
Gaussian Processes based Transfer

Learning for Online

Multiple-Person Tracking and

Building Blocks for Deep Learning

A thesis submitted

for the degree of Doctor of Philosophy

By

Baobing Zhang

Department Electronic and Computer Engineering

College of Engineering, Design and Physical Sciences

Brunel University London

August 7, 2020

i

Declaration of Authorship
I hereby declare that the content mentioned in this paper has not been

submitted for the acquisition of a degree in other schools or places. The con-

tent mentioned in the article is under the guidance of my supervisor and the

results of exchange ideas with experts in this area.

ii

“Thanks to my solid academic training, after submitting my dissertation, I will walk

through the scenes of the laboratory one by one silently. Walking slowly, hoping to

print these scenes in my mind. Although four years is not a long time, it is not a

fleeting show. Everything has a spirit, for anything that has accompanied me, even a

host or a device, I will also be grateful. Four years of Ph.D. experience will turn into

memories forever.”

Baobing Zhang

iii

Abstract

This thesis mainly study the application of the Gaussian Processes (GPs),

especially the application of GPs regression for multiple-person tracking.

Furthermore, we explore the scalability of the GPs model. Most existing

multiple-person tracking algorithms are still limited by abrupt human pose

change, scale change and lighting condition tend to drifts. We introduce a

GPs regression based observation model to deal with these challenges. Dur-

ing the tracking process, background information is taken into account to

cope with the dynamic background, the GPs regression based observation

model fuses prior information to make a tracking decision, which can cope

with short term occlusion. Another benefit is that the information of the tar-

get in the current frame can be extracted to re-weight the target information

in the previous frame, after that a tracking decision is made, this can be seen

as a transfer learning strategy. Recently, neural networks have made break-

throughs in various fields. Especially convolutional neural networks (CNNs)

have made significant progress in image processing area. The key to the suc-

cess of CNNs in image processing is that it has a high model complexity and

can process high-dimensional features layer-by-layer. After that, extracting

different levels of abstract information for further use. We explore the scal-

ability of GPs model, by stacking multiple GPs together, we can construct a

deep architecture with building blocks of GPs. This deep hierarchy Gaus-

sian process model is capable of processing high-dimensional input and ex-

tracts different levels of abstract information, which is suitable for image pro-

cessing. We further explore the GPs model equipped with the convolutional

kernel, making it benefit from the non-local generalization of convolutional

structure and achieving better performance for image data.

iv

Acknowledgements

First of all, I would like to thank my supervisor, Professor. Maozhen Li , who

brought me into the hall of academic research and opened up new heights

and starting points in my life. And gave me a lot of support and help during

my research, not only a supervisor but also a kind-hearted elder.

I would like to thank my family, my parents, for giving me a lot of fi-

nancial and spiritual support when my research is going to be the most diffi-

cult. Every time I call my dad, I can feel the power behind the support. The

strength of the family supports me to stick to it until nowadays.

I am very grateful to Professor Qicong Wang from Xiamen University. Dr.

Wang has worked in the field of image processing for many years. Every

time I discuss with Dr. Wang, I can benefit a lot. Thank you, Dr. Zhengwen

Huang, for your help and support. Thanks to the school’s technicians and

the technical support given by the staff.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1

1.1 Background . 1

1.2 The Issues Solved by Gaussian Processes 4

1.3 Main Challenges and Motivations 5

1.4 Major Contributions . 8

1.5 Thesis Structure . 10

2 Literature Review 11

2.1 Basic Gaussian Processes . 11

2.1.1 Illustrative Examples . 14

2.2 Why Gaussian Processes is Important 16

2.2.1 Law of Large Numbers 16

2.2.2 Central Limit Theorem 18

2.3 Covariance Function . 20

2.3.1 Uncertainty . 22

2.4 Multi-dimensional Gaussian Distribution and Parameter Esti-

mation . 23

2.4.1 Parameter Estimation 26

2.5 Related Work . 27

vi

2.5.1 Multiple-Person Detection and Tracking Technology . 27

2.5.2 Gaussian Processes Dynamic Systems 31

2.5.3 Gaussian Processes with Convolutional Kernel 33

2.6 Summary . 33

3 Transfer Learning Based Gaussian Processes Regression for Multiple-

Person Tracking 34

3.1 Transfer Learning . 35

3.2 The Gaussian Processes Regression Based Observation Model 37

3.3 Gaussian Processes Latent Variable Model 39

3.4 Advantages of The Gaussian Processes Regression Based New

Observation Model . 40

3.5 Constructing Covariance Matrix 41

3.6 Experiments . 42

3.6.1 Evaluation Metrics . 43

3.6.2 Experiments Analysis 43

3.7 Summary . 49

4 Deep Learning with Gaussian Processes Building Blocks 50

4.1 The Advantages of Gaussian Processes 51

4.2 GPs vs RBM . 52

4.2.1 Restricted Boltzmann Machine 52

4.2.2 Gaussian Processes . 54

4.2.3 Comparing GPs with RBM 55

4.3 Sparse Approximations for Gaussian Processes 56

4.3.1 Augmented Domain . 57

4.4 Deep Hierarchy Gaussian Process 58

4.5 Variational Bayesian Inference 60

4.6 Experiments . 64

4.7 Summary . 69

vii

5 Gaussian Processes with Convolutional Kernel 70

5.1 Constructing Convolutional Kernel 70

5.2 Inter-domain Inducing Patches 71

5.3 Computational Issues with Gaussian Process Model 74

5.4 Variant of Convolutional Kernel 75

5.5 Experiments . 77

5.6 Summary . 81

6 Conclusion and Future Work 82

6.1 Conclusion . 82

6.2 Future Work . 84

A Bayesian Variational Inference 104

A.1 Jensens Inequality . 104

A.2 Variation and Evidence Lower Bound (ELBO) 104

A.3 Kullback-Leibler Divergence . 106

B Label Propagation Algorithm 109

B.1 Similarity Matrix Construction 109

B.2 Label Propagation . 110

B.3 Variant of Label Propagation Algorithm 111

B.4 Proof of Convergence . 112

C Laplace Approximation for Gaussian Processes 113

C.1 Laplace Approximation for Gaussian Processes with Multiple-

Person Tracking Framework . 113

viii

List of Figures

2.1 Gaussian processes regression model fitted from generated data 14

2.2 The visualization of Gaussian processes regression model with

noise disturbance . 15

2.3 Abalone age prediction results 16

2.4 How GPs handle the lacking of prior knowledge and uncertainty 17

2.5 Gaussian distribution at an extreme large scale 18

2.6 Gaussian distribution from one dimension expending to two

dimension . 25

2.7 Flow chart of pedestrian detection 28

3.1 Unlabeled samples generated from the current frame, image

patches containing background information. The first one is

positive sample, and the rest are negative samples 41

4.1 Schematic diagram of a restricted Boltzmann machine with

four visible nodes and three hidden nodes. 53

4.2 The general architecture of a deep hierarchy Gaussian process

model, the dotted circle represents an augment domain with

inducing variable and parameter. 59

4.3 Deep hierarchy Gaussian process obtained by extending the

standard Gaussian processes. 59

4.4 A two hidden layer hierarchy case and each connection is gov-

erned by separate Gaussian processes. 61

ix

4.5 Accuracy of deep hierarchy Gaussian process model with a

number of layer and inducing points 67

5.1 A pictorial interpretation of how a convolutional kernel works 72

5.2 Visualisation of inducing patches used in Gaussian process

with weighted convolutional kernel (left) and multi-channel

convolutional kernel (right) test on CIFAR-10 dataset. 79

5.3 Visualisation of error rate optimization in Gaussian Process

with weighted convolutional kernel(left) and multi-channel con-

volutional kernel(right) test on CIFAR-10 dataset. 79

5.4 Visualisation of error rate and nlpp optimization in Gaussian

Process with weighted convolutional kernel on Rectangles dataset. 80

5.5 Visualisation of error rate and nlpp optimization in Gaussian

Process with translation invariance convolutional kernel on

Rectangles dataset. 80

A.1 Minimize the KL divergence so that the variational distribu-

tion q continuously approaches the true distribution P 105

x

List of Tables

3.1 A brief description of the PETS S2 sequence 44

3.2 Results comparison of selected PETS dataset 45

3.3 Results comparison on TownCenter dataset 46

3.4 Results comparison between our algorithm and others 48

4.1 Comparison of DHGP model with other methods on regres-

sion task with eight UCI datasets. Test log-likelihood results,

the number highter indicates better performance. 65

4.2 Comparison of DHGP model with other methods on regres-

sion task with eight UCI datasets. Test RMSE results, the num-

ber closer to 0 indicates better performance 66

4.3 MNIST tested results, deep hierarchy Gaussian process model

1-5 and 10 layers with 100, 300 and 500 inducing points respec-

tively. 68

5.1 Test accuracy and nlpp(negative log predictive probability) com-

parsion of GPs model with different kernels with Neural net-

work and other GPs based models on MNIST and Cifar-10 . . 78

xi

List of Abbreviations

BM Boltzmann Machine

CNN Convolutional Neural Network

DNN Deep Neural Network

DHGP deep hierarchy Gaussian process

ELBO Evidence Lower Bound

GPs Gaussian processes

GP Gaussian process

GAN Generative Adversarial Networks

HOG Histogram of Oriented Gradients

KL divergence Kullback-Leibler Divergence

LP Label Propagation

NNs Neural Networks

RNN Recurrent Neural Network

RBM Restricted Boltzmann Machine

SVM Support Vector Machine

xii

List of Symbols

E Expected value

i.i.d. independent and identical distributions

⟨·⟩ Denote expectations

xiii

Dedicated to my family. . .

1

Chapter 1

Introduction

This chapter briefly describes the background, challenges, motivations, ma-

jor contributions to the problem investigated and the structure of this thesis.

1.1 Background

Automatic video surveillance of dynamic and complex scenes is one of the

most active research topics in Computer Vision. It aims to automatically de-

tect, recognize and track people and objects from image sequences in order to

understand and describe dynamics and interactions among them. Computer

vision and video-based surveillance have the potential to assist in maintain-

ing public safety and security. Virtually all public spaces and critical infras-

tructures in the European Community have multiple sensor surveillance sys-

tems installed, many of which claim to have automatic surveillance features.

Typical application domains for video surveillance include public areas (city,

streets, school campuses, museums), transport (airports, train stations, un-

derground, motorways), retail (theft prevention, understanding shopper be-

havior), and financial institutions (banks and casinos).

Nowadays, most video surveillance systems can only play a passive surveil-

lance role. They are mainly used for post-hoc verification and cannot play

the role of prevention and alarm. As a result, the safety and practicability of

Chapter 1. Introduction 2

the entire system are reduced, which cannot meet modern society. For high-

security requirements. The intelligent video surveillance system can identify

different objects, find abnormal events in the surveillance picture, and can

issue alarms and provide useful information in the fastest way so that it can

more effectively assist security personnel in handling crises and maximize

the Reduce false positives and false negatives. The emergence of intelligent

video surveillance technology has enabled the transformation of surveillance

methods from passive to active. It can realize the uninterrupted detection of

the video 24 hours 7 days a week, automatically find the abnormal events in

the monitoring picture, which greatly improves the security and practicality

of the intelligent monitoring system.

Object tracking is a widely studied issue in the machine vision area. It

is divided into single target tracking and multiple-target tracking. The for-

mer tracks a single target in the video frame, while the latter tracks multiple

targets in a series video frame and obtain the motion trajectory of these tar-

gets at the same time. Vision-based automatic target tracking has important

applications in intelligent monitoring, motion and behavior analysis, and au-

tonomous driving. For example, in an automated driving system, the target

tracking algorithm must track the movement of moving cars, pedestrians,

and other animals, and make predictions about their future position and

speed. In the field of virtual reality, the purpose of human-computer interac-

tion needs to be achieved according to the movements and trajectories of the

characters captured by the camera. Compared with single-target tracking,

multiple-target tracking is more complicated, except for the object deforma-

tion and background interference exists in single-target tracking. Usually, it

is also necessary to solve the problems of interaction and occlusion between

Chapter 1. Introduction 3

targets, automatic initialization, and termination of targets, accurately dis-

tinguishing different targets, and how to re-identify the object when it reap-

pears. There are also other issues that need to be considered for multiple-

target tracking, such as the position and size of multiple independent targets

in the video sequence, changes in the appearance of multiple targets, differ-

ent movement modes, the impact of dynamic lighting, and mutual occlusion,

merging, and separation of multiple targets. Until now, the problems men-

tioned above are still not well solved.

Since the concept of deep learning proposed by Geoffrey Hinton and oth-

ers around 2006, with the availability of large amount of data and the con-

tinuous growth of the underlying hardware computing power represented

by GPUs, deep neural networks have released its potential and made huge

breakthroughs in areas such as speech recognition, machine translation, im-

age processing, etc. Among them, the image classification technology based

on deep convolutional networks has exceeded the accuracy rate of the hu-

man eye, the speech recognition technology based on deep neural networks

has reached an accuracy rate of 95%, and the machine translation technol-

ogy based on deep neural networks has approached the average translation

level of humans. The dramatic improvement in accuracy has brought com-

puter vision and natural language processing to the industrialization stage,

bringing the rise of new industries. A large number of research resources

have been invested in this field all over the world, which has caused explo-

sive development in this field. Deep learning is a powerful tool in the era

of big data. Compared with traditional machine learning algorithms, deep

learning technology has two main advantages. First, deep learning technol-

ogy can continuously improve its performance with the increase of data size,

while traditional machine learning algorithms can hardly use massive data

to continuously improve its performance. The second is that deep learning

technology can directly extract features from the data, reducing the work

Chapter 1. Introduction 4

of designing a feature extractor for each problem, while traditional machine

learning algorithms need to manually extract features. In view of the suc-

cess of deep learning, the development of models in the field of machine

learning seems to have to go deeper. A deep model represents higher model

complexity, which can fit more complex functions. The deep model can ex-

tract different levels of abstract features from the data, which greatly saves

tedious data pre-processing processes and labor costs, and can utilize the

data more efficiently. Current deep models are mainly based on the building

block of neural networks, and only a few other types of deep models have

been proposed. Despite huge progress has been made, deep neural networks

still have their shortcomings, the model complexity is very high with a huge

amount of parameters, and different structures are required for each differ-

ent task. The amount of data required is huge, but it is difficult to obtain a

large amount of labeled data in some specific fields, and the labeled cost is

high. Current neural networks lack causal inferencing and are poorly inter-

pret. Combining the interpretability of traditional models, the causal reason-

ing ability, and the high model complexity of deep neural networks together

will be the development direction of the machine learning field in the future.

1.2 The Issues Solved by Gaussian Processes

In probability theory and statistics, Gaussian process is a kind of stochastic

process, whose its property is inherited from the normal distribution, and

every finite set of random variable obey multivariate normal distribution. It

extends multi-dimensional Gaussian distribution to infinite dimensions. In

the machine learning community, GPs are a class of non-parametric meth-

ods developed based on statistical learning theory and Bayesian theory, the

GPs model is fully specified by its mean and covariance function. The GPs

Chapter 1. Introduction 5

is a powerful model that can be used to represent a distribution over func-

tions. The key idea behind GPs is that a function can be modelled using an

infinite-dimensional multivariate Gaussian distribution. In other words, ev-

ery point in the input space is associated with a random variable and the

joint distribution of these is modeled as a multivariate normal distribution.

If two input points are close to each other then we expect the value of the

function at those points to be similar, in terms of the GPs model: random

variables corresponding to nearby points should have similar values when

sampled under their joint distribution. Most modern techniques in machine

learning tend to avoid this by parameterizing functions and then modelling

these parameters (e.g. the weights in linear regression). However, GPs are

non-parametric models that model the function directly. This comes with a

important benefit: not only can we model any black-box function, but we can

also model uncertainty in a probability way. Quantifying uncertainty can be

extremely valuable in certain cases. Compared with neural networks (NNs),

support vector machine (SVM), the GPs model has much fewer parameters

and is suitable for dealing with high-dimensional, non-linear complex re-

gression problems, and capable of strong generalization ability.

1.3 Main Challenges and Motivations

Currently, multiple-person tracking technology in surveillance videos is re-

ceiving an increasing attention from both the academic and business com-

munities. As an important basic technology, multiple-person tracking has

an important value in many application scenarios such as security moni-

toring and passenger flow statistics. Multiple-person tracking technology

aims to obtain the complete motion trajectory of each target from the appear-

ance to the disappearance from the field of view in the surveillance video

scene through computer vision technology. Due to the large differences in

Chapter 1. Introduction 6

occlusion and complex movement modes in different monitoring scenarios,

multiple-person tracking has always been a difficult technique in image recog-

nition.

Data association is an important technique in multiple-person tracking

research [1]. Data association is divided into online-based [2] [3] and offline-

based methods. The offline-based method obtains the detection information

for a period of time and then obtains the motion trajectory of each target

during this period according to some optimized strategies. However, this

method cannot output each target trajectory in the current frame, which is

not suitable for security in applications that require strong real-time perfor-

mance. The online-based data association method outputs the motion tra-

jectories (positions) of all tracked targets in the current video frame after the

current video frame is obtained, and does not modify the motion trajectories

obtained before. Although there is no time delay, this method does not make

good use of the tracking target information in the current frame, and often

the matching error will occur, resulting in discontinuous tracking trajectories

and exchange of tracking trajectories. To deal with these issues, we present

a novel multiple-person tracking framework by introducing a new Gaus-

sian Process Regression based observation model, which learns in a semi-

supervised manner. The background information is taken into consideration

to build the discriminative tracker, training samples are re-weighted appro-

priately to ease the impact of the potential sample misalignment and noisy

during model updating. Unlabeled samples from the current frame provide

rich information, which is used for enhancing the tracking inference.

In recent years, breakthroughs have been made in the areas of image

recognition and speech recognition. This is mainly due to the huge devel-

opment of deep learning [4], which has also become one of the most popular

technology in the field of artificial intelligence [4]. Deep learning is derived

from the study of artificial neural networks. Its motivation is to build neural

Chapter 1. Introduction 7

networks in a similar way to the human brain for analysis and learning. In

essence, it is a very powerful model for fitting complex functions. Although

great progress has been made, deep learning technology is still imperfect and

needs further development. First, the complexity of the deep neural network

model is very high, and a large number of parameters lead to a large model

size. The second is the large amount of data required for model training, and

the training data sample acquisition and labeling costs are expensive, and

some scene samples are difficult to obtain. Third, the application threshold

is high, the algorithm modeling and the parameter adjustment process are

complicated, the algorithm design cycle is long, and the system implementa-

tion and maintenance are difficult. The fourth is the lack of causal reasoning.

Fifth, there is the problem of interpretability [5]. Due to internal parameter

sharing and complex feature extraction and combination, it is difficult to ex-

plain what the model has learned. However, due to security considerations

and ethical and legal needs, the interpretability of the algorithm is necessary.

Based on the successes and problems of deep learning, other types of deep

models have been proposed, such as the deep forest model, which is a kind

deep model based on the decision tree. Similar to deep neural networks, the

deep forest model is a kind of deep structure and capable of extracting fea-

tures at different levels of abstraction, and has a high model complexity. It

has achieved good results on specific data sets [6] [7] [8].

Here we propose a probabilistic deep learning model based on the build-

ing block of GPs, which is a statistical probability model with high model

complexity thus can fit complex functions. It has much fewer parameters

comparing with deep neural networks and is capable of causal inferencing,

and variational inference technique is used for training. Because the tradi-

tional GPs model is not good at solving image processing problems, further

we introduce the convolutional kernel into the GPs model so that the GPs

model has the ability to capture different scale patterns in the image, which

Chapter 1. Introduction 8

make it more suitable for solving image processing problems.

1.4 Major Contributions

The main contribution of this thesis is to propose a transfer learning mech-

anism based on Gaussian process regression for multiple-person tracking.

And then, we verified the feasibility and performance of deep learning based

on the GPs building block. Furthermore, we verified the performance of the

convolutional kernel in the GPs model and its applicability to different image

processing tasks.

For the multiple-person tracking application, we explore how future in-

formation can be used to facilitate a tracking decision. To achieve this goal,

we employ a novel observation model, which learns in a semi-supervised

fashion. The current state of the tracking targets has a significant influence

on the final tracking decision. Because a dynamic model utilizes only the

previous one state to estimate the current state of the tracking targets, which

tends to drift, we fuse all the previous tracking targets information that is

what we called prior information to enhance tracking inference, thereby to

alleviate drift. The new observation is to update adaptively to avoid the loss

of sample diversity. All of these features of the new observation model help

alleviate the problem of drifting. There are several major advantages:

• It takes into account the background information in the tracking infer-

ence, which is more stable for dynamic background tracking.

• To deal with object occlusions, it fuses all the prior information for

tracking decisions, rather than utilizes only the previous one state of

the tracking targets.

Chapter 1. Introduction 9

• It features online transfer learning by utilizing the extracted knowledge

from the current state of the tracking targets for generating tracking

decisions.

• Experimental results show the proposed observation model outper-

forms a number of state-of-the-art methods on a number of benchmark

datasets.

The deep hierarchy Gaussian process model, being a deep model differ-

ent from a deep neural network, has a number of advantages such as causal

inferencing and fitting uncertainty. Since the deep hierarchy Gaussian pro-

cess model is a statistical probability model based on the building block of

the Gaussian process, it has a complete theoretical foundation of statistical

probability. The computation complexity of GPs model has always been the

main problem hindering its development. We have experimentally verified

that the inducing points input can speed up the inferencing of the Gaussian

process model and map the original data to a richer feature space, which

is more conducive to classification and regression tasks. The deep hierarchy

Gaussian process model is a kind of deep model constructed by stacking mul-

tiple GPs together. The model complexity is much higher than deep neural

networks. It can fit well complex functions and can extract abstract features

at different levels of the data. The introduction of the convolutional kernel

has made neural networks a huge breakthrough in image processing. Based

on the same idea, the convolutional kernel is introduced into GPs models to

make them better handle image processing tasks. We have also verified that

the inducing patches also have the ability to accelerate model inference and

improve the model performance for image processing tasks.

