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a b s t r a c t 

A long-term N 2 O dataset from a full-scale biological process was analysed for knowledge discovery. Non- 

parametric, multivariate timeseries changepoint detection techniques were applied to operational vari- 

ables (i.e. NH 4 -N loads) in the system. The majority of changepoints, could be linked with the observed 

changes of the N 2 O emissions profile. The results showed that even three-day sampling campaigns be- 

tween changepoints have a high probability ( > 80%) to result to an emission factor (EF) quantification 

with ~10% error. The analysis revealed that support vector machine (SVM) classification models can be 

trained to detect operational behaviour of the system and the expected range of N 2 O emission loads. 

The proposed approach can be applied when long-term online sampling is not feasible (due to budget or 

equipment limitations) to identify N 2 O emissions “hotspot” periods and guide towards the identification 

of operational periods requiring extensive investigation of N 2 O pathways generation. 

© 2020 The Authors. Published by Elsevier Ltd. 
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1

 

m  

o  

c  

a  

t  

t  

s

 

n  

i  

a  

(  

N  

m  

t  

a  

o  

r  

s  

o  

W  

t  

u  

c  

o  

c  

 

s  

l  

s  

t  

t  

o

 

a  

s  

D  

t  

t  

d  

f  

h

0

. Introduction 

Nitrous oxide (N 2 O) emitted during biological nutrients re-

oval, can significantly contribute to the total carbon footprint

f Wastewater Treatment Plants (WWTPs). The recent roadmap to

arbon neutrality in urban water published by Water and Wastew-

ter Utilities for Climate Mitigation (WaCCliM) project and the In-

ernational Water Association (IWA) ( Ballard et al., 2018 ), states

hat direct N 2 O should be considered for the carbon footprint as-

essment and reporting. 

N 2 O fluxes in wastewater processes are characterised by sig-

ificant spatial and temporal variability due to the different

nteracting biological processes that consume or produce N 2 O

nd the variation of operational and environmental conditions

 Daelman et al., 2015 ; Gruber et al., 2019 ). A recent analysis of

 2 O emission factors (EF) for over 70 full-scale wastewater treat-

ent processes revealed that the sampling frequency and sampling

echniques applied in N 2 O monitoring campaigns, can significantly

ffect the quantified EFs ( Vasilaki et al., 2019 ). For instance, most

f the monitoring campaigns lasting less than one month have

eported EFs less than 0.3 % of the N-load. On the other hand,

tudies lasting over a year result in a median EF equal to 1.7 %
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f the N-load. The IPCC guidelines for the estimation of N 2 O in

WTPs were updated in 2019; the suggesting an EF of 1.6 % for of

he total N-load ( IPCC, 2019 ). However, uncertainties remain; the

se of measured emissions data is suggested for the estimation of

ountry-specific EF in large WWTPs (IPCC, 2019). The development

f process-based reliable N 2 O EFs requires long-term monitoring

ampaigns of over 1-year ( Gruber et al., 2019 ; Vasilaki et al., 2019 ).

Long-term N 2 O sampling (continuous or via grab-samples) is

till rarely performed in WWTPs. High cost and complexities of

ong-term online monitoring are the main limiting factor. There is

till lack of a holistic low-cost, practical approach for the quan-

ification of N 2 O EFs. Therefore, new approaches are required for

he quantification of EFs, minimizing sampling rate and advising

n the duration and frequency of sampling campaigns. 

A large amount of raw, heterogeneous operational data is

vailable from WWTP operations ( Olsson et al., 2014 ). Several

tudies have demonstrated that utilisation of historical data (i.e.

O, mixed liquor suspended solids (MLSS), NH 4 
+ concentra-

ions) from WWTPs can feed statistical methods and predict

he profile of target process variables or key performance in-

icators that cannot be monitored online; an overview can be

ound in the study of Haimi et al. (2013) . Additionally, data-

riven techniques have been extensively used to capture the non-

inearities and complex structures of wastewater treatment pro-

esses towards their optimisation, monitoring and better control
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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( Haimi et al., 2013 ; Corominas et al., 2018 ; Newhart et al., 2019 ).

Vasilaki et al. (2018) showed that variables monitored online can

be utilised to provide insights on the long-term behaviour and

abrupt changes of N 2 O dynamics with the application of clustering

and dimensionality reduction techniques. However, advanced infor-

mation extraction methods have rarely been used to analyse data

from N 2 O monitoring campaigns. Recently, Sun et al. (2017) devel-

oped a back-propagation artificial neural network (ANN) to simu-

late N 2 O emissions in an anaerobic-oxic (A/O) process. The authors

demonstrated the feasibility and simplicity of predicting N 2 O emis-

sions with the use of data-driven models. 

