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Abstract 
 
Chess research provides rich data for testing 

computational models of human memory.  This paper 

presents a model which shares several common 

concepts with an earlier attempt (Simon & Gilmartin, 
1973), but features several new attributes: dynamic 
short-term memory, recursive chunking, more 
sophisticated perceptual mechanisms and use of a 
retrieval structure (Chase & Ericsson, 1982). 
Simulations of data from three experiments are 
presented: 1) differential recall of random and game 
positions; 2) recall of several boards presented in 
short succession; 3) recall of positions modified by 
mirror image reflection about various axes. The 
model fits the data reasonably well, although some 
empirical phenomena are not captured by it. At a 
theoretical level, the conceptualization of the internal 
representation and its relation with the retrieval 
structure needs further refinement. 
 
 

Introduction 
 
Since the seminal works of de Groot (1965) and  
Chase and Simon (1973a,b), chess research has 
provided a large amount of psychological data, with a 
special focus on chess players' memory. The standard 

experimental paradigm in chess research consists in 
presenting a chess position for a short amount of time 
(generally 5 seconds), and then asking subjects to 

reconstruct it. The most common independent 

variables are presentation time, subjects' skill, and 
degree of meaningfulness of the position. Even 
though general models of chess expertise abound (for 

example, Holding, 1985), almost no detailed models 
of chess memory have been proposed, the exception 
being MAPP, the model developed by Chase and 

Simon (1973b) and implemented by Simon and 

Gilmartin (1973). 
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MAPP simulates the behavior of Class A chess 

players (good amateurs) in the recall task by first 
recognizing chunks on the board through a 
discrimination net, and then storing pointers to these 
chunks in a limited-size, static, short-term memory 
(STM). It captures some important features of the 
empirical data, including the differential recall of 
random and meaningful positions and the kind of 
patterns that are likely to be recognized. However, 
some limitations have been indicated by Simon and 
Gilmartin. For example, MAPP was unable to explain 
the high number of chunks (more than the 7±2 
predicted by the theory) replaced when a position is 
recalled by a chess expert. In addition, it fails to offer 
an explanation for some new data including the lack 
of effect of interfering material on memory 
performance (Charness, 1976; Frey & Adesman, 
1976). 

This paper proposes a new model of chess 
memory that is partly inspired by MAPP. The main 
additions are 1) the presence of dynamical updating 
processes in STM; 2) a more deeply elaborated 
discrimination net, which includes recursive 
chunking; 3) more sophisticated perceptual 

mechanisms; 4) the implementation of the concept of 
retrieval structure (Chase & Ericsson, 1982), which 
is a long-term memory (LTM) template into which 

the new information can be encoded rapidly. In the 
following section, I shall give an overview of the 
model, dubbed CHREST, for CHunk Hierarchy and 

REtrieval STructures. I shall then present in more 
detail the components and the processes of the model. 

Finally, a sample of the simulation runs with the 
model will be described, and CHREST's adequacy 

will be discussed. 
 

Overview of the model 
 

CHREST consists of a blending of ideas proposed in 
earlier computer models of different aspects of chess 

cognition (MATER, Baylor & Simon, 1966; 
PERCEIVER, Barenfeld & Simon, 1969; MAPP, 



 

 

Gilmartin & Simon, 1973), with adjunction or 

modification of some concepts motivated by recent 

empirical and theoretical research. The model is 

implemented in LISP. 

The model consists of the following structures: 

• a visual space; 

• a short term memory, limited to about seven items; 

• an associative long term memory, accessed by a 

discrimination net. Knowledge in LTM is encoded 

as schemas and productions; 

• a retrieval structure, that permits a rapid encoding 

into LTM; it consists of an hypothesis, which is the 

pattern containing the largest quantity of 

information2 up to that point,  and of an internal 

representation, which is a schematic representation 

of the chess board. The assumption is that, with 

strong players, the hypothesis gives access to 

information located in semantic LTM3, such as the 
initial moves the position is likely to come from, 
the possible plans and moves in the position, and so 
on. 

