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A B S T R A C T

Temporal phenotyping enables clinicians to better understand observable characteristics of a disease as it pro-
gresses. Modelling disease progression that captures interactions between phenotypes is inherently challenging.
Temporal models that capture change in disease over time can identify the key features that characterize disease
subtypes that underpin these trajectories. These models will enable clinicians to identify early warning signs of
progression in specific sub-types and therefore to make informed decisions tailored to individual patients. In this
paper, we explore two approaches to building temporal phenotypes based on the topology of data: topological
data analysis and pseudo time-series. Using type 2 diabetes data, we show that the topological data analysis
approach is able to identify disease trajectories and that pseudo time-series can infer a state space model
characterized by transitions between hidden states that represent distinct temporal phenotypes. Both approaches
highlight lipid profiles as key factors in distinguishing the phenotypes.

1. Introduction

Electronic temporal phenotyping is the identification of clinically
meaningful event sequences from patient data that have been collected
over time. The identification of temporal phenotypes that are specific to
subgroups of patients can assist researchers in identifying useful cohorts
and could also be used to generate hypotheses for precision medicine
research. What is more, they help experts to better understand the
disease in question and how it progresses over time, while ensuring that
existing guidelines and care plans are appropriate. An interesting set of
methods recently used for temporal phenotyping is represented by
temporal graphs extracted from electronic health records [1,2]. While
time-series data are ideal for such investigations [3], these are not al-
ways readily available.

Unlike most previous research that is based on extracting pheno-
types from longitudinal electronic health records, we are interested in
the construction of temporal phenotypes based on the overall structure
of data (that is not necessarily longitudinal) and the identification of
realistic trajectories through this structure in time.

Topological Data Analysis (TDA), enables structural phenotype
discovery from large, complex data by creating networks of individuals
and linking those who display demographic, clinical, and biomarker
similarities. TDA provides an analytic method for complex clinical and
-omics data to identify shape characteristics that are robust to changes
by rescaling distances resulting in a qualitative description of the data.
Leveraging methods adapted from topological mathematics, which
studies the characteristics of shapes that are not rigid, TDA approaches
consider fundamental properties like coordinate invariance, deforma-
tion invariance and compression [4,5].

TDA captures the structure of shape in data by connecting related
data points and building topological models as networks. This allows
for visualization of a “disease space”, the underlying shape of the data,
and the identification of relevant groupings as connected components
of the network. A relevant feature of TDA is that it builds a continuous
shape on top of the data, allowing to study patients’ conditions as a
continuum, where subjects can fluctuate over the disease space, moving
through the nodes of the network graph. TDA therefore differs from
clustering. As it can effectively represent continuous variation. While
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TDA exploits hierarchical clustering in building its network graph, it
adds additional precision to the groups that are formed. TDA avoids the
need of clustering methods to break things apart even if they belong
together, and local behaviors can be lost or obscured. This can be
particularly problematic in data sets that contain progressions and
where data are naturally connected (i.e. repeated observations from
EHRs), On the contrary, topological projections represent geometric
aspects beyond the breakup into clusters; as detailed in the methods
section, TDA performs clustering within overlapping sections of the
data set, preserving connections in the mined networks [6,7].

TDA provides intuitive representations of results, which are calcu-
lated using linear algebra and geometric parameters. Its simplicity and
ease of interpretation responds to a current compelling challenge of
artificial intelligence: to translate research results into transparent and
accessible tools based on data visualization and interactive data ex-
ploration [8]. Algorithms underpinning TDA are well defined [5,9,10].

Topological Data Analysis (TDA) allows one to model complex data
by focusing on capturing data shapes. While topology is a mathematical
formalism for measuring and representing shapes, TDA uses topology in
order to visualize and explore high dimensional and complex real-world
data sets and represent them as network graphs. The mathematical
tools to identify shape characteristics of data sets with topology are
called topological mappers [6,19] and they work by identifying the
shape of a data set along specific filter functions, as follows:

(1) The points in the dataset are represented with a similarity metric
that measures the distance between points in the space;

(2) The filter functions (lenses) project the points into a coordinate
space and describe the distribution of data in that space;

(3) The projections are partitioned into overlapping bins. The bins are
defined by resolution, which sets the number of bins that are cre-
ated within the projections’ range of selected lens values, and by
gain, which defines the amount of overlap between bins;

(4) A clustering step is carried out within each of these bins. This step
defines the geometric scale of the shape and is defined by the
number of clusters in each bin;

(5) Finally, the network graph is generated by plotting clusters as the
graph nodes where shared samples (between bins) are connected by
an edge.