Chapter 1. Introduction 10

1.5 Thesis Structure

The rest of this thesis is organised as follows:

• Chapter 2 first introduces the basic knowledge and nature of the Gaus-

sian process, further explains the importance of the Gaussian process

model and common covariance functions, and then introduces multi-

dimensional Gaussian and parameter estimation, at last discussed the

related work.

• Chapter 3 first introduces transfer learning, and proposes a new kind

of Gaussian process regression based multi-pedestrian tracking frame-

work. Next, the construction process and advantages of the new ap-

pearance model are introduced, and finally the experimental results.

• Chapter 4 first compares the Gaussian process with restricted Boltz-

mann machine which is the cornerstone model of the deep neural net-

work reflects the advantages of the Gaussian process model, further in-

troduces the deep hierarchy Gaussian process model. Next, the sparse

approximation inferencing of the deep hierarchy Gaussian process model

and the variational Bayesian optimization method are introduced, fi-

nally the experimental results.

• Chapter 5 introduces the convolutional kernel into the Gaussian pro-

cess model, and further introduces several variants of the convolu-

tional kernel. At the end, the experimental comparison results of Gaus-

sian process models equipped with different convolutional kernels are

given.

• Chapter 6 concludes the whole thesis, analyzes the current status of the

GPs community, and points out the directions of future work.

11

Chapter 2

Literature Review

2.1 Basic Gaussian Processes

Gaussian process is a kind of stochastic process, which extends multivariate

Gaussian distributions to infinite dimensionality. The property of Gaussian

process is inherited from the normal distribution. So that the linear com-

bination of any random variable in the GPs obeys the normal distribution.

Each finite-dimensional distribution is a joint normal distribution, GPs is re-

garded as an infinite-dimensional generalized extension of the joint normal

distribution [9].

In supervised learning, two types of methods are usually used to deter-

mine the mapping function. The first type is parameterized method, which

assumes that training data is generated by a function f (x; w) defined by a

parameter w. In this case, the map function f (x; ·) and the specific parameter

set w together define the parameterized model, and the parametric regres-

sion is to find a set of parameters that make the data the "best" interpretation.

The parametric methods focus on reducing errors on the training dataset,

thus easily leading to overfitting problems. In contrast, the non-parametric

method does not make any assumption about the form of the mapping func-

tion in advance, they are free to learn any form of a mapping function from

the training data. GPs can be employed as non-parametric prior distribu-

tions over the latent function f [10]. We briefly state the definition of GPs for

Chapter 2. Literature Review 12

regression here, for more application about GPs please refer [10]. Assume we

have a set of training data with n samples D =
{

xj, yj
}n

j=1, where each input

xj is associated to a real-value output yj. Define a GPs to model a possible

latent function f which maps from input xj to yj, its property is fully deter-

mined by the mean and covariance function, the common practice is to set a

zero-mean and the behavior of the GPs is fully controlled by the covariance

function k
(
xi, xj

)
. In this case, f (x) ∼ GP

(
0, k
(
xi, xj

))
. The most commonly

used covariance function is the Squared Exponential Kernel.

kSE
(
xi, xj

)
= σ2 exp

(
−
(
xi − xj

)2

2ℓ2

)
(2.1)

with hyperparameters σ (the latent function power) and ℓ (length-scale,

which defines how rapidly the covariance decays along each dimension).

The Gaussian processes regression model can be expressed as some noise-

less latent function f plus independent noise ε as follows.

y = f (x) + ε (2.2)

Where x is the input vector, f is the latent mapping function, and y is the

observed value polluted by additive noise. Further, we assume ε ∼ N
(
0, σ2

n
)
.

The prior distribution of the observed values y is

y ∼ N
(

0, K(x, x) + σ2
n In

)
(2.3)

Where the bold x is a vector of the collection of input x. In this case, the

model can be used to predict the observed value of y∗ of the new test input

x∗ .

pGP (y∗|x∗,D) =

 y

y∗

 ∼ N

0,

 k(x, x) + σ2
n In k (x, x∗)

k (x∗, x) k (x∗, x∗)


 (2.4)

Chapter 2. Literature Review 13

Where K(x, x) = Kn = (kij) is n × n order symmetric positive-definite

covariance matrix, and matrix element kij = k
(
xi, xj

)
used to measure the

correlative relationship between xi and xj. K (x, x∗) = K (x∗, x)T is the n ×

1 order covariance matrix between the test input x∗ and the input x of the

training set; k (x∗, x∗) is the test input x∗ itself covariance; In is n-dimensional

identity matrix. The posterior distribution of y∗ associated with the test input

x∗ is

pGP (y∗|x∗,D) =N (y∗|k (x∗, x)
[
k(x, x) + σ2

n In

]−1
y,

σ2
noise + k (x∗, x∗)− k (x∗, x)

[
k(x, x) + σ2

n In

]−1
k (x, x∗))

(2.5)

with

µ = k (x∗, x)
[
k(x, x) + σ2

n In

]−1
y

σ2 = σ2
noise + k (x∗, x∗)− k (x∗, x)

[
k(x, x) + σ2

n In

]−1
k (x, x∗)

corresponding to the posterior mean and variance of the observed value y∗.

Gaussian processes regression has a strict theoretical foundation for statisti-

cal learning, it is good at handling complex problems such as high dimen-

sions, small samples, and non-linearities. Compared with support vector

machine (SVM), neural networks (NNs), GPs has much fewer parameters

due to its non-parametric nature which prevents overfitting, and can model

uncertainty in a probabilistic way. Much progress has been made in this area

in recent years, some of them applied GPs to big data [11] [12] [13], others

explored sparse inference methods for GPs [14] [15] [16] [17] [18] [19]. There

are also many works that explored the deep Gaussian processes structure [20]

[21] [22] [23] [24] [25], some other works explored the relationship between

Gaussian processes and neural networks [26] [27] [28] [29] [30] [31] [32]. In

the next section, we will look at some illustrative examples of GPs.

Chapter 2. Literature Review 14

2.1.1 Illustrative Examples

Here, we explain Gaussian processes for regression with a few examples.

First, we use a generated dataset, the input x is located in a certain range,

the corresponding output y is generated with a sin function plus a randomly

generated decimal. The fitted Gaussian processes regression model can be

seen in FIGURE 2.1. It can be seen that the fitted model has an obvious pe-

riodic structure similar to the sin function which generates the output y. In

this case, we do not add any noise term in the generating function. In an-

other case, the generating function with noise term is as shown in FIGURE

2.2. Where the red shaded area is the possible noise response corresponding

to the related input.

FIGURE 2.1: Gaussian processes regression model fitted from
generated data

The following example is demonstrated on a real dataset, we use Gaus-

sian processes regression model to predict the age of abalone. The dataset

[33] [34] is collected from the UCI machine learning repository [35]. The

Chapter 2. Literature Review 15

FIGURE 2.2: The visualization of Gaussian processes regression
model with noise disturbance

age of abalone is determined by cutting the shell through the cone, stain-

ing it, and counting the number of rings through a microscope traditionally.

Besides, we can predict the age of abalone through some characteristics of

abalone, such as gender, diameter, weight, length, etc. This dataset has 8

characteristics of abalone as attribute inputs and the number of the ring (age)

of abalone as the predicted output. We fit the Gaussian processes regression

model using a subset of the dataset and then use it to predict the age of the

abalone, the prediction results are shown as FIGURE 2.3. It can be seen that

the prediction results cover most of the normal age, and a few older or early

years are not well predicted.

The last example explains how GPs models uncertainty in a probabilistic

way. As can be seen in FIGURE 2.4, there are 5 samples, the three prediction

models in this figure have to pass through these 5 samples. The blank be-

tween the lower prediction (blue one) and the upper prediction (black one)

represents a lack of prior knowledge in this area. The GPs model can well fit

the lack of prior knowledge and the existence of uncertainty in this area by

Chapter 2. Literature Review 16

FIGURE 2.3: Abalone age prediction results

means of probability.

2.2 Why Gaussian Processes is Important

The normal distribution also known as the Gaussian distribution is the most

important probability distribution in statistics. Many natural phenomena

conform to normal distribution. For example, female height, blood pressure,

measurement error. This is mainly due to the following two laws.

2.2.1 Law of Large Numbers

In probability theory, the law of large numbers describes that when a large

number of repeated experiments are performed, the experimental results

should be close to the expected value [36]. The law of large numbers has two

main manifestations: the weak law of large numbers and the strong law of

large numbers. For a set of independent and identically distributed samples

(x1, · · · , xn), the sample mean is as follows

Chapter 2. Literature Review 17

FIGURE 2.4: How GPs handle the lacking of prior knowledge
and uncertainty

x̄n =
1
n
(x1 + · · ·+ xn) (2.6)

Where expected value E (x1) = · · · = E (xn) = µ and they are infinite

sequences of Lebesgue integrable random variables. Covariance Var (x1) =

· · · = Var (x2) = σ2 < ∞, the limited assumption here is unnecessary. The

difference between strong and weak law of large numbers is the difference in

the way of convergence.

The weak law of large numbers (also called Khinchin’s law) states that

the sample mean converges to the expected value in probability.

x̄n
P→ µ as n→ ∞ (2.7)

That is, for any positive number ε,

lim
n→∞

P (|x̄n − µ| > ε) = 0 (2.8)

Chapter 2. Literature Review 18

FIGURE 2.5: Gaussian distribution at an extreme large scale

The strong law of numbers states that the sample mean converges to the

expected value with probability 1.

x̄n
a.s.−→ µ as n→ ∞ (2.9)

That is,

P
(

lim
n→∞

x̄n = µ
)
= 1 (2.10)

In addition, there are Chebyshev’s theorem and Bernoulli’s law of large

numbers etc. For more details see [37].

2.2.2 Central Limit Theorem

The second important law is the Central limit theorem, it is one of the most

fundamental and profound concepts in statistics and maybe in all of the

mathematics. The Central limit theorem refers to a class of theorems in prob-

ability theory that discuss the partial sum distribution of random variable

sequences asymptotic to normal distribution. Here we briefly introduce the

central limit theorem in the case of independent and identical distributions

(i.i.d.).

Assume we have a set of i.i.d. random variables (X1, X2, · · · , Xi), and the

mean is E (Xi) = µ and the covariance is D (Xi) = σ2 ̸= 0. Then for any real

Chapter 2. Literature Review 19

number X, we have

lim
n→∞

P


n
∑

i=1
(Xi − nµ)

√
nσ2

≤ x

 = ϕ(x) (2.11)

Among them ϕ(x) is standard normal distribution when n → ∞. This

sequence is said to have a standard normal limit distribution. Here the idea

of the limit is introduced into probability theory, when n → ∞, there is con-

vergence in probability. Here is the normal distribution after normalization,

if it is more general, when n → ∞,
n
∑

i=1
Xi
∼= N

(
µ, σ2). This is an approxima-

tion to a normal distribution, the µ and σ2 depend on circumstances. Here is

a brief introduction to the case of the central limit theorem. For more com-

plicated situations and rigorous mathematical proofs, please refer to profes-

sional mathematical papers [37] [38]. From the above theorem, we can know

that the effects of many independent random factors are very small, and the

effects of their superposition can be regarded as approximately obeying the

normal distribution. Such as, the error measurement is affected by factors

like ambient humidity, ambient temperature, measuring tool accuracy, and

the mood of the surveyor. These influencing factors are independent, and the

influences are all very small. In the end, the total measurement error caused

by their sum of approximately follows a normal distribution. Another exam-

ple is the Galton board, at an extreme large scale, we believe that the cosmic

background microwave radiation and the interstellar matter distribution ap-

proximate the normal distribution as shown in FIGURE 2.5. The picture on

the left is interstellar matter captured by the NASA Hubble Telescope 1 and

the picture on the right is the visualization of cosmic background microwave

radiation made by the European Space Agency Planck prober 2.

1https://www.nasa.gov/mission_pages/hubble/main/index.html
2https://apod.nasa.gov/apod/ap180722.html

Chapter 2. Literature Review 20

2.3 Covariance Function

The GPs model is determined entirely by its mean and covariance when us-

ing a GPs model. The common practice is that setting a zero-mean, so the

correlative relationship and uncertainty included in the data are completely

encoded in the covariance. It is important to choose a proper kernel function

to construct the covariance matrix. Here, we introduce several commonly

used kernel functions.

• Linear Kernel: This is the simplest kernel function, it is given by the

inner product of two elements < x, y > plus a constant c

k(x, y) = xTy + c (2.12)

• Polynomial Kernel: The Polynomial kernel is a non-stationary kernel.

Polynomial kernels are well suited for problems where all the training

data is normalized. The slope α, constant term c and polynomial degree

d is adjustable.

k(x, y) =
(

αxTy + c
)d

(2.13)

• Squared Exponential kernel: The Squared Exponential kernel function

is a classic robust radial basis kernel. The robust radial basis kernel has

good anti-interference ability to the noise in the data, and its parame-

ters determine the scope of the function.

kSE(x, y) = σ2 exp
(
−∥x− y∥2

2ℓ2

)
(2.14)

• Exponential Kernel: The exponential kernel function is a variant of

the Squared Exponential kernel function. It adjusts the L2 distance be-

tween the vectors to the L1 distance. This change will reduce the de-

pendence of the parameters, but the scope of application is relatively

Chapter 2. Literature Review 21

narrow.

k(x, y) = σ2 exp
(
−∥x− y∥

2ℓ2

)
(2.15)

• Laplacian Kernel: The Laplace Kernel is completely equivalent to the

exponential kernel, except for being less sensitive for changes in the

sigma parameter. Being equivalent, it is also a radial basis function

kernel.

k(x, y) = exp
(
−∥x− y∥

ℓ

)
(2.16)

• Sigmoid kernel: The Sigmoid Kernel is also known as Hyperbolic Tan-

gent Kernel or Multilayer Perceptron kernel which comes from the neu-

ral Networks field, where the bipolar sigmoid function is often used as

an activation function for artificial neurons.

k(x, y) = tanh
(

αxTy + c
)

(2.17)

• Periodic Kernel: The periodic kernel allows one to model functions

that repeat themselves exactly.

k
(
x, x′

)
= σ2 exp

(
−2 sin2 (π |x− x′| /p)

ℓ2

)
(2.18)

• Rational Quadratic Kernel: This kernel is equivalent to adding to-

gether many SE kernels with different lengthscales. So, GP priors with

this kernel expect to see functions which vary smoothly across many

lengthscales.

k
(
x, x′

)
= σ2

(
1 +

(x− x′)2

2αℓ2

)−α

(2.19)

In addition to these kernel functions mentioned above, there are Multi-

quadric Kernel, Inverse Multiquadric Kernel, Wave Kernel, Power Kernel.

Extensive effort has been spent on the study of these kernel function and

Chapter 2. Literature Review 22

their parameters [10] [39] [40] [41] [42]. In addition to the separate kernel

functions mentioned above, there is also a Composite kernel, which is com-

posed of multiple simple kernels. By combining multiple kernel functions,

the characteristics of different structures of the data can be captured, an ex-

ample of the composite kernel is the Spectral Mixture (SM) kernel [43]. In

recent years, deep neural networks have made breakthroughs in many as-

pects, [30] a kernel function has been developed which is equivalent to resid-

ual CNN [44]. Significant progress has been made in deep neural networks

areas in recent years [4]. In particular, convolutional neural networks have

made breakthroughs in the field of image processing. In order to make the

GPs model suitable for processing image data, the convolution kernel is pro-

posed, which will be introduced in detail in chapter 5.

2.3.1 Uncertainty

From the perspective of physics, the universe is full of uncertainty, this is

determined by the physical nature of the universe. Furthermore, from the

perspective of quantum mechanics, there is Heisenberg’s uncertainty princi-

ple, the position, and velocity of a particle cannot be accurately measured.

The quantum state of a particle is developed based on the above principle of

uncertainty. In quantum mechanics, a single definite result is not predicted

for observation in general. Instead, it predicts a different set of possible out-

comes and tells us the probability of each outcome occurring. Back to the

GPs model, because of the common practice zero-mean, the property of the

data is entirely encoded in the covariance. GPs construct their covariance

by the kernel function, and the correlation of the data is encoded into the

covariance, and then a set of the probability of the output is given.

Chapter 2. Literature Review 23

2.4 Multi-dimensional Gaussian Distribution and

Parameter Estimation

Gaussian processes extend multivariate Gaussian distributions to infinite di-

mensionality, for a one-dimensional random variable x that obeys the Gaus-

sian distribution of mean µ and variance σ, its probability density is

N
(

x|µ, σ2
)
=

1√
2πσ2

exp
[
− 1

2σ2 (x− µ)2
]

(2.20)

Expanding to high dimensions, it becomes

N(x̄|µ̄, Σ) =
1

(2π)
D
2

1

|Σ| 12
exp

[
−1

2
(x̄− µ̄)TΣ−1(x̄− µ̄)

]
(2.21)

Where, x̄ represents a D-dimensional vector, µ̄ is the average of this vec-

tor, Σ represents the covariance matrix of vector µ̄. Next we will introduce

how to derive the high-dimensional probability density function 2.21 from

the one-dimensional probability density function 2.20. This is useful in the

later introduced Laplacian approximation for GPs.

For simplicity, it is assumed that all variables are independent. It means

for probability distribution function f (x0, . . . , xn), we have f (x0, x1, . . . , xn) =

f (x0) f (x1) f (xn). Now let’s use the two-dimensional example to derive the

above formula 2.21.

Assuming we have variable vector x̄ =

 x1

x2

, their mean µ̄ =

 µ1

µ2


and covariance σ̄ =

 σ1

σ2

. Consider x1 and x2 are indenpendent, the Gaus-

sian probability density function of x̄ can be expressed as

Chapter 2. Literature Review 24

f (x̄) = f (x1, x2)

= f (x1) f (x2)

=
1√

2πσ2
1

exp

(
−1

2

(
x1 − µ1

σ1

)2
)
× 1√

2πσ2
2

exp

(
−1

2

(
x2 − µ2

σ2

)2
)

=
1

(2π)
2
2
(
σ2

1 σ2
1

) 1
2

exp

(
−1

2

[(
x1 − µ1

σ1

)2

+

(
x2 − µ2

σ2

)2
])

(2.22)

Next, let’s deal with the covariance matrix, for a two-dimensional vector

x̄, its covariance matrix is:

Σ =

 σ11 σ12

σ21 σ22


=

 σ2
1 σ12

σ21 σ2
2


(2.23)

Since x1, x2 are independent, so σ12 = σ21 = 0. In this way, Σ degrades

into

 σ2
1 0

0 σ2
2

. Determinant of Σ is |Σ| = σ2
1 σ2

2 , bringing it into formula

2.22 and replacing the corresponding parameters, we can get

f (x̄) =
1

(2π)
2
2 |Σ| 12

exp

(
−1

2

[(
x1 − µ1

σ1

)2

+

(
x2 − µ2

σ2

)2
])

(2.24)

Until now, we have introduced the left half of the formula 2.21. Next, we

will deal with the exp part on the right. The exp part of the high-dimensional

Gaussian density function 2.21 is exp
[
−1

2(x̄− µ̄)TΣ−1(x̄− µ̄)
]
, based on the

previously calculated Σ, we can find its inverse: Σ−1 = 1
σ2

1 σ2
2

 σ2
2 0

0 σ2
1

.

Chapter 2. Literature Review 25

FIGURE 2.6: Gaussian distribution from one dimension ex-
pending to two dimension

Next, we perform a two-dimensional expansion on exp part of the for-

mula eq.2.21

exp
[
−1

2
(x̄− µ̄)TΣ−1(x̄− µ̄)

]
= exp

−1
2
[x1 − µ1 x2 − µ2]

1
σ2

1 σ2
2

 σ2
2 0

0 σ2
1


 x1 − µ1

x2 − µ2




= exp

−1
2
[x1 − µ1 x2 − µ2]

1
σ2

1 σ2
2

 σ2
2 (x1 − µ1)

σ2
1 (x1 − µ2)




= exp

[
− 1

2σ2
1 σ2

2

[
σ2

2 (x1 − µ1)
2 + σ2

1 (x2 − µ2)
2
]]

= exp

[
−1

2

[
(x1 − µ1)

2

σ2
1

+
(x2 − µ2)

2

σ2
2

]]
(2.25)

It is the same as the exp part of formula 2.22. The formula 2.21 is the ex-

tension of the Gaussian distribution in high-dimension. It is the computable

basis for GPs, for a higher dimension can be inferences in the same way. This

process can be explained by FIGURE 2.6, as can be seen from the figure the

one-dimensional Gaussian distribution is a symmetrical uni-modal curve,

and the bell shape is the Gaussian distribution expending to two-dimension

space.

Chapter 2. Literature Review 26

2.4.1 Parameter Estimation

Assume we have a set of data (x1, x2, x3, . . . , xm) that follows a Gaussian dis-

tribution, we need to solve the parameters (µ, Σ) of the Gaussian distribu-

tion, the most commonly used method is the Maximum Likelihood Estimate.

The one-dimensional Gaussian probability density function is:

p
(

x|µ, σ2
)
=

1√
2πσ

exp
(
− (x− µ)2

2σ2

)
(2.26)

First, we write the likelihood function:

f (x1, x2, . . . , xm) =
m

∏
i=1

1√
2πσ

exp

(
− (xi − µ)2

2σ2

)

=
(

2πσ2
)−m

2 exp

(
−∑n

i=1 (xi − µ)2

2σ2

) (2.27)

Then take the logarithm:

ln f (x1, x2, . . . , xm) = −
m
2

ln
(

2πσ2
)
− 1

2σ2

n

∑
i=1

(xi − µ)2 (2.28)

Find the derivative and set the derivative to 0 to get the likelihood equa-

tion:

∂ ln f
∂µ

=
1
σ2

n

∑
i=1

(xi − µ) = 0 (2.29)

∂ ln f
∂σ

= −m
σ
+

1
σ3

n

∑
i=1

(xi − µ)2 = 0 (2.30)

Then we can get µ = 1
m

m
∑

i=1
(xi − µ), σ =

√
1
m

m
∑

i=1
(xi − µ)2. As can be

seen, this is actually the definition of the mean and standard deviation in

the Gaussian function. For high-dimensional cases, the mean and covariance

matrix can also be calculated in a similar way.

