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Abstract  

Moving object detection is one of the main fundamental parts in various computer vision 

applications, particularly for real-time object tracking and recognition in automated video 

surveillance. Although human eyes can simply recognise objects and changes in the scene, 

automated detection of moving objects in some scenarios are still a challenging task for existing 

systems. One of the main effective ways to improve the detection rate is to use colour and depth 

cameras together (RGB-D). Despite the effort of previous researchers with various sensors, 

moving object detection is still challenging in some scenarios such as dynamic background, 

sudden illumination-changes, colour and depth camouflage, intermittent motion, out of sensor 

range, bootstrapping, slow and stationary moving objects, etc. Thus, the aim of this thesis is to 

improve the detection accuracy and efficiency of moving object detection by achieving more 

precise and consistent detection in different challenging scenarios. To attain this, three new 

robust pixel-wise nonparametric methods for real-time automatic detection of moving objects 

in indoor environments using an external RGB-D sensor are presented. The methods introduced 

in chapter 4 and 5 (BSABU, NBM-GA, NBM-HC) are an improved version of the proposed 

method in chapter 3 called NBMS. These methods are able to deal with various complex 

scenarios and different type of moving objects such as high-speed drones or slow and stationary 

moving objects such as a human.   

NBMS method first creates two background models by storing some observed colour 

and depth pixels. Then each pixel from the new frame will be compared with the stored models 

to mark the new pixel as foreground or background. These models require a continuous update 

to adapt to the changes in the environment. A novel regular update based on the distance of the 

pixels is proposed which only applies to the pixels marked as a background after pixels 

classification. Besides, the method also blindly updates the model to adapt to sudden changes 

in the background. This approach is compared with other methods in different collected 

datasets from the drone, a publicly available dataset and a live application. Results show 

improvements over current methods.  In chapter four, an adaptive blind update policy has been 

added to the method to improve the detection accuracy of stationary moving objects. In 

particular, blind update frequency changes based on the speed of the moving object or any 

other changes in the background to prevent absorption of a stationary moving object in the 

background models. Besides, a new shadow detection method using CIEL*a*b* colour added 

to enhance the detection accuracy in the case of shadow and depth camouflage. Results show 

significant improvement compared to the original method. This method also evaluated in 32 

datasets in the benchmark and the results have shown robust and consistent in different 

challenging scenarios. Due to a large number of samples in the model, optimisation algorithms 

such as Hill-Climbing, and Genetic Algorithm (GA) could help to improve the efficiency and 

accuracy even further. Instead of updating the models pixel by pixel, a fitness function 

calculates the fitness of each stored sample image and only one image will receive an update 

each time. GA selects this image by a Roulette Wheel. This updating mechanism allows all the 

pixels in the depth model to have a chance to get updated and therefore the system does not 

stop in the local optima, which is usually created by the noise of the sensors. Results indicate 

improvement in the depth-camouflage scenario and reduction of computational costs. 
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Nomenclature 

Symbols 
 

The following symbols are used in this thesis: 

 

ℝ3  The set of all three-dimensional space 

X  The position of a point in three-dimensional space 

𝑋𝑡  The position of a point in three-dimensional space at time t 

N  Number of samples 

𝛼  The frequently of blind update 

𝑀(𝑋)𝑅𝐺𝐵 The Colour background Model  

𝑀(𝑋)𝐷  The Depth Background Model 

𝑀(𝑋)𝐿𝑎𝑏 The Colour Background Model based on LAB space  

𝑣(𝑥)  The given colour value at pint X 

𝑑(𝑋)  The given depth value at pint X 

#𝑀𝑖𝑛  The minimum number of similar pixels 

#𝑀𝑖𝑛−𝑑𝑒𝑝𝑡ℎ The number of similar depth pixels 

#𝑀𝑖𝑛−𝐶𝑜𝑙𝑜𝑢𝑟 The number of similar colour pixels 

𝑇ℎ𝑅𝐺𝐵  Acceptable colour threshold 

𝑇ℎ𝐷  Acceptable depth threshold 

𝑑smallest(𝑋) The smallest depth value in the model 

μ  Population size 

F  Fitness of solution 

NG             Number of Generations 

CP             Crossover Probability 

MP             Mutation Probability 

n             The number of integers (genes) making up each Chromosome 
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Acronyms / Abbreviations 
 

The following abbreviations are used in this thesis: 

 

ADO    Absent Depth Observation  

Bg   Background   

BSABU  Background subtraction using adaptive blind update 

FP   False Positive 

FSM   Finite State Machine   

Fg    Foreground 

FN   False negative 

FPS    Frames Per Second  

GPS   Global Positioning System 

GMM   Gaussian Mixture Model  

GSM   Generic Scene Modelling 

IR    Infrared Radiation 

KDE    Kernel Density Estimation  

MAV   Micro Aerial Vehicle 

MOG   Mixture of Gaussian 

NBMS   Nonparametric background Modelling and Segmentation 

PMD    Photonic Mixer Device  

PDF   Probability Density Function  

RGB-D  Red-Green-Blue-Depth 

RM    Average Ranking of Method  

RC   Overall Ranking Across Category 

ROI   Region of Interest  

SFO    Stationary Foreground Object 

S   Similarity Measure  

SB   Similarity Measure Around Object Boundaries 

TOF    Time of Flight  
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TE   Total Error  

UAV   Unmanned Aerial Vehicle 

ViBe   Visual Background Extractor 

3D    Three-Dimension  

HC   Hill Climbing 

GA   Genetic Algorithm 

EC   Evolutionary Computation 

RMHC   Random Mutation Hill Climbing 

NBM-HC  Nonparametric Background Modelling using RMHC 

NBM-GA   Nonparametric Background Modelling using GA 

St.Dev   Standard Deviation 
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Chapter 1  

Introduction 
 

1.1 Motivation  
 

Vision is considered as one of the most valuable senses human being possess. Just by simply 

glancing of the scene, a vast amount of valuable information can be easily obtained. This may 

not be possible to use all other senses combined as easily. Therefore, many researchers were 

inspired by this fact to emulate this natural ability into human-made systems by a combination 

of hardware and software. Thus, the visual sense is not only the primary source for humans but 

nowadays it is also crucial for many computer vision and robotics systems. One of the most 

essential steps in many computer vision systems is moving object detection, especially real-

time object tracking and automated surveillance. Motion and change detection is typically the 

first step of computer vision applications and the outcomes are used for further processing 

activities [1]. Formally, change detection is defined as the process of automatically detecting 

and analysing substantial changes occurring in a scene by observing the frames in a video 

stream [2]. These changes frequently occur by appearing as a moving object in the scene such 

as human, animals or robots. Recognising detected moving object as the region of interest 

(ROI) allows the system to perform additional tasks such as robots localisation and tracking 

[3], people and object counting, detecting wild-life scenes and exploring [4], traffic monitoring 

[5] and etc. Figure 1.1 illustrates an example of localisation and navigation of a robot where 

the drone (moving object) in the green rectangle identified as an ROI and red rectangle is the 

predicted future position with the current direction.  

Typically, the key step in the mentioned applications is to identify the foreground 

(moving object) from the scene known as background [6]. One of the most common ways is to 

compare the current image frame with former frames also known as “model” or “reference”. 

These models could generate from a single image or more compound model called “scene 

model” [7]. In order for the scene model to adapt to changes in the background over the time, 

it requires a continuous update. Examples of these changes are illumination changes, appearing 

or removing an object in the scene or moving an object in the background. Also, to deal with 

these changes, how we collect these samples to create the model is important as it will be used 
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for the segmentation of the frames. Bad samples in initialisation would cause misclassification 

of the pixels and delay in the update process and consequently create more false segmentation.  

This problem has been broadly discussed in the literature. Different techniques to update these 

samples have been suggested. For example, remove the old samples in the model and change 

them with the new samples which traditionally is known as first in first out. Naturally, these 

methods update all the examples in the model which some samples may still be valid and may 

not be necessary to change them. Similarly, using the background pixels only or also using 

foreground pixels as part of the samples are always argued. These approaches are called blind 

and conservative update [8]. Conservative update procedure only takes those pixels identified 

as part of the background and it never includes foreground pixels. This procedure can 

effectively produce sharp detection of moving objects. However, this update cannot cope with 

many real-world scenarios and therefore lead to the production of ghosts’ phenomenon, 

permanent misclassification and deadlock situations. One of these scenarios is a change in the 

background of the scene which can cause permanent misclassification as some parts of the 

background will be classified as foreground and this area will never get updated.  

 

 

 
Figure 1.1.  Example of ROI in the green rectangle identified by the system.  

 

On the other hand, blind update policy which is used in ViBe [8] and MoG [9] algorithms 

includes all pixels into the background model update regardless of being part of the background 

or foreground. The drawback of this approach mainly is the production of ghost phenomenon, 
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poor detection of a slow-moving object or stationary foreground objects (SFOs). Typically in 

the literature, these motionless objects are referred to a moving object which stops and remains 

static for some time. Their regions gradually absorb to the scene model and eventually, the 

scene model will adapt to the stationary object. Consequently, the object will incorrectly 

disappear from the foreground region. Segmentation of SFOs is still a challenging task for 

many background subtraction methods which attracted the attention of many researchers in the 

last few years [10]. Generally, we refer to “segmentation” as a classification of the pixels as 

foreground or background. By improving the mentioned weaknesses in segmentation, the 

accuracy and consistency of current methods can be enhanced. Therefore, the aim of this thesis 

is to improve the detection accuracy of moving object detection by achieving more precise and 

consistent detection in different challenging scenarios. 

In the remainder of this thesis, first, we will overview existing methods and then we 

will investigate the detection of different type of moving objects such as fast, slow and 

stationary objects and propose new pixel-wise moving object detection solutions to improve 

the accuracy and efficiency in these problems by creating a model to store the samples and 

regular updates to keep the models adaptive to the changes in the scene.  