Once the graph is generated it is possible to color nodes and edges
with the average value of filter functions or to generate a specific
function that represents variables of interest (e.g. number of observa-
tions in the bins, average age of the subject in bins etc). These features
make TDA a suitable tool to depict temporal phenotypes and the pro-
gression of diseases. Topology alone does not satisfy the temporal as-
pects of a dynamical system. However, topology, especially persistent
homology, has been considered to deal with time delay embedding
models in applications such as risk analysis and prediction of critical
transitions in financial markets [11]. TDA has been also proposed for
time series featurization without time-dependent structural assump-
tions on the data generating process [12].

In this work, we propose the joint use of pseudo time-series with
TDA in order to illustrate the temporal characteristics of disease pro-
gression, so that disease trajectories can be constructed from the data
using the topological model as a guide. A pseudo time-series (PTS)
[13,14] exploits the characteristics of disease progression so that rea-
listic trajectories can be constructed from cross-sectional data. It uses
known labels that determine the beginning and endpoints of a trajec-
tory so that a time-series can be created to better understand the me-
tabolism or cell cycles in genomic data [15,16], or the different varia-
tions of progression in diseases such as glaucoma or cancer [17]. PTS
has also been used to integrate longitudinal studies with cross-sectional
data [18]. In contrast to other unsupervised methods that provide in-
tuitive and easy to interpret visual results, such as Self Organizing
Maps, TDA outputs fundamental features (i.e. coordinate invariance,
deformation invariance) and structure as network graph allow the
straightforward application of pseudo-time inference approach.

We focus on microvascular complications of type 2 diabetes mellitus
(T2DM) and explore both TDA and PTS for building different trajec-
tories from health record data in order to better understand the tem-
poral phenotypes that can identify different sub-phenotypes of T2DM.

2. Methods

In the following, we describe our approach to discover T2DM
temporal phenotypes (Fig. 1). First, we used TDA to identify subgroups
of disease characteristics from cross-sectional record-level data, not
ordered in time; we considered these as “sub-phenotypes”. TDA is used
to identify an overall, complex structure with multiple trajectories by
applying a minimum-spanning-tree filter, which identifies a number of
feasible trajectories representing different temporal phenotypes.
Second, we explored pseudo-time approaches, which involve using a
combination of distance metrics and graph theory to reconstruct tran-
sitions among the phenotypes and infer realistic trajectories through the
data space from early disease stages through to advanced ones.

2.1. Topological data analysis

We used the Topological Data Mapper implementation described in
[5] to perform our analysis, and perform the analysis using the function
mapper2D from Topological Data Analysis using Mapper R package
[https://github.com/paultpearson/TDAmapper].

Parameterization of TDA. We used cosine distance in conjunction
with single-value decomposition (SVD) and L1-infinity centrality
(which assigns to each point the distance to the point most distant from
it) as filter functions to build the topology. This is based on the same
pipeline adopted in [20] and has been found to provide a more detailed
and succinct description of the data than typical scatterplots. We ex-
plored the effect of varying resolution parameters (i.e., number of bins
and their overlapping) and the geometric scale (i.e., the number of
clusters within bins) and using a grid search. It is important to tune
parameters and scale in order to insure a shape granularity fine enough
to detect temporal behaviors (i.e. repeated observations in time of

Fig. 1. Methodological steps: 1. TDA finds sub-phenotypes, identified as φ. 2. Pseudo-time reconstruct transitions and trajectories to derive temporal phenotypes.
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individual patients aren’t restrained within the same node). A too-
coarse granularity would result in state changes within nodes, which
might impede trajectory discovery.

Topology and clustering. The output of the TDA algorithm is a graph
object that can be analysed with a network analysis package [http://
igraph.org/]. In order to identify distinct topology sections that allow
us to retrieve sub-groups of observations, we applied the cluster optimal
function [21], which calculates the optimal community structure of a
graph, by maximizing the modularity measure over all the possible
partitions.

Minimum Spanning Tree on Topology. In order to identify specific
trajectories from the overall topology, we applied a minimum spanning
tree filter to detect the shortest paths within the topology. The weights
were based on the average time of the observations represented in the
topology’s edges. While temporal features were not used to retrieve the
original topology, the minimum spanning tree was guided by time to
illustrate disease temporal pathways.

Subject assignment to TDA trajectories. Similarity measures were
used to compare and assign individual trajectories to the ones mined by
TDA. TDA graph nodes can be seen as event data representing a model
of progression across states, where each node is identified by a fixed
index. Thus we compute Jaccard similarity to assign individual subjects
to mined trajectories, as previously exploited in the context of careflow
mining [22]. Jaccard similarity coefficients are computed between each
sequence of events that build the individual trajectory and all of the
detected trajectories (i.e. the temporal phenotypes).

