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Abstract

Background: Red blood cells are essential for modern medicine but managing

their collection and supply to cope with fluctuating demands represents a

major challenge. As deterministic models based on predicted population

changes have been problematic, there remains a need for more precise and

reliable prediction of use. Here, we develop three new time-series methods to

predict red cell use 4 to 52 weeks ahead.

Study Design and Methods: From daily aggregates of red blood cell (RBC)

units issued from 2005 to 2011 from the NHS Blood and Transplant, we gener-

ated a new set of non-overlapping weekly data by summing the daily data over

7 days and derived the average blood use per week over 4-week and 52-week

periods. We used three new methods for linear prediction of blood use by com-

puting the coefficients using Minimum Mean Squared Error (MMSE) algorithm.

Results: We optimized the time-window size, order of the prediction, and

order of the polynomial fit for our data set. By exploiting the annual periodicity

of the data, we achieved significant improvements in long-term predictions, as

well as modest improvements in short-term predictions. The new methods

predicted mean RBC use with a standard deviation of the percentage error of

2.5% for 4 weeks ahead and 3.4% for 52 weeks ahead.

Conclusion: This paradigm allows short- and long-term prediction of RBC use

and could provide reliable and precise prediction up to 52 weeks ahead to improve

the efficiency of blood services and sufficiency of blood supply with reduced costs.

1 | INTRODUCTION

Red blood cells are necessary for modern medicine in
elective and emergency surgery, major trauma, hemor-
rhage, cancer care, and to support patients with congeni-
tal or acquired anemia.1 The call-up of donors,
scheduling of donor sessions, and manufacturing and
supply of red blood cells to hospitals must be coordinated
to match demand. Managing the collection and supply of

red blood cells to cope with the fluctuating demand pre-
sents a major challenge for blood services. In spite of this,
there are few tools available to accurately predict demand
for either short-term or long-term planning. Any
improvement of prediction tools would allow greater effi-
ciency in the use of resources as well as a more resilient
and secure blood supply chain.

Weekly use of red blood cells can change by 30% from
week to week in our dataset and annual use can change by
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3%-7% from year to year.2,3 Predicting use for red blood cells
in a simple deterministic model using the age-structure of
the population, the age-specific incidence of disease, and
the requirement of blood by indication and procedure for
each disease has been attempted.4-7 However, such models
have consistently underestimated the changes in medical
and transfusion practice.8-10 Predictions made using projec-
ted population growth, number, and type of transfusion epi-
sodes overestimated demands.5 There have been a wide
variety of changes in medical and surgical management,
such as introducing less invasive surgery and lowering the
hemoglobin threshold for transfusion, which have made
deterministic modeling highly prone to substantial errors.

An alternative strategy for prediction is to use time-
series methods where any element in the time-series are
assumed to be linearly related to previous elements by some
mathematical relation with parameters that can be esti-
mated. The estimated parameters can then be applied to
extend the series into the future. The use of time-series
methods for prediction have a long history.11-15 There are a
wide variety of time-series methods.16 These approaches
have been successfully applied in many fields including sta-
tistics,17 communications,18 signal processing,19 adaptive
noise cancellation,20 earthquake prediction,21 mathematical
finance,22 brain studies,23,24 speech communication,25

weather forecasting,26 and econometrics.27

A previous study looked at time-series prediction of
blood use,28 and although these methods showed promis-
ing results, the deterioration of accuracy of predictions
for long-term forecasting would limit long-term planning.
In this paper we focus on the seasonality in the data with
the aim of improving accuracy in long-term predictions
of blood use. Seasonality is likely to be a significant factor
due to strong seasonal patterns of activity in hospitals
around variation in the number, type of admission, avail-
ability of capacity for elective surgery, and of staff.

Daily red blood cell use is readily available. Although
red blood cell use varies significantly on a daily and
weekly basis, in practice the window for useful predic-
tions of future use are for 1 to 6 months to allow for
matching of donor appointments and planning of donor
sessions to predicted use. Predictions at longer intervals,
such as a year ahead, are also useful to match the overall
collection, manufacturing and issue capacity, and blood
price to overall use, particularly as use falls.