Univariate and multivariate changepoint detection techniques

have been widely used to detect changes in underlying distribu-

tion of sequences and regime shifts in several applications in-

cluding investigation of distributional changes in financial mar-

kets ( Allen et al., 2018 ) and climate change investigation stud-

ies ( Kotta et al., 2018 ). Li et al. (2015) , recently, applied a

non-parametric multivariate changepoint detection algorithm (e-

divisive; ( James and Matteson, 2013 )) to detect changes in water

quality variables in a shallow lake (total nitrogen, total phosphorus

and Chlorophyll) and linked the changepoints (CPs) with changes

in the dynamics and patterns of sediment release. 

In this work, the most prevalent sampling approaches in

wastewater industry are presented and compared. A data-driven

sampling approach and two conventional monitoring approaches

have been compared and assessed. The result of the comparison

proposes the most accurate and efficient amongst the three meth-

ods. Specifically, an approach that uses CPs to analyze the be-

haviour of online monitored variables linked with N 2 O generation

(i.e. DO, NH 4 
+ ), is proposed, to detect i) periods (between the CP

intervals) with steady N 2 O emissions profile and ii) changes in

the temporal range and dynamics of N 2 O emissions. Multivariate

changepoint detection was applied to identify structural changes

in the variables monitored online (i.e. NH 4 
+ , DO, flow-rate, NO 3 

−)

in a full-scale Carrousel reactor. Subsequently, the CPs were linked

with changes in the N 2 O emissions behaviour and range during a

15-month monitoring campaign ( Daelman et al., 2015 ). A classifi-

cation model was developed to predict the range of N 2 O emission

loads (i.e. low, medium, high) based on the CP intervals. This ap-

proach can support operators to minimise GHG sampling require-

ments, without compromising long-term EF estimates. The accu-

rate quantification of annual N 2 O EF requires samples collection

between all CP intervals and a few sampling days can be sufficient

to estimate a representative EF for different CP intervals. The clas-

sification model can support the estimation of the N 2 O emission

range for new incoming data in the WWTP. 

2. Materials and methods 

2.1. Process description and the source of data 

N 2 O measurements and the extensive data-set of the opera-

tional variables from the studies of Daelman et al. (2015) and

Vasilaki et al. (2018) were used in the analysis. The dataset be-

longs to one of the longest N 2 O monitoring campaigns undertaken

in the wastewater sector (15 months). Aplug-flow reactor linked

with two subsequent parallel Carrousel reactors was monitored.

A full description of the WWTP can be found in the study of

Daelman et al. (2015) . 

The analysis and the development of the methodological ap-

proach were based on data obtained from the Carrousel reactor 1.

The data matrix used in the analysis, the location of the sensors

in the system and the details of the operational control are pro-

vided in the study of Vasilaki et al. (2018) . The system includes

the following probes: DO (DO1, DO2, DO3) in the beginning, mid-

dle and end of the Carrousel reactor, ammonium nitrogen (NH -N)
4 
nd nitrate nitrogen (NO 3 -N) in the effluent of the Carrousel reac-

or, NH 4 -N from the middle of the second oxic zone in the plug

ow reactor, temperature and influent flow-rate. The flow-chart of

he secondary treatment is provided in the supplementary infor-

ation. 

The behaviour of N 2 O emissions at Carrousel reactor 1 showed

 high level of volatility during the 15-month monitoring cam-

aign and characterised by significant diurnal and seasonal vari-

tions (see supplementary material). The daily emission loads

anged from < 0.004 kg N 2 O / day to > 150 kg N 2 O / day.

aelman et al. (2013) simulated different sam pling strategies,

ased on data collected from the same plug-flow – Carrousel re-

ctor linking EFs with different sampling strategies. The authors

imulated the sampling strategies using a long-term dataset. They

eported that short-term campaigns (grab sample, 24 h and 7-day

ampling), cannot accurately estimate annual EFs, while there is a

igh probability to underestimate actual emissions. The relative er-

or of the estimated annual N 2 O emissions ranged between -22 %

nd 35 % (95 % of the cases) by simulating a 50-days N 2 O sampling

ampaign (random 24h periods on working days were selected).

he authors found that long-term offline/online sampling capturing

easonality and temperature effects is needed for reliable EF as-

essment. Reliable estimation of N 2 O emissions, can provide guid-

nce on N 2 O mitigation measures and support WWTPs towards

heir carbon neutrality goals. However, there is high cost and re-

ources related to long-term, of N 2 O online monitoring. Therefore,

inimizing the sampling requirements can help water utilities to

ntegrate N 2 O monitoring in practice. 

Vasilaki et al. (2018) applied a changepoint detection technique

n the N 2 O emissions hourly time-series in Carrousel reactor 1,

ombined with hierarchical k -means clustering to investigate the

 2 O emission patterns and identify links with the variables mon-

tored online. The study concluded that i) the dependencies be-

ween N 2 O and other operational variables (i.e. NH 4 
+ , NO 3 

−, DO)

aried in different sub-periods, ii) the system disturbances are

ainly linked with events of elevated influent flow-rates, iii) spe-

ific ranges of operating variables have historically resulted in low

r high ranges of N 2 O in the different sub-periods. These find-

ngs have been used to develop the methodological framework of

ection 2.2 . 