 
The theoretically important mechanisms are the 

following: 

• mechanisms allowing the traversal of the dis-
crimination net; 

• mechanisms for growing the discrimination net 
(learning); 

• mechanisms directing the attention and the eye 
movements, and therefore allowing the perception 

of stimuli on a external board4; 
• mechanisms for updating the hypothesis; 
• mechanisms for adding information to STM and to 

the internal representation. 
 
During the reconstruction phase, some rough 

inference processes are used: the model does not 
propose placing a piece that has already been 

reconstructed; it also avoids exceeding the legal 

number of occurrences of a given piece by erasing a 
piece of the same type that has already been placed. 

Figure 1 depicts these structures and mechanisms, 

which I will illustrate by describing the simulation of 
the recall of one position. Once a square has been 
fixated (the initial fixation point is one of the 4 

central squares), the model examines the information 
in the visual space by sorting it through the 

discrimination net. If a pattern is recognized, a 

                                                 
2In the simulations to be discussed, information is 

defined as the number of pieces contained in the 
chunk. 

3This part of the model has not been implemented 
yet. 

4In the simulations, the external chess board was 
encoded as a 8 x 8 matrix of characters. 

symbol pointing to it is stored in STM. In addition,  
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Figure 1: Schematic representation of CHREST. 
 

the square (with possibly a piece on it) is stored in the 
internal representation. The model considers, then, 
the present hypothesis (in the absence of a hypothesis, 
the first pattern perceived plays this role), and tries to 
discriminate further by using the information 
contained in the STM and the internal representation. 
If a new hypothesis is found, the old one is placed 
into STM. The model then selects a new square to 
fixate, and the cycle starts again. At the end of the 
presentation of the position, the model reconstructs it 
by placing, in order, the pieces of the hypothesis, of 
the STM and of the internal representation. 
 

Description of the model 
 

Discrimination net 
 

CHREST uses a discrimination net close to the one 
used by EPAM, a theory that has been successfully 
applied to a variety of phenomena in learning and 

perception (Feigenbaum & Simon, 1984; Richman & 
Simon, 1989). The net, which is made of a set of 

nodes5 and links, allows the assignment of a stimulus 
to its representation in memory, by performing a 
sequence of tests on the characteristics of the object. 

Before being fed to the net, the stimulus is first 
analyzed as a set of attribute-values pairs and/or sub-

objects. Two different types of learning occur with 
both EPAM and CHREST. When an object is 

recognized as being different from the chunk the net 

                                                 
5I will use the terms "chunk" and "node" 
interchangeably. 



 

 

sorted to, a new test is added. This test applies to a 

characteristic of the object that allows the net to 

discriminate it from the object with which it was 

confounded. This mechanism is called 

discrimination.  If the object is recognized as being 
compatible with the chunk the net sorted to, new 

characteristics are added to the image of that node. 

The image is the internal informational representation 

of an external object. This mechanism is called 

familiarization. These two types of learning operate 

in a discrete way.  

The net used in CHREST keeps some of the 

assumptions of EPAM, such as the discrete character 

of learning, the permanency of the net (nodes and 

links are not erasable), the avoidance of any 

backtracking in the traversing of the net, and the 

presence of two learning mechanisms, discrimination 

and familiarization. In comparison with the EPAM 
net used by Gilmartin and Simon (1973) in chess 
simulations, new features have been added: n-arity 
(MAPP had a binary tree), hierarchical and recursive 
organization of information, and redundancy in the 
encoding of the information. The latter feature occurs 
in the following way. When two symbols pointing to 
a LTM node are stored into STM, the images of these 
nodes are compared (the order of the elements is not 
considered); if the test gives a positive result, a link –
called a redundant link– is created between these two 
nodes. Afterwards, such links may be used during the 
net traversing processes. One of the consequences of 
the presence of such links is that any node may be 
accessed from any arbitrary number of nodes.  

