal of Vi-
sual Communication and Image Representation 18, 2, 101–108.

SUD, A., GOVINDARAJU, N., GAYLE, R., KABUL, I., AND MANOCHA, D. 2006.
Fast proximity computation among deformable models using discrete voronoi dia-
grams. ACM Trans. Graph. (Proc ACM SIGGRAPH 25, 1144–1153.

TELLER, S. J., AND SEQUIN, C. H. 1991. Visibility preprocessing for interactive
walkthroughs. In IN: COMPUTER GRAPHICS (SIGGRAPH 91 PROCEEDINGS,
61–69.

TESCHNER, M., HEIDELBERGER, B., MÜLLER, M., POMERANTES, D., AND

GROSS, M. H. 2003. Optimized spatial hashing for collision detection of de-
formable objects. In Proceedings of the Vision, Modeling, and Visualization Con-
ference 2003 (VMV 2003), München, Germany, November 19-21, 2003, 47–54.

TESCHNER, M., KIMMERLE, S., HEIDELBERGER, B., ZACHMANN, G., RAGHU-
PATHI, L., FUHRMANN, A., CANI, M.-P., FAURE, F., MAGNENAT-THALMANN,
N., STRASSER, W., AND VOLINO, P. 2005. Collision detection for deformable
objects. Computer Graphics Forum 24, 1, 61–81.

VOLINO, P., AND THALMANN, N. M. 1994. Efficient self-collision detection on
smoothly discretized surface animations using geometrical shape regularity. Com-
puter Graphics Forum 13, 3, 155–166.

ZACHMANN, G., AND LANGETEPE, E. 2002. Geometric data structures for com-
puter graphics. In Proceedings of Eurographics 2002 Tutorials, The Eurographics
Association. Tutorial.

ZACHMANN, G., AND WELLER, R. 2006. Kinetic bounding volume hierarchies for
deformable objects. In ACM International Conference on Virtual Reality Contin-
uum and Its Applications (VRCIA).

ZACHMANN, G. 1995. The boxtree: Exact and fast collision detection of arbitrary
polyhedra. In In SIVE Workshop, 104–112.

ZHANG, D., AND YUEN, M. 2000. Collision detection for clothed human animation.
In Computer Graphics and Applications, 2000. Proceedings. The Eighth Pacific
Conference on, 328–337.