Here we use three new time-series methods to predict
red cell use 4 weeks to 52 weeks (1 year) ahead and dem-
onstrate that the mean red cell use can be predicted with a
standard deviation of the percentage error of 2.5% for
4 weeks ahead and 3.4% for 52 weeks ahead. By adjusting
for recurring temporal and secular trends through a year
including seasonal variation and holidays, significant
improvements have been made from previous predictions,

giving a standard deviation of the percentage error of 3.0%
for 4 weeks ahead and 5.8% for 52 weeks ahead.28 The pro-
posed paradigm may form the basis for reliable short-term
and long-term prediction of not only RBCs but also other
components and even therapeutic procedures by blood
services.

2 | MATERIALS AND METHODS

The focus of this paper lies in predicting the RBC use from
4 to 52 weeks ahead using a previously developed predic-
tion paradigm,28 but now incorporating three novel time-
series methods. The three-stage prediction paradigm con-
sists of: smoothing (eg, going from daily to monthly data) to
reduce unhelpful noise; de-trending to extract and remove
the long term variations from the data; and time-series
modeling to accurately predict the remaining variations.

2.1 | Smoothing - data preparation

Daily aggregates of red blood cell units used cover a
period of 6.5 years from February 1, 2005 to July 31, 2011
and were obtained from the NHS Department of Blood
and Transport. We use aggregated data from seven con-
secutive days or integer multiples of seven consecutive
days. This avoids both effects of daily variability as well
as of variability between weekdays and weekends. A new
set of non-overlapping weekly data was generated by
summing the daily data over 7 days, ie, the first data

FIGURE 1 Average weekly blood use for each non-

overlapping 4-week period from February 2005 to July 2011. This

dataset contains 84 data points and are used for all prediction

methods. The time index corresponds to the index of the 4-week

period [Color figure can be viewed at wileyonlinelibrary.com]
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point corresponds to the sum of Days 1-7, the second cor-
responds to Days 8-14, and so on; this new dataset of
weekly blood use contains 338 data points. Most time-series
methods used non-overlapping 4-week data, as shown in
Figure 1. This was generated by summing the weekly data
over 4 weeks and dividing by four, to give an average blood
use per week over that 4-week period. In other words, the
first data point is a weekly average blood use over Weeks 1-
4, the second is a weekly average over Weeks 5-8, etc.; this
non-overlapping 4-week dataset contains 84 data points.

Smoothed-overlapping data over a 52-week period,
shown in Figure 2, was also used. This was generated by
summing the weekly data over 52 weeks and dividing by
52, giving average blood use per week for that 52-week
period, moving forward by 1 week each time. In other
words, the first data point is a weekly average of Weeks 1-
52, the second is a weekly average of Weeks 2-53, etc.; this
overlapping 52-week dataset contains 287 data points. This
generates a smoother time-series with less overall variation
in average weekly number of blood units.

2.2 | Detrending

In the previous study, focusing on standard linear predic-
tion, it was demonstrated that removing the underlying
trend in the data, before applying time-series prediction
methods, results in a very significant improvement in the
accuracy of the prediction.28 The trend is determined using
a polynomial fit to the most recent w data points, where w
is referred in this paper to as the time-window size.

Figure 3 shows a schematic of the steps taken to pre-
dict future blood use. It is interesting to note, as discussed
later, for one of the methods that does not use standard
linear prediction, it was found that removing the trend
was not necessary for improving prediction and as such
only the mean was removed.

2.3 | Time series methods

In this paper three new methods for predicting RBC use
are explored that focus around Minimum Mean Squared
Error (MMSE), aiming to improve the long-term predic-
tion accuracy of blood use.

Time-series prediction methods use a set of previous
data points in the time-series to predict future values. In
general, it is assumed that the predicted value, x̂, is some
function of the past m values, as shown by,

x̂ n+ α j n−1,n−2,…,n−mð Þ= f x n−1ð Þ,x n−2ð Þ,…,x n−mð Þð Þ
ð1Þ

where n is the next time step in the series, α is the num-
ber of time steps ahead being predicted and x are the data
points in the time-series. This defines m as the order of
the prediction. In general, the function f is a non-linear
function of the variables, but in this paper, we restrict the
function f to be a linear function of the variables; this is
known as linear prediction, which is illustrated by,

x̂ n+ αð Þ=
Xm

i=1
aix n− ið Þ ð2Þ

where ai are a set of coefficients to be estimated. The
error in this linear prediction,

e(n + α), is defined to be,

e n+ αð Þ= x n+ αð Þ− x̂ n+ αð Þ ð3Þ

The linear time-series prediction problem lies in inves-
tigating methods for determining the ai coefficients. There
are several algorithms for linear prediction techniques, ie,
methods for computing the coefficients ai, that are well
developed, eg, Minimum Mean Squared Error (MMSE)
and Weighted Least Squares Error (WLSE).12,16 However,
there are circumstances when non-linear data analysis
methods are required. Machine learning algorithms can be
used to develop non-linear models for forecasting time-
series data.29-32 Examples of these algorithms include ker-
nel-based machine learning, genetic programming, and
artificial neural networks. Non-linear prediction methods
are equally valid for the time-series data; however, they
will not be considered in this paper.