Chapter 2. Literature Review 27

2.5 Related Work

2.5.1 Multiple-Person Detection and Tracking Technology

This section gives an overview of pedestrian detection in the surveillance sys-

tem which is the most frequently-used technique. Over the recent years, de-

tecting pedestrian in video scene of a surveillance system is attracting an in-

creasing attention due to its wide range of applications in abnormal event de-

tection [45] [46], human gait characterization [47] [48] [49] [50], person count-

ing in a dense crowd [51] [52] [53], person identification [54] [55] [56], gender

classification [57], fall detection for elderly people [58], etc. The scenes ob-

tained from a surveillance video are usually with low resolution and most

of the scenes captured by a static camera are with minimal change of back-

ground. Objects in outdoor surveillance are often detected in far-field, most

existing digital video surveillance systems rely on human observers for de-

tecting specific activities in a real-time video scene. However, there are limi-

tations in the human capacity to monitor simultaneous events in surveillance

displays. Hence, human motion analysis in automated video surveillance

has become one of the most active and attractive research topics in the area of

computer vision and pattern recognition. To achieve this goal, an intelligent

system that detects and captures motion information of moving targets for

accurate object classification is necessary, the classified object is being used

for high-level analysis. In this study, we focus on detecting humans and do

not consider the recognition of their complex activities. Pedestrian detection

is a difficult task, from a machine vision perspective as it is influenced by a

wide range of possible appearance due to changing articulated pose, cloth-

ing, lighting, and background. Using appropriate prior knowledge on these

limitations can effectively improve the detection performance.

The detection process generally occurs in two steps: object detection and

object classification, a general flowchart of human detection is as shown in

Chapter 2. Literature Review 28

FIGURE 2.7: Flow chart of pedestrian detection

FIGURE 2.7. Object detection could be performed by background subtrac-

tion, optical flow, spatio-temporal filtering, and recent deep learning-based

detection technologies. Background subtraction is a popular technology for

object detection where it attempts to detect moving objects from the differ-

ence between the current frame and the background frame in a pixel-by-pixel

or block-by-block fashion. There are a few available approaches to perform-

ing background subtraction, some of the most commonly used methods are

adaptive Gaussian mixture [59], non-parametric background [60], temporal

differencing [61], warping background and hierarchical background models

[62] [63]. The optical flow-based object detection technique [64] uses charac-

teristics of flow vectors of moving objects over time to detect moving regions

in an image sequence. Apart from their vulnerability to image noise, color,

and non-uniform lighting, most of the flow computation methods have large

computational requirements and are sensitive to motion discontinuities. For

motion detection based spatio-temporal filter methods [65], the motion is

characterized via the entire three-dimensional (3D) spatio-temporal data vol-

ume spanned by the moving person in a series of image sequences. Their

Chapter 2. Literature Review 29

advantages include low computational complexity and a simple implemen-

tation process. However, they are susceptible to noise and variations of the

timings of movements.

The object classification methods could be divided into two main cate-

gories: the traditional feature descriptor-based methods [66] [67] [68] [69]

and recent DNN-base methods [70] [71] [72] [73] [74] [75] [76] [77] . Tradi-

tional ways of object classification include extract features or descriptors for

different classes first and then use classifiers to classify objects. Typical fea-

tures used are Histogram of Oriented Gradients (HOG) [67], Scale-Invariant

Feature Transform (SIFT) [68], Haar-like features [66], Speeded Up Robust

Feature (SURF) [69] etc. An object classification algorithm takes images as

input and output what objects it contains. Nowadays, with the rapid devel-

opment of deep learning technologies in recent years, object detection algo-

rithms have also shifted from traditional manual features-based algorithms

to deep neural network-based detection technologies. As a result, the detec-

tion accuracy has been greatly improved. From the R-CNN [70] and Over-

Feat [71] originally proposed in 2013, to the subsequent Fast / Faster R-CNN

[72] [78], SSD [73], and YOLO [74] [75] [76]series. In less than five years, the

deep learning-based object detection technologies blowout, in the network

structure from two stage to one stage, from bottom-up to top-down, from

single scale network to feature pyramid network [79], from PC-oriented to

mobile phones [80] [81] [82]. Many good algorithm have emerged, and these

algorithms have excellent detection performance on open object detection

datasets.

A successful multi-person tracking algorithm greatly relies on the preci-

sion of pedestrian detection, multi-person tracking in a smart surveillance

system aims at tracking multiple different people among a series image se-

quence. The tracking process occurs in two steps: object detection and object

association. Previous works such as a Kalman filter [83] and particle filter

Chapter 2. Literature Review 30

[84] take into account only the previous one state information for current

state estimation and optimize each trajectory independently. Many tracking-

by-detection methods employ background subtractions from one or more

cameras [85] [86]. Based on the progress in the field of object detection, the

tracking-by-detection method has gradually become the mainstream track-

ing paradigm. Many works combine detection and association [87] [88] [89],

and further link the detection results together to form a tracking trajectory.

While other tracking-by-detection methods rely on the mean-shift tracker

[90], which finds in the detections that best match to the target appearance

by computing a weight image via a gradient ascent procedure. Avidan [91]

employed a weak classifier to differentiate the background foreground pix-

els and a strong classifier to generate a confidence map, which is normally

utilised by the mean-shift model in finding a target. Moreover, Benfold and

Ian [92] proposed a part-based representation method by using head tracking

instead of body tracking to handle the partial occlusion problems. An effec-

tive sampling method is proposed by Blake and Isard [93] and applied to

visual tracking. Great progress has been made in detection technology, and

data association technology has become very important. The data association

method used in SORT [3] combines common algorithms such as Kalman Fil-

ter and Hungarian algorithm and can greatly improves the computation and

data association efficiency of the algorithm. Later the proposed Deep_sort [2]

association technique uses more reliable metrics instead of association met-

rics, meanwhile using a well trained CNN network on large-scale pedestrian

datasets to extract features, this has greatly increased the network’s robust-

ness to the loss and obstacles. The observation model in these methods fully

relies on the detected objects. Different from these methods, the novel ob-

servation model presented in Chapter 3 learns in a semi-supervised manner.

More importantly, the model not only utilises the previous image patch in-

formation for tracking but also considers the current frame data. As a result,

Chapter 2. Literature Review 31

this work reduces the potential risk of drifting. Matching the newly detection

to the established object is closely related to the data association problem.

The Hungarian algorithm [94] is a classic but effective method, which can be

used to find the maximum matching of the detection-tracker pairs in a bipar-

tite graph at runtime. In our work, we employ the Hungarian algorithm to

deal with data association problems.

2.5.2 Gaussian Processes Dynamic Systems

Gaussian processes model is noticed by the machine learning community,

due to recently people are beginning to realise that a single-layer and fully-

connected neural network with i.i.d. prior over its parameters is equivalent

to a Gaussian process (GP), in the limit of infinite network width [28] [27]

[26]. GPs are a class of non-parametric statistical probability models that can

be used to model complex data and then used for classification or regres-

sion tasks. Due to the recent success of deep learning, the GP model seems

to have to go deeper. It has proven that the deep GP model has a higher

model complexity than the shallow model, but training these deep models

are often a tricky problem. The first GPs dynamic system [95] was proposed

by Lawrence in 2011. This work shows how two GPs can be stacked to-

gether using a variational approximation method to train a two-layer deep

GPs model. Based on the variational approximate framework, [21] proposed

a kind of doubly stochastic variational inference method for training the deep

Gaussian processes model. This method samples data from the variational

posterior while subsampling the data in mini-batches. They subsample data

in minibatch, makes it possible to extend the model to a larger dataset. [24]

used Stochastic Gradient Hamiltonian Monte Carlo method to generate sam-

ples, to efficiently optimise the hyperparameters. [96] proposed a probabilis-

tic backpropagation algorithm, which is similar to the error backpropagation

Chapter 2. Literature Review 32

in neural networks and is used to train probability statistical models.

Because of the non-parametric nature of the GPs, the fitting function will

vary depending on the data, which causes computation problems when fit-

ting a large data set. The time complexity of training the GPs model isO
(
n3),

where n is the number of training points. Inside of the GPs model, there is

a large number of expensive matrix inversion operations when constructing

the covariance matrix. Such a time complexity severely hinders the expan-

sion of GPs models to large data sets. In recent years, a lot of research work

has been devoted to building sparse inferencing GPs models, the main idea

behind these works is using a small set pseudo data set of m elements to per-

form inference. This can reduce computation time from O
(
n3) to O

(
m2n

)
,

where m is the number of pseudo input and m ≪ n. Among them the

representative works include [97] [14] [15] [16] [17] [98] [99] [100] [18] [19],

of which [97] proposed a sparse inference method with m pseudo-inputs,

where the pseudo-inputs are lying in the same domain as the n available

data elements. [15] proposed an improved pseudo-input method, first it

maps input points to different domains through some specific linear trans-

formations, thus the pseudo-inputs are lying in a different domain from the

training points. This can greatly enhance the feature space of the data, im-

proving the performance of the algorithm, and reducing the computational

complexity. [16] generalized the m pseudo-input sparse inference method to

multiscale for Gaussian processes regression. The latest work [14] has proven

that in certain cases the pseudo-input m is increased with the training point

n, the relationship m = O
(

logD n
)

is enough, where D is dimension.

In addition to the variational inference method, there is amortized infer-

ence [101], expectation propagation [22], and random Fourier features [102],

all of those methods can be used to optimize the deep hierarchy Gaussian

process model. In Chapter 4 we follow the variational inference method.

Chapter 2. Literature Review 33

2.5.3 Gaussian Processes with Convolutional Kernel

Recently, CNNs have made important breakthroughs in image processing.

The success can be attributed to the introduction of convolution operations

in neural networks. The convolutional kernel not only reduces the param-

eters of the neural networks but also captures specific patterns in images.

The CNNs with multiple structures have been proposed for different uses,

these have been mentioned above. Convolutional kernel has good non-local

scalability, there is very few research work that focuses on combining the

GPs model with the convolutional kernel. The first one that introduced the

convolutional kernel into the GPs model is presented in [103]. The Convo-

lutional Gaussian processes model is still in its infancy, the performance and

sparse inferencing skills of the model are far from mature and need further

exploration. With an increase in computing power, it is believed that more

potential will be released. Compared with CNNs, GPs have clear statistical

probability theory, which may provide a direction for probabilistic interpre-

tation for interpretable deep learning.

2.6 Summary

This section first introduces the basic Gaussian process model knowledge,

and then explanatory examples. It further explains the common causes of

GPs in nature and the commonly used covariance functions. And discussed

related work.

34

Chapter 3

Transfer Learning Based Gaussian

Processes Regression for

Multiple-Person Tracking

There are many high-resolution cameras installed every day in different parts

of the world for surveillance. This provides us with a large amount of image

data. The demand for algorithms to automatically process such image data

has surged. One particular research area is to deal with multi-person track-

ing. Even though this area has been intensively studied [91] [104] [105] [106],

robust and efficient tracking of multiple persons still remains unsolved tak-

ing into account pedestrian occlusions, dynamic background changing, and

real-time processing. Building on the tremendous progress of object detec-

tion, tracking-by-detection is the most popular paradigm for multi-person

tracking in recent years. Compared with background modeling-based track-

ers tracking-by-detection approaches are more robust to changing backgrounds.

However, the object detector, which is used for tracking, usually yields false

positive and missing detections making the association between targets and

detections difficult to build. In addition, these methods always build tra-

jectories based on two neighboring frames during a long-term occlusion or

abrupt human pose changes. As a result, the risk of the tracked target tends

Chapter 3. Transfer Learning Based Gaussian Processes Regression for

Multiple-Person Tracking
35

to drift increases.

To address these challenges, many tracking-by-detection approaches com-

bine dynamic and observation models. A dynamic model, like an early Kalman

filter [83] or a particle filter [84] takes pedestrian behavior into account for es-

timating the current state of pedestrians and improves the data association.

However, most existing dynamic models utilize only the previous one state

for predicting without considering prior information leading to an incorrect

estimation when the pedestrian walking direction changes abruptly. An ob-

servation model takes into account the pedestrian’s appearance changes, par-

ticularly when an observation model updates adaptively in a causal way.

Most observation models utilize the past appearance information over time

but do not consider the current state information of the pedestrian’s appear-

ance leading to drifting problems.

To deal with these issues, we present a novel multi-person tracking frame-

work by introducing a new Gaussian Process Regression-based observation

model, which learns in a semi-supervised manner. The background informa-

tion is taken into consideration to build the discriminative tracker, training

samples are re-weighted appropriately to ease the impact of the potential

sample misalignment and noisy during model updating. Experimental re-

sults show that the proposed approach outperforms a number of state-of-

the-art methods on some benchmark datasets.

3.1 Transfer Learning

There are several major types of machine learning

• Supervised learning. The goal of the supervised learning is to learn

a function from a given labeled training set pair, which is denoted as

{(x1, y1) , . . . , (xn, yn)}, and when a new data point x∗ arrives, it can

predict the corresponding label y∗ based on this function. The labels

Chapter 3. Transfer Learning Based Gaussian Processes Regression for

Multiple-Person Tracking
36

in the training set are always labeled by experienced human annota-

tors and is very expensive. Common supervised learning algorithms

include regression analysis and statistical classification.

• Unsupervised learning. For unsupervised learning the training set has

no artificially labeled results denote as {x1, . . . , xn} compared with su-

pervised learning. The purpose of unsupervised learning is finding a

specific structure of the training set. Common unsupervised learning

algorithms include Generative Adversarial Networks (GAN) and clus-

tering.

• Semi-supervised learning. Semi-supervised learning is a learning method

that combines supervised learning with unsupervised learning. Semi-

supervised learning uses a large amount of unlabeled data and a small

amount of labeled data simultaneously for the machine learning tasks.

When using semi-supervised learning, it will require as few people as

possible to work, and at the same time, it will bring higher accuracy.

• Transfer learning. Transfer learning is a research problem in machine

learning that focuses on storing knowledge gained while solving one

problem and applying it to a different but related problem [107]. For

example, the knowledge in the current image frame can affect the at-

tributes of the samples in the previous frame, which is exactly the trans-

fer learning strategy used in this thesis.

In addition to the several types mentioned above there are also Reinforce-

ment learning, Self learning, Feature learning, Sparse dictionary learning, etc.

Explaining these type of machine learning in detail is far beyond the scope of

this thesis. In this chapter, we propose a Gaussian Process Regression based

transfer learning strategy, which extracts information from the current frame

and then use it for re-weighting the previous sample for final tracking deci-

sion making.

Chapter 3. Transfer Learning Based Gaussian Processes Regression for

Multiple-Person Tracking
37

3.2 The Gaussian Processes Regression Based Ob-

servation Model

This section presents the design details of the multi-person framework, espe-

cially the observation model. At each frame It, we obtain Dt =
{

di
t
}N

i=1 detec-

tions by using Dalal and Triggs’Histogram of Oriented Gradients (HOG) de-

tector [67], which is one of the most successful detectors, especially for pedes-

trian detection. Here, di
t refers to a bounding box at each frame It. A tracker

Ti is defined as {k ft, Xt, Mt}, where k ft is the Kalman filter used to model the

tracker’s dynamics. Tracker’s center point position and the 2D velocity are

used to define Kalman filter’s state (x, y, dx, dy). We set process and measure-

ment noise covariance matrices to
(

wi
t

r f

)2
· diag(0.025, 0.025, 0.25, 0.25) and(

wi
t
)2 • diag(1, 1) respectively. Here r f refers to the frame rate of the input

sequence, Xt =
[
xi

t, yi
t, wi

t, hi
t
]

s a bounding box, which stores the current

state of the target estimated by the observation model at
(
xi

t, yi
t
)

with a size

of
(
wi

t, hi
t
)
. Mt is a set of templates collected through time used for tracker’s

maintenance.

From the perspective of Bayesian incremental learning for visual track-

ing, once the tracker is initialized, the state variable XTi
t , which describes the

location of a tracker Ti at time t can be inferred recursively

p
(

XTi
t |I

Ti
t

)
∝ p

(
It|XTi

t

) ∫
p
(

XTi
t |X

Ti
t−1

)
p
(

XTi
t−1|T

Ti
t−1

)
dXTi

t−1 (3.1)

where ITi
t = {I1, . . . , It} is a set of observed images up to the t-th frame

of the tracker Ti, and the distribution of the object location in the current

frameX Ti
U =

{
XTi,j

t , j = 1, 2, . . . , nU

}
is stochastically generated with Kalman

filter’s prediction as input, which is a small image patch include background

information we call nu the tracking candidates of the tracker Ti. The tracking

Chapter 3. Transfer Learning Based Gaussian Processes Regression for

Multiple-Person Tracking
38

result of tracker Ti can be estimated by MAP

X̂Ti
t = arg max

xT
t ,j

P
(

XTt,j
t |T

Ti
t

)
(3.2)

For each sample, we introduce an indicator variable yj ∈ {−1,+1} to

indicate a positive sample with indicator of
(
yj = +1

)
or a negative sample

with indicator
(
yj = −1

)
corresponding to XTt j

t . X Ti
U is an unlabeled sam-

ple set of tracker Ti from the tracking result
{

XTi
f , f = 1, 2, . . . , t− 1

}
up to

the (t-1)-th frame. For each tracker, we extract nL labeled training samples

with indicator variables, and then we divide the nL labeled training samples

into two groups, ie, one is the target sample set including nT samples gath-

ered from the most recent frame denoted as DT =
{(

X, yj
)

, j = 1, 2, . . . , nT
}

which is updated quickly and aggressively. The other auxiliary sample set

DA =
{(

X; yj
)

, j = nT + 1, nT + 2, . . . , nT + nA
}

is collected at every few in-

tervals and updated slowly and carefully, where nL = nT + nA, and yj refers

to a label. Let 1 = [+1,+1, . . . ,+1]⊤, yU = [y1, y2, y3, . . . , ynu]
⊤, and then

the regression function for the indicators of unlabeled samples yu can be ex-

pressed as

R = P (yU = 1|XU,DA,DT) (3.3)

For each sample, we have indicator variable yj ∈ {−1,+1}. Actually each

prediction of a GPs on an unlabeled sample setX Ti
U =

{
XTi,j

t , j = 1, 2, . . . , nU

}
is a real-valued output of a mean vector in a fixed feature spaceK, ie, the dis-

tance to the hyperplane with the normal vector [108]. To use GPs Regression

for classification, we introduce two real-valued latent vectors lA ∈ RnA and

lU ∈ RnU corresponding to the label yA and yU respectively. Intuitively, the

further away an unlabeled sample is from the hyperplane (ie, the larger the

value of l), the more likely it is that the sample is from the class y = sign(l).

We model this intuitive notion by

Chapter 3. Transfer Learning Based Gaussian Processes Regression for

Multiple-Person Tracking
39

P (yi|li) =
eγi|yi

eλiyi + e−γiliyi
=

1
1 + e−2γiyi

, ∀i = 1, 2, . . . , nU (3.4)

where lu = [l1, l2, . . . , lnu]⊤, γ is the noise level of the sigmoid noise la-

bel output model.We set γ to 10, and for auxiliary samples, we use the same

label output model. First of all, we feed the auxiliary data to the GPs model

and then get the corresponding latent real-valued lA, which is the output of

Gaussian processes regression. Furthermore, by using the sigmoid noise la-

bel generation model, we get the indicator label yA. We construct the prior

covariance matrix depending on all the samples, the correlated structure of

the labeled samples, and unlabeled samples have a significant effect on the

latent real-valued output. The latent variable lA is the re-weighted knowl-

edge extracted from the regression, which can be a soft replacement of the

indicator label yA. The latent variable is better for ameliorating sample mis-

alignment problems and is less sensitive to noise compared with the indicator

variable.

3.3 Gaussian Processes Latent Variable Model

In order to exploit latent variables l∪ and lA, we marginalize over all their

possible values (lU, lA)

P (yU = 1|XU,DA,DT) =
∫∫

P (yU = 1, lA, lU|XU,DA,DT) dlAdlU

=
∫∫

P (yU = 1|lU) P (lA, lU|XU, DA,DT) dlAdlU
(3.5)

The latent variable l and labels y ∈ (−1,+1) are connected via the sig-

moid noise label output model. Applying the posterior P (lA, lU|XU,DA,DT)

by Bayes theorem, we have

Chapter 3. Transfer Learning Based Gaussian Processes Regression for

Multiple-Person Tracking
40

P (lA, lU|XU,DA,DT) = P (lA, lU|yA,XU,XA,DT)

=
P (yA|lU, lA,DT,XA,XU) · P (lU, lA|DT,XA,XU)

P (yA|DT,XA,XU)
(3.6)

The GPs model P (lA, l∪|XA,XU,D⊤) is restricted to the auxiliary data

and unlabeled data with the mode µ and the covariance matrix ∆̃−1 ∈ R(nA+nU)×(nA+n∪),

leading to the regression of the latent variables lA and lU

P (lA, lU|XA,XU,DT) ∼ N
(

µ, ∆̃−1
)

(3.7)

3.4 Advantages of The Gaussian Processes Regres-

sion Based New Observation Model

We explore how future information can be used to assist in generating a

tracking decision, this is inspired by the label propagation algorithm pro-

posed by zhu [109] in 2003. The detailed description of the label propaga-

tion algorithm is added in Appendix B. To achieve this goal, we employ the

Gaussian Processes Regression based observation model, which learns in a

semi-supervised fashion. The knowledge of the current frame tracking can-

didates was extracted used for re-weighting the previous sample’s weight.

The current state of the tracking targets has a significant influence on the fi-

nal tracking decision. Because a dynamic model utilises only the previous

one state to estimate the current state of the tracking targets, which tends

to drift, we fuse prior information to enhance tracking inference, rather than

utilise the previous one frame information, thereby to alleviate drift. The new

observation is to update adaptively to avoid the loss of sample diversity. The

Chapter 3. Transfer Learning Based Gaussian Processes Regression for

Multiple-Person Tracking
41

FIGURE 3.1: Unlabeled samples generated from the current
frame, image patches containing background information. The
first one is positive sample, and the rest are negative samples

tracking candidates set X Ti
U is stochastically generated from a Normal dis-

tribution as shown in FIGURE 3.1. These tracking candidates are small im-

age patches containing background information, which is stable for dynamic

background tracking. All of these features of the new observation model help

alleviate the problem of drifting.