For each i-subject trajectory Ti, Jaccardid is computed to compare it
to the all mined d-trajectory Td:

=
∩

∪

Jaccardid (Ti, Td) |Ti Td|
|Ti Td|

Ti (i.e. each individual) is then compared and assigned to the tra-
jectory Td with the highest Jaccardid.

For example, assuming that three trajectories are identified (Td1,
Td2, Td3), reported below as sequence of node indices, individual tra-
jectories (for example Ti for i-th subject) are compared to each Td via
Jaccard similarity. In this example the i-th subject is assigned to Td3.

It is worth noting that, while in the original trajectory Ti* a subject
could stay in a node for one or more consecutive observations from the
original data set (e.g., i-subject stays in node 41 for five consecutive
follow-ups), the mined trajectories only report the sequence of nodes.
Therefore, the information regarding the follow-ups is not used in Ti to
compute the Jaccard similarity.

Original Individual trajectory

Ti* =<415, 426, 432, 392, 403, 332, 342, 263, 271, 191>

Individual trajectory

Ti =<41, 42, 43, 39, 40, 33, 34, 26, 27, 19>

TDA mined trajectories and Jaccard similarity values

Jaccard similarity

Td1 = <41, 37, 30, 22, 15, 8, 1> 6.25 %
Td2 = <41, 42, 43, 39, 32, 24, 17, 10, 3> 26.67 %
Td3 = <41, 42, 43, 39, 40, 33, 34, 26, 19, 12, 5> 75 %

2.2. Pseudo-time series

Pseudo-time-series (PTS) methods can be used to infer state-space
models that are characterized by transitions between explicit hidden
states, representing distinct temporal phenotypes.

The idea behind PTS is to exploit resampling, distance metrics, and
assigned class labels to build realistic trajectories from one label state to
another. Here we used microvascular complications as the class label.
This is one of the main indicators of the progression of the disease for
T2DM patients [23]. Firstly, a chosen distance metric is selected for
calculating distance between all data points. Here we chose the cosine
distance for direct comparison to the TDA. Resampling is used to gen-
erate multiple distance matrices from this complete matrix for a sub-
sample of the data points. These data points are then used to build a
weighted graph (see Fig. 2a) and the associated minimum spanning tree
(Fig. 2b). Two randomly predefined points were identified as the start-
point and endpoint of a trajectory within the tree. We accepted any
sampled patient that has no microvascular complications as a potential
start and any patient with microvascular complications as a potential
endpoint. The shortest path was identified between the start-point and
the endpoint within the minimum spanning tree, resulting in a single
pseudo time-series (Fig. 2c). The entire resampling procedure was re-
peated 1000 times to generate multiple pseudo time-series.

These time-series can then be used in conjunction with the EM al-
gorithm to infer state space models that capture the dynamics of the
trajectories. This was implemented in MATLAB using the Bayes Net
Toolbox [24]. The EM algorithm was used to infer parameters and the
junction tree algorithm to perform inference within an autoregressive
Hidden Markov model.

2.3. Evaluation on simulated data

Evaluation of the joint utility of the two methods has been carried
out. We used data simulated via PTS methods to derive topologies, in
order to provide a more robust evidence for approaches that combine
the two methods.

We generated a set of simulated observations using a hidden Markov
model with five underlying hidden states that control the topology. We
then performed TDA on the simulated data to explore the capability of
the topology in capturing the original hidden states and transitions
between them, thus confirming TDA capability of reconstructing tem-
poral pathways.

Fig. 2. Generation of pseudo-time series from left to right: (a) the weighted graph of a sample of data (b) the minimum spanning tree of the weighted graph and (c)
the Pseudo Time-Series.
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2.4. Comparison with baseline methods

In [19,25], TDA results were compared with alternative un-
supervised machine learning methods, including clustering and Prin-
cipal Components Analysis (PCA). Indeed, TDA can be described as a
method combining clustering approaches (hierarchical clustering is
used to derive nodes) and PCA (lens function and their projection in a
geometrical space can be considered as the components to study the
correlation structure of the data).

While previous comparisons of TDA techniques with baseline
methods were performed on cross-sectional data, this work embeds the
temporal dimension with pseudo time techniques, which are not
exploited in the comparison, thus omitting the information about
temporal pathways. Here we compared TDA results with Self-
Organizing Maps (SOMs) [26] ones. SOMs are unsupervised approach
that allow a discretized representation of the input space preserving its
topological properties thus they seemed the most appropriate approach
for the temporal projection of data and a qualitative comparison with
temporal enriched TDA.