FIGURE 2 Average weekly blood use for overlapping 52-week

periods, shifting by 1 week each time. This dataset contains 237

data points. The time index corresponds to the index of the

overlapping 52-week period [Color figure can be viewed at

wileyonlinelibrary.com]
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First, MMSE provides an algorithm for determining
the coefficients of the linear prediction based on mini-
mizing the mean squared error, whose mathematical

details are in Appendix A. This method is discussed in
the previous study as Method 1.28 Alternative methods
based on the observation that the 4-week data contains

FIGURE 3 Schematic diagram of the processing steps involved in predicting future blood use. Rounded boxes represent data, while

rectangles represent a processing stage. Variations to the processing for methods 6 (in blue) and 7 (in red) are shown in the diagram [Color

figure can be viewed at wileyonlinelibrary.com]
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some large dips and peaks, aimed to improve the predic-
tion by mitigating the effect of these outliers. This can be
achieved by using WLSE, different amounts of weighting
account for the differences between Methods 2, 3, and 4
in the previous study.28 Overall, there was not much vari-
ation in the predictions from these four methods.

Here, three new methods (Methods 5, 6, and 7) are
developed with the aim of improving long-term predic-
tion accuracy. As discussed, Method 1 uses standard
MMSE, which computes the coefficients ai from Equa-
tion (2) by minimizing the mean squared error. A new
method, Method 5, was then considered, which involves
flipping the time series data in the time-window over, so
the most recent data point is at the beginning. Then the
trend and mean were taken out before calculating the
coefficients, which will be called bi. The data being used
for prediction is given by, {d(w), d(w − 1), …, d(1)}, where
w is the time-window size. Standard MMSE prediction is
applied to the beginning of the window, as shown by,

d w+1−mð Þ=
Xm
i=1

bid w+1−m+ ið Þ ð4Þ

However, this predicts the data point d(w + 1 − m),
which is already known. The value to be predicted is d(w
+ 1), which can be found by rearranging Equation (4)
to give,

d̂ w+1ð Þ= 1
bm

d w+1−mð Þ−
Xm−1

i=1

bid w+1−m+ ið Þ
" #

ð5Þ

This alternative method of predicting the next data
point in the time series is referred here as backward
MMSE. In order to control the uncertainty in this predic-
tion, as discussed in Appendix B, we fix bm to some cho-
sen value of order unity, referred to in this article as β,
and use MMSE to calculate the remaining (m − 1) coeffi-
cients. Now, instead of using Equation (4), we use,

d w+1−mð Þ=
Xm−1

i=1

bid w+1−m+ ið Þ½ �+ βx w+1ð Þ ð6Þ

The mathematical detail for this method can be found
in Appendix C.

Method 6 involves applying MMSE to the overlapping
52-week data described in Smoothing - data preparation. The
52-week dataset is smoother, making predictions easier, how-
ever after prediction the result must be transformed into a 4-
week prediction. Each data point in this dataset contains

1 week of new information, therefore, in order to predict the
next 4 weeks it is necessary to predict four data points ahead
in the 52-week smoothed data, ie, α = 0 for the 4-week data
corresponds to α = 3 for the 52-week smoothed data.

All the methods so far have used the most recent m
data points, as shown in Equation (2). However, when
predicting long-term blood use, the volume of blood
issued for the same week of the year in previous years
may contain more useful information. With that in mind,
Method 7 uses non-standard linear prediction by apply-
ing MMSE on the original 4-week data, instead of using
the most recent m data points; it uses the most recent m
data points at the same time in previous years,

x̂ n+ αð Þ=
Xm
i=1

aix n+ α−13ið Þ+ a0 ð7Þ

To take advantage of the annual variation of the data,
this method uses information of blood use at the same
time in previous years as opposed to the most recent
information that is available.