3.5 Constructing Covariance Matrix

To prevent the binary classification y ∈ {−1,+1} from losing generality, we

need to define the kernel matrix Gall properly, which has to be symmetric

with non-negative entries. The Gram matrix Gall is based on the weighted

graph G = (V, E) with node set V corresponding to all the samples includes

target samples, auxiliary samples, and unlabeled samples. Intuitively, the

weighted matrix W of G specifies the local similarity.

Following this intuition, we use the method proposed in the work of Hu

et al [110] to construct the weighted matrix. We further explore the manifold

structure between all the samples as suggested in the work of Zhu et al [109].

Gaussian random fields are equivalent to GPs that are restricted to a finite

set of points [111]. Following this connection, we establish the link between

the graph Laplacian and the kernel method in general. We compute sparse

Chapter 3. Transfer Learning Based Gaussian Processes Regression for

Multiple-Person Tracking
42

matrix W here, which empirically tends to have a good performance. Eq. 3.7

can be viewed as a GPs restricted to the auxiliary and unlabeled data. The

Laplacian is defined as ∆ ≡ D−W and degree matrix D is the row sum of

W because the Laplacian ∆ has a zero eigenvalue with constant eigenvector 1

and as covariance matrix is an improper prior. To get rid of the eigenvalues, a

regular Laplacian is obtained by ∆̃ = ∆ + I/τ2, where τ is a small smoothing

parameter, ∆̃−1 is the inverse function of the Laplacian ∆̃. Therefore, the

covariance between any two points i and j. In general, depending on all the

data. This is the way semi-supervised learning working and how unlabeled

data influences the Prior Knowledge can be viewed as a transfer learning

strategy. Detailed Laplace approximate inference for the Gaussian Processes

Latent Variable Model is shown in Appendix C.

3.6 Experiments

We test our new approach on a 2.8GHz octa-core CPU, 16GB memory com-

puter; our system is implemented in C++ using OpenCV and Eigen library.

There is no unified accepted benchmark available for multi-person track-

ing. Most of the recent publications have tested their approaches on their

own sequence, which varies from the viewpoint, density of pedestrian, and

amount of occlusion.We combined them together for the evaluation of our

algorithm; these sequences include TUD-Campus [112] and TUD-Stadtmitte

[113], PETS’09 S2.L1 - S2.L2 - S2.L3 [114] and TownCenter [92]. Runtime

performance depends on the different sequences; most of the sequences can

achieve real-time performance. In the following section, we will detail the

different several experiments.

Chapter 3. Transfer Learning Based Gaussian Processes Regression for

Multiple-Person Tracking
43

3.6.1 Evaluation Metrics

To measure the performance of the proposed work, we employed the CLEAR

MOT metrics proposed by Kasturi et al [115]. The Multiple Object Track-

ing Accuracy (MOTA) considers false positive, missed targets, and identity

switches. The Multiple Object Tracking Precision (MOTP) takes into account

the average distance between the estimated location and ground truth. Note

that the higher value of these metrics stands for better performance. Fur-

thermore, we also compute the metrics described in the work of Bernardin

and Stiefelhagen [116], which considers the partially tracked (PT), the counts

the number of mostly tracked (MT), mostly lost (ML) trajectories, number of

track fragmentations (FM), and identity switches (IDS).

3.6.2 Experiments Analysis

The PETS 2009 Dataset [114] was introduced by the Computational Vision

Group University of Reading; this dataset includes four subsets used for dif-

ferent purposes of visual analysis. Among them, the S2 subset sequence is

designed for testing the performance of the tracking algorithm. We tested our

algorithm on the S2L1, L2, and L3 sequence; the density of pedestrians is rais-

ing according to the order of the dataset. S2L1 and S2L2 sequences exhibits

randomly walking sparse crowd. The S2L3 sequence shows two individu-

als, which are bystanders in an empty scene and later join a moving crowd,

who walk in the same direction. While this sequence has a very crowded

crowd, the crowd is occluded heavily even for pedestrian detection. A brief

description of the PETS sequences is as shown in TABLE 3.1. We compared

our algorithm with different approaches; the results of these approaches are

obtained from the MOTChallenge, which is a part of the famous VideoNet

challenge and public available 1 A comprehensive comparison is shown in

1https://motchallenge.net/

Chapter 3. Transfer Learning Based Gaussian Processes Regression for

Multiple-Person Tracking
44

TABLE 3.1: A brief description of the PETS S2 sequence

Frame Number of Number of Our Method

Rate frames Id Precision Recall

(fps) (%) (%)

PETS2009 S2L1 7 795 19 87 81

PETS2009 S2L2 7 436 43 90 59

PETS2009 S2L3 7 240 44 88 33

TABLE 3.2.

As can be seen from TABLE 3.2 our method produces higher recall and

precision in all three datasets. For the S2L1 sequence, the MOTA score suc-

cess surpasses all other methods. We also get a comparable MOTP score. We

believe the slightly lower MOTP score was due to the update of the sample

set not perfectly adapt the scale change over time; our method has less miss-

ing detection and potentially increases the number of false positive. We also

compared our method with the work of Leal-Taixé et al [122], our method

gets a higher MOTA score than the work [122]. For the S2L2 sequence, we

have the best MOTA score and comparable MOTP score. Besides, we also test

our algorithm on the S2L3 dataset, which featured a crowd with heavy oc-

clusions; only a few persons can be tracked accurately. Note that the results

of the work of Zhang et al [121] are slightly different from the original pa-

per; we did the test ourselves, which it could be influenced by the parameter

tuning or pretreatment optimization. We used the same evaluation metrics

as the work of Zhang et al [121] and achieved comparable performance. It is

noticed that with the increase of density of people in the sense there are few

veterans, the ratio of veterans is much higher in sequence S2L1 than S2L2; it

can be explained by the fact that there is more occlusion issues in S2L2 than

Chapter 3. Transfer Learning Based Gaussian Processes Regression for

Multiple-Person Tracking
45

TABLE 3.2: Results comparison of selected PETS dataset

Sequence Tracker Rcll(%) Prcn(%) FP IDSW MOTA(%) MOTP(%)

PETS2009-S2L1

DP_NMS [117] 83.3118 80.9783 910 348 56.2581 71.119

Ours 81.957 87.6495 537 126 67.6989 62.5369

TC_ODAL [118] 81.6559 83.4139 755 31 64.7527 70.4317

TBD [119] 81.2903 84.2434 707 239 60.9462 71.1903

SMOT [120] 75.1828 91.5663 322 99 66.129 71.5962

[121] 61.2043 99.0257 15 15 60.2796 68.2216

[122] - - - - 67 -

PETS2009-S2L2

[121] 25.2235 98.8199 31 47 24.4656 61.3475

MotiCon [123] 54.8387 90.4224 560 238 46.5616 67.6273

Ours 59.9883 90.2896 664 420 49.4559 52.9748

JPDA_m [124] 49.611 82.4797 1016 139 37.631 65.9038

SORT [3] 38.2014 82.045 806 240 27.3519 67.361

RMOT [125] 50.8039 81.3081 1126 190 37.1538 67.6956

GSCR [126] 35.5461 78.3673 946 162 24.0535 67.5983

PETS2009-S2L3
[121] 26.4168 96.2531 45 30 24.7029 57.1675

Ours 33.0439 88.5487 187 38 27.9022 53.0151

Chapter 3. Transfer Learning Based Gaussian Processes Regression for

Multiple-Person Tracking
46

TABLE 3.3: Results comparison on TownCenter dataset

Sequence Tracker Rcll(%) Prcn(%) FP IDSW MOTA(%) MOTP(%)

TownCenter

Ours 82.1854 85.5537 6528 247 67.7827 55.827

GSCR [126] 23.2233 79.1607 437 42 16.5221 67.8075

SORT [3] 45.0196 74.3359 1111 162 27.2104 67.4241

EAMTTpub [127] 32.8903 72.0723 911 201 17.3335 68.549

OMT_DFH [128] 39.6335 69.3513 1252 52 21.3906 67.805

RNN_LSTM [129] 34.4992 67.1569 1206 299 13.4443 68.7955

TSDA_OAL [130] 45.0196 64.489 1772 105 18.7605 67.3565

oICF [131] 38.2065 63.8233 1548 82 15.4029 67.542

S2L1.

We also test our algorithm on the TownCenter [92] dataset (see TABLE

3.3), which initially designed for head tracking, but nowadays widely used

for the performance measurement corresponding to multi-person tracking

algorithms. This video is high definition (1920 × 1080 at 25fps),with an aver-

age of sixteen people visible at any time [92]. Both the ground truth for this

sequence and dataset are public available 2.

The results show that our algorithm outperforms other algorithms in the

recall, precision, and MOTA categories, while more detection increases the

risk of false positive. PETS’09 S2.L1, S2.L2, and TownCenter dataset, all of

these datasets are a part of the MOT challenge 2015 benchmark [132]. In addi-

tion, we also selected two additional datasets from this benchmark, which is

TUD-Campus [112] and TUD-Stadtmitte [113]. These two datasets are public

available 3. There is also a development kit public available 4, which is used

for fair comparison.

2http://www.robots.ox.ac.uk/ActiveVision/Publications/benfold_reid_cvpr2011/benfold_reid_cvpr2011.html
3https://motchallenge.net/data/2D_MOT_2015/
4https://bitbucket.org/amilan/motchallenge-devkit/src/default/

Chapter 3. Transfer Learning Based Gaussian Processes Regression for

Multiple-Person Tracking
47

TUD-Campus sequence is filmed at a horizontal view with people walk-

ing in two opposite directions occluding each other; the TUD-Stadtmitte se-

quence is filmed at a lower view, pedestrians dressed similar dresses, walk-

ing disorderly, and occlusion happens a lot; this makes the color-based ob-

servation model very hard to track people accurately. Results comparison is

shown in TABLE 3.4. Our algorithm achieves not so good results. We believe

that in the TUD-campus and TUD-Stadtmitte dataset, there are a large num-

ber of pedestrians staggered. This makes our algorithm prone to errors when

sampling. In future work, we will continue to improve the algorithm.

Chapter 3. Transfer Learning Based Gaussian Processes Regression for

Multiple-Person Tracking
48

TA
B

L
E

3.
4:

R
es

ul
ts

co
m

pa
ri

so
n

be
tw

ee
n

ou
r

al
go

ri
th

m
an

d
ot

he
rs

Se
qu

en
ce

Tr
ac

ke
r

R
cl

l(
%

)
Pr

cn
(%

)
FA

R
G

T
M

T
PT

M
L

FP
FN

ID
SW

FM
M

O
TA

(%
)

M
O

TP
(%

)

TU
D

-S
ta

dt
m

it
te

D
P_

N
M

S
[1

17
]

79
.5

8
81

.5
6

1.
16

10
8

2
0

20
8

23
6

40
25

58
.1

3
69

.8
7

O
ur

s
54

.8
77

.4
1.

03
10

2
8

0
18

5
52

2
6

32
38

.3
61

.6

TB
D

[1
19

]
82

.2
6

82
.9

1
1.

09
10

8
2

0
19

6
20

5
28

13
62

.8
8

69
.5

1

TC
_O

D
A

L
[1

18
]

78
.4

6
86

.3
8

0.
79

10
7

3
0

14
3

24
9

6
17

65
.5

7
69

.9
1

C
EM

[1
32

]
74

.9
1

93
.1

1
0.

35
10

6
4

0
64

29
0

11
9

68
.4

2
69

.6
5

SM
O

T
[1

22
]

71
.1

0
92

.9
8

0.
34

10
4

6
0

62
33

4
16

26
64

.3
5

70
.1

6

TU
D

-C
am

pu
s

D
P_

N
M

S
[1

19
]

72
.1

4
75

.2
9

1.
19

8
3

5
0

85
10

0
44

22
36

.2
1

74
.1

7

O
ur

s
27

67
.4

0.
66

8
0

5
3

47
26

2
4

18
12

.8
66

.7

TB
D

[1
21

]
76

.3
2

86
.4

3
0.

60
8

5
3

0
43

85
9

12
61

.8
3

74
.8

5

TC
_O

D
A

L
[1

20
]

58
.7

7
86

.8
3

0.
45

8
1

7
0

32
14

8
6

14
48

.1
8

74
.0

2

C
EM

[1
32

]
65

.1
8

89
.6

5
0.

38
8

3
5

0
27

12
5

15
8

53
.4

8
74

.7
3

Chapter 3. Transfer Learning Based Gaussian Processes Regression for

Multiple-Person Tracking
49

3.7 Summary

This chapter first introduces the transfer learning, and then proposed a new

kind of Gaussian Processes Regression Based observation model. Next, some

details of the new model are introduced. At last, through experiments to

verify the effectiveness of the new observation model.

50

Chapter 4

Deep Learning with Gaussian

Processes Building Blocks

The most popular sub-field of the machine learning area is deep learning in

recent years. Deep learning allows computational models that are composed

of multiple processing layers to learn representations of data with multiple

levels of abstraction [4], deep learning can be supervised, semi-supervised or

unsupervised. Around 2007 Professor Geoffrey Hinton shows how to effec-

tively train feedforward neural networks, this algorithm treats each layer in

the network as an unsupervised restricted Boltzmann machine, which is then

tuned using a supervised backpropagation algorithm [133] [134]. As comput-

ing power continues to grow, and the availability of massive labeled data,

deep learning unlocks its potential. Deep architectures such as deep neural

networks (DNN), recurrent neural networks (RNN) and convolutional neu-

ral networks (CNN) have been applied to many fields including computer vi-

sion, natural language processing, machine translation, drug design even for

playing game Go [135]. In these areas, the machine has achieved comparable

or better performance than human experts. In this section, we investigate a

new kind of deep learning architecture which is constructed with the build-

ing blocks of GPs, this kind of new model has a very high model complexity

and is capable of the ability to learn abstract features. Most importantly it

has many advantages compared with other structures of deep learning.

Chapter 4. Deep Learning with Gaussian Processes Building Blocks 51

4.1 The Advantages of Gaussian Processes

Modern machine learning experts utilize powerful models for feature extrac-

tion of which DNN is only one of many. GPs are another of these models

and their primary distinction is their relation to uncertainty. The success of

DNN has its foundation on the growth of computing power and the avail-

ability of a large amount of data. However, it is still very difficult to obtain a

large amount of labeled data in many fields, when applying DNN to a small

dataset which tends to overfit. Meanwhile, Neural Networks that require

different structures based on different tasks, and there is no theoretical guid-

ance to find a suitable structure. When applying neural networks for image

processing tasks, it can be attacked easily by adversarial samples, adding ran-

dom noise to the image may lead to completely different recognition results.

Compare with Neural Networks, GPs has several advantages as follows

• GPs directly capture the model uncertainty, e.g. in the regression case,

the GPs model gives the distribution of the latent function instead of

giving specific parameter values like weights in a neural network. The

uncertainty is fully encoded in the mean and covariance of normal dis-

tribution.

• Compared with neural networks GPs are fully controlled by its mean

and covariance, much less parameter to learn.

• When using the GPs model, based on different tasks, we can incorpo-

rate different prior knowledge by selecting different kernel functions.

• Due to the non-parametric nature of the GPs model, it is proved to

prevent overfitting when data is scarce.

In the next few sections, we will introduce a new deep learning struc-

ture, which is constructed based on the Gaussian Process building blocks.

Chapter 4. Deep Learning with Gaussian Processes Building Blocks 52

This kind of deep structure can benefit from Bayesian inferencing, and also

integrate prior knowledge based on different tasks, finally provide stable un-

certainty estimates based on Bayesian inference.

4.2 GPs vs RBM

4.2.1 Restricted Boltzmann Machine

A restricted Boltzmann machine (RBM) is a generative stochastic artificial

neural network that can learn a probability distribution over its set of in-

puts. RBM was initially invented by Paul Smolensky in the 1980s [136] until

twenty years later Geoffrey Hinton and his collaborators who invented the

fast training algorithms make it practical [134]. RBM can be used in dimen-

sionality reduction, classification, feature engineering, and recommendation

systems. And it can be extended to deep belief networks by stacking multi-

ple restricted Boltzmann machines, RMB is the cornerstone of modern main-

stream deep learning.

RBM as a variant of Boltzmann machine (BM), RBM must be a bipartite

graph, the model has two types of nodes: visual node V and hidden node H.

In the RBM each node in the visible layer is connected to every node in the

hidden layer, but no two nodes in the same layer share a connection. That

is the restriction in the RMB, a picture interpretation is as shown in FIGURE

4.1. For an RBM with V visible nodes and H hidden nodes, it is governed by

the energy function:

E(v, h) = −
V

∑
i=1

H

∑
j=1

vihjwij −
V

∑
i=1

vibv
i −

H

∑
j=1

hjbh
j (4.1)

Each element in the weight matrix W =
(
wi,j
)

specifies the weight be-

tween a hidden layer node hj and a visible node vj, bv
i and bh

j are the real-

valued bias of the visible node vi and hidden node hj respectively. (v, h)

Chapter 4. Deep Learning with Gaussian Processes Building Blocks 53

FIGURE 4.1: Schematic diagram of a restricted Boltzmann ma-
chine with four visible nodes and three hidden nodes.

is a vector of a collection of visible nodes vi and hidden node hj. The joint

probability distribution between the hidden and visible layers is given by the

energy function

P(v, h) =
1
Z

e−E(v,h) (4.2)

Where Z is a partition function defined as the sum of e−E(v,h) over all possible

configurations. The marginal probability of a visible node is the sum over all

possible hidden layer configurations

P(v) =
1
Z ∑

h
e−E(v,h) (4.3)

Similarly, we can get the marginal probability of a hidden node with a

conditions on all the visible nodes.

P(h) =
1
Z ∑

v
e−E(v,h) (4.4)

Because RBM is a bipartite graph, and there is no connection between the

same layers. The hidden unit activations are mutually independent given the

visible unit activations and conversely, the visible unit activations are mutu-

ally independent given the hidden unit activations [137]. That is for m visible

Chapter 4. Deep Learning with Gaussian Processes Building Blocks 54

nodes and n hidden nodes, the conditional probability of a configuration of

the visible nodes v, given a configuration of the hidden nodes h is

P(v|h) =
m

∏
i=1

P (vi|h) (4.5)

Conversely, the conditional probability of h given v is

P(h|v) =
n

∏
j=1

P
(
hj|v

)
(4.6)

The goal of training an RBM model is based on the training data to max-

imize the product of probabilities arg max
W

∏
v∈V

P(v), where D is the training

set and visible node v. Train the model to find the optimal weight matrix W,

the most commonly used algorithm is the contrastive divergence [137].

4.2.2 Gaussian Processes

GPs extend multivariate Gaussian distributions to infinite dimensionality.

such that every finite collection of those random variables has a multivari-

ate normal distribution, due to the property of normal distribution every fi-

nite linear combination of them is normally distributed. The distribution of

a Gaussian process is the joint distribution of all those (infinitely many) ran-

dom variables, and as such, it is a distribution over functions with a continu-

ous domain. x For a simple regression case, given a training sample set X =

[x1, x2, · · · , xi] and its corresponding output Y = [f (x1) , f (x2) , · · · , f (xi)],

we have a new sample x∗ and we want to prediction the corresponding out-

put y∗. Given the prediction function f (·) a GPs prior, we can directly model

the prediction process.

 Y

y∗

 ∼ N

µ,

 K KT
∗

K∗ K∗∗


 (4.7)

Chapter 4. Deep Learning with Gaussian Processes Building Blocks 55

Where K is the covariance between training sample X, K∗ is the covari-

ance between the training sample and the new sample x∗, K∗∗ is the covari-

ance of the new sample x∗. The posterior probability p (y∗|Y, X, x∗) is a joint

normal distribution given by the following formula.

p (y∗|Y, X, x∗) ∼ N(µ, Σ) =
1√

(2π)i+1|Σ|
exp

(
−1

2
(X− µ)TΣ−1(X− µ)

)
(4.8)

4.2.3 Comparing GPs with RBM

For the regression case, both the RBM and GPs model aim to fit a prediction

function f (·), which must encode some regularity of the dataset. RBM finds

the optimal parameters by maximizing the probability. Different from RBM,

GPs model can effectively estimate uncertainty which encods in the covari-

ance matrix. GPs tend to prevent overfitting due to their non-parametric na-

ture when data is scarce. Selecting different kernel functions according to the

characteristics of the data can integrate different prior knowledge. In RBM,

maximizing the conditional probability of the output simply through a linear

weighted over the inputs. Compared with RBM, GPs are more expressive of

data in a probability way. It has long been known that an infinite wide sin-

gle layer fully-connected neural network is equivalent to a GPs [26] [28] [27].

By stacking multiple GPs together, we can form a deep hierarchy Gaussian

process model (DHGP). Naturally, a two-layer deep hierarchy Gaussian pro-

cess model is equivalent to a two-layer infinite-wide neural network, and a

deeper deep hierarchy Gaussian process is equivalent to a deep infinite-wide

neural network. Obviously, the fitting ability of the deep hierarchy Gaussian

process model is greater than the neural networks. In the next few sections,

we will introduce the deep hierarchy Gaussian process model in detail.

Chapter 4. Deep Learning with Gaussian Processes Building Blocks 56

4.3 Sparse Approximations for Gaussian Processes

The GPs is a simple, powerful, flexible and fully probabilistic tool, and can be

applied to many fields. The main obstacle to the GPs model is the computa-

tional issues, whose computational complexity is cubic with training points.

In order to overcome these computational issues, many researchers have pro-

posed sparse inference methods [97] [16] [17] [98] [138] [99] [100]. The main

idea behind the sparse approximation for GPs is to select a subset of M in-

ducing points which can be chosen from the training set or other domain.

Jointly consider training set and inducing points to establish effective prior

and then use it to do prediction on the test set. This sparse approximation

technique can effectively reduce the computational complexity from O
(

N3)
to O

(
NM2), where N and M are the numbers of training samples and in-

ducing points respectively. We briefly introduce a general sparse Gaussian

Processes inference framework which can also scale to deep learning struc-

ture with the Gaussian Process building blocks.