 

1.2 Contributions 

 
The main contributions of this thesis are below: 

❖ Introducing a new pixel-wise nonparametric background modelling and segmentation to 

detect a moving object using colour frames and depth data. This method uses new 

segmentation criteria which are different from existing approaches. This method stores 

some colour and depth frames to create a model. Then, to find the moving object each pixel 

from the new frame will be compared to the models and a set of rules has been designed to 

segment the foreground and background. The segmentation method primarily relies on the 

depth sensor and compares each pixel with the model based on the distance the pixel is 

observed from the sensor. To the best of the author’s knowledge, this is a new approach 

and it was never implemented in this way. 

❖ This method is fully tested in three different structures. First, the method evaluated in two 

different fast-moving UAVs sequences (AR.Drone [11] and Crazyflies [12]). We have 

collected these data to measure the accuracy of the method to detect fast and small moving 

objects in a cluttered environment and other challenging conditions. This type of dataset 
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was not publicly available and we had to collect this dataset as part of our contribution to 

this research. Also, we have evaluated this method in other publicly available RGB-D 

datasets in four different challenging scenarios and compared them with the other state-of-

the-art methods. In the end, we have tested the proposed method in a live application within 

an indoor environment to measure the accuracy of the proposed method in real-time. 

❖ In chapter 4, a new adaptive blind update policy has been introduced and added to the 

proposed method. The blind update frequency in this method varies based on the speed of 

a moving object. This adaptive capability allows the system to adapt to the changes in the 

background, detect the fast and stationary moving object and reduce the ghost phenomenon. 

Additionally, a new shadow detection method based on CIE L*a*b* colour space and 

object boundary detection added to the algorithm to improve the accuracy in shadow and 

depth camouflage scenarios. Also, we have introduced a bootstrapping detection method, 

which is added to the system to increase the segmentation accuracy in the case of 

bootstrapping. 

❖ A comprehensive evaluation of the proposed method in 33 different sequences in various 

challenging scenarios with a total of more than 15000 frames is added to this thesis. This 

is including the comparison to the original method and other state-of-the-art methods in 

benchmark and drone’s datasets. 

❖ Besides, another new moving object detection method using the optimisation algorithms (a 

Genetic Algorithm and Hill Climbing) is introduced. This method for the first time is using 

optimisation algorithms to update the background models in this way. In this method, 

instead of simple and classical approaches to update the background models, a fitness 

function has been implemented to rank each stored frame in the model and then a Roulette 

Wheel is used to choose which frame from the model needs to receive an updated after each 

new frame. This method allows all pixels to have a chance to get updated and prevents only 

the best pixels being selected. This capability will enable the system to not stop in local 

optima and prevent permanent misclassification. Also, it increases the efficiency of the 

proposed method compared to the original approach. This is also compared with the base 

and other existing methods in benchmark and drone’s datasets. 
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1.3 Publications 
 

1) N. Dorudian, S. Lauria, and S. Swift, “Nonparametric background modelling and 

segmentation to detect micro air vehicles using RGB-D sensor,” International Journal 

fo Micro Aerial Vehicle, vol. 11, p. 1756829318822327, 2019. 

https://journals.sagepub.com/doi/full/10.1177/1756829318822327 

 

2) N. Dorudian, S. Lauria, and S. Swift, “Moving Object Detection using Adaptive Blind 

Update and RGB-D Camera,” IEEE Sensor Journal, vol. 19, no. 18, pp. 8191–8201, 

Sep, 2019. https://ieeexplore.ieee.org/document/8732428?source=authoralert 
 

3) N. Dorudian, S. Lauria, and S. Swift, “Background modelling and segmentation using 

a Genetic Algorithm and Hill Climbing,” (to be submitted). 

 

1.4 Thesis Structure 
 

This thesis consists of 6 chapters in total (including this chapter). The contents of the remaining 

chapters are explained in the following section: 

Chapter 2 is a review of various recent advanced methods on moving object detection 

and unsolved challenges which are still interesting for computer vision researchers and it is 

based on nonchronological order. In particular, we have discussed extensive types of 

background subtraction methods including parametric approaches, for example, Gaussian 

Mixture Model (GMM) [13], nonparametric methods such as ViBe [8] and Pbas [14], methods 

which have paid particular attention to detect stationary or slow-moving objects and methods 

which have also used depth sensors such as RGB-D camera, TOF (Time of flight) or stereo 

camera. Additionally, we have identified challenging scenarios which usually background 

subtraction algorithms have difficulties in detecting the whole silhouette of a moving object in 

some of these sequences.  

In chapter 3, based on the motivation and the experience we have gained from previous 

works in chapter 2, we have proposed a new pixel-wise non-parametric moving object 

detection method. This method has improved the foreground detection accuracy in some 

challenging scenarios such as small and fast speed moving objects in an indoor environment 

using RGB-D camera. This method has different criteria compared to the current techniques. 

The evaluation results in this chapter are collected from a publicly available dataset and also 

from drone’s datasets which have been captured by us. Despite the great results this method 

has achieved in these initial evaluations, we have discovered the system still suffers in scenarios 

https://journals.sagepub.com/doi/full/10.1177/1756829318822327
https://ieeexplore.ieee.org/document/8732428?source=authoralert
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where slow and stationary moving objects exist, bootstrapping occurs, depth camouflage and 

sharp illumination affect the scene.  

In chapter 4, we have investigated how to improve these weaknesses by adding an 

adapting blind update policy, bootstrapping and shadow detection to the method. The 

segmentation process and the set of rules that the system follows to segment the pixels as part 

of the background or foreground will be explained step by step in chapter four. We have 

investigated the effect of the proposed adaptive blind update method on detection accuracy of 

SFOs as well as fast-moving objects. A full comparison of the proposed method in a publicly 

available benchmark dataset and drone’s datasets with other state-of-the-art methods and the 

original method is presented in the chapter.  

In chapter 5, we have investigated the effects of artificial intelligence (AI) in 

nonparametric moving object detection to increase the efficiency of the proposed method. The 

goal is to use AI to develop an expert system which is able to extract the background models 

from the new frames more efficiently and accurately instead of traditional first-in-first-out, 

random sampling or the highest value replaces the lowest. To implement this system, Hill-

Climbing and Genetic Algorithms has been used to update the models by the survival of the 

fittest theory. This has been applied by ranking the samples in the fitness function and choose 

the selected parents by a Roulette Wheel which allows all the pixels in the depth model to have 

a chance to get updated instead of only updating closest pixel to the camera. This allows the 

system to not stop in the local optima which is usually created by the sensor noise. The 

comparison of this method with the original and other methods will be discussed in the chapter. 

In chapter 6, first, the results of all proposed methods in this thesis have been compared 

in terms of accuracy and efficiency. Then, all the contributions which were achieved during 

this research are discussed. Further, how to optimise the proposed methods and parameters, 

and how this work can be improved in further studies and future works is explained. 
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Chapter 2                           

Background 
 

2.1 Introduction 
 

In this chapter, the goal is to review the well-known and recent algorithms in moving object 

detection and change detection. The main focus of this literature review will be on moving 

object detection, especially those methods which used RGB-D camera. This will include 

different tasks such as segmentation, detection, and tracking.  

This chapter is organized as follow: Section 2.1 will be a discussion about general 

motion and change detection as well as a review of different approaches to detect motion, the 

weaknesses and existing problems in this area. Section 2.2 will be an overview of related work 

of background subtraction techniques and different categories of background subtraction will 

be explained. Section 2.3 well-known nonparametric background subtraction methods will be 

reviewed and the advantages and weaknesses of these methods will be discussed in detail. In 

section 2.4, ViBe algorithm which is a well-known and efficient nonparametric method will be 

explained in detail. In section 2.5, recent RGB-D sensors along with their advantages and 

drawbacks will be discussed in detail. In section 2.6, recent RGB-D methods will be 

highlighted in detail. In section 2.7, scenarios which are typically challenging for background 

subtraction algorithms will be discussed and section 2.8 is a summary of this chapter. 

 

2.2 Motion and Change Detection 
 
There is a vast and growing number of research on motion and change detection in the field of 

computer vision. Observing the motion by a static camera and detecting it in the scene is an 

essential phase for many visual surveillance systems. This is mainly crucial for real-time 

automated surveillance and object tracking applications. Change detection is described as the 

process of detecting foreground regions which usually belong to moving objects such as 

people, animals or robots. We are also interested in detecting objects that become motionless 

for some time and then move as part of the foreground region which is known as stationary 

foreground objects (SFOs) [15]. For example, a person who stays stationary for a few seconds 

or a car stopped at a traffic light. However, we do not consider some small movements that 
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continuously occur in the background as a change and therefore these objects will be classified 

as part of the background. For example, a wave on a water surface, tree branches or shakes of 

objects by wind (e.g. chandelier, curtains, light poles, flags, etc.). 

The main aim of motion detection is to separate foreground (moving object) from the 

scene (background). By transforming the foreground area to the region of interest (ROI), many 

additional tasks will be possible to perform such as robots localisation and tracking [16], safe 

UAVs navigation [17][3], people counting [18], wild-life and traffic monitoring [19]. One of 

the most traditional methods is to compare the current frame with previously observed frames. 

These previous frames are called “reference”. This reference classically is created from a single 

frame or more compound model which is known as a background or scene model [7]. A scene 

model requires a constant update to adapt to the changes occurring in the background in real-

world scenarios. 

In the last few years, motion detection algorithms are divided into different categories 

such as optical flow [20][21], running average [22], cluster analysis [23], median filtering [24], 

frame differencing [25] and background subtraction [8]. Among these categories, the last two 

are mainly the most common methods [26]. Additionally, statistical background subtraction 

models are also broadly used. These models are divided into different types such as Midden 

Markov Models [27], Gaussian Mixture Models (GMM) [9], mean-shift clustering [28], 

nonparametric kernel density estimation [29], unimodal (single modelled) such as Gaussian 

[30] and Chi-Square distribution [31]. 