2.4 | Figure of merit

Implementing each of the three new time-series methods,
described in De-trending, gives a set of predictions, x̂ nð Þ,
for each of their corresponding known true data values, x
(n). The percentage error for each data point was calcu-
lated, 100 x nð Þ− x̂ nð Þð Þ=x nð Þ . To assess quantitatively the
accuracy of the prediction methods, the mean and the
standard deviation of these percentage errors were calcu-
lated. Given that the mean percentage error is sufficiently
small, it is more important that the standard deviation of
the percentage errors is as small as possible, ie, the error in
predictions does not vary by a large amount. Additionally,
it is important to consider what proportion of the time is
the prediction within a reasonable region around the true
value. For the final results we also quote the percentage of
predictions that lie within the ±5% range of the true value.
In this paper we compare our results from Methods 5, 6,
and 7, to those using standard MMSE (Method 1).

3 | RESULTS

3.1 | Optimizing the parameters

The prediction paradigm, incorporating four time-series
methods, contain various parameters that can be altered,
which would affect the accuracy of the prediction. These
parameters include the time-window size (w), the order

NANDI ET AL. 5



TABLE 1 Optimization of the prediction parameters: (A) fixed

coefficient, β, for Method 5, (B) order of polynomial fit for Method

6, fixing w = 26 and m = 5, (C) order of polynomial fit for Method

7, fixing w = 26 and m = 5, (D) number of parameters for Method

7, fixing w = 26 and d = 0. Results of prediction applied to blood

use data when predicting 4 weeks ahead (α = 0), 8 weeks ahead (α

= 1), 12 weeks ahead (α = 2), 16 weeks ahead (α = 3), 20 weeks

ahead (α = 4), 24 weeks ahead (α = 5), 28 weeks ahead (α = 6), and

52 weeks ahead (α = 12), for a range of parameter values are

shown. In each box, corresponding to each experiment, the first

number is the mean percentage error and the second number is the

standard deviation of the percentage errors

(A)

α

β

0.9 1 5 9 13 17

0 0.38 0.37 0.27 0.26 0.26 0.26

3.78 3.61 2.90 2.89 2.89 2.89

1 0.36 0.35 0.28 0.27 0.27 0.26

4.72 4.47 3.16 3.09 3.07 3.06

2 0.33 0.32 0.28 0.28 0.28 0.28

5.39 5.12 3.58 3.47 3.43 3.41

3 0.35 0.35 0.37 0.37 0.37 0.37

4.70 4.47 3.35 3.31 3.30 3.30

4 0.43 0.42 0.34 0.33 0.33 0.33

4.22 4.07 3.57 3.59 3.60 3.61

5 0.40 0.39 0.37 0.37 0.36 0.36

4.83 4.67 3.98 3.97 3.96 3.96

6 0.38 0.38 0.34 0.34 0.34 0.34

5.63 5.42 4.38 4.33 4.31 4.30

12 −0.08 −0.08 −0.07 −0.07 −0.07 −0.07

7.01 6.83 6.05 6.04 6.03 6.03

(B)

α

Order of the polynomial fit, d

1 2 3

0 0.36 0.14 0.14

3.13 3.15 3.95

1 0.26 −0.03 −0.04

2.81 3.22 5.24

2 0.34 −0.14 −0.48

2.80 3.81 8.09

3 0.24 0.02 −0.53

2.75 3.87 10.2

4 0.44 0.26 −0.82

2.84 4.16 13.9

5 0.40 0.42 −0.70

3.04 4.25 17.8

TABLE 1 (Continued)

(B)

α

Order of the polynomial fit, d

1 2 3

6 0.56 0.58 0.20

3.27 4.44 20.9

12 0.62 0.20 −1.12

3.80 7.97 56.7

(C)

α

Order of the polynomial fit, d

0 1 2

0 0.10 0.23 0.07

2.49 2.65 2.63

1 0.10 0.22 0.06

2.54 2.70 2.69

2 0.12 0.24 0.06

2.62 2.79 3.04

3 0.22 0.35 0.18

2.64 2.82 3.14

4 0.26 0.41 0.26

2.81 3.06 3.52

5 0.32 0.48 0.29

2.90 3.19 3.83

6 0.40 0.56 0.27

2.98 3.27 3.99

12 0.75 0.97 −0.48

3.42 3.94 5.71

(D)

α

Number of parameters

2 3

0 0.10 0.19

2.49 2.68

1 0.10 0.22

2.54 2.79

2 0.12 0.32

2.62 2.83

3 0.22 0.36

2.64 2.73

4 0.26 0.31

2.82 2.88

5 0.32 0.23

2.90 2.86

6 0.40 0.14

6 NANDI ET AL.



of the prediction (m), and the order of the polynomial fit
(d). For Method 5, there is an additional parameter of the
fixed coefficient (β). An important advantage of this pre-
diction paradigm is that parameters can be optimized for
different situations. In the previous study, the optimal
parameters for Methods 1-4 were found to be w = 26,
m = 5, and d = 2.28 As we are now using three new
methods focusing on different aspects of the data, we
must reconsider the optimal parameters for the new
methods.