Consider a GP prior function f (x) and real-value feature extraction function

g(x, z) with inducing feature z. After a series of linear transformations, we can

get inducing variable u(z)

u(z) =
∫

f (x)g(x, z)dx (4.9)

The inducing variable u(z) must be linear transform f (x), due to the

property of GPs, linear Gaussian is still Gaussian. The inducing variable

u(z) can be seen as a projection of the target function f (x) to other domain

through the feature extraction function g(x, z) over the input sample. This

cross-domain inducing variable allows more compact feature space expres-

sion and can integrate prior knowledge which is encoded in the inducing fea-

ture z and feature extraction function g(x, z). Joint consider f (x) and u(z), we

Chapter 4. Deep Learning with Gaussian Processes Building Blocks 57

can build effective prior which is then used to predict on test dataset more ef-

ficiently and accurately. Assume the original Gaussian Process prior f (x) ∼

GP (m(x), k (x, x′)). The mean of cross-domain joint Gaussian distribution

f (x) and u(z) are given by

m(z) = E[u(z)] =
∫

E[f (x)]g(x, z)dx =
∫

m(x)g(x, z)dx (4.10)

The covariance of cross-domain f (x) and u(z) are given by

k
(
x, z′

)
= E

[
f (x)u

(
z′
)]

= E

[
f (x)

∫
f
(
x′
)

g
(
x′, z′

)
dx′
]

=
∫

k
(
x, x′

)
g
(
x′, z′

)
dx′

(4.11)

k
(
z, z′

)
= E

[
u(z)u

(
z′
)]

= E

∫∫
f (x)g(x, z)dx

∫
f
(
x′
)

g
(
x′, z′

)
dx′
]

=
∫ ∫

k
(
x, x′

)
g(x, z)g

(
x′, z′

)
dxdx′

(4.12)

The mean and covariance are defined both by the original input domain

and its augment domain.

4.3.1 Augmented Domain

The inducing feature and feature extraction function g(x, z) define a transformed

augment domain on the input sample set. By select proper g(x, z), the feature

space of the original input sample set can be better expressed. The selection

of proper feature extraction function g(x, z) can use prior knowledge about

the sample set or use some famous family of functions like Fourier transform

or Laplace transform. Here are just some examples of using separate aug-

ment domain. In fact, we can use an infinite number of augmenting domains

Chapter 4. Deep Learning with Gaussian Processes Building Blocks 58

with different feature extraction function. The augment domain provides all

possible auxiliary information about the input sample set, therefore provide

better prediction performance.

4.4 Deep Hierarchy Gaussian Process

When trying to fit the data with a single GP model, we may not know which

one is the correct covariance function, considering an improper covariance

function may lead to bad results. When fitting complex structured data like

audio and image, the data may not easily express as a covariance. Due to

the success of deep learning in recent years, a natural idea is to develop a

deep structure model. The deep structure can increase model complexity

and extract different level abstract features from data at the same time. A

series of decision tree-based deep model has been proposed to form a deep

forest model and achieve good performance on various datasets [6] [7] [8].

By stacking multiple GPs, we can build a deep hierarchy Gaussian process

model. In this deep structure, each node is used as the input of the next layer

nodes in the network structure until the output is finally obtained and the

connection between different layers is governed by a GP. A picture explana-

tion of the deep hierarchy Gaussian process model is as shown in FIGURE

4.2 with the augmented feature domain and parameter.

In the standard GPs probabilistic inference framework, we have a set of

training data X and the corresponding output Y respectively, the goal is to

estimate the latent function f = f (x). GPs place a nonparametric prior dis-

tribution over the latent function f . By adding a Gaussian noise ϵ we have

the general GPs generation model, i.e.

yn = f (xn) + ϵn, ϵ ∼ N
(

0, σ2
ϵ I
)

(4.13)

Chapter 4. Deep Learning with Gaussian Processes Building Blocks 59

FIGURE 4.2: The general architecture of a deep hierarchy Gaus-
sian process model, the dotted circle represents an augment do-

main with inducing variable and parameter.

FIGURE 4.3: Deep hierarchy Gaussian process obtained by ex-
tending the standard Gaussian processes.

We follow the common practice with zero-mean, i.e. f (x) ∼ GP (0, k (x, x′)).

The correlation information of paired data in the dataset is encoded in the co-

variance function, the GP prior to the latent function f is fully depended on

the selection of basis kernel function. We can choose different kernel func-

tions according to the characteristics of data to make the data more effec-

tively expressed. We assume that each output yn is generated independently

by the input xn, sum all the latent fn, we have F = { fn}N
n . Due to that the

latent function is normal distributed, the marginal likelihood is computed

tractably.

p(Y|X) =
∫ N

∏
n=1

p (yn| fn) p (fn|xn)dF

= N
(

Y|0, KNN + σ2
ϵ I
)

, KNN = k(X, X)

(4.14)

Extending the standard GPs model directly, we get a deep hierarchy Gaus-

sian process model as shown in FIGURE 4.3.

Chapter 4. Deep Learning with Gaussian Processes Building Blocks 60

p(y|x) =
∫

p (y| f4) p (f4| f3) p (f3| f2) p (f2| fl) p (fl|x) dF (4.15)

Or in a recursive form

y(x) = f4 (f3 (f2 (f1(x)))) (4.16)

As the connection between each layer is governed by a GP, the deep hier-

archy Gaussian process can be easily expanded to a deeper model. Here we

introduce automatic relevance determination (ARD) covariance function for

the GP.

k
(
xi, xj

)
= σ2

arde−
1
2 ∑Q

q=1 wq(xi,q−xj,q)
2

(4.17)

This covariance function specifies a different weight wq for different la-

tent dimensions. This weight is the parameter of a deep hierarchy Gaussian

process model and gets the optimal value under the framework of Bayesian

variational inferencing. Compared with deep neural networks, deep hier-

archy Gaussian process have far fewer parameters and the GPs is a kind

of stochastic process, which is computable and analyzable. Because of the

p (y| f) and covariance function introduces non-linearity, making the direct

Bayesian inference challenging. In the next section, we will introduce an

approximate Bayesian variational inference framework, which uses a varia-

tional distribution to approximate the true distribution.

4.5 Variational Bayesian Inference

Due to the introduction of non-linearities in the model, direct calculations

are difficult. Variational Bayesian inference provides a type of approximate

Chapter 4. Deep Learning with Gaussian Processes Building Blocks 61

FIGURE 4.4: A two hidden layer hierarchy case and each con-
nection is governed by separate Gaussian processes.

method for intractable integrals. Variational inference typically used in com-

plex statistical models which consist of observed variables as well as param-

eters and latent variables. The parameters and latent variables usually group

together as unobserved variables. Variational Bayesian inference is primarily

used for approximating the posterior probability of the unobserved variables

and derives evidence lower bound (ELBO) for the marginal likelihood of the

observed data. The higher the marginal likelihood indicates that the given

model fits the data better, hence that the higher the probability that the model

can generate the data. A usual approach is to use a variational distribution

q to approximate the true distribution P, and then minimise the Kullback-

Leibler divergence between q and P. Minimising KL divergence between the

variational distribution q and true distribution P is equivalent to maximising

ELBO. (The detailed derivation and explanation of KL divergence is given in

Appendix A)

Many previous works have focused on the variational inference for train-

ing complex statistic model [139] [95] [20]. In the deep hierarchy Gaussian

process model training procedure, for a two hidden layer simple case as

shown in FIGURE 4.4, we introduce the inducing feature Z to enhance the

feature space of the input observation data X, this process is governed by a

GPs FX. The output Y is generated by another independent GPs FY. We need

to optimise the corresponding evidence lower bound.

log p(Y) = log
∫

X,Z
p(Y|X)p(X|Z)p(Z)dXdZ (4.18)

In this case, the evidence lower bound (ELBO) L(q) ≤ log p(Y) with

Chapter 4. Deep Learning with Gaussian Processes Building Blocks 62

L(q) =
∫

X,Z,FY ,FX
q log

p
(
Y, FY, FX, X, Z

)
q

(4.19)

Where q is the variational distribution used to approximate the posterior

probability of the unobserved variables, notice the joint distribution of the

numerator in the integral has the expanded form.

p
(

Y, FY, FX, X, Z
)
= p

(
Y|FY

)
p
(

FY|X
)

p
(

X|FX
)

p
(

FX|Z
)

p(Z) (4.20)

Further, we augment the input and output layers with pseudo-input Z̃

and X̃ respectively, we have the corresponding inducing variable UX and

UY. Then we can have the augmented probability space.

p
(

Y, FY, FX, X, Z, UY, UX, X̃, Z
)
=p
(

Y|FY
)

p
(

FY|UY, X
)

p
(

UY|X̃
)

· p
(

X|FX
)

p
(

FX|UX, Z
)

p
(

UX|X̃
)

p(Z)
(4.21)

The inducing variable UX and FX are joint Gaussian distribution and can

effectively enhance the feature space of the observed data. This is true for

UY and FY. From now we can define the variational distribution q with the

augmented domain.

q = p
(

FY|UY, X
)

q
(

UY
)

q(X)

· p
(

FX|UX, Z
)

q
(

UX
)

q(Z)
(4.22)

Substitute the variational distribution q back to the evidence lower bound

L(q) with the augmented domain, we have the following quantity.

L(q) =
∫

q log
p
(
Y|FY) p

(
UY) p

(
X|FX) p

(
UX) p(Z)

q′
(4.23)

Chapter 4. Deep Learning with Gaussian Processes Building Blocks 63

Where q′ = q
(
UY) q(X)q

(
UX) q(Z) and the above L(q) is corresponds to{

X, Z, FY, FX, UY, UX}. Further, we can factorize the above L(q) by group-

ing related variables together, the evidence lower bound can be written as

follows:

L(q) = gY + rX +Hq(X) −KL(q(Z)∥p(Z)) (4.24)

Where the symbol ⟨·⟩ is used for denoting the expectations, H repre-

sents the information entropy of the distribution. KL represents the Kullback

Leibler divergence.

gY = g
(
Y, FY, UY, X

)
=

⟨
log p

(
Y|FY)+ log

p(UY)
q(UY)

⟩
p(FY |UY ,X)q(UY)q(X)

(4.25)

rX = r
(
X, FX, UX, Z

)
=

⟨
log p

(
X|FX)+ log

p(UX)
q(UX)

⟩
p(FX |UX ,Z)q(UX)q(X)q(Z)

(4.26)

The term gY is only respected to the output. Even this is a simple case

the model can be expanded vertically by adding more hidden layers with re-

spect to more term rX. The above is a general framework for optimizing com-

plex statistic models by maximizing evidence lower bound (ELBO) which is

equivalent to minimize the KL divergence between a variational distribution

and true distribution. Base on the general framework, efficient variant opti-

mization methods have been proposed [21] [22] [23] [25] [24] used for train-

ing deep hierarchy Gaussian process model. [21] proposed a method of dou-

ble stochastic variational inference optimization approach, which sampling

form variational posterior meanwhile subsample the data in mini-batches al-

low the model scale to a large dataset. In the next section, we will verify

the effectiveness of the inducing variables and the performance of the deep

hierarchy Gaussian process model with different size datasets.

Chapter 4. Deep Learning with Gaussian Processes Building Blocks 64

4.6 Experiments

In order to test the performance of the deep hierarchy Gaussian process Model,

as well as the computational complexity, we tested DHGP model on eight

UCI datasets, which cover small to medium scales. In all experiments, we

employed the same hyperparameters for model initialization. And all layers

adopted RBF kernels. We further tested the deep hierarchy Gaussian pro-

cess model on the MNIST dataset, which was previously considered to be

difficult for GPs models because of the high-dimensional input and compu-

tational complexity of the image dataset.

UCI Dataset for Regression

We compared DHGP model with other sparse Gaussian processes infer-

ences on eight UCI datasets. We initialized the deep hierarchy Gaussian pro-

cess model of 1-4 layers each with 100 inducing points. We compared with

SGPR [138], SVGP [140], FITC [97] with 100 and 300 inducing points respec-

tively. We also compared the DHGP model with a Bayesian neural network

with a hidden layer, which uses the PBP [96] method for inferencing, and it is

the most efficient Bayesian neural network inferencing method. The exper-

imental results are directly observed from this work. All experiments used

the same parameter configurations. We split the data into 80% for training

and 20% for testing, and with 20 - fold cross-validation. TABLE 4.1 shows

the comparison of the DHGP model with other methods on 8 UCI datasets of

Regression task. TABLE 4.2 shows the RMSE results on eight UCI datasets,

smaller numbers indicate better results.

In all of these datasets, the DHGP model always has comparable or better

Chapter 4. Deep Learning with Gaussian Processes Building Blocks 65

TABLE 4.1: Comparison of DHGP model with other methods
on regression task with eight UCI datasets. Test log-likelihood

results, the number highter indicates better performance.

N D SGPR100 SVGP100 FITC100 SGPR300 SVGP300 FITC300 DHGP1 DHGP2 DHGP3 DHGP4 BNN(PBP)

boston 506 13 -2.3847 -2.3847 -2.3207 -2.3265 -2.3275 -2.2659 -2.3848 -2.3973 -2.4093 -2.4159 -2.57

energy 768 8 -1.0719 -1.2410 -0.7524 -0.5359 -0.6990 -0.8101 -1.1691 -0.7188 -0.8446 -0.9013 -2.04

concrete 1030 8 -3.1331 -3.1391 -2.9466 -3.0608 -3.0599 -3.0501 -3.1418 -3.1603 -3.1849 -3.2169 -3.16

wine-red 1599 11 -0.8954 -0.8955 -0.9139 -0.8941 -0.8941 -0.8737 -0.8959 -0.8966 -0.8985 -0.8993 -0.97

wine-white 4898 11 -1.0320 -1.0321 -1.0254 -1.0234 -1.0244 -0.9465 -1.0341 -1.0317 -1.0317 -1.0311 -

power 9568 4 -2.8197 -2.8200 -2.8400 -2.8049 -2.8061 -2.8141 -2.8311 -2.8205 -2.8152 -2.8084 -2.84

naval 11934 16 9.2958 7.0464 9.3879 9.6962 6.8880 9.8028 6.6176 6.3520 6.7213 6.7632 3.73

protein 45730 9 -2.8997 -2.9128 -2.7673 -2.8444 -2.8554 -2.6613 -2.9183 -2.8384 -2.7888 -2.7969 -2.97

results compared to the sparse Gaussian Processes inference model. We ob-

served that as the number of layers of deep hierarchy Gaussian process mod-

els increases, there is often better performance, especially for relatively larger

data sets. On a relatively small data set like "Boston", "Wine", the advantage

of the deep hierarchy Gaussian process model is not particularly obvious.

Because the "Boston" dataset is very small, the wine data set is near-linear,

"Naval" dataset is highly tested likehoods, which we can observe in the ex-

periment. The Root Mean Square Error (RMSE) is almost close to 0 for all the

models with the "Naval" dataset. These characteristics make the advantages

of the deep Gaussian model not obvious. The more inducing points always

lead to better performance. SGPR300, SVGP300, FITC300 always output bet-

ter performance than SGPR100, SVGP100, FITC100, where the number refers

to the number of inducing points used in the model. We believe this is due

to more inducing points the model has richer feature representation space.

At the same time, more inducing points also bring huge computation time.

All the deep hierarchy Gaussian process models were given 100 inducing

points. We also tested the deep hierarchy Gaussian process model with 500

inducing points. The computation time of a 4 layers DHGP model with 500

inducing points was prohibitive. However, we need to weigh the compu-

tational complexity and performance to choose the appropriate number of

Chapter 4. Deep Learning with Gaussian Processes Building Blocks 66

TABLE 4.2: Comparison of DHGP model with other methods
on regression task with eight UCI datasets. Test RMSE results,

the number closer to 0 indicates better performance

N D SGPR100 SVGP100 FITC100 SGPR300 SVGP300 FITC300 DHGP1 DHGP2 DHGP3 DHGP4 BNN(PBP)

boston 506 13 2.5356 2.5319 2.6098 2.4338 2.4352 2.6209 2.5346 2.5517 2.5557 2.5217 3.01

energy 768 8 0.6126 0.7134 0.4768 0.4112 0.4682 0.4758 0.6601 0.4440 0.5061 0.5323 1.80

concrete 1030 8 5.8921 5.9269 6.3538 5.7267 5.7036 6.4477 5.9080 5.9900 6.1017 6.1793 5.67

wine-red 1599 11 0.5934 0.5934 0.6096 0.5949 0.5947 0.6286 0.5930 0.5935 0.5947 0.5951 0.64

wine-white 4898 11 0.6773 0.6774 0.6889 0.6734 0.6734 0.6825 0.6785 0.6769 0.6769 0.6765 -

power 9568 4 4.0528 4.0534 4.0564 3.9913 3.9960 3.9096 4.1024 4.0557 4.0375 4.0063 4.12

naval 11934 16 0.0000 0.0002 0.0000 0.0000 0.0002 0.0000 0.0003 0.0003 0.0002 0.0002 0.01

protein 45730 9 4.3970 4.4505 4.4090 4.1629 4.2104 4.1375 4.4775 4.1459 3.9626 4.0009 4.73

inducing points to initialize the deep hierarchy Gaussian process model in

future work.

MNIST Dataset for Multiclass Classification Task

We tested the deep hierarchy Gaussian process model on the MNIST dataset

of handwritten digits, which is considered to be difficult for GPs based mod-

els before, because of its high input dimensions. We tested the deep hier-

archy Gaussian process model using 1-5 and 10 layers, respectively. Each

set of experiments was conducted 3 times with 100 inducing points, 300 in-

ducing points, and 500 inducing points respectively. In order to observe the

impact of the different inducing points on performance. We followed [141]

to use the robust-max multiclass likelihood and with training/test split of

60K/10K. TABLE 4.3 shows the performance of the deep hierarchy Gaussian

process model using 1-5 and 10 layers with 100, 300 and 500 inducing points

respectively.

From TABLE 4.3, we can see that with the deep hierarchy Gaussian pro-

cess model of 1-5 layers, as the number of layers increases, the accuracy keeps

rising. We further tested on a 10 layer DHGP model. We found that, the ac-

curacy does not increase but decreases. The same phenomenon also occurs in

Chapter 4. Deep Learning with Gaussian Processes Building Blocks 67

1 2 3 4 5 6 7 8 9 10

layer

0.966

0.968

0.97

0.972

0.974

0.976

0.978

0.98

0.982

0.984
A

cc
ur

ac
y

DHGP-100
DHGP-300
DHGP-500

FIGURE 4.5: Accuracy of deep hierarchy Gaussian process
model with a number of layer and inducing points

deep neural networks. Excessive layers have redundant information, which

leads to the birth of the residual neural networks and also points the direc-

tion for our further work. The cost of computation increases dramatically

as the number of layers increases. From FIGURE 4.5 we can see with more

inducing points there is better performance. More inducing points make the

feature space richer, which is better for better expression of features. There

are very few GPs based models that can be compared, the previous single-

layer 1000 inducing GPs model we found have achieved 98.1% [11] and 98.4%

[142] respectively. We believe this is due to there are more inducing points,

and the same phenomenon also appears in our experiments.

Chapter 4. Deep Learning with Gaussian Processes Building Blocks 68

TA
B

L
E

4.
3:

M
N

IS
T

te
st

ed
re

su
lt

s,
de

ep
hi

er
ar

ch
y

G
au

ss
ia

n
pr

oc
es

s
m

od
el

1-
5

an
d

10
la

ye
rs

w
it

h
10

0,
30

0
an

d
50

0
in

du
ci

ng
po

in
ts

re
sp

ec
ti

ve
ly

.

10
0

in
du

ci
ng

po
in

ts
30

0
in

du
ci

ng
po

in
ts

50
0

in
du

ci
ng

po
in

ts

R
un

ni
ng

ti
m

e
A

cc
ur

ac
y

Te
st

lik
el

ih
oo

d
R

un
ni

ng
ti

m
e

A
cc

ur
ac

y
Te

st
lik

el
ih

oo
d

R
un

ni
ng

ti
m

e
A

cc
ur

ac
y

Te
st

lik
el

ih
oo

d

D
H

G
P1

0:
29

:4
3

0.
97

46
-0

.0
85

5
0:

14
:3

0
0.

97
38

-0
.0

92
9

0:
29

:4
3

0.
97

46
-0

.0
85

5

D
H

G
P2

1:
35

:5
4

0.
98

28
-0

.0
60

1
0:

40
:1

5
0.

98
16

-0
.0

62
0

1:
35

:5
4

0.
98

28
-0

.0
60

1

D
H

G
P3

2:
41

:5
2

0.
98

36
-0

.0
52

3
1:

05
:2

3
0.

98
34

-0
.0

56
2

2:
41

:5
2

0.
98

36
-0

.0
52

3

D
H

G
P4

3:
49

:4
6

0.
98

10
-0

.0
59

9
1:

30
:3

5
0.

98
21

-0
.0

60
7

3:
49

:4
6

0.
98

10
-0

.0
59

9

D
H

G
P5

4:
54

:3
4

0.
98

25
-0

.0
63

1
1:

58
:1

6
0.

98
25

-0
.0

62
1

4:
54

:3
4

0.
98

25
-0

.0
63

1

D
H

G
P1

0
10

:3
1:

02
0.

98
08

-0
.0

67
3

4:
05

:2
9

0.
98

18
-0

.0
62

6
10

:3
1:

02
0.

98
08

-0
.0

67
3

Chapter 4. Deep Learning with Gaussian Processes Building Blocks 69

4.7 Summary

This chapter compares the Gaussian process model with the restricted Boltz-

mann machine model, and the Gaussian process model has obvious advan-

tages over the RBM model. Further the deep hierarchical Gaussian process

model is introduced, followed by is sparse approximation and Variational

Bayesian Inference optimization method for the deep hierarchical Gaussian

process model, and finally is the experimental comparison results.

70

Chapter 5

Gaussian Processes with

Convolutional Kernel

The convolutional structure is useful for image data input, this can be seen

in the success of the convolutional neural network (CNN) in recent years.

In this chapter we introduce the convolution structure into the GPs model,

thereby enhancing the Gaussian process models non-local scalability, espe-

cially for image data.