As background subtraction methods are a common way and the most effective to detect 

the moving object, these methods will be investigated in more detail in the next section. 

 

2.3 Background Subtraction Algorithms 
 

Detecting an object is usually an essential task in analysing the scene. If we have a scene model 

based on statistical data, an external object can be detected by recognising the parts of the frame 

that don’t exist in the model. This process in the literature is called “Background Subtraction” 

[32].   

In general, a background subtraction procedure consists of at least four main steps. (1) 

background model initialisation, (2) background model representation, which defines what 

type of model represent the background, (3) background model maintenance, which is the 

update mechanism to allow the model to adapt to the changes in the scene, (4) foreground 

detection, which describes how to compare the current frame with the background model and 
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classify the pixels as background or foreground [33][34]. Figure 2.1 illustrates general 

background subtraction algorithm process defined in [35], Where bt is the background and it 

the current frame at time t. N is the total number of frames which is used for the background 

initialization. 

 

 

Figure 2.1. Background Subtraction Process described in [35] .  

 𝑏𝑡 is the background and 𝑖𝑡 the current frame at time t. N is the total number of frames which is used 

for the background initialization. 

 

 

Background subtraction algorithms are mainly created based on a static background hypothesis 

[36]. Typically in this hypothesis, it has been assumed that there are no changes to the 

background in the scene in indoor environments. However, most practical scenarios lead to 

dynamic backgrounds such as animated images on screen, sunshine or reflections, moving 

chandelier or curtains by the wind. Therefore, most of the background subtraction algorithms 

have difficulties to deal with these conditions. To deal with these situations, many different 

kinds of research on foreground detection and background subtraction algorithms has been 

carried out. Although this fact can give the feeling that this problem is over-researched or it is 

solved, currently none of the algorithms seems to be able to simultaneously address all the key 

challenges that we can have in a scene [35]. Therefore, despite the effort of previous 

researchers, the problem of moving object detection remains challenging and there is no 

universal method to adequately detect the foreground in all practical scenarios. This was our 

main motivation to start the research introduced in this thesis to find a practical approach to 

combine the depth data and colour frames to obtain a more accurate and consistent outcome. 

As background subtraction methods could achieve the best results compared to the other 

approaches and are the most common way to detect the moving object, in the next section, we 

are going to review well-known and relevant background subtraction methods. 
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2.4 Related Work 
 

In the last decade, background subtraction methods have been widely used to detect moving 

objects in the scene due to the robustness and effectiveness of these methods. During these 

years, many different background subtraction methods have been proposed to solve the moving 

object detection problem. Comprehensive reviews of this subject are available in [35] and [37], 

RGB-D based methods in [38] and stationary moving object detection is widely discussed in 

[6]. Therefore, in this section only recent and related works will be discussed.  

Goyette et al. [15] categorised background subtraction (modelling) techniques into six 

families; basic, parametric, non-parametric and data-driven, matrix decomposition, motion 

segmentation, and machine learning.  

One of the most common ways to detect the foreground of the scene is using parametric 

background modelling methods such as Mixtures of Gaussians (MoG or GMM) [9]. Normally, 

parametric methods are closely coupled with underlying assumptions and not always perfectly 

corresponding to the real data. Also, the choice of parameters can be bulky and consequently, 

it decreases automation [39]. GMM was later improved by Zivkovic to be more efficient in 

updating parameters known as adaptive GMM (AGMM) [13]. However, even this method fails 

in some sequences with complex dynamic backgrounds which parametric methods are not 

commonly able to properly model the dynamic backgrounds and pixel variations [40]. On the 

other hand, these methods are dependent on many parameters, which extremely reduces their 

usability [41]. For these reasons, some researchers expanded MoG and investigated a new way 

to detect static objects in the scene according to the foreground masks collected from two 

background models with different learning rates, a long-term foreground mask (𝐹𝐿) and a short-

term foreground mask (𝐹𝑆) [42][36]. 𝐹𝑆 model holds the moving objects and noises. On the 

other hand, 𝐹𝐿contains the pixel values which belong to temporary static objects or moving 

objects, illumination changes and shadows.  

Despite the effort of these researchers, the MoG dual background model could not 

effectively detect temporarily static objects for a long period of time [36]. Instead of these 

complex methods, many researchers investigated other approaches, for example, the cluster-

based models such as Codebooks [43] which background model is created from long 

observation of frames or other statistical methods such as consensus-based method (SACON) 

proposed by Wang et al. in [44] which estimates a statistical model of the scene by computing 

the consensus of the background samples. Instead of these compound approaches, 
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nonparametric methods such as [29] are much easier to implement and these approaches are 

more effective models for complex dynamic scenes [32] which recently these methods become 

popular among researchers. Nonparametric models are referred to the methods which are 

tightly coupled with collecting and corresponding to the real data instead of assumption and 

estimation. This makes them flexible but severely data-dependent. The authors of [41] 

proposed a nonparametric background modelling to detect stationary moving objects in video 

sequences. This strategy is based on using a Probability Density Function (PDF). The 

background is modelled by two mixtures of Gaussians with the different learning rate. The 

state machine gives the meaning for the interpretation of the results taken from background 

subtraction. According to the authors, their proposed method classifies the pixels more 

accurately than MoG-based method introduced in [36]. Additionally, since they have used a 

nonparametric algorithm, their method could appropriately model complex background 

variations, whereas the detection proposed in [36] leads to many false detections. Their 

research demonstrates that nonparametric methods are able to deal with rapid background 

changes and complex dynamic scenes.  Table 2.1 illustrates summaries of some state-of-the-

art parametric and non-parametric methods based on colour only and RGBD data.  

 
Table 2.1. Classification of representative background modelling of Pixel-based methods. 

Category RGB RGB-D 

Parametric 
Methods 

MoG [9] MOGRGB−D[45], MOG4D 

[46], MOG𝑏𝑖𝑛[47] 
 AGMM [13] CLW [48] 

Non-parametric  
Methods  
 
 
 
 
 
 
 
 

PBAS [14] 

ViBe [8] 

SACON [44] 

SOBS [49] 

KDE [29] 

DTNBM [50] 

 

ViBe bin[51], SCAD [52] 

 

RGBD-SOBS [53] 

GSM [7] 

 

Others CodeBook [43] DECB [54] 

MFCN [34] 
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In the above table, MOG [9] and AGMM [13] are popular parametric methods and 

MOGRGB−D[45], MOG4D [46] are popular parametric methods based on MOG using RGB-

D data. PBAS [14], ViBe [8], SACON [44], SOBS [49], KDE [29], DTNBM [50] are well-

known nonparametric methods. All these methods will be discussed in more detail in this 

chapter. 

According to previous studies such as [41], nonparametric methods have proven their 

accuracy and ability to accomplish high detection in some challenging scenarios such as 

complex dynamic background or in a rapidly changing environment. On the other hand, 

parametric methods such as MOG typically have some disadvantages including weak detection 

in the dynamic environments as the background with fast variations cannot be precisely 

modelled with only a few Gaussians. All these reasons inspired us to investigate nonparametric 

methods in greater depth. As a result, in the next section, state-of-the-art nonparametric 

algorithms will be discussed in further detail. 

2.5 Nonparametric Methods 
 

Typically, nonparametric methods statistically model the background by directly relying on the 

observed data [55]. While these methods can adapt to the fast changes in the background, it has 

some drawbacks such as high memory usage as well as time-consuming to process [2]. Many 

different nonparametric methods have been proposed to overcome these limitations. For 

instance, Elgammal et al. [29] developed a nonparametric method based on Kernel Density 

Estimation (KDE) from various recent samples. However, this method was still time-

consuming. KDE is also improved in some other methods such as [56][57] to overcome these 

limitations. 

 Hofmann et al. proposed a nonparametric method called Pixel-Based Adaptive 

Segmented (PBAS) [14]. PBAS models the background based on the history of recently 

observed pixel values. The core part of PBAS is the decision block which is based on the per-

pixel threshold to compare foreground with the background model and the existing frame. 

Additionally, the background model frequently receives an update to have the ability to deal 

with rapid background changes. This update mechanism is based on per-pixel learning 

parameter. The key innovation applied in PBAS approach is the estimate of the dynamics 

background which relies on per-pixel thresholds metric. Despite the outstanding performance 

of PBAS to gain detailed shapes of foreground objects, it can be affected by illumination 

changes, dynamic backgrounds and noise [58].  
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Maddalena and Petrosino [49] introduced a background modelling method known as and Self-

Organizing Background Subtraction (SOBS) by using artificial neural networks. This method 

uses the neural background model by learning image sequence variations. It creates a neuronal 

map containing n × n weight vectors. Every incoming sample should be measured between 

weight vectors and also the minimum value must be determined, which makes this process 

time-consuming. This makes it computationally high cost and time consuming [58]. A 

comprehensive systematic review and comparative evaluation of SOBS method and its variants 

based on neural networks is available at [59]. 

Recently the authors of [50] introduced a dual-target nonparametric background 

modelling method called DTNBM which combines the grey value and gradient to represent 

each pixel and a classification rule that has been defined to classify a pixel as part of a dynamic 

background or motionless object. This method deals with low-speed and stationary moving 

objects by fast removing false detections which are produced by illumination changes or coarse 

background initialisation. Furthermore, DTNBM is computationally efficient and 

automatically adjusts the threshold level, which allows more applicability to various scenarios. 

However, the main drawback of DTNBM is that this method is not able to quickly identify 

shadows from illumination and therefore makes this system inefficient. 

 Barnich et al. introduced a new promising pixel-based nonparametric method called 

ViBe (Visual Background Extractor) to subtract the foreground from the background of the 

scene using an innovative random selection strategy [8]. This method has become popular 

among researchers due to its robustness and efficiency. 