Method 5 uses the same data as Methods 1-4, so the
same parameter values are used. However, as discussed in
Section 2.3, Method 5 requires fixing the coefficient bm to
some chosen value, β, in order to control the prediction
error, which we must optimize for the current dataset.
Table 1A shows a significant improvement in the predic-
tion performance as β increases to five, but for β > 5 the
quality of the prediction starts to plateau, ie, there does
not seem to be an upper limit on β. Based on this investi-
gation Method 5 was carried out using a value of β = 9.

Before any of the prediction methods can be applied
the trend in the data must be removed, as discussed in
De-trending. As the data used in Methods 6 and 7 are dif-
ferent to previous methods, due to the data smoothing
applied to leverage different aspects of the data, the order
of the polynomial must be investigated for these new
methods. Table 1b shows that a polynomial fit of d = 1
provides the best predictions for the 52-week smoothed
data, as for large values of α the error in the polynomial
fit is exaggerated, resulting in the second order polyno-
mial fit giving much greater errors than a linear polyno-
mial fit. As Method 7 does not use the standard linear
prediction method given by Equation (2), it can no longer
be assumed that removing the trend before applying the
prediction improves the prediction method. Table 1c
shows that the predictions made using Method 7 are sig-
nificantly improved when applying the method without
removing the trend first. Therefore, Method 6 was carried
out using a polynomial fit with d = 1, and Method 7 was
carried out using d = 0, ie, the trend was not removed
before applying the prediction method, only the mean
was subtracted.

Due to the annual periodicity of the data, in Method
7 it may be beneficial to use a time-window size that is a
multiple of 13 (corresponding to a year in 4-week data).
According to Equation (7), the minimum window size is
13(m + 1). There are 84 data points in the 4-week data;
as this is a small dataset, it would be beneficial to have a
small a window size as possible to be able to predict more
data points, ie, m < 3. Therefore, for Method 7 the win-
dow size could either be w = 26 or w = 39, ie, m = 1 or
m = 2, respectively. A value of m = 1 corresponds to a
two-parameter prediction and a value of m = 2 corre-
sponds to a three-parameter prediction. Table 1d shows
that using Method 7 with two parameters seems to be
better for the prediction. Also, using two parameters cor-
responds to w = 26, which maintains consistency with
the other methods and so allows for validity of compari-
sons. Therefore, Method 7 was carried out using two
parameters (m = 1).

Final parameter values used for each of the Methods
1-7 are shown in Table 2.

3.2 | Comparison of the time-series
methods

Each box in Table 3 shows the mean error, the standard
deviation of the errors, as well as the percentage of pre-
dictions that lie within ±5% of the true value. These
results are given for standard MMSE (Method 1) along
with each of the three new prediction methods presented
in this paper (Methods 5, 6, and 7). Predictions are made
from one to seven 4-week periods ahead, as well as 1 year
ahead (thirteen 4-week periods ahead), ie, 4-week, 8-
week, 12-week, 16-week, 20-week, 24-week, 28-week,
and 52-week. Plots of the predictions for 4 weeks ahead
and 52 weeks (1 year) ahead are shown in Figures 4 and
5, respectively.

The total blood use data has been predicted for the
next 4-week period with a standard deviation in the error

TABLE 1 (Continued)

(D)

α

Number of parameters

2 3

2.98 2.71

12 0.75 0.04

3.42 3.60

TABLE 2 Optimized parameter values for each of the

Methods 1-7: time-window size (w), order of prediction (m), order

of polynomial fit (m), and fixed coefficient for backward MMSE (β).
Methods 1-4 all use the same parameter values. The additional

parameter β is only required for the backward MMSE prediction

used in Method 5

Method w m d β

1-4 26 5 2 -

5 26 5 2 9

6 26 5 1 -

7 26 1 0 -

NANDI ET AL. 7



of 2.5%, with 95% of the predictions lying within 5%. The
predictions for 52 weeks ahead achieve a standard devia-
tion in the error of about 3.4%, with 85% of the predic-
tions lying within 5% of the true value. The methods
show similar performance for short-term predictions (1-
6 months ahead), but Method 7 shows significantly
improved performance when predicting more than
6 months ahead.