2.5. MOSAIC data

Data for this study was previously collected for clinical and man-
agement purposes during the MOSAIC project funded by the European
Commission under the 7th Framework Program, (Theme Virtual
Physiological Human, 2013–2016) [22,27,28]. Health records were
accumulated from 924 pre-diagnosed T2DM patients, which resulted in
13,623 instances in our data set. Risk factors found to influence T2DM
[28] include: body mass index (BMI), systolic blood pressure (SBP),
diastolic blood pressure (DBP), high-density lipoprotein (HDL), trigly-
cerides, glycated hemoglobin (HbA1c), total cholesterol and smoking
habits. Accordingly with previous studies on the MOSAIC project [28],
the experimental results were mined for microvascular comorbidities
(diabetic nephropathy, neuropathy, and retinopathy).The following
variables were used to build the topology and pseudo time-series: age,
smoking habit, HbA1c, BMI, SBP, total cholesterol, and triglycerides.
Continuous variables were normalized on a -1 to +1 scale. While we
did not exploit the temporal nature of this data for phenotype identi-
fication, we used the fact that many of these patients had varying
follow-up measurements to evaluate our trajectories. In particular, we
used time-since-first-visit to assess whether the trajectories correctly
model patient progression.

Microvascular comorbidities onset was contrasted in subjects be-
longing to the discovered trajectories using Kaplan Meier visualization.
Given the results obtained by the Kaplan-Meier analyses, we in-
vestigated whether the mined patients’ groups were significant pre-
dictors of the onset of microvascular complications if we consider also
the available clinical variables in a statistical model. To this end, we
have carried out a multivariate survival analysis by using Cox-
Regression to predict onset probabilities.

3. Results

3.1. Topological data analysis

The graphs in Figs. 3 and 4 illustrate the result produced by the TDA
algorithm. Each node represents a cluster of data points as observations
in time (i.e., an encounter in the MOSAIC data set). The nodes are co-
loured with the time (days) from the first visit of each encounter.
Fig. 5a reports the distribution of the value on a continuous colour scale
from blue (time=0 days from the first visit) to red (time= 4000 days
from the first visit).

First, we explored the effect of varying the number of clusters within
each bin, which defines the geometric scale of the topology (Fig. 3a). In
general, a lower value results in very small clusters (sometimes in-
dividual data points), and for higher values the network starts to

become extremely sparse or loosely connected. In both cases, edges,
which are based on shared samples, are impossible to extract and re-
sulting shapes don’t show any relevant topological features. Fig. 3a
demonstrates a relatively stable topology for between eight and 12
clusters per bin. For the remainder of the analysis we chose a value of
10. Secondly, we explored the resolution scale while also varying the
degree of cluster overlap (gain) when determining the topology
(Fig. 3b). In general, higher gain results in more edges. Increasing the
resolution of a graph increases the number of bins. In Fig. 3b the hor-
izontal axis represents the number of overlapping intervals and the
vertical axis represents the percentage overlap. Note that while the
percentage doesn't affect the shape considerably, the interval sizes be-
tween 6 and 14 enable a stable shape. For higher values, the network
becomes too unstable and it is more difficult to recognize any char-
acteristic shape or trajectories within the network.

Fig. 4 illustrates a stable topology generated with seven bins, 60 %
overlap, and a geometric scale of 8; this is the one used in the following
analysis steps. Fig. 4a reports the topology enriched by time from the
first visit, whose distribution is given in the bottom panel. It is possible
to identify a clear temporal direction from the blue bottom node to-
wards the red nodes, thus indicating that the temporal progression itself
can be reconstructed by TDA. Furthermore, Fig. 4b reports the topology
enriched by the five clusters obtained applying the optimal community
structure cluster on TDA results. Fig. 5 illustrates the follow-up time
distributions in each cluster, indicating how TDA is able to reconstruct
clusters’ temporal progression (see the increase in time density dis-
tributions form Cluster 1 to Cluster 5), even if the time-dependent
structure of the generating process is not explicitly represented in the
input.

The minimum spanning tree identified seven distinct trajectories
(Fig. 4c); all of which start from the central blue cluster which accounts
for the first observations in time. We manually grouped the mined
trajectories on the basis of their final state as follows: A) the two tra-
jectories that lead to the red clusters, B) the two trajectories that lead to
the orange clusters and C) the three trajectories that lead to the yellow
clusters past the green clusters. These three groups represent disease
progression phenotypes, which we refer to as temporal phenotypes.

3.2. Pseudo-time trajectories

As previously shown, Fig. 2a reports the weighted graph constructed
on the basis of a cosine distance. This graph was used to construct the
minimum spanning tree (Fig. 2b). Randomly predefined points were
identified as the start-point and endpoint of a trajectory. One data point
classed as having no microvascular complications was randomly se-
lected as a starting point, and one data point classed as having at least
one microvascular complication is randomly selected as an end point.