.2. Methodological framework and data analytics 

Fig. 1 summarises the methodology applied in the cur-

ent study. Pre-processed data obtained from the work of

asilaki et. al. (2018) were used in the analysis. The previous ex-

mination showed that disturbances (i.e. precipitation events) sig-

ificantly affect the NH 4 -N effluent concentrations. Thus, the first

tep of the analysis was to isolate and categorize abnormal diur-

al pattern of the influent flow-rate that affected system perfor-

ance. Subsequently, sensor data were used to segment the be-

aviour of the system into sub-periods with different behaviour

nd operational variables ranges (i.e. NH 4 -N, DO). The aim was to

nvestigate whether changes in the N 2 O emissions coincide with

he changes in the range of operational variables. For this purpose,

ultivariate changepoint detection techniques were applied to cat-

gorize one-year historical sensor data into sub-periods exhibiting

ifferent pattern. The sequential segmentation of the operational

ariables enabled the quantification of N 2 O EF over 1 year using

 small number of random samples between segments. Average

stimated N 2 O emissions were then compared with the respec-

ive EFs from conventional monitoring techniques (equivalent sam-

ling duration), following the methodology applied in the study of

aelman et al. (2013) . Finally, features were extracted represent-

ng the diurnal pattern of the operational variables and classifica-

ion models were trained to predict the range of N O emissions.
2 
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Fig. 1. Methodology used for the data-driven estimation of duration of monitoring campaign and sampling frequency. The analysis is based on historical data and the 

development of SVM and RF classifiers to predict N 2 O emissions range. 
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he analysis was based on the N 2 O emission ranges between the

hangepoint segments. 

.2.1. Identification and isolation of influent-flow-rate increase 

A variation in the behaviour of the online monitored vari-

bles was observed during the campaign. Previous analysis

 Vasilaki et al., 2018 ) showed that abrupt and rapid increases in

he influent flow-rate were linked with precipitation events and

ften resulted into peaks in ammonium concentration in the efflu-

nt of the Carrousel reactor. The following steps were performed

n order to detect and isolate diurnal influent flow-rate patterns

hat affected the system’s performance ( Fig. 1 ): i) features were

xtracted representing the diurnal behaviour of influent flow-rate

nd ammonium concentration (i.e. daily mean), ii) the selected fea-

ures were transformed into a lower dimension space using prin-

ipal component analysis (PCA) and iii) density-based spatial clus-

ering of applications with Noise (DBSCAN) was applied to detect

ays that did not exhibit the expected dynamics and range of the

arget variables. 

PCA ( Jolliffe, 2002 ) was applied to reduce feature dimensional-

ty by eliminating a proportion of variance in data. Subsequently,

BSCAN ( Ester et al., 1996 ) was applied to the features and clus-

ers with regions of high and low density. DBSCAN has been ap-

lied in various studies to identify outliers considering multivari-

te sensor data (i.e. precipitation, humidity) ( Saeedi Emadi and

azinani, 2018 ). DBSCAN was applied to the first three PCs ex-

racted from the selected feature vector (explaining ~90% of the to-

al variance) to isolate data at a distance greater than a pre-defined

istance. DBSCAN was executed in the R package ( Hahsler et al.,

017 ); details are provided in Vasilaki et al. (2020) . 

.2.2. Changepoint detection 

Following a similar approach to the respective one applied in

he study of Li et al. (2015) , the aim was to investigate whether

istributional changes and level shifts of variables conventionally

onitored in wastewater systems can be used to detect changes

n the range and formation of N 2 O emissions. Identifying changes

n the online data collected from wastewater treatment processes

s not straight forward; the time-series consist of a combination
f seasonal, gradual and abrupt changes. For this purpose, the e-

ivisive algorithm was used from the R package ecp ( James and

atteson, 2013 ). E-divisive changepoint detection algorithm is a

on-parametric method that slices the time-series by detecting

hanges in the characteristic functions of the underlying distri-

utions (that define a probability distribution) between segments.

he method assumes that the α absolute moment (for α ∈ (0, 2])

xists and that observations are independent. E-divisive is an it-

rative procedure where in each iteration one single changepoint

hat divides the time-series into two segments that maximise the

ifference between the characteristic functions of the segments is

etected. Subsequently, the statistical significance of the change-

oint is evaluated based on a permutation test ( James and Matte-

on, 2013 ). The procedure is repeated until the statistically signif-

cant changepoints (CPs) of variables have been identified. In the

mplementation, 21 days (3 weeks) were selected as the minimum

istance between CPs, in order to account for seasonal variability.

he confidence was defined as equal to 95% in order to control the

alse-positive rate of CPs. The identified CPs indicate distributional

hanges of the operational variables in the system. CP intervals are

efined as the periods between CPs. 