 

Internal representation and retrieval structure 
 

The concept of retrieval structure has been proposed 
by Chase and Ericsson (1982) in their study of the 
extraordinary digit memory of one of their subjects 

(see also Staszewski, this volume). In CHREST, the 
retrieval structure is construed as a schema composed 
of two attributes: the hypothesis, which is the chunk 

(reached after discrimination through the net) that 
possesses the largest amount of information, and the 
internal representation of the board. This 

representation is close to the one proposed by Newell 
and Prasad (1963), and is encoded as a list structure. 

Such a structure may be visualized as a network of 
nodes and links. The nodes themselves possess 

attribute-value schemas. 
In the internal representation of CHREST, squares 

of the board are connected by the chess relations 

between them. A (potentially disputable) assumption 
is that the internal representation is the same for 

players of different skills, given that a minimal level 
is present. An alternative, though bound with 

difficulties due to the lack of empirical data on chess 
learning, would have been to simulate the 
construction of the internal representation. 

It is supposed that information may be encoded 

rapidly in the retrieval structure, but that the retrieval 

structure itself may not be duplicated. This 

proposition is supported by the phenomenon of 

progressive deepening (de Groot, 1965); if the 
duplication of the retrieval structure was easy, players 

could create as many such structures as positions 

searched and would need only one visit per position. 

But de Groot precisely showed the necessity for 

human players to reinvestigate the same position 

several times  during the analysis. 

STM and updating mechanisms  
 

As stated above, STM is implemented as a limited 

capacity structure, of about seven symbols. Once this 

capacity is attained, the arrival of a new element will 

cause the oldest one to be discarded. Symbols may 
point to a node in LTM or to the retrieval structure.  

A criticism of many STM models, including the 
model incorporated in Simon and Gilmartin's (1973) 
simulation, is the lack of connection between the 
STM elements. It is intuitively more plausible that the 
cognitive system uses new information to process the 
old information more deeply  and to obtain in this 
way a better representation of the world. This is 
similar to the idea proposed by Carpenter and Just 
(1989), that subjects, during a reading task, interpret 
information as soon as possible. CHREST tries to 
update constantly its hypothesis of the position, by 
using new information. In CHREST, the following 
cycle is performed: 1) information from the visual 
field is incorporated to STM and to the internal 
representation; 2) the hypothesis is updated with the 
chunks being held in STM and in the internal 
representation. When either the hypothesis is updated 
or a pattern containing more pieces is found in the 
visual space, the old hypothesis is placed into STM, 
and the updated hypothesis or the new pattern takes 
its place.  

 

 

Visual field and eye movements 
 

In the model, the visual field is defined as the 25 
squares (or less, when the focused square is on the 
side of the board) centered on the square presently 

focused. This estimate, based on empirical data 

provided by de Groot (1980), is somewhat arbitrary 
as the visual field may vary as a function of the 
physical size of the board. 

The attention control and eye movement 
monitoring mechanisms are, in order of importance: 

1) LTM mechanisms; when initiating a new fixation, 
the model tries to find a descendant of the last node 
found in the discrimination net and focuses, if 

possible, on its square; 2) defense and attack noticing 
strategies (cf. PERCEIVER, Barenfeld and Simon, 

1969); 3) global strategies;  they aim to gather 



 

 

information on key parts of the board, such as center, 

king's position and so on. For a simulation of eye 

movements and a discussion of their (qualitative) fit, 

see Gobet (1993). 

 

Results of simulations 

 

Learning phase 
 

In the learning phase, the model investigates each 

position for 20 fixations (this parameter has been set 

arbitrarily). Each fixation augments the content of the 

current pattern. Pattern construction is terminated in 

one of three ways: 1) when the model focuses again 

on a piece already belonging to the pattern; 2) when 

some global strategy applies; or 3) when the 20 

fixations are terminated. Once the construction of a 

pattern is finished, the model starts LTM 
discrimination. In order to increase the probability of 
forming redundant chunks, the STM capacity was set 
to 20 items during the learning phase. 