The shortest path was identified between the start-point and the
endpoint within the minimum spanning tree, resulting in a single
pseudo time-series (Fig. 2c). The entire resampling procedure was re-
peated 1000 times to generate multiple pseudo time-series. Fig. 6 il-
lustrates the cosine distance plot enriched with the information about
having developed or not a micro vascular complication during the ob-
servation period. The pseudo time series (10 samples and all of them)
have been plotted upon the graph showing the correlation between
trajectories of disease and complications. Having constructed 1000
pseudo-time series, we used an Autoregressive Hidden Markov Model
(ARHMM) with 5 discrete hidden states to build a model to capture the
dynamics of the different trajectories through the data. The 5 under-
lying classes were selected based upon experimentation of a number of
clinical datasets using PTS methods in [17].

3.3. Clinical assessment

Using data from T2DM patients, we created a topological data
network, selecting the network with the most stable topology, and
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enriched the topology with time-from-the-first-visit information. This
process revealed potential trajectories for disease progression (Fig. 3a)
and sub-groups of observations from the topology clustering (Fig. 3b).
Having identified the most suitable topology, the graph was used to
build a minimum spanning tree in order to identify pseudo-time-based

trajectories (Fig. 3c). Using this approach, seven potential trajectories
were identified. These trajectories have been grouped in three temporal
phenotypes: A, B and C (Fig. 3c), which show the progression of each
trajectory (each one representing a T2DM temporal phenotype) towards
the disease’s deterioration and distinct outcomes.

Fig. 3. Topologies a) varying Geometric Scale and b) varying Resolution Scale and Percentage Cluster Overlap (gain).

Fig. 4. The network retrieved via TDA and displayed with igraph. In a) nodes are coloured by time from the first visit, in b) with the cluster membership. In c) The
Minimum Spanning Tree identifies trajectories of patients. The node colouring is based upon the clustering membership. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article).
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We characterize these phenotypes using relevant clinical features
values at baseline (Table 1), and as they develop in time (Fig. 7). Pa-
tients belonging to the C phenotype demonstrated higher cholesterol
levels and systolic blood pressure at baseline and over time. Further, the
A phenotype shows a higher and increasing level of HbA1c, a de-
creasing and then increasing trend of cholesterol, and an increasing
trend of triglycerides.

Temporal phenotypes were compared in terms of microvascular
complications’ onset. We considered the registered onset date of mi-
crovascular complications as main endpoint, and Kaplan-Meier analysis
finds a statistically significant difference (p < 0.0001) among tem-
poral phenotypes. Looking at complications disease-free survival
(Fig. 8), the group with the worst prognosis is represented by pheno-
type A. Therefore, minimum spanning tree paths can identify groups of
patients more (A phenotype) or less (C phenotype) exposed to the de-
velopment of T2DM-related complications over time.

We further investigated whether the phenotypes were significant
predictors of the onset of microvascular complications by Cox-
Regression. Results in terms of Hazard Ratios (HR) are shown in Fig. 9.
It is possible to note that the mined temporal phenotypes are significant
predictors of complications, even when adjusting for clinical data,
where subject assigned to the phenotypes identified by the A

trajectories have a significant higher risk (p < 0.001, HR=9.71,
Confidence Interval= 8.59, 10.99) when compared to C trajectories.

We now turn to the pseudo-time approach where we have inferred a
five-state Auto Regressive Hidden Markov Model from the 1000 pseudo
time-series generated from the original data. Table 2illustrates the ex-
pected values for the key features of the data for each of the five hidden
states.

Looking at the expected statistics in Table 2, State 1 represents
younger patients who have the shortest period of time since their first
visit, State 2 represents the oldest patients, State 3 represents people
with the highest Hba1c and SBP values and are the patients who have
been visiting for the longest of time since their first visit, State 4 re-
presents older patients who have been visiting for a relatively long
period, while State 5 represents the youngest patients with the highest
BMI.

Table 3 illustrates the transition probabilities between these states.
The transition probabilities in Table 3 indicate that all states are far
more likely to remain the same than to change. The highest transition
probabilities from one state to another are reported in bold. This is
presented as a diagram in Fig. 10a, which captures a natural flow from
State 5 to two potential End-States 3 and 4. This flow is supported by a
general increase in the expected time-since-first-visit (t2d) shown in the

Fig. 5. Follow-up time distributions in the optimal community structure clusters.

Fig. 6. Left: Multidimensional Scale plot of Cosine Distance where red represents patients with at least one microvascular complication, and black represents none.
Middle: Cosine Plot with 10 sample Pseudo-time Series trajectories plotted, right: Full 1000 Pseudo-time Series Generated. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article).