.2.3. N 2 O emission factor estimation based on changepoint detection 

Different N 2 O sam pling scenarios were tested following the

ethodology described in Daelman et al. (2013) , to evaluate

hether changepoint detection applied to historical data can re-

uce the required number of samples for the determination of

 2 O EFs. For this purpose, the daily emission load was calculated

kgN 2 O/day), for the first year of the monitoring campaign in the

orthern Carrousel reactor (N 2 O emissions dataset - DatN 2 O). 

Three different scenarios were considered; i) random 3-day

onitoring between the CP intervals (total samples equal to

6 days/year) (sampling strategy 1 -ST1), ii) monitoring N 2 O emis-

ions for 3 random days each month for 1 year to account for sea-

onal variability of N 2 O emissions (36 days/year) (sampling strat-

gy 2 -ST2), iii) random monitoring for 36 days/year (sampling

trategy 3 -ST3). 

In all sampling strategies, it is assumed that emissions were

onitored continuously for 24 h (starting from 00:01 a.m. of the

hosen day). Emissions averaged over the 24 h periods, represent
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v  
the daily average N 2 O emitted (kg N 2 O-N / d). In ST1, DatN 2 O

dataset was used to extract randomly 3 days from each CP inter-

val (total 36 days). In ST2, 3 days were extracted randomly from

each month (total 36 days), whereas in ST3 36 days were ran-

domly selected over the whole DatN 2 O dataset (total 36 days).

Subsequently, the average N 2 O emissions over these 36 days in

all scenarios were estimated and were considered to represent the

annual EF estimates. This procedure was repeated 10,0 0 0 times.

Therefore, for each scenario, 10 0 0 0 average annual N 2 O emission

loads were simulated, and a frequency histogram with the poten-

tial annual N 2 O emission estimates was developed and compared

with the observed average N 2 O emissions. 

2.2.4. Feature extraction 

The data included in the analysis are characterised by 24-hour

cyclical trend, therefore 24 hours were selected as the time inter-

val. A 24-element vector was developed for each variable moni-

tored in the system (representing hourly average). Subsequently,

features were extracted, and a feature vector was developed, rep-

resenting the behaviour of the system; in total > 100 features were

extracted that can be grouped into three main categories (see sup-

porting information). The first category consists of first-order sta-

tistical features including measures of central tendency (i.e. mean),

measures of variability (i.e. standard deviation), measures of shape

(kurtosis, skewness) and basic statistical functions such as daily

maximum, minimum and interquartile range (IQR). First-order fea-

tures are calculated using the real values of the time-series and

provide information on the diurnal behaviour of the variables. The

second category consists of second-order features calculated based

on the differences between neighbouring values ( Nanopoulos et al.,

2001 ). The third group of the features was developed based on

specific diurnal sub-events. It captures the pattern of operational

variables under specific conditions. The intensity and presence of

these events and patterns can provide information on the tempo-

ral pattern of the system. In the system, aerator 1 operates under

on/off pattern (when ammonium is higher than 1.2 mg/l), while

aerators 2 and 3 operate always and peak when ammonium is

higher than 0.6 and 0.9 mg/l, respectively. Therefore, one subset of

this group of features aimed at capturing the behaviour of DO and

nitrate concentrations when ammonium concentrations in the Car-

rousel reactor effluent were higher than 1.2 mg/L and lower than

0.6 mg/L. Additionally, the concentration of ammonium and nitrate

in the plug-flow reactor and the flow-rates provide an indication

of the loads entering the Carrousel reactor. Subsequently, the sec-

ond subset of features belonging to this group, aimed at capturing

the diurnal duration of low ( < 10 mg/L) or high ( > 18 mg/L) am-

monium concentration in the plug-flow reactor and the respective

pattern of nitrate concentration. Calculated second-order features

of values were also used to calculate a subset of features belonging

to group three. For instance, there are periods with a strong rela-

tionship between N 2 O concentration and nitrate concentration in

the Carrousel effluent. Therefore, the diurnal duration and strength

of increasing/decreasing nitrate concentrations were calculated and

linked with and the response of other variables in the system. A

detailed list of the tested features is provided in the supplemen-

tary information. 

Finally, Complete Ensemble Empirical Mode Decomposition

with Adaptive Noise (CEEMDAN) ( Torres et al., 2011 ) was applied,

to deconstruct the Temperature and NH 4 -N concentration in the

plug-flow reactor, into Intrinsic Mode Functions (lMFs) represent-

ing different oscillatory components. These variables were selected

to investigate seasonal and cyclical components. CEEMDAN is an

extension to Empirical Mode Decomposition (EMD) ( Huang et al.,

1998 ) and to the ensemble empirical mode decomposition (EEMD)