Example of an experimental qualitative comparison of state-of-the-art methods 

presented in [58] is illustrated in figure 2.2. This figure is the results of the evaluated methods 

in the CDnet2014 video dataset [49]. The scenarios shown in this evaluation are bad weather, 

baseline, camera jitter, dynamic background, and also intermittent object motion video, 

fighting and walking I [60]. Figure 2.2 (1) shows the original frame of the video and figure. 

2.2 (2) is the ground truth data. Figure 2.2 (3-10) is the foreground detection results of 

background modelling methods. The methods in this evaluation are GMM (3), KDE (4), 

CodeBook (5), AGMM (6), SACON (7), SOBS (8), ViBe (9) and PBAS (10). In the first 

sequence (bad weather) KDE, CodeBook, SACON and SOBS failed to detect most pixels of 

the foreground. In baseline (b), all methods could detect the foreground area. However, the 

amount of noise in some of these methods such as KDE is extremely more than the others. In 

camera jitter (3) sequence, ViBe, SOBS, and KDE could achieve the best result and SACON 

totally failed in this sequence. In the sequence of dynamic background (4), SOBS could achieve 
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the best result. Some methods such as SACON and KDE had difficulties in dealing with the 

water, which is a dynamic part of the background. In an intermittent object motion video, 

SACON totally failed to detect the foreground. In the last two sequences (fighting and walking 

I), ViBe, PBAS, and SACON could show robust accuracy compared to the other methods. 

Overall ViBe performed well and it proved that it is consistent in all scenarios. 

ViBe algorithm is robust and can adapt to a dynamic background. Also, it can reveal 

exact background changes in current frames which it is facilitated to achieve one of the best 

results in comparative evaluation demonstrated in figure 2.2 [58] and outperform among many 

other nonparametric state-of-the-art methods such as KDE [29], CodeBook [43] and SACON 

[44]. According to the author of [35], ViBe could achieve the best results in the 

ChangeDetection.net dataset. This shows ViBe has a stable detection rate among different 

datasets. The ViBe algorithm was further investigated by Van Droogenbroeck and Paquot [61]. 

They have considered additional changes to progress the performance of ViBe. As ViBe has 

shown high accuracy and consistency in different scenarios, in the next section, we will review 

this algorithm in more detail and investigate the performance and weaknesses of ViBe in 

different situations. 
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 Figure 2.2. Foreground detection results in [58].  

The CDnet2014 dataset [49],(a) Bad weather,(b) Baseline, (c) Camera jitter,(d) Dynamic background,(e) 

Intermittent object motion, (f) Fighting, and (g) Walking I video from the dataset in [60] (1) Original frame. (2) 

Ground truth. (3) GMM. (4) KDE. (5) CodeBook. (6) AGMM. (7) SACON. (8) SOBS. (9) ViBe. (10) PBAS. 
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2.6 The ViBe Algorithm 
 

The ViBe algorithm initially produces a model by collecting previously observed pixel values 

at each location. Then it compares all pixels in the new frame with the created background 

model in order to identify each pixel as foreground or background. ViBe also benefits from 

taking two update methods in the processing stage by including recently observed pixels 

directly in the model to help the algorithm to adapt to the changes in the background instantly. 

The ViBe algorithm commonly exists in background subtraction applications for moving 

object detection as it proved that it is a fast and effective approach in many real-world 

challenging situations such as dynamic backgrounds. On the other hand, in benchmark 

evaluation ViBe proved that it is robust to artefacts stemming from irregular motion (Camera 

jitter) and background motion compared to the other state-of-the-art algorithms [62]. In 

addition, it is simple to implement. However, ViBe also suffers from some weaknesses in a 

few challenging scenarios which could result in incorrect classification of pixels as background 

or foreground. Consequently, this will lead to detection failure. An example of these situations 

is sudden illumination changes and shadow production in constant background changes [35]. 

Also, ViBe algorithm could easily generate ghost phenomenon during the completion of 

moving object detection [63], especially dealing with slow and stationary moving objects. In 

[64] Ghost is defined as “a set of connected points detected as in motion by means of 

background subtraction, but not corresponding to any real moving object”. Figure 2.3 illustrates 

an example of a ghost created by ViBe in [63] to demonstrate the segmentation result of the 

original ViBe algorithm.  

                                      
(a) Original Image                                                                                 (b) ViBe Segmentation Result 

Figure 2.3. The appearance of a ghost in ViBe background subtraction result  in [63]. 

  only one person exists in the scene, but ViBe detected two moving objects, the ghost area manually 

marked with a red rectangle in both images. 
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The main reason ghost has appeared in the red rectangle is that the foreground pixels absorbed 

to the background model by the blind update. In this example, the man (foreground object) 

remains stationary for some time and therefore many foreground pixels absorbed to the 

background model over time. When he then moves to another location, ViBe incorrectly detects 

the background as a foreground because the background model does not match the real 

background. This detected object which doesn’t exist in the red rectangle anymore is called 

ghost. Figure 2.3 (a) shows the colour frame that only one person exists in this frame and the 

red rectangle in this image indicates the moving object which ViBe has detected by error 

(ghost). Figure 2.3 (b) shows segmentation result achieved by ViBe which clearly contains 

ghost area which manually marked with the red rectangle. 

To remove these limitations, many researchers have introduced an improved type of 

ViBe algorithm. For instance, some methods have been introduced to solve this problem by 

using a scene model of larger size. However, the drawback of such a system is that it requires 

high memory usage or time. In [63], the authors upgraded ViBe algorithm to eliminate the 

effect of ghost area based on the concept that the histogram of those fragments with existent of 

ghost has the same distribution characteristics. However, when a real object is moving, the 

distribution of these characteristics continually change. The original ViBe algorithm has been 

modified in [65] to be able to detect slow-moving objects without appearing as a ghost. This 

method is called VIBeF and it creates the foreground model with an adaptive approach, which 

is proposed to support ViBe with a blind update. The authors concluded that the ViBeF method 

can adapt to complex scenarios including illumination changes and variations in background 

objects. 

The authors of [66] tested the ViBe algorithm under low lighting conditions (it was 

reduced approximately by half). They found ViBe algorithm failed to detect a moving object 

in this condition while GMM and edge-based [67] methods in the same conditions could still 

detect the moving object with a higher amount of false positives. After the lights were turned 

off, the accuracy of both ViBe and GMM became utterly unreliable. Although the method they 

proposed is capable of detecting the moving object in this condition, the output result is still 

weak and it requires further improvements. 

Detecting low light or the shadow of a moving object on the floor or wall is a 

challenging task and can significantly reduce object detection accuracy and can also increase 

the possibility of tracking failure. Therefore, a shadow is an important factor in benchmarks to 

measure the accuracy of object detection algorithms. In the last few years, many researchers 

have investigated shadow removal algorithms to improve the detection rate. An example of 
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these algorithms is gradient amendment, edge-based, histogram, etc..[68][69][70]. These 

approaches typically are faced with some complex circumstances such as an area with a low 

light condition, lack of data in the darkness or entirely a change of chromatic properties of the 

context. Although experimental results show some improvement in detecting shadow, the 

average rate of shadow detection is not able to fully meet the standards in real-world practical 

requirements. Major issues of current shadow detection approaches are detecting only a 

fraction of moving objects. This mainly applies to pixel-based methods such as texture-based 

and chromaticity-based methods [70]. An alternative way to improve the detection accuracy in 

colour camouflage, shadow and illumination changes is to use depth information as chromatic 

changes don't affect depth data. Therefore, in the next section, the effectiveness of RGB-D 

camera and state-of-the-art algorithms using depth and colour will be investigated in detail. 

2.7 RGB-D Sensors  
 

The current background subtraction methods have achieved substantial success in many tasks. 

However, these methods only perform well under stable situations and could fail in some 

changes such as fast-moving objects in the cluttered background (e.g. moving curtains), a 

sudden illumination (etc. sunlight or change of light) and changes in background objects (e.g. 

moving a table from one side to another side). 

In the last decade, various object detection methods have been proposed to solve the 

problem in sudden illumination changes [26][71][72][73]. Generally, these methods have a 

training stage after each change and these trainings are usually computationally high cost. One 

of the main possible solution to reduce the impact of the illumination changes is to use physical 

information of the scene. For example, geometrical descriptions of the building can be added 

to the model to detect the shadows on the wall or the floor [74]. 

Depth sensors produce geometrical information of the scene’s area which observes by the 

sensor. This could help to resolve the mentioned problems. Depth sensors create depth frames 

and every pixel in the depth frame contains a depth value related to the approximate distance 

from the corresponding point in the real world to the device. Depth information of the scene 

can be obtained from stereo vision devices [75], camera networks [76], time-of-Flight (ToF) 

[77] and structured light [78]. At present, the creation of low-cost RGB-D sensors such as 

Microsoft Kinect which combine an RGB colour camera with a depth sensor has completely 

affected the computer vision projects and attracted many researchers to detect and recognise 

objects and behaviours such as motion [79], suicide [80], drone [3] and obstacle detection [81]. 
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These devices are able to produce well-calibrated RGB and depth frames and normally capture 

30 frames per second which is appropriate for motion detection algorithms. 

  RGB-D devices are using different technology, for instance, Microsoft Kinect version 

1 and Asus Xtion Pro Live are using structured light to produce depth frames. However, in the 

new version of Kinect, ToF sensor has been used to capture the depth frame [82]. Figure 2.4 

illustrates the details of Kinect version 1 described in [83].  

 
Figure 2.4. Detail of Microsoft Kinect version one presented in [83]. 

 

Many researchers in recent years have implemented these devices in their system which can 

capture colour and depth frames at the same time at 30 frames per second. Depth data as part 

of these devices are very attractive and suitable for systems based on detecting a moving object. 