2843 positions, taken from Hort and Jansa (1980) 
and from a personal database, were used during the 
learning phase. The Hort and Jansa set, which was 
studied first, contains 230 unrelated positions; the 
latter set contains entire games, providing a high level 
of redundancy between the positions. After the 
learning phase, the model had 3646 nodes in memory. 
Interestingly, the progression of the number of 
redundant nodes is very slow: 4 after 100 positions, 
10 after 1000 positions, 14 after 2000 positions and 
20 after having learned the totality of the material. If 
the model is (partly) correct, this would be an 
indication that the creation of redundant and multiply 
indexed knowledge occurs at a relatively advanced 
stage of expertise.  

 

 

Recall of random vs. game positions  
 

It is a classical result in cognitive psychology that 

experts in a domain (in our case, chess), achieve 
better results than novices in a memory task with 
short presentation when the material is domain 

meaningful, but that this difference vanishes when the 

material is domain meaningless, such as a random 
assignment of pieces on the chess board (Chase & 
Simon, 1973a). I have tested whether the model 

shows this differential recall of random and game 
positions. During the learning phase, a recall test was 
performed after each group of 10 positions. This test 

consisted in 2 game positions and 2 random positions 

(of course, no learning was done on these test 
positions). The average of the last 100 tests is 10.66 
pieces (sd = 1.08) for the game positions and 7.77 

pieces (sd = .65) for the random positions. The 
difference is statistically highly significant [t(99) = 
21.924, p< .0001, one-tailed]. It should be noted that 

the recall of random positions is greater than the 

recall found with human subjects (about 4 pieces). 
 

 

Recall of several positions 
 

As stated above, Charness (1976) has shown that 

memory for chess positions was resistant to 

interfering tasks, even with chess related tasks (in his 

study, name the pieces or find the best move in 

another position). Frey and Adesman (1976) reached 

the same conclusion. In their experiment subjects 

were presented 2 positions, and were asked to recall 

the first or the second of these positions. Extending 

this technique, Gobet and Simon (1992) have 

presented subjects with up to 5 positions at a rate of 5 

sec. each, where recall was asked on all positions. 

This section discusses the CHREST simulation of that 

study. 
Three snapshots were taken in the course of 

learning: after the study of 230 positions (N230; total 

number of nodes = 630), of 1538 positions (N1538; 

n=2175) and 2843 positions (N2843; n=3646). The 

number of fixations6 during the presentation of the 
position was set to 20, and STM capacity to 7. 
Finally, during the presentation, the model was 
allowed to familiarize the image of the hypothesis 
with a chunk stored in STM. Sets of 1 up to 5 
positions were presented to the model, which was 
required to recall as much as possible of all positions. 
Each net was tested on 4 sets of positions by 
experimental condition. 

The upper panel of Figure 2 (next page) depicts 
the results obtained by CHREST, and the lower panel 
the human data (Gobet & Simon, 1992, experiment 
#1b). As the 3 nets show similar results (a state of 
affairs that will be taken up in the discussion section), 
they are pooled in the following analyses. The 
Number of positions has a significant effect 
[F(4,44)=131.04, p<.001]; the linear component is 

significant as well [F(1,11)=47.93, p<.001]. As the 
model accounts for 97.4% of the Class A players' 
results in Gobet and Simon's experiment #1b and 

77.5% in their experiment #3, the fit may be judged 
as reasonably good. A noticeable difference is that 
the model is better than class A human subjects with 

the recall of 4 and 5  positions. 
 

 

Mirror image reflections of chess positions: effect 
on recall 

 
It has been shown that the recall of chess positions is 

impaired when they are modified by mirror images 
about various axes (Gobet, 1993, Gobet & Simon, 
  

                                                 
6De Groot's (1980) data show that about 20 fixations 
are performed in a 5 sec. exposition. 
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Figure 2: Recall of several positions (Upper panel: 
simulations; lower panel: human data).  

 
1992). The effect is especially strong for mirror 
images about vertical and central axes. 