( Wu and Huang, 2009 ). Results from CEEMDAN decomposition are

provided in the supplementary information. 
In this study, CEEMDAN was used to extract the trend of the

ariables monitored in the system. Trend and variability of the

ariables are defined based on the study of Wu et al. (2007) fol-

owing the methodology applied in Antico et al. (2014) . Specifically,

he variability consists of the modes with oscillatory characteris-

ics less than 3 months; the trend is extracted by subtracting all

he variability modes with oscillatory periods less than 90 days

rom the original variable. The frequency matching the peak of

he raw periodogram is used to define the oscillatory period. The

ehaviour of wastewater treatment plant processes is affected by

nvironmental factors (i.e. temperature); the exact seasonal trend

s strongly linked with the local environmental conditions and on

any occasions cannot be extrinsically derived. CEEMDAN is an

daptive approach based on information extracted from the raw

ata ( Antico et al. 2014 ) and it can be useful to extract trends

hen analyzing wastewater treatment processes data. In the al-

orithm, the noise level was set to 0.02, the realisations to 10 0 0

nd the maximum sifting iterations to 10 0 0. Subsequently, the ag-

regated daily mean of ammonium concentration and temperature

ere added to the set of features. 

.4.5. Feature selection 

The objective of the feature selection is to isolate feature-

ubsets, that can distinguish days belonging to different ranges

f N 2 O emissions. Feature selection has been widely applied in

nvironmental modelling, i.e. for groundwater quality monitoring

 Rodriguez-Galiano et al., 2018 ) and in renewable energy predic-

ion problems ( Salcedo-Sanz et al., 2018 ). In the wastewater sec-

or, Tomperi et al. (2017) recently used five different features (i.e.

ased on forward selection, stepwise regression and genetic algo-

ithms) together with a multivariable linear regression, to optimise

he prediction of quality wastewater parameters from process mea-

urements and high-resolution optical monitoring. 

In this study, a recursive feature elimination (RFE) approach

 Guyon et al., 2002 ) applied to the feature vector for the selec-

ion of features. It implements backward elimination of features,

rapped with a standard random forest classification algorithm is

andom forest classification ( Breiman, 2001 ) is a nonparametric

achine learning method where multitude of decision trees are

onstructed from a random subset of the features and trained in

 bootstrap sample of the training set (consisting of around 2/3 of

he data producing uncorrelated predictions); the final class pre-

iction consists of the repeated outputs of these trees. It is one of

he most powerful methods for feature selection and classification.

he algorithm was implemented in caret package ( Kuhn, 2008 ) in

 software; details are provided in the supplementary information.

The selected features were used to build and compare an SVM

lassification model using the same training and test sets (see sup-

lementary information). This procedure was repeated 50 times

or the different training and test dataset splits. The performance

f the classification models was evaluated based on the accuracy,

appa (see supplementary material). 

.4.6. Support vector machine 

SVMs, initially developed by Cortes and Vapnik (1995) are

 range of supervised non-parametric machine learning algo-

ithms with applications in several sectors, including wastewater

 Corominas et al., 2018 ). In SVM algorithms kernel functions can

e used to map the observation into a high-dimensional (possibly

nfinite) feature space; the ‘maximum margin hyperplane’ is then

elected in this space. This is the separating hyperplane that has

he farthest minimum distance to observations belonging to dif-

erent classes. The SVM algorithm is developed in R using kernlab

 Karatzoglou et al., 2004 ), and the radial basis function (RBF) ker-

el as described in Vasilaki et al. (2020) . Repeated 10-fold cross

alidation (3 repetitions) was applied to select the optimal cost
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nd gamma ( γ ) parameters over a two-step grid-search with the

aret package ( Kuhn, 2008 ) following the methodology proposed

n Hsu et al. (2003) . The cost defines the penalty of instances mis-

lassified or instances exceeding the maximal margin whereas γ
etermines the amplitude of the kernel. One versus one approach

as applied to classify into more than two classes. The dataset was

andomly divided into test and train, with 75% of the available data

sed for training the SVM model and 25% used for testing. Addi-

ionally, data from the last period of the monitoring campaign (~30

ays), not used during training, were also tested, to evaluate the

erformance of the model. 

. Results and discussion 

.1. Detection of abnormal events 

The DBSCAN features (supplementary material); were selected

n order to represent the diurnal behaviour of the target vari-

bles. The eps parameter was determined based on the “knee” of

-nearest neighbours of the data plotted in increasing order (see

upplementary information). Based on this procedure MinPts and

ps were set equal to 6 and 0.4 respectively. 