As there are seven different time-series methods in
total, for each data point there exists seven different

predictions. These can be combined by calculating the
average of different prediction methods, but this was
found to show no significant improvement to the results.

4 | DISCUSSION

Here we have evaluated our proposed prediction para-
digm, incorporating three new time-series methods, to

TABLE 3 Results for each of the standard MMSE and three

new prediction methods applied to blood use data to predict

4 weeks ahead (α = 0), 8 weeks ahead (α = 1), 12 weeks ahead (α

= 2), 16 weeks ahead (α = 3), 20 weeks ahead (α = 4), 24 weeks

ahead (α = 5), 28 weeks ahead (α = 6), and 52 weeks ahead

(α = 12). In each box, corresponding to each experiment, the first

number is the mean percentage error, the second number is the

standard deviation of the percentage errors, and the third number

is the percentage of predictions that lie within ±5% of the true

value

α

Method

1 5 6 7

0 0.28 0.26 0.36 0.10

2.97 2.89 3.13 2.49

95 95 88 95

1 0.08 0.27 0.26 0.10

3.00 3.09 2.81 2.54

95 95 95 95

2 0.07 0.28 0.34 0.12

3.18 3.47 2.80 2.62

89 88 93 95

3 0.06 0.37 0.24 0.22

3.21 3.31 2.75 2.64

89 89 95 95

4 0.19 0.33 0.44 0.26

3.62 3.59 2.84 2.82

83 87 94 93

5 0.19 0.36 0.40 0.32

4.02 3.97 3.04 2.90

85 85 92 92

6 0.14 0.34 0.56 0.40

4.16 4.33 3.27 2.98

81 77 88 92

12 −0.31 −0.07 0.62 0.75

5.78 6.04 3.80 3.42

59 57 76 85

FIGURE 4 Results of the predictions using all four methods

to predict the next 4-week period. The data is shown in red. The

time index corresponds to the index of the 4-week period [Color

figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Results of the predictions using all four methods

to predict a year ahead (12 four-week periods ahead). The data is

shown in red. The time index corresponds to the index of the 4-

week period [Color figure can be viewed at wileyonlinelibrary.com]
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past RBC use data to make predictions 4 weeks, 8 weeks,
12 weeks, 16 weeks, 20 weeks, 24 weeks, 28 weeks, and
52 weeks ahead. These results show significant improve-
ments on previous predictions of blood use using time-
series data, especially for long-term predictions of more
than 6 months ahead. As such the application of these
methods may improve the effective planning of collection
to the benefit of donors and blood services.

The standard MMSE prediction (Method 1) performs
almost as well as other methods for short-term predic-
tions, but the performance degrades significantly when
predicting long-term use beyond 6 months ahead. How-
ever, the performance of Method 7 (using data points from
the same time in previous years) remains impressive for
up to a year ahead, with the potential to extend predicting
further ahead. The ability to accurately predict long-term
blood use is important for planning changes to the future
blood collection strategy. Being prepared for changes to
blood demand a year ahead presents the opportunity to
effectively predict income and plan a more efficient use of
resources throughout the blood supply chain.

The Method 7 provided predictions of aggregate use
for 4 weeks ahead with a standard deviation of 2.5%, with
95% of the predictions lying within 5% of the true value,
and for 52 weeks ahead with a standard deviation in of
3.4% with 85% of the predictions lying within 5% of the true
value. For predicting 4 weeks ahead, of the 5% of predic-
tions that lie outside 5% of the true value, a third over-
estimate use. The maximum surplus for any individual
prediction was 2047 blood units, while the maximum deficit
was 2048 blood units. For predicting 52 weeks ahead, of the
15% of predictions that lie outside 5% of the true value, 29%
overestimate use (maximum surplus of 2260 units) and 71%
underestimate use (maximum deficit of 2602 units).

These margins of error would be operationally acceptable
as the current average weekly use of RBC units in England
are approximately 27000 units or 3800 units per day averaged
over 9 months. The current stock levels of red blood cells in
the blood services and in hospitals are currently maintained
at between 8- and 10-daysʼ supply. Therefore, the blood sup-
ply chain could tolerate fluctuation in stock of 4000 units in
any 1 week. In practice, adjustments to the supply could be
made to cover such variation by minor changes to the collec-
tion schedule to maintain stable stock levels.