5.1 Constructing Convolutional Kernel

Convolution is a mathematical operation on two functions that produce a

third function expressing how the shape of one is modified by the other. In

the image processing domain, convolution is the core of a convolutional neu-

ral network that takes a two-dimensional signal filtered to produce a new

signal. e.g., a two-dimensional image x with width W and height H and a

convolutional filter g, the convolutional operation is defined as:

(x ∗ g)[i, j] =
W−1

∑
w=0

H−1

∑
h=0

x[i + w, j + h]g[w, h] (5.1)

Where x[i, j] ∈ R2 and g is the size of RH×W filter which slids over the

Chapter 5. Gaussian Processes with Convolutional Kernel 71

image to produce a new signal. Above is the way how convolution opera-

tion works in convolutional neural work. The convolutional kernel is con-

structed in a similar way of convolutional neural network, starting with a

patch response function g(·) : RE → R ,which maps an image patch to a real

number. The patch response function g(·) is non-linear and nonparametric,

compare with CNN convolutional gaussian process, which does not need

the linear connection followed by an activation function to achieve nonlin-

early. For patches of size E = w× h and image of size D = W × H, we have

a total of P = (W−w + 1)× (H− h + 1) patches. Sum all the patch response

together we get f : RD → R, a pictorial interpretation is shown in FIGURE

5.1 Given g(·) a GP prior, f (·) is consistent with a joint Gaussian distribution

due to the elegant property of Gaussian process: Linear transformation of

Gaussian is still Gaussian.

g ∼ GP
(
0, kg

(
z, z′

))
, f (x) = ∑

p
g
(

x[p]
)

=⇒ f ∼ GP
(

0,
P

∑
p=1

P

∑
p′=1

kg

(
x[p], x′[p

′]
)) (5.2)

The x[p] refers to the pth patch in the input image. The same patch response

function g(·) is applied to all patches, the kernel function kg(·, ·) measures

the distance between patches, it means that the kernel function will output

similar patches response for similar patches.

5.2 Inter-domain Inducing Patches

In the previous section we have introduced the inducing points used in sparse

gaussian process inference, which avoids theO
(

N3) training time with dataset

Chapter 5. Gaussian Processes with Convolutional Kernel 72

FIGURE 5.1: A pictorial interpretation of how a convolutional
kernel works

size N reducing the computational cost to O
(

NM2) with M ≪ N, the num-

ber of inducing points [14]. The inducing points perform inference across do-

main, this makes the model more scalable and can encode more prior knowl-

edge, making the data feature space more expressive. This has proven to be

effective in Chapter 4 experiments. Consider a real-valued GP function f (x)

and a feature extraction function h(x, z), the feature extraction function h(x, z)

projects f (x) to other domain leading to inter-domain inference and z is the

inducing feature. The inter-domain inducing variable u is derived after some

linear transformation.

um =
∫

h (x, zm) f (x)dx (5.3)

The covariance between inducing variable um and f (xn) is then

cov (um, f (xn)) = E [um f (xn)] = E

[
f (xn)

∫
h (x, zm) f (x)dx

]
=
∫

h (x, zm) k (x, xn)dx
(5.4)

Chapter 5. Gaussian Processes with Convolutional Kernel 73

The covariance between two inducing variables is as follows

cov (um, um′) = E [umum′] = E

[∫
f (x)h (x, zm) dx

∫
f
(
x′
)

h
(
x′, zm′

)
dx′
]

=
∫∫

h (x, zm) h
(
x′, zm′

)
k
(
x, x′

)
dxdx′

(5.5)

Inter-domain inducing patch as the promotion of inducing points, the induc-

ing inference takes place in the input of patches instead of points. An illus-

trative example from [140], consider a GP prior f (x) the model is written

as

f (·)|θ ∼ GP(0, k(·, ·)) (5.6)

Where θ summaries all the parameters, we introduce inducing feature Z =

{Zm}M
m=1 and the inducing variable is constructed as u = {h (zm)}M

m=1, h(·)

is a kind of linear transformation to ensure inducing variable u and f (xn)

follow normal distribution. Then f (·) conditional on the inducing variable u

is as follows

p(

 f

u

 |X, Z) ∼ gp(mean

 f

u

 , cov(

Kff Kfu

Kuf Kuu

)) (5.7)

what we need to do is to find the appropriate cross-domain covariance Kfu

and Kuu in the patches space. From the convolutional kernel construction

function, the cross-domain covariance Kfu can be found as

k f u(x, z) = Eg[f (x)u(z)] = Eg

[
∑
p

g
(

x[p]
)

u(z)

]
= ∑

p
kg

(
x[p], z

)
(5.8)

And the covariance between inducing patches Kuu is

kuu
(
z, z′

)
= Eg

[
u(z)u

(
z′
)]

= kg
(
z, z′

)
(5.9)

Chapter 5. Gaussian Processes with Convolutional Kernel 74

By using inducing patches inference, the computation cost can be effectively

reduced. While the computational cost seems to be linear in N the number of

training data, by using minibatch optimization N can be small.

5.3 Computational Issues with Gaussian Process

Model

The problem that hinders the GP model from being applied to practical ap-

plications is the computational issues. The most important parameter of the

Gaussian Process model is the covariance matrix. There are many compu-

tationally expensive inversions operations when constructing the covariance

matrix. Exact computations for large data generally require O
(

N3) compu-

tation and O
(

N2)memory, where N is the number of training data samples.

In recent years, many efforts have been made to explore sparse Gaussian Pro-

cess inferencing. Including earlier sparse Gaussian process inference frame-

works like SGPR [138], FITC[97]. By introducing inducing points, they avoid

O
(

N3) computation time scaling with data size N and reduce the compu-

tational cost to O
(

NM2) with M ≪ N, which is the number of inducing

variables. The Inter-domain GPs [15] can be used to find a (possibly more

compact) representative set of features lying in a different domain, at the

same computational cost. The work [14] pointed out the true complexity of

the algorithm depends on how M must increase to ensure a certain quality of

the approximation. For a particular case, in a D-dimensional input regression

task with Squared Exponential kernel, M = O
(

logD N
)

is sufficient. They

proved a kind of relationship between M and N. (For a more detailed, please

refer to [14])

Chapter 5. Gaussian Processes with Convolutional Kernel 75

5.4 Variant of Convolutional Kernel

Mentioned above from Eq. 5.2 for the construction of convolutional kernel,

the same patch response function g(·) is applied to all patches in the image

regardless of the type and location of the image. Image data often contains

many different patterns. Depending on the task, a strict form of invariance

may or may not be beneficial [143]. [103] introduced a series of variant convo-

lution kernels for different tasks. First variant is the weighted convolutional

kernel, the same patch response function g(·) is used in all the patches is too

strong a constraint. Because the same features can be different categories of

things in different areas of the image. Give different weights for the patch re-

sponse function from different patches. Denote the patch response function g(·)

again, the sum of g(·) f (x) can be constructed as

f (x) = ∑
p

wpg
(

x[p]
)

(5.10)

The weights
{

wp
}P

p=1 indicates that different patches have different weights.

And the covariance between observed sample Kff and cross-domain Kfu can

be found via a minor modification from the invariant case

k f f (x, x) = ∑
pq

wpwqkg

(
x[p], xq

)
(5.11)

k f u(x, z) = ∑
p

wpkg

(
x[p], z

)
(5.12)

This introduces more parameters the patch weight w is considered as kernel

hyperparameters and can be optimized in the same manner as other kernel

parameters. We will verify the validity of this weighted convolutional kernel

in the next section. Our experiment follows the same optimization method

as [103] The second variant of the convolutional kernel is designed to handle

the multi-channel image. Multi-channel images bring richer image features,

Chapter 5. Gaussian Processes with Convolutional Kernel 76

while also increasing the image input dimension, requiring more efficient

feature processing approach to handle redundant information. One conceiv-

able way is to apply the same response function to all image channels. This

will produce C times more patch responses. [103] proposed a middle ground

convolutional kernel construction approach that does not increasing input

dimension so much, it is apply different patch response function gc(·) for dif-

ferent channel refer it as the multi-channel convolutional kernel. The sum of

the patch response function f (x) is constructed as follows

f (x) =
P

∑
p=1

C

∑
c=1

wpcgc

(
x[pc]

)
(5.13)

The inducing patches are shared among all channels. Sum each patch re-

sponse function gc

(
x[pc]

)
together we get the image-based response func-

tion f (x)|u(z). The function f (x)|u(z) is governed by the covariance Kfu

and Kuu. As we have N observed points and M inducing patches the co-

variance matrix Kfu and Kuu is of size N ×MC and MC×MC respectively,

where C is the number of channels. The covariance between observed points

and inducing patches is given by

k f gc(x, z) = E{gc}C
c=1

[
∑
p

wpcgc

(
x[pc]

)
gc(z)

]
= ∑

p
wpckg

(
x[pc], z

)
(5.14)

And the covariance between inducing patches is as follows

kuu
(
z, z′

)
= Eg

[
g(z)g

(
z′
)]

= kg
(
z, z′

)
(5.15)

In the next section, we will verify the performance and benefits of convolu-

tion kernels through experiments.

Chapter 5. Gaussian Processes with Convolutional Kernel 77

5.5 Experiments

To test the power of the new convolution kernel, we tested the performance

of convolutional kernels on three featured image datasets MNIST, Rectangle

and colored image datasets Cifar-10 respectively. All of these datasets are

considered to be difficult for kernel-function based methods because of the

large computational complexity caused by high dimensional input and the

need to identify different patterns of multipixel formation.

We first tested Gaussian Process with a convolutional kernel on the MNIST

dataset. MNIST is a handwritten digit dataset for recognition and is widely

used in the computer vision field. Because of the standard data folds, the

performance-tested can be directly compared in a variety of methods. We set

up a Gaussian process with the convolutional kernel to multi-class classifica-

tion task with 10 output corresponding to 10 different classes. We trained the

Gaussian Process with the convolutional kernel using Adam [144] with dif-

ferent inducing points. There are few existing works using Gaussian-based

kernel methods for image processing. We compared the previous start-of-

the-arts Gaussian process methods and also deep hierarchy Gaussian process

model. As can be seen in TABLE 5.1, the translation invariance convolutional

kernel underperforms compared with the previous reported state-of-the-art

98.4% [142]. This could be caused by applying the same patch response func-

tion to all the patches regardless of the location and its adjacent area. By

introducing weights to the convolutional kernel, adjacent pixels that may

form a pattern are more likely to be detected, thereby improving the detec-

tion performance. We compared with a 4-layer deep hierarchy Gaussian pro-

cess model with 500 inducing points, a single layer Gaussian Process with

the convolutional kernel can outperform a 4-layer DHGP model. This shows

that the convolutional kernel is effective for processing image data.

We further tested the convolutional kernel Gaussian process on Cifar-10

Chapter 5. Gaussian Processes with Convolutional Kernel 78

TABLE 5.1: Test accuracy and nlpp(negative log predictive
probability) comparsion of GPs model with different kernels
with Neural network and other GPs based models on MNIST

and Cifar-10

Inducing Test Accuracy Test nlpp

Gaussian process models Layers points MNIST CIFAR-10 MNIST CIFAR-10

RBF AutoGP [142] 1 200 98.4% 55.05% N/A N/A

conv GP 1 750 97.89% N/A 0.0792 N/A

Wconv GP 1 750 98.77% 56.88% 2.3305 2.3305

Multi-channel conv GP 1 1000 N/A 64.6% N/A 2.0691

DHGP4 4 500 98.10% N/A N/A N/A

Neural network models Layers #params

Deep kernel learning [145] 5 2.3M · · · 4.6M 99.2% 77.0% N/A N/A

ResNet-20 [44] 20 0.27M N/A 91.25% N/A N/A

ResNet-56 [44] 56 0.85M N/A 93.03% N/A N/A

ResNet-110 [44] 110 1.7M N/A 93.57% N/A N/A

DenseNet [146] 100 27.2M N/A 94.17% N/A N/A

Giant Neural Networks [147] N/A N/A N/A 99.00% N/A N/A

[148] dataset. The Cifar-10 dataset is a collection of colored images that are

commonly used to train machine learning algorithms, it contains 60000 of

32 × 32 low-resolution image in 10 classes. We used the same setup used

in MNIST. As can be seen in TABLE 5.1. The Gaussian method using a

weighted convolution kernel successfully increased the accuracy of the pre-

vious reported 55.05% [142] to 56.88%, which was further increased to 64.6%

by applying a multi-channel convolution kernel. However, this is still far

underperformed compared with the current state-of-the-art neural networks

like ResNet [44], DenseNet [146] and Giant neural networks [147] which has

reduced the error rate to 1%. Compared to neural networks Gaussian pro-

cess model has far fewer parameters and can utilise the marginal likelihood

to find the optimal parameter. With the increase in the number of network

layers and the development of more skills, it is believed that the Gaussian

model can release greater potential. The visualisation of inducing patches

used in inference and error rate optimization is shown with FIGURE 5.2 and

Chapter 5. Gaussian Processes with Convolutional Kernel 79

FIGURE 5.3 respectively.

FIGURE 5.2: Visualisation of inducing patches used in Gaussian
process with weighted convolutional kernel (left) and multi-
channel convolutional kernel (right) test on CIFAR-10 dataset.

FIGURE 5.3: Visualisation of error rate optimization in Gaus-
sian Process with weighted convolutional kernel(left) and
multi-channel convolutional kernel(right) test on CIFAR-10

dataset.

Chapter 5. Gaussian Processes with Convolutional Kernel 80

FIGURE 5.4: Visualisation of error rate and nlpp optimization in
Gaussian Process with weighted convolutional kernel on Rect-

angles dataset.

FIGURE 5.5: Visualisation of error rate and nlpp optimization
in Gaussian Process with translation invariance convolutional

kernel on Rectangles dataset.

Chapter 5. Gaussian Processes with Convolutional Kernel 81

We did another test on the Rectangles dataset, which is an artificial dataset

composed of 1200 of 28× 28 low-resolution image with randomly generated

rectangles. The goal is to distinguish whether a rectangle is a long rectangle

with a larger length or wide rectangle with a large width. We used the same

setup as used in MNIST, the Gaussian process with convolutional kernel give

98.67% error rate and 0.039 nlpp (negative log predictive probability). This

has a large performance boost compared with the Gaussian Process with RBF

kernel which gives 95% error rate and 0.2581 nlpp. We attribute the improve-

ment of performance to the introduction of convolution kernels. As the con-

volution kernel can detect patterns consisting of pixels in adjacent regions,

which is also one of the key features for the success of CNN in recent years.

The performance improvement obtained by introducing the convolution ker-

nel into the Gaussian model is also expected. The weighted convolutional

kernel further reduces the error rate to 0.0005, the weighted convolution ker-

nel can detect patterns of different scales composed of adjacent pixels, which

is more flexible and brings further performance improvement. The visuali-

sation of error rate and nlpp optimization of weighted convolutional kernel

and translation invariance convolutional kernel are shown in FIGURE 5.4

and FIGURE 5.5 respectively.

5.6 Summary

This chapter introduces convolution operation into the Gaussian process model,

and introduces several variants of convolutional kernels, and finally the ex-

perimental comparison results.

82

Chapter 6

Conclusion and Future Work

This section summarises the work of the thesis and gives directions for future

development.

6.1 Conclusion

In this thesis, we have introduced a semi-supervised tracking algorithm with

a new observation model, which adopts graph Laplacian. Furthermore, the

prior gram matrix is constructed based on all samples. In this way, future in-

formation has a strong influence on the tracking decision and can be viewed

as a transfer learning strategy. We devise multiple-person tracking by us-

ing a tracker hierarchy. Trackers are classified into two groups based on the

template they owe and the different types of trackers adopt different update

strategies during the tracking process. The new model can effectively deal

with various problems in the process of multiple-person tracking from mul-

tiple aspects, greatly improving the performance of the algorithm.

Furthermore, we explore the possibility of deep models other than deep

neural networks and propose a deep hierarchy Gaussian process model based

on the building block of GPs. This is a kind of statistical probability model

that not only has a high model complexity similar to neural networks, which

can extract different levels of abstract features, but also is capable of causal

inference and fit uncertainty that neural networks lack. The deep hierarchy

Chapter 6. Conclusion and Future Work 83

Gaussian process model was optimised by means of variational inferencing,

which uses a variational distribution to approximate the true posterior distri-

bution. We further verified that the inducing points can not only accelerate

the model inference speed but also improve the model performance. Since

the convolutional kernel is very useful for image tasks, we introduced the

convolutional kernel into the GPs model to construct the convolutional Gaus-

sian processes model which is more suitable for image processing tasks. We

further verified that inducing image patches can speed up model inference

and improve model performance. Through experimental comparisons, the

convolutional Gaussian process model significantly improves performance

for image processing tasks compared to non-convolutional Gaussian pro-

cesses. The main limitation of the Gaussian process model is the compu-

tation cost, because there are many expensive matrix inversion operations

when constructing the covariance matrix. There have been many studies fo-

cusing on the sparse approximation problem of Gaussian process model in

order to improve the inference speed of the model.

Chapter 6. Conclusion and Future Work 84

6.2 Future Work

Because an infinitely wide single-layer neural network is equivalent to GPs,

the model complexity of a deep hierarchy Gaussian process model is much

higher than that of a neural network at the same layer. Current deep neural

networks still have problems such as lack of causal reasoning capabilities and

poor interpretability, these are the advantages of statistical models. During

our experiments, we also found the same phenomenon as found in deep neu-

ral networks. That is, by increasing the number of network layers does not

necessarily lead to performance improvement. Sometimes it will lead to per-

formance degradation, which is the reason for the birth of residual networks.

It is believed that applying the same ideas to the deep hierarchy Gaussian

process model will also bring performance improvement. The deep model

based on Gaussian process is still in its infancy and has not been thoroughly

explored. A translation invariance kernel [143] is proposed, and the exper-

iments show that the deep model with Gaussian process building block al-

ready surpasses simple deep neural networks in terms of performance on

some specific tasks, and has a good ability to estimate uncertainty. How-

ever, a large amount of computation cost is a big problem that hinders the

development of Gaussian process models. Many companies are now devel-

oping dedicated artificial intelligence chips, and computing power continues

to show exponential growth. It is believed that with the increase in comput-

ing power in the near future, this will not be a big problem. The deep model

based on the Gaussian process is far from mature and needs further explo-

ration to release its powerful potential. Traditional machine learning models

have clear theory foundations, good interpretability, and causal inferencing

capabilities. Deep neural networks are highly complex and can automati-

cally extract features. A potentially feasible solution is to replace the special

layer of the deep neural network with a Gaussian process model to study the

Chapter 6. Conclusion and Future Work 85

interpretability of the neural network from a statistical point of view.

Because a single-layer infinite-wide neural network is equivalent to GPs,

a deep hierarchy Gaussian process model is equivalent to a deep infinite-

wide deep neural networks. The capacity of the deep hierarchy Gaussian

process model is much higher than that of ordinary neural networks. Be-

cause neural networks have various operation techniques, such as Dropout,

Convolution operation, etc., and various optimization techniques. The deep

hierarchy Gaussian process model lacks corresponding operations and op-

timization skills, and its potential is far from being released. It is believed

that investing more manpower and resources to develop the deep hierarchy

Gaussian process model will further release its potential. The deep hierarchy

Gaussian process model is a statistical probability model, which has both

the characteristics of causal inference and the high complexity of neural net-

works, which can extract abstract features layer by layer. It is believed that

combining the advantages of traditional models and neural networks will be

the development direction of future machine learning models.

86

References

[1] W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, X. Zhao, and T.-K. Kim,

“Multiple object tracking: A literature review”, arXiv preprint arXiv:1409.7618,

2014.

[2] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime

tracking with a deep association metric”, in 2017 IEEE International

Conference on Image Processing (ICIP), IEEE, 2017, pp. 3645–3649.

[3] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online

and realtime tracking”, in 2016 IEEE International Conference on Image

Processing (ICIP), IEEE, 2016, pp. 3464–3468.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, nature, vol. 521,

no. 7553, pp. 436–444, 2015.

[5] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A.

Barbado, S. García, S. Gil-López, D. Molina, R. Benjamins, et al., “Ex-

plainable artificial intelligence (xai): Concepts, taxonomies, opportu-

nities and challenges toward responsible ai”, Information Fusion, vol. 58,

pp. 82–115, 2020.

[6] Z. Zhou and J Feng, “Deep forest: Towards an alternative to deep neu-

ral networks. arxiv 2017”, arXiv preprint arXiv:1702.08835,

[7] Z.-H. Zhou and J. Feng, “Deep forest”, arXiv preprint arXiv:1702.08835,

2017.

References 87

[8] J. Feng, Y. Yu, and Z.-H. Zhou, “Multi-layered gradient boosting de-

cision trees”, in Advances in neural information processing systems, 2018,

pp. 3551–3561.

[9] M. N. Gibbs, “Bayesian gaussian processes for regression and classi-

fication”, PhD thesis, Citeseer, 1998.

[10] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine

learning, 3. MIT press Cambridge, MA, 2006, vol. 2.

[11] J. Hensman, N. Fusi, and N. D. Lawrence, “Gaussian processes for big

data”, arXiv preprint arXiv:1309.6835, 2013.

[12] G. Manogaran and D. Lopez, “A gaussian process based big data pro-

cessing framework in cluster computing environment”, Cluster Com-

puting, vol. 21, no. 1, pp. 189–204, 2018.

[13] A. Y. Sun, D. Wang, and X. Xu, “Monthly streamflow forecasting using

gaussian process regression”, Journal of Hydrology, vol. 511, pp. 72–81,

2014.

[14] D. R. Burt, C. E. Rasmussen, and M. Van Der Wilk, “Rates of con-

vergence for sparse variational gaussian process regression”, arXiv

preprint arXiv:1903.03571, 2019.

[15] M. Lázaro-Gredilla and A. Figueiras-Vidal, “Inter-domain gaussian

processes for sparse inference using inducing features”, in Advances

in Neural Information Processing Systems, 2009, pp. 1087–1095.

[16] C. Walder, K. I. Kim, and B. Schölkopf, “Sparse multiscale gaussian

process regression”, in Proceedings of the 25th international conference

on Machine learning, ACM, 2008, pp. 1112–1119.