Two simulations were performed. In the first one, 
the model had access to the information in the 
internal representation during recall (with-IR). In the 
second one, this information was not accessible 
(without-IR). In both cases, the model performed 20 
fixations before starting the reconstruction, and STM 
capacity was set to 7. The nets were the same as the 
ones described in the preceding section. 17 positions 

were used for each experimental condition. As there 
was no difference due to the number of positions 
learned, the trials of the 3 nets have been pooled in 

the statistical analysis. Figure 3 illustrates the results: 
The upper panel of the Figure refers to the model 
using the internal representation during recall, the 

middle panel to the model without the internal 
representation, and the lower panel to the results with 

humans (Exp. #1a in Gobet & Simon, 1992). No 
effect is found for the first case (with-IR) 

[F(3,33)=1.59, ns]. The effect reaches significance in 
the second case (without-IR) [F(3,33)=2.868, p=.051; 
F(1,11)=7.34, p=.02 when normal & horizontal 

conditions are pooled against vertical & central]. The 
results of the second simulation account for 89.2% of 

 

n_2843 n_1538 n_238
0

10

20

30

40

50

60

70

80

90

100

Normal positions 
Horizontal symmetry

Vertical symmetry
Central symmetry

Random positions

Nets

%
 o

f 
p

ie
c

e
s

 c
o

rr
e

c
t

CHREST With Internal Representation

n_2843 n_1538 n_230
0

10

20

30

40

50

60

70

80

90

100

Normal positions
Horizontal symmetry 

Vertical symmetry
Central symmetry 

Random positions

Nets

%
 o

f 
p

ie
c

e
s

 c
o

rr
e

c
t

CHREST Without Internal Representation

Masters Experts Class A
0

20

40

60

80

100

Normal
Horizontal

Vertical
Central
Random

Category

%
 o

f 
p

ie
c

e
s

 c
o

rr
e

c
t 

Humans

 
Figure 3: Effect of Mirror Image Reflection on 
Recall. Upper panel: CHREST, with information held 
in the retrieval structure used during recall; middle 

panel: CHREST, with information held in the 

retrieval structure not used during recall; lower panel: 
human data. 
 

class A players in Exp. #2 and of 93.7% in Exp. #1a. 
At the analysis of these results, it seems plausible 

to conclude that an important part of the effect was 

eliminated, in the first simulation, by the role played 

by the internal representation. The arbitrariness of 
this representation was already stressed above. This 
section suggests another weakness: the internal 

representation as conceptualized gives a uniform 
weight to the different regions of the board, when 
human players seem to give more importance to 

locations like the center and the King's side. 



 

 

 

 

Discussion 
 

Overall, the simulations may be credited with a satis-
factory fit with the data. However, several problems 

remain. First, the model is able to recall random posi-

tions better than humans (7.7 pieces vs. about 4 

pieces). It is not clear whether this difference is due 

to emotive factors (human subjects show very strong 

negative affects when confronted to random 

positions) or is the consequence of basic memory 

processes. Second, the inadequacy of the retrieval 

structure as implemented in CHREST has been 

established by the simulation of positions modified by 

mirror image reflections. A possible improvement is 

to restrict the retrieval structure to a few slots, say one 

for the center, one for the King's side, and so on. Such 
a partition definitely possesses a psychological 
justification (see for example the protocols of de 
Groot, 1965). Third, as the reader may have noticed, 
there is not much performance improvement between 
the 3 nets used in the simulations, so that comparisons 
had to be limited to Class A players. If CHREST is to 
be considered as a general theory of chess memory, it 
should be able to simulate the results of experts and 
masters. Currently, work is done to let CHREST learn 
the 50,000 chunks required, if we believe Simon and 
Gilmartin (1973), to reach the level of expertise. 
Fourth, the model lacks inference abilities, whereas it 
is not uncommon for human players to "guess" the 
location of certain pieces, especially at the end of the 
reconstruction. Finally, the strategies used by chess 
players to modulate their memory may have been un-
derestimated  in the model. 

To conclude, a better fit to the data may be ob-
tained without changing the fundamental conception 
of the model, but by tuning up some of its compo-
nents. Special attention should be given to the role of 
the internal representation in the retrieval structure, 

and to its development as expertise grows.  
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