In the last decade, many researchers have proposed different systems in video 

surveillance to segment background of the scene from the foreground by using depth data and 

colour information [7][45][84][85][86][87][88][48]. Generally, depth data allow us to capture 

the shapes of objects which are not affected by shadows, interreflections, and illumination 

changes. Therefore, depth information could provide helpful information in such a 

phenomenon. On the other hand, depth sensors have their own limitations. Consequently, the 

results from background subtraction methods built on only depth data are often invalid due to 

the limitations of depth data [89][90]. Depth data is generally noisy and have restrictions for 

some surfaces which in the literature mainly is known as “holes” [91] or “Absent Depth 

Observations (ADO)” [7]. These limitations are mainly based on some physical phenomena 

such as depth shadows, the production of depth camouflage, absorption by black objects, absent 

observations, lower sensitivity at longer distances. Figure 2.5 demonstrates the amount of noise 

that could occur in a single depth frame and any black pixel in this image showing holes (ADO). 
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For example, the black speaker absorbed the signals because of its colour and therefore it is 

defined as ADO or in the cavity, some depth pixels are not available due to the physical 

appearance of the scene. Meanwhile, the size of depth frame is usually smaller than the colour 

frame. The black pixels on the edge of the depth frame are part of the outer boundary. 

Additionally, some pixels reached the maximum distance of the sensor or the IR signals are 

not back to the sensor due to the reflection of the surface. Consequently, the sensor is not able 

to show any value for those pixels. For these limitations, it has been assumed that it is useful 

to have both colour and depth measurements to cover each other’s weaknesses in different 

challenging situations. 

 

 

 

                                   (a)                                                                               (b) 
Figure 2.5. the amount of noise that could occur in a single depth frame. 

(a) Black points in the image show holes (ADO) and other colour coded shows the distance in depth 

frame, (b) Colour image. 

 

2.8 RGB-D Methods  
 

In the rest of this section, a brief description of the reviewed algorithms will be presented in 

subject order. The review will mainly concentrate on RGB-D background subtraction methods 

and will not be dealing with researches in other high-level systems (e.g., motion recognition, 

object recognition, human tracking or etc). 

Many researchers in recent years have tried to improve the accuracy of background 

subtraction results by a combination of colour and depth information captured by RGB-D 

sensors. These methods are mainly divided into two different approaches. In the first type, two 

independent segmentations are carried out. One on the colour image and the other one on the 
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depth data and the two results will be merged. Those methods which used this approach mainly 

extend the well-known RGB moving object detection methods which are originally designed 

for only colour frames. The second approach fuses the RGB-D data (colour and depth) before 

undertaking a joint segmentation [86].  

Gordon et al. in [45] proposed a method which is an adaptation of the MoG algorithm 

to depth and colour information captured with a stereo camera. This method is known as 

MOGRGB−D which is a mixture of four-dimensional Gaussian distributions modelled for every 

background pixel. This consists of three channels which belong to the colour information (the 

YUV colour space) and the fourth channel for the depth data. The same update method of the 

original MoG is applied to update distribution parameters. Also, depth and colour 

independently are considered in this method. The system relies on depth-based decisions, when 

depth data is accurate, decreasing the colour camouflage misclassification. On the other hand, 

once the depth matching is not accurate, the colour-based decision has difficulties in dealing 

with some challenges such as illumination changes or shadows. 

MOG is also adopted in the method proposed by Stormer et al. [47], where depth data 

is obtained by a ToF camera with the combination of the infrared and the range data channels 

to detect foreground objects. Two separate background models are constructed, and every pixel 

is identified as foreground when both models agree with this condition. Additionally, near or 

overlapping foreground objects are also divided by a depth gradient-based method. The author 

suggests that a combination of this method with a tracking system could increase the 

robustness.  

Some other techniques are also introduced based on a Mixture of Gaussians and a 

combination of RGB and depth data. For example, a 4D version of MoG (MOG4D) [46] is 

introduced. However, this method also suffers from production of ghost and could not solve 

the problem of moving object detection. 

Some other researches have investigated other types of background subtraction 

methods in RGB-D systems. For example, the author of [54] studied the codebook method in 

RGB-D system called Depth-Extended Codebook (DECB). This method was also not 

successful due to the production of the ghost. Also, a new background subtraction method 

known as BGSNet-D is introduced in [92]. This method is based on convolutional neural 

networks (CNN) and only use depth data. It designed mainly to deal with scenarios where the 

color frame is unavailable such as poor lighting conditions or darkness. In order to be effective 

in all scenarios, it needs to combine with existing RGB background subtraction methods. 

However, the outcome of these combinations is unclear. 
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On the other hand, in the recent years, various background subtraction algorithms based 

on multiscale convolutional such as MFCN [34] or using classifier such as [93] are proposed 

where these methods have shown great accuracy but are not capable of being implemented in 

a live application which reduces the applicability of these methods. 

Maddalena and Petrosino introduced a new segmentation method based on RGB-D 

called RGBD-SOBS [53] and extensive experimental results on this method have been 

accomplished in [94]. Two different background models are built for colour and depth data. It 

uses a self-organizing neural background model which was implemented earlier for RGB 

sequences in [95]. The final detection mask will be accomplished by combining the results of 

colour and depth segmentation masks. The authors believed RGBD-SOBS could improve the 

results and achieve high accuracy compared to only using colour frames in scenarios which 

colour camouflage occur and also other colour and depth background challenges such as 

bootstrapping, out of sensor range data and intermittent motion. However, this method requires 

further work to handle depth camouflage scenarios. Bootstrapping sequences are defined as 

those sequences that foreground objects exist in all frames from the beginning [12]. 

Similar to colour methods, many researchers start investigating non-parametric 

approaches in RGB-D systems. For example, the authors of [51], introduced a new ViBe 

strategy based on using ToF (Time-of-Flight) sensor and colour frame. Individually for each 

sensor, a model is built and foreground result from each model combines with logical 

operations. Segmentation results showed that the colour and depth data could improve each 

other’s limitations. For example, depth can help in the areas which colour masks mainly fail. 

This could be illumination changes, shadow, or when the foreground has a similar colour to 

the backgrounds. Instead, the colour segmentation result can produce more valid background 

mask when the foreground is very close to the scene or the depth frame is too noisy. However, 

a combination of colour and depth information has a few downsides which usually cause 

background pixels to be incorrectly identified as foreground. An example of these problems is 

infrared shadows created by the sensor. Resolving these issues was the main aim of the authors 

in [96]. They have introduced a method to effectively improve the ViBE algorithm using both 

depth data and colour frames. Despite more precise results, they complained about the 

challenging alignment between the PMD (Photonic Mixer Device) camera and RGB camera in 

this system. 

ViBe also extended in [97] to introduce a background subtraction algorithm based on 

RGB-D information. At the initialisation stage, two background models are created 

individually for colour and depth data. Then, for foreground detection, a two-step procedure 
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strategy of adaptive multi-cue combination has been introduced to accomplish this task. Also, 

weighted fusion applied to make the coarse outcome in the first step and apply adaptive 

refinement with spatiotemporal consistency in the second step to receive the final result. 

 In [52], a new method proposed to deal with challenging scenarios such as depth camouflage 

and colour camouflage known as a simple combination of appearance and depth information 

(SCAD). This has been implemented by adding the two likelihoods of the background using 

background subtraction based on the appearance and depth information. Then, optimisation-

based function on the two likelihoods of the background using graph cuts was applied to get 

the segmentation mask. To improve the detection of ghost phenomenal and shadows, the 

authors of [98] proposed a new RGB-D background subtraction method based on ViBe 

algorithm which combines the colour and depth information to segment foreground mask. First, 

a depth model and a background model are created. A new update strategy of these models has 

been introduced to efficiently eliminate ghost phenomenal by the help of depth data which can 

obtain the distance of any object in front of the sensor. However, the accuracy of the method 

in other challenging scenarios is unclear. 

In [48], Camplani and Salgado introduced a per-pixel background modelling approach 

based on colour and depth data. The background model is built on a mixture of Gaussian 

distributions. This method merges different statistical classifiers which enable the system to 

improve the accuracy of the detected foreground mask. The mixture of the two classifiers is 

joint together by using a weighted average from the result to consider the characteristics of 

colour and depth information for each pixel. We will refer to this method as CLW in the rest of 

this thesis. The last stage of their segmentation is assembled by using the edges of colour and 

depth frames and also the previous foreground mask. Canny edge detection algorithm [99] 

added to the method to find the edges in colour and depth data. The colour classifier has a 

higher influence on the segmentation of those pixels belonging to the object boundaries as 

depth sensors are not reliable around object boundaries. This will help the system to decrease 

the effect of noise in pixels around object boundaries in depth frames. Alternatively, the depth-

based classifier has more effect in low gradient pixels on the final segmentation. The authors 

stated using depth data allows solid foreground detection and decreases the amount of errors, 

especially in illumination changes and shadow scenarios. These authors in [100] presented 

another method based on the combination of several region-based classifiers. They found that 

the accuracy of this method is not in standard level in some cases such as a very fast-moving 

object as it is using the previous segmentation result to find the areas where the foreground can 

exist. 
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Generic Scene Modelling (GSM) is another nonparametric approach based on colour 

and depth data introduced in [7]. For an individual pixel of the scene, background model 

erected by Kernel Density Estimation (KDE) process and a Gaussian Kernel. Unlike the model 

in GMM, KDE doesn’t require estimating the mixture parameters. This allows estimating the 

density function without any guesses or assumptions for density model. Accordingly, this 

model is only based on recent information observed from the scene. One-dimension model 

built for a depth data and a three-dimensional kernel for colour information and two other 

models for normalised chromaticity. In this model, the oldest sample is discarded, and a new 

sample is added to the background model. This update mechanism is called first-in-first-out. 

In this section, we have studied the advantages of using a depth camera to produce the 

physical information of the scene without the effect of illumination changes. However, depth 

data also have some limitations such as depth camouflage and absent of depth value in some 

surfaces or distances. Therefore, it has been assumed that the combination of RGB and depth 

camera is necessary to cover each other weaknesses. Most of the current RGB-D methods have 

extended the well-known RGB moving object detection methods which are originally designed 

for only colour frames by producing one result on the colour image and the other one on the 

depth data and the two results are merged by a logical operation. In the next section, challenging 

scenarios which background detection algorithms typically have difficulties to fully detect the 

foreground objects will be investigated. 