Previous attempts at predicting medium-term use for
a group of patients or within a region or country have
relied on simple linear extrapolation of year-on-year
trend.33,34 Generally, these methods have predicted a ris-
ing demand for blood based on demographics where the
proportion of people older than 75 years is rising, eg, in
North America and Europe. In turn, these models gener-
ated concern about potential shortfall in the supply of
blood from younger donors.35,36 However, these attempts

for medium-term forecasting have been inaccurate and
were unable to predict the trends in reduced blood use
due to changes in medical and surgical practice as well as
patient blood management.37,9 These methods have been
unsuccessful in accurately predicting medium or long-
term trends, and short-term planning has relied on time-
series methods from proprietary packages. This paper has
developed time-series methods that produce accurate
short-, medium-, and long-term predictions of blood use.

It is clear from this data set that seasonality was a sig-
nificant factor in modulating use. This is likely to be due
to strong seasonal patterns of activity in hospitals around
variation in the number, type of admission, availability of
capacity for elective surgery, and of staff. With this
dataset it is not possible to establish the exact reasons for
such seasonality but further exploration using hospital-
level data may help analyze these trends and delineate
causal factors in the seasonality of blood use.

Further improvements could be made if information
were available on changes in surgical procedure or prac-
tices in transfusion medicine and how they are being
implemented in the different regions. The data could also
be examined by location or blood group to provide a
more targeted call-up of donors, however the benefits of
this may be offset by the increased random error in deal-
ing with fewer blood units.

Also, there is certainly low but significant waste of
whole blood at blood centers and in hospital transfusion
services due to expiry of units beyond their mandated shelf-
life. This study uses national data to look at overall blood
use where the primary purpose is to allow better short- and
medium-term matching of collection and demand. Waste of
blood in hospitals would be addressed by different models
using information based on regional or hospital level data,
which is beyond the scope of this study.38

These findings of improved predictions, especially
long-term predictions, using several time-series methods
that are tailored to the specific data sets, potentially rep-
resent a significant advance in the techniques available
to predict use. The improved predictions with reduced
errors could allow greater efficiency in the call-up of
donors, scheduling of donor sessions, and manufacturing
and supply of RBCs to match demand.

In conclusion, it is important to appreciate that a
straightforward use of time-series methods would not
have produced as good results as presented in this paper.
By exploiting the annual periodicity of the time-series,
we were able to improve significantly long-term predic-
tions of blood use, with anticipated commensurate
improvement in the effectiveness and efficiency of collec-
tion. These methods are in principle capable of further
improvements using more granular local data and by
more precise alignment of the methods with the data.
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APPENDIX A

Appendix A: derivation of the Weiner-Hopf
equations
We want to predict the (n + α) data point using linear
prediction,

x̂ n+ α jn−1,n−2,…,n−mð Þ=
Xm
i=1

aix n− ið Þ

The error in the prediction is given by,

e n+ αð Þ= x n+ αð Þ− x̂ n+ αð Þ

To apply MMSE we want to minimize the mean
squared error, MSE,

MSE, f =E e nð Þ2� �

=E x n+ αð Þ− x̂ n+ αð Þ½ �2� �

Therefore, we need to solve the equations,

∂f
∂a j

=0 for j=1,2,…,m

The left hand side is given by,

∂f
∂a j

=E
∂f
∂a j

x− x̂ð Þ2
� �

=E 2 x− x̂ð Þ ∂

∂a j
x− x̂ð Þ

� �

Using the fact that,

∂x̂
∂a j

= x n− jð Þ

We end up with,

∂f
∂a j

=E 2 x− x̂ð Þx n− jð Þf g=0

E x̂ n+ αð Þx n− jð Þ−x n+ αð Þx n− jð Þf g=0

E
Xm
i=1

aix n− ið Þ
" #

x n− jð Þ
( )