The pattern of the influent flow-rate and effluent NH 4 -N con-

entration, in the days isolated by DBSCAN are shown in the

upplementary material. In total 155 days were isolated and are

ainly characterised by events with elevated influent flow-rate

r/and peaks of the NH 4 -N concentration in the Carrousel efflu-
ig. 2. Flow-rate, NH 4 -N concentrations in the plug-flow and Carrousel effluent and N 2 O 

roup 2 (e-h) and group 3 (i-l). 
nt. Subsequent inspection showed that these events varied in in-

ensity and duration; therefore, they were categorized into three

ajor groups. Group 1 consists of system disturbances with dura-

ion equal or less than 24 h. Days belonging to group 1 are charac-

erised by elevated influent flow-rate (days with precipitation) and

eaks in the effluent NH 4 -N concentration during the same day

nd thus, low removal efficiency of NH 4 -N. In group 1, the sys-

em resumes to normal NH 4 -N removal efficiency after 24h. Group

 consists of system disturbances lasting more than 24h. Multiple

ays with precipitation, at close temporal proximity, that affect the

ystem performance for several days were assigned to this group.

inally, elevated influent flow-rate events lasting less than 24h, af-

ected significantly the behaviour of NH 4 -N concentration in the

arrousel effluent for several days. These occasions were assigned

o group 3. In total, 54 different events were detected (155 days)

hat belong to one of the three groups. 

Fig. 2 shows examples of the events belonging in groups 1, 2

nd 3 and the pattern of N 2 O emissions. Blue lines represent the

vents detected by DBSCAN and red lines represent the normal op-

rational conditions. Overall, ~30% of the events belong to group 1.

he average daily influent flow-rate is ~40 0 0 m 

3 /h; therefore, days

n group 1 have moderate increase of the influent flow-rate (flow-

ate peaks < 70 0 0 m3/h and NH 4 -N concentration in the Carrousel

eaks < 6 mg/L). Fig. 2 (a-d) shows an event with the highest in-

uent flow-rate peak; N 2 O emissions are not significantly affected.

verall, the behaviour of N 2 O emissions for 1-day events at tem-

eratures between 12-16 °C is not significantly affected compared
emissions’ profiles for days detected by DBSCAN belonging to events group 1 (a-d), 
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Table 1 

Classes considered in the classification based on the CP intervals. 

Class N 2 O emissions (kg/d) Changepoint intervals N 2 O emissions level 

1 8.3 ( ±8.3) 1, 2, 3 Low 

2 68.3 ( ±23.2) 4, 5 Medium 

3 141.7 ( ±31.6) 6 High 

4 58.9 ( ±25.0) 7, 8, 9 Medium 

5 7.2 ( ±7.9) 10, 11, 12 Low 
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c  

t  

i  

f  

l  
to the average behaviour of emissions the day prior to the event

( Fig. 2 (d)). However, significant peaks, of N 2 O emissions, coin-

ciding with group 1 events, are observed at higher temperatures.

Days belonging to group 2 are characterised by influent flow-rate

peaks above 80 0 0 m 

3 /h, whereas NH 4 -N concentration peaks are

higher than 9 mg/L in the effluent of the Carrousel reactor ( Fig. 2

(e-h)). Again, the pattern of N 2 O emissions varies. However, emis-

sions tend to drop after the peak of the influent flow-rate (NH 4 -N

concentrations in the plug-flow < 8 mg/L). Finally, most N 2 O emis-

sions peaks between June and September 2019 belong to group 3

( Fig. 2 (e-h)). 

The analusis system’s operational behaviour can help operators

to identify events that affect performance and apply mitigation

strategies (i.e. regulate the anaerobic supernatant stream to the

mainstream line to reduce the system loads). 

3.2. Changepoint detection 

Changepoint detection was applied to identify changes in the

profiles of the operational variables that affect the performance

of the Carrousel reactor. Daily averages of i) NH 4 -N load (kg/h) in

the plug-flow reactor (as an indication of the influent ammonium

in the Carrousel reactor), ii) NH 4 -N load (kg/h) in the effluent of

the Carrousel reactor, iii) DO1 and DO2 concentrations were used.

Daily averages of these variables were considered in order to avoid

the diurnal cyclic characteristics of the variables. The volumetric

flow-rate of the plug-flow and Carrousel reactors were calculated

according to Daelman et al. (2015) . 

The minimum transition interval was equal to 21 days (~3

weeks) on the assumption that biological processes can be af-

fected by seasonality. The multivariate changepoint detection anal-

ysis identified 12 statistically significant CPs (with significance

level << 0.05) for the first year of the monitoring campaign. Fig. 3

shows the identified CPs and the respective profile of N 2 O emis-

sions for each period interval between CPs. On many occasions, CPs

coincide with the changes of the N 2 O emissions profile during the

monitoring period. For instance, the highest drop in the average

N 2 O emissions between adjoining periods (CPs 6 and 7) coincides

with a drop in the ammonium load and an increase in the average

nitrate-nitrogen load in the plug-flow reactor. Similarly, the drop

of N 2 O emissions between CPs 2 and 3, coincides with an increase

in the DO1 concentration in the Carrousel reactor. 

3.3. Accuracy of the monitoring strategy based on system CPs 

As shown in Section 3.2 , the pattern and range of N 2 O emis-

sions changes between the detected CP intervals. Quantification

of reliable N 2 O EFs in wastewater treatment processes is still not

straightforward; monitoring campaign duration and strategy signif-

icantly affect the reliability of the results. Seasonal effects have also

significant impact on N 2 O emissions ( Vasilaki et al., 2019 ). 