[17] L. Csató and M. Opper, “Sparse on-line gaussian processes”, Neural

computation, vol. 14, no. 3, pp. 641–668, 2002.

References 88

[18] J. QuiÃ±onero-Candela, C. E. Rasmussen, A. R. Figueiras-Vidal, et

al., “Sparse spectrum gaussian process regression”, Journal of Machine

Learning Research, vol. 11, no. Jun, pp. 1865–1881, 2010.

[19] M. Bauer, M. van der Wilk, and C. E. Rasmussen, “Understanding

probabilistic sparse gaussian process approximations”, in Advances in

neural information processing systems, 2016, pp. 1533–1541.

[20] A. Damianou and N. Lawrence, “Deep gaussian processes”, in Artifi-

cial Intelligence and Statistics, 2013, pp. 207–215.

[21] H. Salimbeni and M. Deisenroth, “Doubly stochastic variational infer-

ence for deep gaussian processes”, in Advances in Neural Information

Processing Systems, 2017, pp. 4588–4599.

[22] T. Bui, D. Hernández-Lobato, J. Hernandez-Lobato, Y. Li, and R. Turner,

“Deep gaussian processes for regression using approximate expec-

tation propagation”, in International Conference on Machine Learning,

2016, pp. 1472–1481.

[23] Y. Wang, M. Brubaker, B. Chaib-Draa, and R. Urtasun, “Sequential in-

ference for deep gaussian process”, in Artificial Intelligence and Statis-

tics, 2016, pp. 694–703.

[24] M. Havasi, J. M. Hernández-Lobato, and J. J. Murillo-Fuentes, “In-

ference in deep gaussian processes using stochastic gradient hamil-

tonian monte carlo”, in Advances in Neural Information Processing Sys-

tems, 2018, pp. 7506–7516.

[25] K. Vafa, “Training deep gaussian processes with sampling”, in NIPS

2016 Workshop on Advances in Approximate Bayesian Inference, 2016.

[26] D. J. MacKay, “A practical bayesian framework for backpropagation

networks”, Neural computation, vol. 4, no. 3, pp. 448–472, 1992.

References 89

[27] R. M. Neal, Bayesian learning for neural networks. Springer Science &

Business Media, 2012, vol. 118.

[28] J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and J. Sohl-

Dickstein, “Deep neural networks as gaussian processes”, arXiv preprint

arXiv:1711.00165, 2017.

[29] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing, “Deep kernel

learning”, in Artificial Intelligence and Statistics, 2016, pp. 370–378.

[30] A. Garriga-Alonso, C. E. Rasmussen, and L. Aitchison, “Deep con-

volutional networks as shallow gaussian processes”, arXiv preprint

arXiv:1808.05587, 2018.

[31] R. Novak, L. Xiao, Y. Bahri, J. Lee, G. Yang, J. Hron, D. A. Abolafia, J.

Pennington, and J. Sohl-Dickstein, “Bayesian deep convolutional net-

works with many channels are gaussian processes”, 2018.

[32] S. Arora, S. S. Du, W. Hu, Z. Li, R. Salakhutdinov, and R. Wang, “On

exact computation with an infinitely wide neural net”, arXiv preprint

arXiv:1904.11955, 2019.

[33] S. Waugh, “Extending and benchmarking cascade-correlation”, Dept

of Computer Science, University of Tasmania, Ph. D. Dissertation, 1995.

[34] W. J. Nash, T. L. Sellers, S. R. Talbot, A. J. Cawthorn, and W. B. Ford,

“The population biology of abalone (haliotis species) in tasmania. i.

blacklip abalone (h. rubra) from the north coast and islands of bass

strait”, Sea Fisheries Division, Technical Report, vol. 48, 1994.

[35] A Frank, “Uci machine learning repository. irvine, ca: University of

california, school of information and computer science”, http://archive.

ics. uci. edu/ml, 2010.

References 90

[36] F. M. Dekking, C. Kraaikamp, H. P. Lopuhaä, and L. E. Meester, A

Modern Introduction to Probability and Statistics: Understanding why and

how. Springer Science & Business Media, 2005.

[37] R. Durrett, Probability: theory and examples. Cambridge university press,

2019, vol. 49.

[38] Y. Filmus, “Two proofs of the central limit theorem”, Recuperado de

http://www. cs. toronto. edu/yuvalf/CLT. pdf, 2010.

[39] M. G. Genton, “Classes of kernels for machine learning: A statistics

perspective”, Journal of machine learning research, vol. 2, no. Dec, pp. 299–

312, 2001.

[40] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in ma-

chine learning”, The annals of statistics, pp. 1171–1220, 2008.

[41] H.-T. Lin and C.-J. Lin, “A study on sigmoid kernels for svm and the

training of non-psd kernels by smo-type methods”, submitted to Neural

Computation, vol. 3, pp. 1–32, 2003.

[42] R. Herbrich, Learning kernel classifiers: theory and algorithms. MIT press,

2001.

[43] A. G. Wilson, “Covariance kernels for fast automatic pattern discov-

ery and extrapolation with gaussian processes”, PhD thesis, Univer-

sity of Cambridge, 2014.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition”, in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp. 770–778.

[45] Y. Cong, J. Yuan, and J. Liu, “Sparse reconstruction cost for abnormal

event detection”, in CVPR 2011, IEEE, 2011, pp. 3449–3456.

[46] ——, “Abnormal event detection in crowded scenes using sparse rep-

resentation”, Pattern Recognition, vol. 46, no. 7, pp. 1851–1864, 2013.

References 91

[47] S. Zheng, J. Zhang, K. Huang, R. He, and T. Tan, “Robust view trans-

formation model for gait recognition”, in 2011 18th IEEE International

Conference on Image Processing, IEEE, 2011, pp. 2073–2076.

[48] J. Zhang, J. Pu, C. Chen, and R. Fleischer, “Low-resolution gait recog-

nition”, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cy-

bernetics), vol. 40, no. 4, pp. 986–996, 2010.

[49] Z. Wu, Y. Huang, L. Wang, X. Wang, and T. Tan, “A comprehensive

study on cross-view gait based human identification with deep cnns”,

IEEE transactions on pattern analysis and machine intelligence, vol. 39,

no. 2, pp. 209–226, 2016.

[50] T. Tan, L. Wang, Y. Huang, and W. Zifeng, Gait recognition method based

on deep learning, US Patent App. 10/223,582, 2019.

[51] C. Wang, H. Zhang, L. Yang, S. Liu, and X. Cao, “Deep people count-

ing in extremely dense crowds”, in Proceedings of the 23rd ACM inter-

national conference on Multimedia, ACM, 2015, pp. 1299–1302.

[52] H. Idrees, I. Saleemi, C. Seibert, and M. Shah, “Multi-source multi-

scale counting in extremely dense crowd images”, in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2013, pp. 2547–

2554.

[53] M. Marsden, K. McGuinness, S. Little, and N. E. O’Connor, “Resnetcrowd:

A residual deep learning architecture for crowd counting, violent be-

haviour detection and crowd density level classification”, in 2017 14th

IEEE International Conference on Advanced Video and Signal Based Surveil-

lance (AVSS), IEEE, 2017, pp. 1–7.

[54] W. Li, R. Zhao, T. Xiao, and X. Wang, “Deepreid: Deep filter pairing

neural network for person re-identification”, in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2014, pp. 152–159.

References 92

[55] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Deep metric learning for person re-

identification”, in 2014 22nd International Conference on Pattern Recog-

nition, IEEE, 2014, pp. 34–39.

[56] E. Ahmed, M. Jones, and T. K. Marks, “An improved deep learning ar-

chitecture for person re-identification”, in Proceedings of the IEEE con-

ference on computer vision and pattern recognition, 2015, pp. 3908–3916.

[57] G. Levi and T. Hassner, “Age and gender classification using convo-

lutional neural networks”, in Proceedings of the iEEE conference on com-

puter vision and pattern recognition workshops, 2015, pp. 34–42.

[58] M. Shoaib, R. Dragon, and J. Ostermann, “View-invariant fall detec-

tion for elderly in real home environment”, in 2010 Fourth Pacific-Rim

Symposium on Image and Video Technology, IEEE, 2010, pp. 52–57.

[59] Z. Zivkovic, “Improved adaptive gaussian mixture model for back-

ground subtraction”, in Proceedings of the 17th International Conference

on Pattern Recognition, 2004. ICPR 2004., IEEE, vol. 2, 2004, pp. 28–31.

[60] A. Elgammal, D. Harwood, and L. Davis, “Non-parametric model

for background subtraction”, in European conference on computer vision,

Springer, 2000, pp. 751–767.

[61] G. Tesauro, “Temporal difference learning and td-gammon”, Commu-

nications of the ACM, vol. 38, no. 3, pp. 58–68, 1995.

[62] T. Ko, S. Soatto, and D. Estrin, “Warping background subtraction”, in

2010 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, IEEE, 2010, pp. 1331–1338.

[63] Y.-T. Chen, C.-S. Chen, C.-R. Huang, and Y.-P. Hung, “Efficient hi-

erarchical method for background subtraction”, Pattern Recognition,

vol. 40, no. 10, pp. 2706–2715, 2007.

References 93

[64] P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazirbas, V. Golkov,

P. van der Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical

flow with convolutional networks”, CoRR, vol. abs/1504.06852, 2015.

arXiv: 1504 . 06852. [Online]. Available: http : / / arxiv . org / abs /

1504.06852.

[65] Y. Tian, R. Sukthankar, and M. Shah, “Spatiotemporal deformable part

models for action detection”, in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2013, pp. 2642–2649.

[66] P. Viola and M. Jones, “Rapid object detection using a boosted cascade

of simple features”, 2001, pp. 511–518.

[67] N. Dalal and B. Triggs, “Histograms of oriented gradients for human

detection”, 2005.

[68] D. G. Lowe, “Distinctive image features from scale-invariant keypoints”,

International journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[69] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust

features”, in European conference on computer vision, Springer, 2006,

pp. 404–417.

[70] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn”, in Pro-

ceedings of the IEEE international conference on computer vision, 2017,

pp. 2961–2969.

[71] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-

Cun, “Overfeat: Integrated recognition, localization and detection us-

ing convolutional networks”, arXiv preprint arXiv:1312.6229, 2013.

[72] R. Girshick, “Fast r-cnn”, in Proceedings of the IEEE international confer-

ence on computer vision, 2015, pp. 1440–1448.

https://arxiv.org/abs/1504.06852
http://arxiv.org/abs/1504.06852
http://arxiv.org/abs/1504.06852

References 94

[73] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and

A. C. Berg, “Ssd: Single shot multibox detector”, in European conference

on computer vision, Springer, 2016, pp. 21–37.

[74] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look

once: Unified, real-time object detection”, in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2016, pp. 779–788.

[75] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger”, in Pro-

ceedings of the IEEE conference on computer vision and pattern recognition,

2017, pp. 7263–7271.

[76] ——, “Yolov3: An incremental improvement”, arXiv preprint arXiv:1804.02767,

2018.

[77] R. J. Wang, X. Li, and C. X. Ling, “Pelee: A real-time object detection

system on mobile devices”, in Advances in Neural Information Process-

ing Systems, 2018, pp. 1963–1972.

[78] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time

object detection with region proposal networks”, in Advances in neural

information processing systems, 2015, pp. 91–99.

[79] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,

“Feature pyramid networks for object detection”, in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2017, pp. 2117–

2125.

[80] F. Chollet, “Xception: Deep learning with depthwise separable con-

volutions”, CoRR, vol. abs/1610.02357, 2016. arXiv: 1610.02357. [On-

line]. Available: http://arxiv.org/abs/1610.02357.

[81] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neu-

ral networks for mobile vision applications”, CoRR, vol. abs/1704.04861,

https://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1610.02357

References 95

2017. arXiv: 1704.04861. [Online]. Available: http://arxiv.org/abs/

1704.04861.

[82] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-

cient convolutional neural network for mobile devices”, in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2018,

pp. 6848–6856.

[83] J. Black, T. Ellis, and P. Rosin, “Multi view image surveillance and

tracking”, in Workshop on Motion and Video Computing, 2002. Proceed-

ings., IEEE, 2002, pp. 169–174.

[84] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van

Gool, “Robust tracking-by-detection using a detector confidence par-

ticle filter”, in 2009 IEEE 12th International Conference on Computer Vi-

sion, IEEE, 2009, pp. 1515–1522.

[85] X. Song, J. Cui, H. Zha, and H. Zhao, “Vision-based multiple inter-

acting targets tracking via on-line supervised learning”, in European

Conference on Computer Vision, Springer, 2008, pp. 642–655.

[86] J. Berclaz, F. Fleuret, and P. Fua, “Robust people tracking with global

trajectory optimization”, in 2006 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’06), IEEE, vol. 1, 2006,

pp. 744–750.

[87] C. Huang, B. Wu, and R. Nevatia, “Robust object tracking by hierar-

chical association of detection responses”, in European Conference on

Computer Vision, Springer, 2008, pp. 788–801.

[88] S. Tang, B. Andres, M. Andriluka, and B. Schiele, “Multi-person track-

ing by multicut and deep matching”, in European Conference on Com-

puter Vision, Springer, 2016, pp. 100–111.

https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861

References 96

[89] E. Insafutdinov, M. Andriluka, L. Pishchulin, S. Tang, E. Levinkov, B.

Andres, and B. Schiele, “Arttrack: Articulated multi-person tracking

in the wild”, in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2017, pp. 6457–6465.

[90] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of non-

rigid objects using mean shift”, in Proceedings IEEE Conference on Com-

puter Vision and Pattern Recognition. CVPR 2000 (Cat. No. PR00662),

IEEE, vol. 2, 2000, pp. 142–149.

[91] S. Avidan, “Ensemble tracking”, IEEE transactions on pattern analysis

and machine intelligence, vol. 29, no. 2, pp. 261–271, 2007.

[92] B. Benfold and I. Reid, “Stable multi-target tracking in real-time surveil-

lance video”, in CVPR 2011, IEEE, 2011, pp. 3457–3464.

[93] A. Blake and M. Isard, “The condensation algorithm-conditional den-

sity propagation and applications to visual tracking”, in Advances in

Neural Information Processing Systems, 1997, pp. 361–367.

[94] J. Munkres, “Algorithms for the assignment and transportation prob-

lems”, Journal of the society for industrial and applied mathematics, vol. 5,

no. 1, pp. 32–38, 1957.

[95] A. Damianou, M. K. Titsias, and N. D. Lawrence, “Variational gaus-

sian process dynamical systems”, in Advances in Neural Information

Processing Systems, 2011, pp. 2510–2518.

[96] J. M. Hernández-Lobato and R. Adams, “Probabilistic backpropaga-

tion for scalable learning of bayesian neural networks”, in Interna-

tional Conference on Machine Learning, 2015, pp. 1861–1869.

[97] E. Snelson and Z. Ghahramani, “Sparse gaussian processes using pseudo-

inputs”, in Advances in neural information processing systems, 2006, pp. 1257–

1264.

References 97

[98] A. Naish-Guzman and S. Holden, “The generalized fitc approxima-

tion”, in Advances in Neural Information Processing Systems, 2008, pp. 1057–

1064.

[99] J. Quiñonero-Candela and C. E. Rasmussen, “A unifying view of sparse

approximate gaussian process regression”, Journal of Machine Learning

Research, vol. 6, no. Dec, pp. 1939–1959, 2005.

[100] M. Seeger, C. Williams, and N. Lawrence, “Fast forward selection to

speed up sparse gaussian process regression”, Tech. Rep., 2003.

[101] Z. Dai, A. Damianou, J. González, and N. Lawrence, “Variational auto-

encoded deep gaussian processes”, arXiv preprint arXiv:1511.06455,

2015.

[102] K. Cutajar, E. V. Bonilla, P. Michiardi, and M. Filippone, “Random fea-

ture expansions for deep gaussian processes”, in Proceedings of the 34th

International Conference on Machine Learning-Volume 70, JMLR. org, 2017,

pp. 884–893.

[103] M. Van der Wilk, C. E. Rasmussen, and J. Hensman, “Convolutional

gaussian processes”, in Advances in Neural Information Processing Sys-

tems, 2017, pp. 2849–2858.

[104] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van

Gool, “Online multiperson tracking-by-detection from a single, un-

calibrated camera”, IEEE transactions on pattern analysis and machine

intelligence, vol. 33, no. 9, pp. 1820–1833, 2010.

[105] A. Andriyenko, S. Roth, and K. Schindler, “An analytical formulation

of global occlusion reasoning for multi-target tracking”, in 2011 IEEE

International Conference on Computer Vision Workshops (ICCV Workshops),

IEEE, 2011, pp. 1839–1846.

References 98

[106] H. B. Shitrit, J. Berclaz, F. Fleuret, and P. Fua, “Tracking multiple peo-

ple under global appearance constraints”, in 2011 International Confer-

ence on Computer Vision, IEEE, 2011, pp. 137–144.

[107] J. West, D. Ventura, and S. Warnick, “Spring research presentation: A

theoretical foundation for inductive transfer”, Brigham Young Univer-

sity, College of Physical and Mathematical Sciences, vol. 1, p. 32, 2007.

[108] R. Herbrich, Learning Kernel Classifiers: Theory and Algorithms (Adaptive

Computation and Machine Learning). MIT Press, 2002.

[109] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learn-

ing using gaussian fields and harmonic functions”, in Proceedings of

the 20th International conference on Machine learning (ICML-03), 2003,

pp. 912–919.

[110] W. Hu, X. Li, W. Luo, X. Zhang, S. Maybank, and Z. Zhang, “Sin-

gle and multiple object tracking using log-euclidean riemannian sub-

space and block-division appearance model”, IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. 34, no. 12, pp. 2420–2440,

2012.

[111] X. Zhu, J. Lafferty, and R. Rosenfeld, “Semi-supervised learning with

graphs”, PhD thesis, Carnegie Mellon University, language technolo-

gies institute, school of, 2005.

[112] M. Andriluka, S. Roth, and B. Schiele, “People-tracking-by-detection

and people-detection-by-tracking”, in 2008 IEEE Conference on com-

puter vision and pattern recognition, IEEE, 2008, pp. 1–8.

[113] ——, “Monocular 3d pose estimation and tracking by detection”, in

2010 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, IEEE, 2010, pp. 623–630.

References 99

[114] J. Ferryman and A. Shahrokni, “Pets2009: Dataset and challenge”, in

2009 Twelfth IEEE international workshop on performance evaluation of

tracking and surveillance, IEEE, 2009, pp. 1–6.

[115] R. Kasturi, D. Goldgof, P. Soundararajan, V. Manohar, J. Garofolo, R.

Bowers, M. Boonstra, V. Korzhova, and J. Zhang, “Framework for per-

formance evaluation of face, text, and vehicle detection and tracking

in video: Data, metrics, and protocol”, IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 31, no. 2, pp. 319–336, 2008.

[116] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object track-

ing performance: The clear mot metrics”, Journal on Image and Video

Processing, vol. 2008, p. 1, 2008.

[117] H. Pirsiavash, D. Ramanan, and C. C. Fowlkes, “Globally-optimal

greedy algorithms for tracking a variable number of objects”, in CVPR

2011, IEEE, 2011, pp. 1201–1208.

[118] S.-H. Bae and K.-J. Yoon, “Robust online multi-object tracking based

on tracklet confidence and online discriminative appearance learn-

ing”, in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2014, pp. 1218–1225.

[119] A. Geiger, M. Lauer, C. Wojek, C. Stiller, and R. Urtasun, “3d traffic

scene understanding from movable platforms”, IEEE transactions on

pattern analysis and machine intelligence, vol. 36, no. 5, pp. 1012–1025,

2013.

[120] C. Dicle, O. I. Camps, and M. Sznaier, “The way they move: Tracking

multiple targets with similar appearance”, in Proceedings of the IEEE

international conference on computer vision, 2013, pp. 2304–2311.

[121] J. Zhang, L. L. Presti, and S. Sclaroff, “Online multi-person tracking

by tracker hierarchy”, in 2012 IEEE Ninth International Conference on

Advanced Video and Signal-Based Surveillance, IEEE, 2012, pp. 379–385.

References 100

[122] L. Leal-Taixé, G. Pons-Moll, and B. Rosenhahn, “Everybody needs

somebody: Modeling social and grouping behavior on a linear pro-

gramming multiple people tracker”, in 2011 IEEE international confer-

ence on computer vision workshops (ICCV workshops), IEEE, 2011, pp. 120–

127.

[123] L. Leal-Taixé, M. Fenzi, A. Kuznetsova, B. Rosenhahn, and S. Savarese,

“Learning an image-based motion context for multiple people track-

ing”, in Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition, 2014, pp. 3542–3549.

[124] S. Hamid Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, and I. Reid,

“Joint probabilistic data association revisited”, in Proceedings of the

IEEE international conference on computer vision, 2015, pp. 3047–3055.

[125] J. H. Yoon, M.-H. Yang, J. Lim, and K.-J. Yoon, “Bayesian multi-object

tracking using motion context from multiple objects”, in 2015 IEEE

Winter Conference on Applications of Computer Vision, IEEE, 2015, pp. 33–

40.

[126] L. Fagot-Bouquet, R. Audigier, Y. Dhome, and F. Lerasle, “Online multi-

person tracking based on global sparse collaborative representations”,

in 2015 IEEE International Conference on Image Processing (ICIP), IEEE,

2015, pp. 2414–2418.

[127] R. Sanchez-Matilla, F. Poiesi, and A. Cavallaro, “Online multi-target

tracking with strong and weak detections”, in European Conference on

Computer Vision, Springer, 2016, pp. 84–99.

[128] J. Ju, D. Kim, B. Ku, D. K. Han, and H. Ko, “Online multi-object track-

ing with efficient track drift and fragmentation handling”, JOSA A,

vol. 34, no. 2, pp. 280–293, 2017.

References 101

[129] A. Milan, S. H. Rezatofighi, A. Dick, I. Reid, and K. Schindler, “Online

multi-target tracking using recurrent neural networks”, in Thirty-First

AAAI Conference on Artificial Intelligence, 2017.

[130] J. Ju, D. Kim, B. Ku, D. K. Han, and H. Ko, “Online multi-person track-

ing with two-stage data association and online appearance model learn-

ing”, IET Computer Vision, vol. 11, no. 1, pp. 87–95, 2016.