A. Dagliati, et al. Artificial Intelligence In Medicine 108 (2020) 101930

6



diagram, as well as increasing age. End-State 3 represents patients with
very high hb1ac and relatively lower cholesterol whereas End-State 4
captures older patients with relatively higher cholesterol but lower

hb1ac and very low triglyceride levels. Fig. 10b shows two potential
trajectories in the form of state transitions based on the HMM model:
State transitions 5-1-4 and 5-1-2-3, for patients' triglycerides (left) and
cholesterol (right). It is interesting to note that the lipid profiles were
discovered as a defining characteristic of the two trajectories, similar to
the TDA results in Fig. 7.

3.4. Simulated data

In order to assess the joint use of pseudo time approaches with TDA
methods, and the capability of the latter to catch temporal progressions,
we performed a set of analyses on longitudinal simulated data (7500
observations) generated from an autoregressive hidden Markov model
with five underlying hidden states and two observed variables, X and Y.

The transition probabilities were hand-coded into the model as
shown in Table 4, whilst the initial and emission probabilities were
hand-coded to ensure a realistic progression from the initial starting
state (State 1) to two potential endpoints (States 4 and 5). The dis-
tributions of the generated data for X and Y for each of the five hidden
states are reported in Fig. 11, the hidden state distribution in Fig. 12.

Given the structure of the simulated data, we run TDA using
Euclidean distance and X and Y as functions. Node enrichment was then

Table 1
Baseline characteristics – continuous variables are compared with ANOVA, Time from Diagnosis and Triglycerides by Kruskal Wallis test and gender by chi-square.

Temporal Phenotype p-value

A B C

Total Number of Subjects 191 574 159
Gender Male - N(%) 107 (56 %) 340 (59.1 %) 94 (59.1 %) 0.727
Age - Mean (SD) 63.99(12.07) 64.43(9.99) 66.18(9) 0.007
Time from Diagnosis – Median (IQR) 4.81(13.1) 7.1(10.3) 10.1(10.2) 0.497
Hba1c - Mean (SD) 58.63(16.8) 55.28(15.61) 54.99(12.79) 0.547
BMI - Mean (SD) 30.27(6.06) 29.6(4.94) 28.8(4.54) 0.288
Cholesterol - Mean (SD) 184.94(36.31) 185.53(31.56) 186.96(29.24) <0.001
Triglycerides - – Median (IQR) 139(77.8) 127(63.3) 119(51.5) 0.20
SBP - Mean (SD) 131.98 (17) 132.16 (14.12) 135.4 (14.04) 0.008

Fig. 7. Clinical characteristics over time of subjects in the A (red-dashed), B (orange-dotted) and C trajectories (yellow-continuous) – in all he panels, x-axis indicate
time, in days, from the first visit. Values of the y-axis indicate Age in years, BMI in kg/m2, Hba1C in mmol/mol, SBP in mm Hg, Cholesterol and Triglycerides in mg/
dL. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

Fig. 8. Kaplan Meier curves having the onset of micro vascular complication as
endpoints.
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performed indicating the most frequent hidden state in the node. TDA
parameter selection was performed with grid search as in the original
application, but with slightly different intervals due to differing num-
bers of observations: between six and 10 clusters per bin to define the
Geometric scale, between five and 10 intervals and between 40 % and

60 % of overlap for the resolution scale. We applied a MST filter with
weights based on the index of the nodes, indeed indexes reflect the
“topological proximity” of the nodes and the monotonicity of the
functions in the simulated data.

While we had to compare TDA results with the model that generated
the simulation, we fixed some further criteria for parameters selection,
requiring:

• Fully connected networks (i.e. having number of components equal
to one);

• Hidden States’ distributions in nodes similar to the original dis-
tribution (compared via Pearson correlation);

• Average path lengths close to 5, as the number of hidden states.

Table 5 reports the top 10 parameters combinations with highest
values of Pearson correlation in fully connected networks. Fig. 13 il-
lustrates the topology and MST obtained with 7 Intervals, 6 Bins and an
overlap percentage of 50 %.

While the capability of the topology in capturing hidden states was
somewhat supported by choosing a set of parameters able to reproduce
the Hidden State distribution in the TDA edges, the trajectories, which
were derived from the MST exclusively on the basis of topological
features, closely reproduce the transitions among Hidden States.

On the left side of Fig. 13 is possible to observe that out of the 52
edges modelled by TDA the majority of them belong to Hidden State 4
(n= 15, %=28.8) or State 5 (n=20, %=38.46), while they are
quite evenly distributed in the remaining ones. More interestingly, on
the right side of Fig. 13 and in Fig. 14, is possible to note how the MST
is able to retrieve 7 trajectories: all of them progress from the initial
State 1(in blue) to two potential end-States 5 (in red), and 4 (in orange).

Fig. 9. Cox Regression results reported as Hazard Ratio + 95 % Confidence Interval for Hazard Ratio and significance codes for the onset of microvascular
complications.