The aim of this analysis is to simulate a knowledge-based N 2 O

sampling campaign between CPs and evaluate EFs following a sim-

ilar approach to the study of Daelman et al. (2013) . Additionally,

the knowledge-based sampling campaign is compared with two al-

ternative monitoring strategies: i) random 24-h monitoring and ii)

random 24-h monitoring for specific days at each month capturing

the seasonal variability. 

Fig. 4 (a) shows the relative frequency histogram of the esti-

mated annual N 2 O load (kg/day) when 24h sampling for 36 ran-

dom days is applied, during the first year of the monitoring cam-

paign ( n = 10 0 0 0 repetitions). The red vertical line represents the

measured average annual N 2 O load (equal to 39~ kg/day). In total

43% of the simulations resulted to an EF ranging between 35 and

43 kg/day (less than 10% error from the actual annual N O load
2 
uantified by the monitoring campaign). Additionally, the proba-

ility to underestimate the N 2 O load by more than 10% is equal

o ~30%. Fig. 4 (b), shows the histogram of the estimated annual

 2 O load (kg/day) when 24h sampling for three random days be-

ween the CPs (12 CP intervals) was assumed ( n = 10 0 0 0 repeti-

ions). Overall, the likelihood to estimate an average N 2 O load be-

ween 35 and 43 kg N 2 O/day was equal to ~80%, with > 99% of

he simulated N 2 O estimates ranging between 32 and 46 kg/day. In

his case, the probability to underestimate the emissions by more

han 10% was approximately 5%. Finally, when random sampling

or 3 days per month was tested ( Fig. 4 (c)), the probability to es-

imate an N 2 O load ranging between 35 and 43 kg/day, was equal

o ~70%, whereas the probability to underestimate the emissions

y more than 10%, was approximately 25%. 

The behaviour of the operational variables needs to be con-

idered together with seasonal effects when sampling campaigns

re planned. In the investigated system, limited sampling days be-

ween the CPs could give a realistic quantification of the actual

F during a whole year. The proposed approach can be applied to

dentify N 2 O emissions “hotspot” periods and guide towards the

dentification of the operational periods that require intensive in-

estigation of N 2 O pathways and mitigation measures. 

.4. Feature selection and classification 

A classification algorithm was constructed to predict low,

edium or high N 2 O emissions based on the operational be-

aviour of the system. The categorization of the different classes

as based i) on the CP analysis, ii) on the seasonal effects. There-

ore, two periods (from the CP intervals) characterised by simi-

ar N 2 O ranges but not sequential, were assigned in two different

lasses. Table 1 shows the average N 2 O emissions in each class and

he changepoint intervals for each class (the changepoint intervals

re shown in Fig. 3 ). However, five only classes were considered

n the feature selection and construction of the classification algo-

ithms. 

Feature selection is a significant step of several high-

imensional classification applications. However, many studies

ave shown that selected features depend on the training sample,

nd thus, a feature selection algorithm can be unstable ( He and

u, 2010 ; Kalousis et al., 2007 ). Therefore, in many cases feature

election stability needs to be considered together with model pre-

iction accuracy in the evaluation of the classification/regression

erformance ( Pes et al., 2017 ; Saeys et al., 2008 ). 

The most common features for feature subset sizes equal to 6

nd 10 for the resampling perturbations are shown in the supple-

entary information. Overall, 4 features coincided in all subsets

ith feature size equal to 6 and 8 features coincided in almost all

ubsets with feature size equal to 10. The selected features are di-

ided between feature group 1 (i.e. first-order statistical features -

aximum DO2, minimum influent flow-rate), feature group 3 (that

apture the pattern of operational variables under specific condi-

ions) and feature group 4 (i.e. trend extracted by CEEMDAN). For

nstance, the features describing the pattern of DO2 concentration

or NH 4 -N higher than 1.2 mg/L in the Carrousel effluent were se-

ected in all feature subsets. The trends of NH -N concentration
4 
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Fig. 3. CPs intervals for a) NH 4 -N load (kg/h), b) NO 3 -N load (kg/h), c) DO1 and DO2 average concentration, d)N 2 O-N emissions behaviour between CP intervals. 

i  
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d  
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s  

s  

s  

t  

s  
n the plug-flow reactor and temperature extracted by CEEMDAN,

ere also included in all feature subsets. 

The results of the SVM and RF classification models from the

ifferent resampling perturbations for both the train and test data

ets are shown in Table 2 . Feature subsets that minimise the clas-
ification error were selected in each resampling. The results show

imilar results both for the RF and SVM classifiers, whereas clas-

ification accuracy in the test dataset is high even for small fea-

ure subsets ( > 97%). In 58% of the resampling perturbations, the

ize of the best feature subset was equal to 6. In total, 8 variables
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Fig. 4. Relative frequency histogram of the estimated average annual N 2 O load for (a) a simulated monitoring campaign with duration equal to 36 random days, (b) a 

simulated monitoring campaign with 3 random days between CP intervals and (c) a simulated monitoring campaign with 3 random days between different months for 

1 year. 
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Fig. 5. Daily N 2 O emissions and predicted classes (SVM classification) for the last period of the monitoring campaign (data not used during changepoint detection). 