[131] H. Kieritz, S. Becker, W. Hübner, and M. Arens, “Online multi-person

tracking using integral channel features”, in 2016 13th IEEE Interna-

tional Conference on Advanced Video and Signal Based Surveillance (AVSS),

IEEE, 2016, pp. 122–130.

[132] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler, “Motchal-

lenge 2015: Towards a benchmark for multi-target tracking”, arXiv

preprint arXiv:1504.01942, 2015.

[133] G. E. Hinton, “Learning multiple layers of representation”, Trends in

cognitive sciences, vol. 11, no. 10, pp. 428–434, 2007.

[134] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm

for deep belief nets”, Neural computation, vol. 18, no. 7, pp. 1527–1554,

2006.

[135] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A.

Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering the

game of go without human knowledge”, Nature, vol. 550, no. 7676,

p. 354, 2017.

[136] P. Smolensky, “Information processing in dynamical systems: Foun-

dations of harmony theory”, Colorado Univ at Boulder Dept of Com-

puter Science, Tech. Rep., 1986.

[137] M. A. Carreira-Perpinan and G. E. Hinton, “On contrastive diver-

gence learning.”, in Aistats, Citeseer, vol. 10, 2005, pp. 33–40.

References 102

[138] M. Titsias, “Variational learning of inducing variables in sparse gaus-

sian processes”, in Artificial Intelligence and Statistics, 2009, pp. 567–

574.

[139] M. Titsias and D Lawrence, “Bayesian gaussian process latent vari-

able model”, in Proceedings of the Thirteenth International Conference on

Artificial Intelligence and Statistics, 2010, pp. 844–851.

[140] J. Hensman, A. Matthews, and Z. Ghahramani, “Scalable variational

gaussian process classification”, 2015.

[141] D. Hernández-Lobato, J. M. Hernández-Lobato, and P. Dupont, “Ro-

bust multi-class gaussian process classification”, in Advances in neural

information processing systems, 2011, pp. 280–288.

[142] K. Krauth, E. V. Bonilla, K. Cutajar, and M. Filippone, “Autogp: Ex-

ploring the capabilities and limitations of gaussian process models”,

arXiv preprint arXiv:1610.05392, 2016.

[143] V. Dutordoir, M. van der Wilk, A. Artemev, M. Tomczak, and J. Hens-

man, “Translation insensitivity for deep convolutional gaussian pro-

cesses”, arXiv preprint arXiv:1902.05888, 2019.

[144] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-

tion”, arXiv preprint arXiv:1412.6980, 2014.

[145] A. G. Wilson, Z. Hu, R. R. Salakhutdinov, and E. P. Xing, “Stochastic

variational deep kernel learning”, in Advances in Neural Information

Processing Systems, 2016, pp. 2586–2594.

[146] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely

connected convolutional networks”, in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

References 103

[147] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee, J.

Ngiam, Q. V. Le, Y. Wu, et al., “Gpipe: Efficient training of giant neural

networks using pipeline parallelism”, in Advances in Neural Informa-

tion Processing Systems, 2019, pp. 103–112.

[148] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features

from tiny images”, Citeseer, Tech. Rep., 2009.

104

Appendix A

Bayesian Variational Inference

A.1 Jensens Inequality

Theorem 1. In the context of probability theory, it is generally stated in the follow-

ing form: if X is a random variable and ϕ is a convex function, then

φ(E[X]) ≤ E[φ(X)]

A.2 Variation and Evidence Lower Bound (ELBO)

For the ordinary function f (x), we can think of f as a real number operator

about x, and its role is to map the real number x to the real number f (x).

Then analogy to this pattern, suppose there is a function operator F, which

is a function operator about f (x), can map f (x) to a real number F(f (x)).

For f (x) we find the extreme value of f (x) by changing x. In the variation,

this x will be replaced by a function y(x). We change y(x) by changing x

finally, make F(y(x)) to find the extreme value. Variation is the expansion of

differentiation in the function space.

For a class of data x (whether it is audio or picture), the feature data ob-

tained after encoding them often obeys a certain distribution q(z). Where z is

a hidden variable and the hidden distribution q(z) is not known, but we can

Appendix A. Bayesian Variational Inference 105

FIGURE A.1: Minimize the KL divergence so that the varia-
tional distribution q continuously approaches the true distribu-

tion P

infer q(z) from the existing data X and it is P(z|x). KL divergence is used to

measure the distance between two distributions P(z|x) and q(z). When the

distance is 0, it means that the two distributions are completely consistent.

P(x) does not change, so you want to make KL(q(z)||P(z|x)) smaller, which

makes ELBO larger, vice versa. A picture explanation is as shown in FIGURE

A.1. Because KL ≥ 0, logP(x) ≥ ELBO. This conclusion can also be obtained

by the following formula:

log P(x) = log P(x, z)− log P(z|x)

= log
P(x, z)

q(z)
− log

P(z|x)
q(z)

= log P(x, z)− log q(z)− log
P(z|x)
q(z)

= log P(x, z)− log q(z) + log
q(z)

P(z|x)

(A.1)

Now both sides of the equation can be expected from q(z).

∫
q(z) log P(x)dz =

∫
q(z) log P(x, z)dz−

∫
q(z) log q(z)dz

+
∫

q(z) log
q(z)

P(z|x)dz
(A.2)

Appendix A. Bayesian Variational Inference 106

Since q(z) is not related to P(x), so we have

∫
q(z) log P(x)dz = log P(x) (A.3)

The original formula eventually became.

log P(x) =
∫

q(z) log P(x, z)dz−
∫

q(z) log q(z)dz︸ ︷︷ ︸
L(q(z)), ELBO(Evidene Lower Bound)

+
∫

q(z) log
q(z)

P(z|x))dz︸ ︷︷ ︸
KL(q(z)∥P(z|x))

(A.4)

This conclusion can also be obtained by the following formula. The key

to this formula is the middle inequality part, which is Jensen’s inequality and

has mentioned above.

log P(x) = log
(∫

P(x, z)dz
)

= log
(∫ (P(x, z)

q(z)
q(z)

)
dz
)

= log Ezq(z)

[
P(x, z)

q(z)

]
≥ Ezq(z) log

(
P(x, z)

q(z)

)
= Ezq(z) log P(x, z)−Ezq(z) log q(z)

=
∫

q(z) log P(x, z)dz−
∫

q(z) log q(z)dz

(A.5)

A.3 Kullback-Leibler Divergence

Because KL divergence is not commutative, it cannot be understood as the

concept of "distance". It does not measure the distance between two distri-

butions in space. It is more accurate to measure the loss of information from

one distribution compared to the other. In probability theory or information

Appendix A. Bayesian Variational Inference 107

theory, Kullback-Leibler divergence also known as relative entropy, is a way to

describe the difference between two different probability distributions like

P distribution and q distribution. KL divergence has its own clear physical

meaning in information theory. It is used to measure the number of addi-

tional bits required to average the samples from the P distribution using a

q distribution-based coding. The physical meaning in the field of machine

learning is used to measure the degree of similarity or similarity of two func-

tions. If it is related to the minimum code. The KL divergence can also be

rewritten as KL divergence calculation formula for discrete probability distri-

bution:

KL(P∥q) = ∑ P(x) log
P(x)
q(x)

(A.6)

KL divergence calculation formula for continuous probability distribution

KL(P||q) =
∫

P(x) log
P(x)
q(x)

dx (A.7)

In Shannon’s information theory, a P distribution-based coding method

is used to encode samples from P distribution. The average number of bits

required for its optimal encoding (ie, the entropy of this character set) is:

H(x) = ∑
x∈X

P(x) ∗ log
(

1
P(x)

)
(A.8)

Using P distribution-based coding to encode samples from q distribution,

the number of bits required becomes:

H′(x) = ∑
x∈X

P(x) ∗ log
(

1
q(x)

)
(A.9)

Appendix A. Bayesian Variational Inference 108

Then we can get the KL divergence of P distribution and q distribution

KL(P∥q) = H′(x)− H(x) = ∑
x∈X

P(x) ∗ log
(

1
q(x)

)
− ∑

x∈X
P(x) ∗ log

(
1

P(x)

)
= ∑

x∈X
P(x) ∗

[
log
(

P(x)
q(x)

)]
(A.10)

109

Appendix B

Label Propagation Algorithm

The Label propagation algorithm is initially proposed by zhu [109]. It is a

graph-based semi-supervised learning method. The basic idea is to use the

label information of labeled nodes to predict the label information of unla-

beled nodes. Here is a brief introduction to the Label Propagation algorithm.

B.1 Similarity Matrix Construction

Assume we have a set of labeled dataset {(x1, y1) . . . (xl, yl)} and the class

lable YL = {y1, · · · , yl} ∈ {1, · · · , C}, the number of class C is known and all

exist in the labeled data. There is another set of {xl+1 . . . xl+u} unlabeled data

and the corresponding unobserved class label YU {yl+1, · · · , yl+u}, where l≪

u and n = l + u. Put the labeled and unlabeled data together we have

dataset X = {x1, · · · , xl+u} ∈ R. The problem turns into: from the data

set X, use the labeled data’s label information YL find a corresponding label

YU for each data of the unlabeled dataset. Use all data as nodes (including

labeled and unlabeled data) to create a graph. There are many ways to con-

struct this graph. Here we assume that the graph is fully connected, and the

edge weights of node i and node j are:

wij = exp

(
−
∥∥xi − xj

∥∥2

α2

)
(B.1)

Appendix B. Label Propagation Algorithm 110

Where α is a hyperparameter. A common graph construction method is

k-nn graph, which only keeps the k nearest neighbor weights of each node,

and the others are 0. That is, there are no edges, so it is a sparse similarity

matrix. This can effectively reduce the amount of computation.

B.2 Label Propagation

The label propagation algorithm is relatively simple: labels are propagated

through the edges between nodes. The larger the weight of the edge, the

more similar the two nodes are, and the easier the label is to propagate. We

define an NxN probability transition matrix P:

Pij = P(i→ j) =
wij

∑n
k=1 wik

(B.2)

Pij represents the probability of transition from node i to node j. We merge

YL and YU to get a N × C soft label matrix f =

 YL

YU

. The meaning of

soft label is that we keep the probability that the sample i belong to each

class, instead of being mutually exclusive. This sample belongs to only one

class with probability 1. Of course, when the class of this sample i is finally

determined, the class with max, which is the most probable, is taken as its

class. Then there is a YU in f . It was unknown at first, and it doesn’t matter,

just set a value.

The LP algorithm is as follows:

1. Propagate f ← P f

2. Fix the labeled data fL = YL

3. Repeat step 1 and step 2 until f converges

Step 1 is to multiply the matrix P and the matrix f . In this step, each

node propagates its own label to other nodes with a probability determined

Appendix B. Label Propagation Algorithm 111

by P. If the two nodes are more similar (the closer the distance is in Euclidean

space), the more easily the other’s label will be given by its own label. Step

2 is very critical. Because the label of the labeled data is determined in ad-

vance, it cannot be changed, so it must return to its original label after each

propagation.

B.3 Variant of Label Propagation Algorithm

We all know that we calculate a soft label matrix f =

 YL

YU

 in each itera-

tion. The YL is known in advance, calculating it is useless, and in step 2 we

have to get it back. All we care about is YU, we can divide the matrix P as

follows:

P =

 PLL PLU

PUL PUU

 (B.3)

Make f =

 fL

fU

. At this time, we can perform the following calculation

to get the soft label of the unlabeled data.

fU ← PUU fU + PULYL (B.4)

Iterate this step until convergence is enough. It can be seen that fU de-

pends not only on the label of the labeled data and its transition probability

but also on the current label and transition probability of the unlabeled data.

Therefore, the LP algorithm can additionally use the distribution character-

istics of unlabeled data.

Appendix B. Label Propagation Algorithm 112

B.4 Proof of Convergence

When n approaches infinity, there is

fU = lim
n→∞

(PUU)
n f 0

U +

(
n

∑
i=1

(PUU)
(i−1)

)
PULYL (B.5)

Among them f 0
U is the initial value of fU, So we need to prove (PUU)

n f 0
U →

0. Because P is row-normalized and PUU is a submatrix of P, so

∃γ < 1,
u

∑
j=1

(PUU)ij ≤ γ, ∀i = 1 . . . u (B.6)

Therefore

∑
j
(PUU)

n
ij = ∑

j
∑
k
(PUU)

(n−1)
ik (PUU)kj

= ∑
k
(PUU)

(n−1)
ik ∑

j
(PUU)kj

≤∑
k
(PUU)

(n−1)
ik γ

≤ γn

(B.7)

When n approaches infinity, rn = 0 and (PUU)
n converges to 0, which also

means (PUU)
n f 0

U → 0. Therefore The initial value of f 0
U is irrelevant. At the

same time, fU converges at the n-th iteration. For a more detailed explanation

of the label propagation algorithm, please refer to Zhu’s paper [109].

113

Appendix C

Laplace Approximation for

Gaussian Processes

C.1 Laplace Approximation for Gaussian Processes

with Multiple-Person Tracking Framework

We use G = ∆̃−1 to denote the covariance matrix (the gram matrix). Consid-

ering the sigmoid noise label output model, the P (lA, lU|XU,DA,DT) is no

longer a Gaussian and has no closed form solution, assuming P (lA, lU|XU,DA,DT)

is a uni-modal function with mode (lA, lU) ∈ RnA+nU . We use its Laplace ap-

proximation with the mode µ′ ∈ RnA+nU and covariance Σ ∈ R(nA+nU)×(nA+nU)

instead the correct density.

Taking the logarithm will not change the maximum but render optimiza-

tion easier; take the logarithm of Eq. 3.6, we have the following objective

function to maximize:

J (lA, lU) = ln(P(yA|lA))︸ ︷︷ ︸
Q1(lA)

+ ln(P(lA, lU|XA,XU,DT))︸ ︷︷ ︸
Q2(lA,lU)

−ln(P(lA|XA,XU,DT))

(C.1)

The last term is normalization constant has no influence on the maximiza-

tion can be omitted from the optimization.

Appendix C. Laplace Approximation for Gaussian Processes 114

Let’s focus first on Q2(lA, lU), which builds the link between Gaussian

processes regression and classification. According to Eq. 3.7, this term is

given by

Q2(lA, lU) = −
1
2
(ln(2π)nA+nU + ln|G|+ (l− µ)⊤G−1(l− µ)) (C.2)

We define l⊤ = (l⊤Al⊤U), y⊤ = (y⊤T l⊤A), yT = [y1, y2, ..., ynT]. Moreover Gall

=

GLL GLU

GUL GUU

 =

GTT GTZ

GZT GZZ

 is (nL + nU) × (nL + nU) Gram matrix

(symmetric, non-singular), which is defined over all samples. Its inverse

is G−1
all =

 A B

B⊤ M

 (according to the Partitioned Matrix Inversion Theo-

rem) derivate from the latter one. Where A = G−1
TT + G−1

TTGTZMGZTG−1
TT,

B = −G−1
TTGTZM, M = (GZZ −GZTG−1

TTGTZ)
−1. According to the works of

Herbrich [108] and Zhu et al [111], we can determine µ and G in Eq. 3.7 as

µ = −M−1B⊤y⊤, G = M−1. Hence, Eq. C.2 can derivate as follows:

Q2(lA, lU) = −
1
2
(ln(2π)nA+nU + ln|G|+ (l− µ)⊤G−1(l− µ))

= −1
2
(ln|Gall|+ y⊤T AyT + l⊤B⊤yT + y⊤T Bl + l⊤Ml) + c1

= −1
2
(ln|Gall|+ (y⊤T l⊤)G−1

all

yT

l

) + c1 (C.3)

= −1
2
(ln|Gall|+ (y⊤l⊤U)G

−1
all

 y

lU

) + c1 (C.4)

where c1 = −1
2(y
⊤
T (BM−1B⊤ −A)yT + ln|G| − ln|Gall|+ ln(2π)nA+nU)

summarizes all terms independent of l, we can see that Q1(lA) does not de-

pend on lU. Thus we can derive the optimal value ˆlU of lU by maximizing

Q2(lA, •), taking the derivative of Q2(lA, •) w.r.t. lU, setting this function to

Appendix C. Laplace Approximation for Gaussian Processes 115

zero. According to [111] the optimal value ˆlU can be derived as:

ˆlU = GULG−1
LL

yT

ˆlA

 = GULG−1
LL y (C.5)

Substituting this expression into Eq. (C.4) shows that this term equals

Q2(lA, lU) = −
1
2
(y⊤T l⊤A)G

−1
LL

yT

lA

+ c1 −
1
2

ln|Gall|

= −1
2
(y⊤T l⊤A)G

−1
LL

yT

lA

+ c2 (C.6)

Let’s turn our attention to the first term Q1(lA) of J (lA, lU). We define

π(lj) = (1 + e−2γlj)
−1

, where j = nT + 1, nT + 2, . . . , nT + nA , the sigmoid

noise label generation model can be written as :

P(yj|lj) =
eγljyj

eγljyj + e−γljyj

=

(
eγlj

eγlj + e−γlj

) 1+yj
2
(

1− eγlj

eγlj + e−γlj

) 1−yj
2

= π(lj)
1+yj

2 (1− π(lj))
1−yj

2 (C.7)

Therefore

Q1(lA) = ln(P(yA|lA))

=
nL

∑
j=nT+1

ln(P(yj|lj))

= γ(yA − 1)⊤lA −
nL

∑
j=nT+1

ln(1 + e−2γlj) (C.8)

Appendix C. Laplace Approximation for Gaussian Processes 116

Combine Q1(lA) and Q2(lA, lU) together, we obtain the following revised

objective function J (lA). Maximize J (lA) over lA ∈ RnA we get

J (lA) = γ(yA − 1)⊤lA −
nL

∑
j=nT+1

ln(1 + e−2γlj)− 1
2
(y⊤T l⊤A)G

−1
LL

yT

lA

+ c2

(C.9)

The gradient vector ˆlA given by a straightforward calculation

∂J (lA)

∂lA

∣∣∣∣
lA= ˆlA

= γ(yA − 1) + 2γ(1− π(ˆlA))−G−1
LL

ˆlA (C.10)

Furthermore, let G−1
LL =

BTT BTA

BAT BAA

, Eq. C.10 can be written as

∂J (lA)

∂lA

∣∣∣∣
lA= ˆlA

= γ(yA − 1) + 2γ(1− π(ˆlA))− BAA ˆlA − BATyT (C.11)

Where π(ˆlA) = (π(ˆlnT+1), . . . , π(ˆlnL))
⊤. We can see from this expression,

the term π(ˆlA) make it impossible to compute ˆlA in a closed form, we use the

Newton-Raphson method.

li+1
A ← liA − ηH−1 · ∂J (lA)

∂lA

∣∣∣∣
lA=liA

(C.12)

Where H is nA × nA Hessian matrix defined as :

H ˆlA
=


∂2J (lA)

∂lnT+1∂lnT+1

∣∣∣
lnT+1= ˆlnT+1

· · · ∂2J (lA)
∂lnT+1∂lnL

∣∣∣
lnT+1= ˆlnT+1,lnL=

ˆlnL
...

∂2J (lA)
∂lnL ∂lnT+1

∣∣∣
lnL=

ˆlnL ,lnT+1= ˆlnT+1

· · · ∂2J (lA)
∂lnL ∂lnL

∣∣∣
lnL=

ˆlnL

 = −P−BAA

(C.13)

Where P is a diagonal matrix with elements Pii = 4γ2π(li)(1−π(li)) and

η ∈ R+ has to be chosen such that J (li+1
A) > J (liA). We set η 0.4 and the

number of iterations used in Newton-Raphson method is 7.

Appendix C. Laplace Approximation for Gaussian Processes 117

As the latent variable l can be the soft substitution of label y, we build two

trackers by using auxiliary and target samples respectively. For each tracker

based on the derivation above we compute the soft label vector lU, hence we

get two candidates set VA and VT. We check the similarity of two sets, if the

similarity is high we can use anyone, if the similarity is low we rely more on

the target decision to ensure the tracking consistency. When the similarity

is zero, we use the auxiliary decision to handle the heavy occlusion or the

severe appearance change.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Background
	The Issues Solved by Gaussian Processes
	Main Challenges and Motivations
	Major Contributions
	Thesis Structure

	Literature Review
	Basic Gaussian Processes
	Illustrative Examples

	Why Gaussian Processes is Important
	Law of Large Numbers
	Central Limit Theorem

	Covariance Function
	Uncertainty

	Multi-dimensional Gaussian Distribution and Parameter Estimation
	Parameter Estimation

	Related Work
	Multiple-Person Detection and Tracking Technology
	Gaussian Processes Dynamic Systems
	Gaussian Processes with Convolutional Kernel

	Summary

	Transfer Learning Based Gaussian Processes Regression for Multiple-Person Tracking
	Transfer Learning
	The Gaussian Processes Regression Based Observation Model
	Gaussian Processes Latent Variable Model
	Advantages of The Gaussian Processes Regression Based New Observation Model
	Constructing Covariance Matrix
	Experiments
	Evaluation Metrics
	Experiments Analysis

	Summary

	Deep Learning with Gaussian Processes Building Blocks
	The Advantages of Gaussian Processes
	GPs vs RBM
	Restricted Boltzmann Machine
	Gaussian Processes
	Comparing GPs with RBM

	Sparse Approximations for Gaussian Processes
	Augmented Domain

	Deep Hierarchy Gaussian Process
	Variational Bayesian Inference
	Experiments
	Summary

	Gaussian Processes with Convolutional Kernel
	Constructing Convolutional Kernel
	Inter-domain Inducing Patches
	Computational Issues with Gaussian Process Model
	Variant of Convolutional Kernel
	Experiments
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bayesian Variational Inference
	Jensens Inequality
	Variation and Evidence Lower Bound (ELBO)
	Kullback-Leibler Divergence

	Label Propagation Algorithm
	Similarity Matrix Construction
	Label Propagation
	Variant of Label Propagation Algorithm
	Proof of Convergence

	Laplace Approximation for Gaussian Processes
	Laplace Approximation for Gaussian Processes with Multiple-Person Tracking Framework