Table 2
Expected values for the five hidden states, where t2d represents time-since-first-
visit, TotChol represents total cholesterol and Trigl represents triglycerides.
Highest values are indicated in boldface.

State 1 2 3 4 5

% Female 0 0 0 50 59
% Male 100 100 100 50 41
Age 59.16 69.41 63.7 67.78 56
t2d 3.77 9.76 13.4 11.86 5.42
HbA1c 47.66 50.3 62.6 53.54 60.7
BMI 28.1 27.58 30.07 30.31 31.02
SBP 129.59 129.5 136.08 134.8 132.73
TotChol 187.51 167.28 183.7 188.86 207.62
Trigl 126.98 108.13 136.71 124.38 232.46

Table 3
State transition matrix.

State 1 State 2 State 3 State 4 State 5

State 1 0.733 0.145 0.023 0.084 0.015
State 2 0.036 0.866 0.049 0.049 0
State 3 0.055 0.127 0.678 0.132 0.007
State 4 0.159 0.113 0.157 0.542 0.029
State 5 0.134 0 0.107 0.140 0.618

A. Dagliati, et al. Artificial Intelligence In Medicine 108 (2020) 101930

8



Comparing these results with the transition matrix in Table 4, is
possible to observe that the topology not only identifies the same end-
States, but it also captures similar transitions among Hidden States:

• Trajectories from State 1 (blue) to State 3 (yellow) to 5 (red) in
Fig. 13, which are also indicated by the distributions of states in
nodes from 4 to 42, 34, and 40 in the histograms in the top part of
Fig. 13.

• Trajectories from State 1 (blue) to State 2 (green) to 4 (orange) in
Fig. 13, and in histograms in the bottom part in Fig. 13, with nodes
from 4 to 28, 29, and 36.

3.5. Comparison with SOMs

We compare TDA results with cluster analysis based on SOM. In
order to reproduce a similar granularity and replicate the same geo-
metric scale of the TDA, we choose a SOM grid of 8×8 nodes. Results

of the Kohonen Heatmap for each of the variable used to build the map
are shown in Fig. 15.

In order to compare the outputs of SOM with the Topological
Mapper, we also provide Kohonen Heatmap coloured with (i) the
temporal dimension used to construct TDA trajectories, (ii) the results
of hierarchical clustering on the SOM codebook vectors (with a fixed
number of clusters of five as in TDA) and (iii) the presence of micro-
vascular complications in Fig. 16.

Unlike the TDA, where it was possible to enhance the topologies
with pseudo-time inference and represent the temporal dimension as a
set of initial points concentrated in the topology, that then spread
across the final ones (Fig. 5), SOM clusters identify compact sets of
longitudinal observations (Fig. 17), thus failing to reconstruct a well-
defined temporal progression from the clusters.

Although SOM clusters are not able to identify temporal sequences
of states (they do not represent temporal phenotypes), we assigned to
each subject his/her majority cluster over the whole observation period
(i.e. the cluster accounting for the highest number of observations) to
validate of SOM results. We compared clusters by mean of micro-
vascular complications (Fig. 18) and clinical characteristics (Fig. 19).

While results suggest that SOM are not able to clearly capture dis-
ease progressions as temporal phenotypes, the mined clusters have
significant difference in terms of complications onset. In particular, the
group with the best prognosis in term of complications disease-free
survival is represented by cluster 3. Notably, subjects assigned to this
cluster are the youngest, they have high but stable measures of BMI,
decreasing and then increasing values of HbA1c and higher values of

Fig. 10. a) transition Diagram with expected time since first visit. b) Mean statistics for two trajectories 5-1-4 (dashed) and 5-1-2-3 (solid) for Triglycerides (left) and
Cholesterol (right).

Table 4
State transition matrix in the simulated data.

State 1 State 2 State 3 State 4 State 5

State 1 0.8 0.05 0.05 0.05 0.05
State 2 0.1 0.8 0 0.1 0
State 3 0.1 0 0.8 0 0.1
State 4 0 0 0 1 0
State 5 0 0 0 0 1

Fig. 11. Simulated variables X and Y distributions in Hidden States. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article).
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Triglycerides as compared to the other clusters.

4. Discussion

In this paper we present a comparison of two approaches to auto-
matically building temporal phenotypes from electronic health records.
TDA has been used to capture the overall shape of the data and a
minimum spanning tree filter was applied to identify different trajec-
tories. This approach highlighted subcategories of T2DM including one
sub-cohort that displays different levels of cholesterol and initial Hba1c
from the rest of the population. We also explored the use of PTS
methods where different trajectories have been bootstrapped from the
data and a state-space model was learned with five hidden states. This
approach has identified only two trajectories; however, these are
clinically relevant and support the findings made using TDA.