Table 2 

Evaluation of SVM and RF classifiers for different feature subset sizes. 

Feature 

subset size 

Model Dataset Accuracy (%) Kappa (%) 

6 RF Train 97.4 ( ± 1) 96.6 ( ± 1) 

Test 97.4 ( ± 2) 96.7 ( ± 4) 

SVM Train 98.9 ( ± 1) 98.6 ( ± 1) 

Test 95.1 ( ± 3) 93.7 ( ± 4) 

8 RF Train 97.3 ( ± 2) 96.6 ( ± 2) 

Test 98.2 ( ± 2) 97.7 ( ± 2) 

SVM Train 98.7 ( ± 1) 98.4 ( ± 2) 

Test 95.9 ( ± 2) 94.8 ( ± 2) 

10 RF Train 97.4 ( ± 3) 96.6 ( ± 3) 

Test 98.3 ( ± 1) 97.7 ( ± 2) 

SVM Train 99.0 ( ± 1) 98.8 ( ± 2) 

Test 96.3 ( ± 3) 95.2 ( ± 4) 
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ere selected for 14% of the resampling perturbations, 10 for 20%

f the resampling perturbations whereas all the features were se-

ected for 4% of the resamples. 

Subsequently, data from the last period of the monitoring cam-

aign were tested to assess the predictive capabilities of the mod-

ls in previously unseen operational periods. In total ~30 days were

ested (precipitation events were not considered). Fig. 5 displays

he predicted classes (SVM classification) for different best feature

ubset sizes (majority rule for the different resampling perturba-

ions) and the daily N 2 O emissions. In the first 20 days all models

ave predicted low emission-risk classes. Class 1 represents opera-

ional conditions from the beginning of the monitoring campaign,

hereas class 5 represents conditions from the end of the moni-

oring campaign (after ~1 year). The investigated period is ~ 1 year

fter the start of the monitoring campaign and the observed N 2 O

missions are again low. Therefore, the alternation of the predicted

lasses between class 1 and 5 can be expected, mainly due to the

mpact of seasonal effects on the influent concentration and on

 2 O generation. Finally, the model with best feature subset size

qual to 10 was the only one able to detect the change in the N 2 O

ange after the first 20 days. 

Additional data are required to investigate the generalisation

apabilities of the SVM classifier. The methodological approach is

ble to predict the range of N 2 O emissions, as long as the system

perates within the predefined and investigated range. 

Under the investigated conditions, the accuracy of the classifier

ith feature subset size equal to 10, was satisfactory, even when

ata, from the second year of the campaign were tested (these

ata were not used during training,30 days). Therefore, the SVM

lassifier can be used (with caution) to detect periods with oper-

tional behaviour that has been historically linked with elevated

missions. 

The development of mitigation measures in the predicted high-

isk N O emission periods, can be supported with the integra-
2 
ion of mechanistic models or practical, simplified theoretical ap-

roaches. The latter facilitates the identification of potential trig-

ering mechanisms linked with the period-specific operational

onditions. For example, a simplified N 2 O risk-based model was

eveloped by Porro et al. (2014) considering thresholds of ASM

tate variables linked with the generation of N 2 O emissions (i.e.

O, nitrite, COD:N) based on the treatment step (nitrification, ni-

rification, transition zones). 

Additional long-term monitoring campaigns, in continuous 

astewater systems are required, to validate the proposed strategy

nd standardise the selection of operational variables that should

e considered during changepoint detection and classification. Fi-

ally, the development of a detection approach needs also to be

ntegrated in the procedure, that will detect new, unobserved op-

rational states and provide feedback to the algorithms on re-

alibration requirements. 

. Conclusions 

This study shows that information hidden in conventional vari-

bles monitored in wastewater can be mined to reduce N 2 O sam-

ling frequency without compromising the quantification of an-

ual N 2 O EFs and ultimately predict the risk of elevated emis-

ions. The application of changepoint detection in the process op-

rational variables provided insights on structural changepoints of

he N 2 O emissions profile. Limited 24-h N 2 O samples between the

P intervals are sufficient to estimate the average N 2 O EF for the

hole year, while conventional strategies resulted in lower accu-

acy of the N 2 O EF. An SVM classification model was constructed

o predict operational periods linked with specific N 2 O emission

anges. The results indicate that analysis of historical data and in-

estigation of seasonal effects can be of paramount importance

n the planning of monitoring campaigns. The proposed approach

an be applied when long-term online sampling is not technically

nd economically feasible. The proposed solution is capable of pin-

ointing the N 2 O emissions “hotspot” periods and guiding towards

he identification of operational periods that require extensive in-

estigation of N 2 O pathways and mitigation measures. 
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