2.9 Challenging scenarios in RGB-D  
 

Most of background subtraction algorithms are able to accurately detect a moving object in a 

steady situation where the position of the camera is fixed, the background is static and 

illumination is constant. However, in real-world, we may face some challenging situations 

which could significantly affect the performance of motion detection algorithms. Thierry 

Bouwmans [35] identified 13 challenging situations in the field of video surveillance which 

are the following: 

 

• Noisy image: Occurs when the quality of frames are low. This could be due to images 

acquired by a webcam or low-quality cameras. 

 

• Camera jitter: The wind or other factors could cause the camera to move. Consequently, 

it can cause movement in the sequences. Due to the motion, foreground mask could contain 

false detections. 
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• Camera automatic adjustments: Nowadays, the majority of digital cameras 

automatically adjust the colour levels of the frames in the sequence. An example of these 

technologies is automatic white balance, brightness control, automatic gain control, 

autofocus. 

 

• Illumination changes: Sudden change in the light or sometimes a gradual change such as 

sunrise and sunset. 

 

• Bootstrapping: The moving object exists in the background from the beginning including 

the training frames. Therefore, it is challenging to compute a representative background. 

 

• Camouflage: The pixels of the foreground have similar pixel values compared to the 

background. Therefore, it is challenging for algorithms to detect foreground pixels. 

 

• Foreground aperture: The foreground has uniform coloured regions and changes may not 

be identified in these regions. Consequently, fraction of the foreground could be detected 

by motion detection methods. 

 

• Moved background objects: The position of the objects in the background could be 

moved. However, this movement should not be considered as part of the foreground.  

 

• Inserted background objects: An object can be inserted in the scene which is part of the 

background region.  

 

• Dynamic backgrounds: Some background objects are vacillating in the scene and should 

not be considered as part of the foreground. 

 

• Beginning moving object: The primary movement of the object in the background may 

cause the motion detection algorithm to detect both the real object and the previous location 

of the object which is known as “ghost” in the literature. 

 

• Sleeping foreground object: The moving object could become stationary for some period 

of time which is challenging for motion detection algorithms to distinguish it from the 

background. 

 

• Shadows: Shadows could be identified as part of the foreground as it can completely 

change the pixel values. Extensive research has been carried out to detect the shadow from 

the foreground [68][69][70].  

 

In addition to the mentioned challenges, recently a few challenging scenarios have been 

identified for the depth camera. According to the authors of [38], these challenges are as follow: 

 

• Depth Camouflage: The moving object in depth is very close to the background. 

Consequently, the sensor returns the same values for background and foreground pixels 

which will be challenging to produce a foreground mask based on only depth data. 
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• Out of Sensor Range: Objects in the scene are too close or too far from the sensor. 

Consequently, the sensor cannot measure depth values as it is more or less than the 

maximum and minimum specifications of the sensor. 

 

•  Depth Shadows: Alike the colour, depth shadows are produced by a moving object which 

blocks the IR light emitted by the device from going to the background. 

 

•  Specular Materials: Specular objects exist in the scene which reflected back the IR rays 

from incoming direction to a single outgoing direction. 

 

Testing the object detection algorithms under these challenging scenarios is the best way to 

measure the consistency and real accuracy of these methods. Some methods are able to handle 

some of these scenarios very well and totally fail in other situations. Therefore, in this thesis, 

we are going to measure the accuracy of the proposed methods and other state-of-the-art 

algorithms under a selection of these challenging scenarios. 

Figure 2.6 illustrates an example of depth data problems highlighted in [38]. In (a), the 

hand of the person is very close to the cabinet and this causes depth camouflage to occur. The 

depth value of pixels in the cabinet is almost the same as the pixels on the hand. Therefore, it 

is difficult with only a depth frame to detect the hand. In (b), a depth shadow occurred behind 

the box as the sensor couldn’t measure the depth values in that area. In (c), the sensor cannot 

measure the distance of the window and therefore created ADO in that area. In (d), some region 

in the room has a longer length than the maximum range of the sensor. Thus, the region remains 

as ADO. An ideal moving object detection would be a method which is able to fully detect the 

foreground in all these scenarios in a live application. However, such a method doesn’t exist 

yet. Typically, most of the current methods perform well only in some of these challenging 

scenarios and have difficulties in detecting the full foreground silhouette in other scenarios. 

Thus, it is crucial to discover the weakness of current methods which have been discussed in 

this chapter and also will be shown in the next chapters in the evaluation and results section. 

Then we are going to propose new techniques in the next chapters to improve the weakness of 

current methods. The proposed method should increase the accuracy in these challenging 

scenarios. In order to validate this, publicly available datasets containing these challenging 

scenarios will be used for comparison and evaluation. 
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              (a)                                     (b)                           (c)                              (d) 

Figure 2.6. Related depth data problems (highlighted by red ellipses) identified in [38]. 

 (a) Depth camouflage. (b) Depth shadows. (c) Specular materials. (d) Out of sensor range. 

 

2.10 Conclusion and discussion 
 

In this chapter, different algorithms to detect motion and changes in the scene have been 

explored. Also, the related and similar work to our proposed methods in this thesis is reviewed 

based on nonchronological order. Among these techniques, background subtraction is the most 

common type of motion detection. This approach generally requires a model to store observed 

data. Different variety of background subtraction methods are introduced to implement the 

model and segmentation procedure. One of the most popular background subtraction methods 

is nonparametric approaches such as ViBe and PBAS. Many previously stated studies in this 

chapter have shown growing interests in these methods for the advantages and accuracy. These 

methods are robust and can achieve high accuracy in most scenarios apart from a few 

conditions such as poor lighting, sudden illumination changes and production of ghost 

phenomenon. All these conditions could be addressed by adding depth information of the scene 

which potentially can be captured by depth sensors. Depth data could help these methods to 

significantly improve mentioned weakness and potentially increase the overall accuracy of the 

moving object detection. However, depth data also suffers from some weaknesses. The 

combination of colour and depth data could compensate for each other’s weakness. This 

hypothesis motivated us to use a depth sensor as well as a colour camera in our research in 

order to improve accuracy.  

We have discovered in the literature review that the current state-of-the-art RGB-D 

algorithms have some weaknesses and they are still unable to detect moving objects in all 

challenging scenarios. Therefore, further work is required in this area. As colour cameras are 
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significantly affected by illuminations and nonparametric methods have shown great accuracy, 

in the next chapter, we are going to investigate nonparametric methods alongside using RGB-

D sensors. In fact, we are going to address the following research question, how pixel-wise 

nonparametric RGB-D approach can improve the accuracy of moving object detection? 

To address this question, we need a method based on colour and depth data to cover 

each other weaknesses and consequently be able to tackle this problem in more challenging 

scenarios than current methods. Therefore, in the next section, a new nonparametric method 

will be introduced based on colour and depth frames to detect the moving objects in more 

challenging scenarios including a fast-moving object such as drones, illumination changes, 

colour camouflage, as well as improving the weaknesses of previous methods such as ghost 

phenomenon. This method is original, and it is the first contribution to this thesis (described in 

section 1.2). Results show this method outperform other state of the art algorithms in these 

challenging scenarios. 

Then in chapter 4, we are going to expand the proposed method to increase the accuracy 

in some other challenging scenarios which known as Stationary Foreground Objects (SFOs), 

bootstrapping and depth Camouflage in the literature. In bootstrapping, normally the moving 

object exists in the scene from the first frame (during the initialisation) therefore, the 

foreground will exist in the background model and only a fraction of the moving object will be 

detected by the algorithm. In SFOs scenarios, the stationary or slow-moving object slowly 

absorbs to the model by the update procedure and gradually it will disappear from the detection 

mask. We are going to tackle these issues by proposing an adaptive blind update policy, 

detection of bootstrapping and changes in the background, and shadow detection method. In 

particular, we are going to investigate the following research question, what is the effect of 

using adaptive blind update policy on pixel-wise moving object detection? Addressing this 

question helps to resolve the weakness of the original method in scenarios where stationary 

and slow-moving objects exist and assists the method to deal with a variety of objects such as 

stationary, slow and fast-moving objects. The adaptive blind update policy tracks the moving 

object and adjusts the frequency of the blind update based on the speed of moving object. In 

addition, if the system detects any moving object during initialisation, then bootstrapping has 

occurred, and the system needs to find the whole moving objects. Also, illumination changes 

and shadow detection method has been proposed for this method in order to improve detection 

accuracy in case of shadow, illumination changes and depth camouflage. To achieve this, CIE 

L*a*b* colour coordinate for the colour frames has been used. Unlike the RGB space, L*a*b* 

colour is intended to approximate human vision where the L element closely indicates the 
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human perception of lightness. Thus, it can be used to check the colour value of pixels (a and 

b) without interfering of illumination. This method will be extensively evaluated in SBM-

RGBD datasets which has 33 sequences under seven different challenging categories. The main 

disadvantage of the proposed method is that the system has a higher computational cost 

compared to the original method. Therefore, in chapter 5, instead of using a simple update 

mechanism, we have implemented a more sophisticated method using EC optimisation 

algorithms such as Hill Climbing and Genetic Algorithms to search and find the optimal 

background model. This improved the detection accuracy and efficiency of our method. In 

particular, in chapter 5 we are going to investigate the following research question, what is the 

effect of using heuristic searches in pixel-wise moving object detection? 

The results and evaluation indicate improvement in the accuracy and efficiency over the 

original method. 