Neither TDA nor PTS relied on temporal features of the data in the
health records to build these models. As a result, both approaches could
be used to construct temporal phenotypes from cross-sectional data if
appropriate disease staging information is included. Here we used mi-
crovascular comorbidity data, but any data that helps to stage a disease
could be used. Both TDA and PTS show that in the studied population

Fig. 12. State distribution in the simulated data.

Table 5
TDA parameters combinations together with Distribution criteria and Average
Path Length.

Number of
Intervals

Overlap
Percentage

Number of
Bins

Hidden States
Distribution - Pearson
Correlation with
original distribution

Average
Path Length

7 50 6 0.9449133 5.167059
7 45 6 0.9408602 5.596531
8 55 6 0.934875 5.828645
7 60 6 0.9291068 5.517241
7 40 6 0.9231947 5.682504
7 55 6 0.9135777 5.167677
7 60 8 0.9076339 5.308756
8 60 6 0.8985553 5.930751
7 55 8 0.877915 5.523086
8 60 8 0.8769934 5.983423

Fig. 13. Topology and MST trajectories on Simulated data. Both are enriched with the majority Hidden State in each node. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article).
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Fig. 14. Hidden states distribution in the MST trajectories, progressing through the topology. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article).

Fig. 15. SOMs results: Kohonen Heatmap colored with clinical variables mean values. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article).

Fig. 16. SOM results enriched with time, derived cluster and Micro vascular complications as outcome.
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subjects tend to be relatively stable (they stay in Cluster 1, Status 1) –
although subjects follow specific trajectories in deterioration of the
disease, in this case measured as onset of micro vascular complications.

Baseline clinical values in the temporal phenotypes are comparable;
however, their evolution in time differ. In particular, one of the mined
trajectories (trajectory A) indicates a significant and rapid disease
progression and higher risk in developing complications, which can also
be seen in increasing values of HbA1c and triglycerides.

The robustness of the analysis pipeline has been validated following
an inverse approach, where TDA was applied on data simulated via
PTS. Results shown that TDA was able to track and reconstruct transi-
tions among hidden states, thus indicating that the topology is able to
embed and efficiently reconstruct pseudo temporal dimensions. On the
contrary, when we analysed the same data via SOM, it wasn’t possible
to retrieve well-defined temporal pathways, neither to map the relevant
temporal phenotypes.

In this work, topologies are selected on the basis of grid search and
qualitative evaluations. Further efforts are needed to classify the mined
topologies and to compare different TDA parameter sets, in order to
assess the stability of the results in a more rigorous and quantitative
way. This can be achieved either studying the properties of topological
stability, or by exploiting graph properties and invariants.

While the trajectories are derived from the exploitation of MSTs, a
manual step is performed in order to aggregate the mined trajectories in
temporal phenotypes (i.e. form 7 trajectories to 3 phenotypes based on
the attractor final state). Further work is needed to embed this step in a
structured model selection and evaluation approach, based on a specific
statistical framework [29].

PTS investigated only a 5-hidden-state ARHMM, as suggested by the
topology clustering. It is likely that for larger datasets, representing
more heterogenous populations (e.g. multi morbidity cohorts), the
number of hidden states could be much higher and as a result more
complex trajectories can be discovered.

Pseudo-time analysis results validation and comparison with a re-
ference time line depends from the clinical problem, the data avail-
ability and the left censoring strategies. In the current study we use the
follow-up time from the first at the hospital to assess whether the tra-
jectories correctly model patient progression. While the progression
into stages drawn by pseudo-time is independent by the first observa-
tion, a better time reference to depict the stages of a disease progression
might be the time form diagnosis.

Our approach has a clear application in precision medicine, espe-
cially for chronic diseases like T2DM. Temporal phenotypes can be
exploited to compare responses to therapies and to find novel bio-
markers that are able to discern responses during the disease’s pro-
gression. Some examples are already available, where TDA has been
used for classification purposes [30], and it can be exploited to illus-
trate deviations in the disease space drawn from probabilities of moving
forward into nodes with higher density of complications.

Another important advancement in the analysis of temporal tra-
jectories would compare treatments for individual patients and their
possible use for comparing disease deviations or adverse outcomes
[31–34], which could be naturally integrated into clinical decision
support systems. Our approach could facilitate the integration of tem-
poral phenotypes into these systems thanks to its methodological rigor
and the possibility of studying continuous transitions among states, but
also to the possibility of visually delivering and explaining its results in
a clear and understandable way to researchers and clinicians.
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Fig. 17. Follow-up time distributions in the SOM clusters.

Fig. 18. Kaplan Meier curves having the onset of micro vascular complication
as endpoints in SOM clusters.
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