=E x n+ αð Þx n− jð Þf g

Xm
i=1

aiE x n− ið Þx n− jð Þf g= rxx α+ jð Þ

Finally we get,

Xm
i=1

airxx j− ið Þ= rxx α+ jð Þ for j=1,2,…,m

These are the Weiner-Hopf equations, which can be
also written as a matrix equation,

rxx 0ð Þ rxx −1ð Þ rxx −2ð Þ … rxx 1−mð Þ
rxx 1ð Þ rxx 0ð Þ rxx −1ð Þ … rxx 2−mð Þ
rxx 2ð Þ rxx 1ð Þ rxx 0ð Þ … rxx 3−mð Þ
… … … … …

rxx m−1ð Þ rxx m−2ð Þ rxx m−3ð Þ … rxx 0ð Þ

2
666666664

3
777777775

a1

a2

a3

…

am

2
666666664

3
777777775

=

rxx α+1ð Þ
rxx α+2ð Þ
rxx α+3ð Þ

…

rxx α+mð Þ

2
666666664

3
777777775

Appendix B: error analysis for backward MMSE
Define {d(n)} as the data with the trend taken out. In
standard MMSE we use the data points {d(1), d(2), d(3), d
(4), d(5)}, assuming m = 5, to predict the next point,
d̂ f 6ð Þ,
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d̂ f 6ð Þ= a1d 5ð Þ+ a2d 4ð Þ+ a3d 3ð Þ+ a4d 2ð Þ+ a5d 1ð Þ

In Method 5, also called backward MMSE, we used
the data points {d(1), d(2), d(3), d(4), d(5)} to predict the
point d̂b 6ð Þ,

d 1ð Þ= b1d 2ð Þ+ b2d 3ð Þ+ b3d 4ð Þ+ b4d 5ð Þ+ b5d̂b 6ð Þ

d̂b 6ð Þ= 1
b5

d 1ð Þ− b1d 2ð Þ+ b2d 3ð Þ+ b3d 4ð Þ+ b4d 5ð Þ½ �½ �

We will assume, δa1 = δa2 = δa3 = δa4 = δa5 � δa,
and equivalently, δb1 = δb2 = δb3 = δb4 = δb5 � δb. Con-
sider the errors in the predictions for standard MMSE
and backward MMSE,

δd̂ f 6ð Þ= d 1ð Þ+ d 2ð Þ+ d 3ð Þ+ d 4ð Þ+ d 5ð Þ½ �δa

δd̂b 6ð Þ= δb
b5

d 2ð Þ+ d 3ð Þ+ d 4ð Þ+ d 5ð Þ+ d̂b 6ð Þ
h i

This shows that the error in the backward MMSE pre-
diction is roughly scaled by a factor of 1/b5. Therefore, for
b5 less than unity, this will negatively affect the errors on
the backward MMSE predictions. We address this prob-
lem by fixing the value of b5, referred to as β, to be larger
than unity. This parameter can be optimized for different
datasets, but in this paper we use β = 9.

Appendix C: Weiner-Hopf equations for fixed bm

We want to predict the (n + α) data point using linear
prediction, but with the bm coefficient fixed at β,

x̂ n+ αjn−1,n−2,…,n−mð Þ=
Xm−1

i=1

bix n− ið Þ+ βx n−mð Þ

Following the same procedure as in Appendix A, we
minimize the mean squared error by solving the
equations,

∂

∂b j
E x n+ αð Þ− x̂ n+ αð Þ½ �2� �� �

=0 for j=1,2,…,m

Which gives the same results are before,

E x̂ n+ αð Þx n− jð Þ−x n+ αð Þx n− jð Þf g=0

We can now substitute in the expression for x̂ to get
the required equations.

E
Xm−1

i=1

bix n− ið Þ+ βx n−mð Þ
" #

x n− jð Þ
( )

=E x n+ αð Þx n− jð Þf g

Xm
i=1

aiE x n− ið Þx n− jð Þf g+ βE x n−mð Þx n− jð Þf g= rxx α+ jð Þ

Finally we get,

Xm−1

i=1

birxx j− ið Þ+ βrxx m− jð Þ= rxx α+ jð Þ for j=1,2,…,m

These are the modified Weiner-Hopf equations,
which can also be written in matrix form,

rxx 0ð Þ rxx −1ð Þ rxx −2ð Þ … rxx 2−mð Þ
rxx 1ð Þ rxx 0ð Þ rxx −1ð Þ … rxx 3−mð Þ
rxx 2ð Þ rxx 1ð Þ rxx 0ð Þ … rxx 4−mð Þ
… … … … …

rxx m−2ð Þ rxx m−3ð Þ rxx m−4ð Þ … rxx 0ð Þ

2
666666664

3
777777775

b1

b2

b3

…

bm

2
666666664

3
777777775

=

rxx α+1ð Þ−βrxx m−1ð Þ
rxx α+2ð Þ−βrxx m−2ð Þ
rxx α+3ð Þ−βrxx m−3ð Þ

…

rxx α+mð Þ−βrxx 1ð Þ

2
666666664

3
777777775
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