Overall, in this chapter, we have discovered that current methods are unable to detect 

moving objects in all challenging scenarios and therefore the aim of this thesis and these three 

research questions will be improving the accuracy of moving object detection in more 

challenging scenarios in live applications. 
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Chapter 3                       

Nonparametric background 

modelling and segmentation to detect 

Micro Air Vehicles (MAV) using 

RGB-D Sensor 
 

3.1 Introduction 
 

In the last decade, the Autonomous Unmanned Aerial Vehicles (UAVs) have seen rapid 

progress by development in hardware and miniaturisation of microchips such as low-power 

micro radio devices, economical airframes, microprocessors, motors, and high-power density 

batteries. Small and micro UAVs are now able to perform different tasks in an indoor and 

outdoor environments such as item delivery, traffic monitoring, search and rescue, remote 

sensing, mapping [101], gesture-based control [102] and etc. Initially, UAVs were developed 

for military purposes as it is able to do surveillance and penetration into enemy zones without 

any risk of losing men in case of attacks [103]. In addition, Micro UAVs are relatively fast, 

lightweight and planned to fly at low altitude.  

 Currently, many researchers in the field of computer science and robotics are 

investigating UAVs to improve the functionality and enable these vehicles for more advanced 

tasks. Among these vehicles, quadcopter or also called a quadrotor is one kind of UAV that is 

often used as a research object. This kind of UAV has four motors and propellers which allows 

having a simple control mechanism, high manoeuvrability, take off, hover and land in a narrow 

area [104]. Figure 3.1 illustrates an example of two types of popular quadcopter (Parrot 

AR.Drone and Crazyflie). 

One of the main basic requirements of these vehicles is localisation and tracking which 

is still challenging in GPS-denied environments. These vehicles are usually controlled and 

evaluated by external motion tracking system such as the VICON motion tracking system 

[105][106][17] or onboard visual sensors [107][108][109][110]. 

Recently, using external sensors in GPS denied environments has attracted many 

researchers interest [17][16]. In these methods, localisation of detected UAV is crucial for 
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collision-free path planning. While different techniques have been proposed for static objects, 

localisation and detecting of dynamic objects such as UAVs are still challenging and hard to 

implement due to the limitations of sensors. 

 

 
  Figure 3.1.  Two types of different quadcopter. 

 (a) Parrot AR.Drone, (b) Micro quadcopter(Crazyflie). 

 

A new evaluation system has been introduced in [16] where they have used RGB-D Kinect 

sensor for 3D measurements instead of Vicon motion capture system which commonly used 

for verifying algorithm of UAV to control and self-localisation in the indoor area. For 

evaluation purpose, they have also applied a marker in order to recognise the object. Figure 3.2 

illustrates their proposed method which is based on three steps. First, the Gaussian Mixture 

Model (GMM) is used to subtract background and foreground in the colour frame in order to 

find the Region of Interest (ROI). In the second step, subtracted foreground from RGB 

coordinates converted to depth coordinates. In the last phase, labelling filter applied to identify 

a marker in the region of interest (obtain real 3D position). The feasibility of this approach has 

been validated in a real experiment of using two kinds of UAVs. The authors have proved that 

position tracking for the horizontal and vertical movement of a quadcopter is possible. 

However, the authors complained about some issues and limitation of the proposed method 

such as fluorescent lights, the accuracy of the position tracking and limit of the recognition 

range of quadcopter’s location at distances of 1 to 3 meters. 
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     Figure 3.2.  Proposed position tracking/marker recognition algorithm in [16].  

 

In this chapter, the goal is to propose a new method to address some of these limitations. In 

particular, we are going to investigate the accuracy of the proposed method in micro air vehicles 

(MAVs) detection and position tracking in challenging scenarios such as illumination changes 

in high speed moving MAVs. 

In order to achieve this goal, we have introduced a new object detection method based 

on motion detection algorithm using colour and depth data to produce the segmentation result. 

Our proposed method stores some colour and depth frame as a model. It then compares each 

pixel from the new frames with the models in the same pixel location to identify the pixel as 

part of the background or foreground. When the models have been created, they regularly need 

an update to adapt to the changes in the scene. 

To perform these updates, once the pixel is found as part of the background, the system 

updates the model by finding the closest pixel to the camera and substitute it with the current 

pixel if the new pixel is in the same or further location. To the best of the author’s knowledge, 

this segmentation method has never been tested before. The approach to update the background 

model discussed in this chapter is different from other classical methods which are updating 

the samples in the model with the new frames based on different criteria. For examples using 

randomly substitutions, mean or first in first out. 

In addition to the regular update, a blind update is also added to the model, in order for 

the system to adapt to the sudden changes in the background by updating the background as 

well as the foreground pixels. After a sufficient number of sequences, for each pixel, the 

background model swaps one of the samples in the model randomly with a pixel from the 

current frame in the same location regardless of being foreground or background. Then, the 

proposed method is compared to other state-of-the-art methods. Results have shown that this 

method is more accurate in object boundaries and it can tolerate more illumination changes. 

Our proposed method in this chapter is published in [3] and some contents of this chapter are 

from this paper. In the remaining part of this chapter, in section 3.2, a detail description of the 

proposed background subtraction method will be discussed. In section 3.3, the proposed 
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method will be compared with the other state-of-the-art algorithms. In section 3.4, experimental 

results in the live application have been described in detail and the summary of this chapter is 

in section 3.5. 

 

3.2 Proposed background subtraction  
 

Our proposed method follows a nonparametric background modelling pattern, similar to 

previous works such as  ViBe [8] and PBAS [14]. Consequently, the background model 

obtained by a history of previously observed pixel values and the foreground segmentation 

depends on a threshold amount. 

Using nonparametric methods such as ViBe algorithm with both colour and depth data 

is not totally new since this approach has been already applied for moving object detection 

applications [51][96][86]. However, in [51] and [96] their vision system is made up with an 

RGB camera and separate TOF (Time of flight) sensor. These systems need experimental 

calibration and align both frames which is computationally heavy and difficult. Instead, some 

authors like [86] used a more straightforward way of having only a standard stereo camera. 

Recently with the rise of low-cost RGB-D camera, researchers have started to use these 

sensors as it can produce better calibrated RGB and depth frames. These devices can capture 

up to 30 frames per second which would be beneficial for motion detection algorithms. These 

great benefits encourage us to start using RGB-D camera for the proposed background 

subtraction technique. Our method is original and it is using new segmentation rules consisting 

of different steps to be able to successfully apply in live applications and to cope with the 

changes in the background. This is the first contribution to this thesis. Figure 3.3 illustrates the 

flow chart diagram of the proposed algorithm. 

The system stores the first N number of frames in “system initialisation” step to create 

colour and depth background models. “ADO Removal” will apply to individual depth frames 

before going to the model to eliminate all the unknown values in the depth frames. Once the 

initialisation has been completed (after N frames), the “Background models” will be ready and 

the system moves to the main loop. Each pixel of the new frame will be compared with the 

models to identify as foreground or background, this step is called “ Bg/Fg segmentation”. 

Those pixels identified as a background will be guided to receive an update in “ 

background update” stage. Additionally, after α number of frames, the system will use a blind 

update to randomly swap foreground as well as the background pixels with the models in 
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“Blind update”. In the remainder of this section, the key steps of the below diagram (Figure 

3.3) are discussed in more detail. 

 

 

 

Figure 3.3. Flow chart of the proposed object detection method.  

 

3.2.1 System initialisation 
 

Background subtraction methods usually need a scene model to enable the system to compare 

and segment the regions of the new frames as a background or foreground. Meanwhile, every 

model requires an initialisation process which has enhanced the importance of numerous 

popular methods described in publications, such as [29] which need various frames to initialise 

their model. These approaches can gather various amount of data which enable us to estimate 

the temporal distribution of the background pixels. However, these methods require a specific 

large number of frames to initialise the method before starting the segmentation. Therefore, 

these methods have difficulties in detecting the foreground in videos with a small number of 

frames [7]. On the other hand, other methods such as [8] need plenty of time to complete the 

stored model. 

The possible answer to these issues could be introducing an update model process 

which adapts the models to the different lighting conditions. However, sudden illumination 

could completely change the chromatic properties of the context and even using such a 

dedicated update process could fail. 

The authors of [8] introduced an appropriate technique for this issue which initialises 

the background model from a single frame and gradually building more sample models. Even 

this technique is not able to cope with sudden illumination changes such as the shadow of a 



 

35 
 

moving object. A more convenient solution to these issues is to use depth images which helps 

us to understand a change in the physical position of each pixel in the real world. Therefore, in 

order for the system to be able to handle the sudden illumination changes, depth data added to 

the RGB in the proposed method.  

Depth information is supposed to represent a steady long-term description of the scene. 

Therefore, theoretically storing one model of the scene may be sufficient for the background 

model. However, we experienced that cheap sensors like Microsoft Kinect have a considerable 

amount of noise. To find the most accurate depth measure, we store the same number of depth 

frames as colour frames. This allows the system to minimise the effect of noise by taking more 

depth samples. On the other hand, this amount of frames can be handled by the current 

hardware in a live application. 

Unlike other approaches which need plenty of time and frame for initialisation, our 

method required to finish initialisation very quickly and start tracking the moving object as 

soon as possible. Therefore, the system blindly stores the first N number of colour and depth 

images as a model and then gradually modify the model during the update stages. This will 

allow us to start tracking our object rapidly. Different number of N from 10 to 40 has been 

tested for this method during the research. We recommend N= 20 samples as experimentally 

we have learned this is a reasonable amount of sample for this method. A lower amount of N 

will reduce the accuracy of the proposed method and a larger amount of N with the current 

hardware may cause a delay in live applications. 

 

 

3.2.2 ADO Removal 
 

 

As mentioned before, depth data could be very noisy and contain many ADO pixels. In order 

to reduce these noises, we need a hole filling strategy. The main goal of this strategy is to filter 

the unknown depth value and refining object boundaries. Each filtered frame is then used as a 

sample to build the depth model which help to prevent with falling of the temporal variations 

of the depth distances. This will help to have more accurate depth pixel values in the model to 

identify the foreground and background. 

Recently many researchers have been investigating inpainting depth frames to remove 

holes from the depth frames [111][112]. However, these methods are very expensive in terms 

of computation. One of the most common ways to remove the ADO pixels is to fill them by 

the neighbouring depth data [112]. We have used this idea and made an assumption that 
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neighbouring depth pixels are most likely to have a similar value. We have used this 

assumption to remove the ADO pixels by replacing with the randomly nearest pixel values.  

This fast and straightforward method will significantly help to reduce the number of 

errors. However, this method could also lead to more error in rare scenarios. For example, an 

open area such as a corridor with a length of more than the maximum sensor range. However, 

these wrong values will be gradually corrected with more accurate values during the update 

process. Figure 3.4 illustrates an example of a depth sample in a model before (a) and after 

ADO removal (b). The black pixels on top of the desk and under the chair show the ADO pixels 

in (a). These pixels then removed and replaced by neighbouring pixels in (b).  

 

 

                         (a)                                                                           (b) 
Figure 3.4. An example of depth image.  

 Black pixels show holes in depth frame, (a) depth frame before ADO removal, (b) post initialisation 

after ADO removal. 

 

3.2.3 Bg/Fg Segmentation  
 

Traditionally background subtraction techniques mainly rely on Probability Density Function 

(PDF) or statistical parameters such as variance or the mean. An alternative way is to consider 

statistical significance to build a model with previously observed real colour and depth data. 

This assumption is based on common sense that if the same pixel value has been observed 

many times in the same location, this pixel has a high probability of being background, 

compared to the pixel values that never come across.  

As part of our background subtraction, we want to classify each pixel as foreground or 

background. In order to do this, we are fusing the results from colour and depth models to 

produce the final decision. Similar to the authors of [8], we create each background pixel with 

a set of samples instead of one background model. Accordingly, we have not used an estimation 
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of the PDF for the background classification. Instead in each location, the current value of the 

colour pixel is compared to the collection of samples (colour model) to find out if the pixel 

value is close to some of the sample values instead of most of all samples in the same location. 

In a similar way, depth pixels will be compared to the depth model to check if the pixel has 

been in the same range or is closer to the camera. 

In most cases, depth and RGB have the same individual segmentation outcome. In other 

words, both separately agree whether the pixel is part of the background or not. However, in 

some challenging scenarios, they are strongly against each other. An example of these 

situations could be colour camouflage such as foreground having the same colour of the 

background or depth camouflage such as moving the hand on the wall. 

To make the final decision, we need to rely on the colour or depth model, one more 

than the other. Recently, with the production of new sensors such as time of flight which has 

been used in Kinect V2 sensor depth accuracy has been improved significantly [113][114]. On 

the other hand, illumination does not affect depth data. Therefore, we have relied more on the 

depth outcome to produce the result. Alternatively, if depth pixel is not available in any 

location, we will only rely on the decision of the colour model on that pixel location. Figure 

3.6 illustrates the proposed classification in the flow chart diagram. 

All non-ADO pixels from the new frame will be compared with the depth model first 

and if we could find enough close samples in the depth model, that pixel will be classified as 

background. This step called “Few similarities with depth model”. The main reason we have 

added this condition is to detect shadows and illumination changes as part of the background. 

An example of this illustrated in figure 3.5. The shadow on the wall remarkably has different 

chromatic colour compared to the background. However, this wouldn’t affect the depth data 

and the system could correctly identify the background without the effect of illumination (based 

on only depth data). 

 

 

        (a)                                                    (b)                                                  (c) 
Figure 3.5.  An example of shadow.  

(a) Colour Image. (b) Original ViBe [8]. (c)Proposed method 
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 If the system fails to find some similarity in the depth model, it would compare the new pixel 

with the depth model again. However, the system considers some tolerance this time. If it fails 

again to find some similarity with a depth model, that pixel will be classified as foreground 

regardless of the colour outcome. This step called “Few similarities with depth model 

+tolerance”. It will allow the system to detect mainly the colour camouflage as the colour 

model is not able to detect these changes. All other pixels will be decided by the colour model 

in the same way. This means, the colour pixel will be compared with the model and if it could 

find some similarity in the colour model, it will be classified as a background otherwise, it will 

be classified as foreground. 

Formally, let us denote a 3d point as an X=(x,y,z) ∈ ℝ3, RGB-D camera produces a 

colour and depth images. We denote v(X) the value in a given colour and d(X) the value in the 

depth taken by the pixel located at X in the new image frame and with an index of i in a 

background sample value of 𝑣𝑖 and 𝑑𝑖. Each background pixel located at X is modelled by a 

collection of N background colour and depth sample values taken before as:  

 

M(X)RGB= {v1, v2, v3, …, vn}                                                                                                                                  (3.1) 

 
M(X)𝐷= {d1, 𝑑2, 𝑑3, …, 𝑑𝑛}                                                                                       

                                                     

                                                  (3.2) 

  

In this thesis, we refer to 𝑀(𝑋)RGB as a background colour model and 𝑀(𝑋)𝐷 as a background 

depth model. In order to classify each pixel of the new frame as a background, we compare 

each depth pixel with the depth model 𝑀(𝑋)𝐷 at location X. If the difference is greater or equal 

than 𝑇ℎ𝐷 (acceptable depth threshold which is close to 0), we count the pixel is similar to that 

sample. Every pixel from the new frame will be compared with all samples from the model in 

the same location. If the new pixel could find at least #Min (we recommend the value as N/4) 

similar pixels will be assigned as part of the background. The #Min should depend on the 

number of samples (N) and therefore, a higher amount of N requires larger #Min. If we could 

not find at least #Min similar sample out of N number of samples at location X, the system will 

increase the 𝑇ℎ𝐷 and do the last process again. This time if the system could not find #Min 

similar sample, it will be count as a foreground. This formally defines as: 

 

#𝑀𝑖𝑛−𝐷𝑒𝑝𝑡ℎ{ 𝑑(𝑋) + 𝑇ℎ𝐷 ≥ 𝑑𝑖}                                                                                     (3.3) 

 

Where 𝑑(𝑋) is the depth pixel value at location X. The pixel value will be identified as 

foreground if the number of cardinality denoted as #Min−depth reach to #Min . Any depth pixel 

in the position of X in the model belongs to this set (#Min−depth), if the difference of the new 
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pixel 𝑑(𝑋) and the ith sample in the depth model (𝑑𝑖) with considering some tolerance (𝑇ℎ𝐷) 

is greater than or equal to zero. 

All other pixels will be decided by comparing the colour value and the samples in the 

colour model 𝑀(𝑋)RGB. Where the colour pixel value is 𝑣(𝑥) and the threshold value is 𝑇ℎ𝑅𝐺𝐵. 

The pixel value will be identified as background if the number of cardinality denoted as 

#Min−Colour will reach to #Min . Any pixel in the X position in the model will be included in 

the #Min−Colour if the absolute value of deference in the new pixel value and the samples in the 

colour model are smaller than or equal to the given RGB threshold amount (𝑇ℎ𝑅𝐺𝐵). 

 

#𝑀𝑖𝑛−𝐶𝑜𝑙𝑜𝑢𝑟{|𝑣(𝑋) − 𝑣𝑖 | ≤ 𝑇ℎ𝑅𝐺𝐵 }                                       (3.4) 

 

Appendix A show full C-like pseudo-code for the main part of the proposed method. Default 

values for all the parameters of the algorithm are also given. 
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Figure 3.6. Flow chart of the proposed classification method.  
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3.2.4 Background Update 
 

In this section, we will explain how to continuously update the background model with the new 

frames over the time. The reason we have added this stage is that the system adapts to the 

changes in the background over the time. These changes could be illumination changes or 

moving an object in the background completely to a different position. 

When a pixel is classified as a background, the system will randomly swap the value of 

a new colour pixel with one of the samples in the colour model in the same location. However, 

in the depth model, we will check the distance of the new pixel (in the depth image) with the 

background model distances. In order to compare the distance, the system finds the smallest 

sample in the depth model and compares it with the value of the new depth frame in the same 

location. If it has the same distance or longer, we see it as a good sample and will swap it with 

the smallest previous samples, otherwise, it is a bad sample and it will not change the samples 

in the model. 

Figure 3.7 demonstrates an example of a good and bad sample pixel. We have defined 

the good and bad samples based on the fact that, if we assume point A and B are different 

samples of the background depth model in the same location, point A will be a bad sample as 

previously point B has been observed behind this point. This means, in a 3D space these two 

points have the same location of x and y with different d (dimension) and the point with the 

absolute smaller number is closer to the camera. Therefore, it cannot be part of the background. 

An exception of this rule could be the physical change in the background of the scene. For 

example, this could be moving forward a table in the background. This means some pixel 

values which belong to the model (it is part of the previous frames) doesn’t exist anymore. 

However, in this case, the system will be able to cope with the changes from time to time in 

the blind update stage. 

Formally, when pixel v(X) is identified as a background, the system will swap the v(X) 

with randomly one of the samples in the colour model 𝑀(𝑋)RGB. On the other side, the system 

finds the smallest distance value (𝑑smallest) in 𝑀(𝑋)𝐷 and compare it with d(X). If d(X) is 

bigger than 𝑑smallest then we can accept that as a good background pixel and replace it with 

𝑑smallest otherwise, it is not a good sample and we will not change our model. This is one of 

the most significant differences with the currently available methods which those usually 

modify the background samples according to old replace with the new one, mean or random 

number. This enables us to improve our model and update with the latest changes during the 
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time as well as keeping the valid samples in the models. The only disadvantage of this selection 

is that if we move the background forward such as moving a table in the middle of the room, 

the system will always identify this as a foreground and will not change the model. For this 

reason, we have added a blind update step into our algorithm which will allow the system to 

adapt to the changes in the background during the time. 

 

 

 

Figure 3.7. an example of a good and bad sample pixel .  

Point A and B are two points in the background depth model which they have identical X and Y with 

the different d. Point A is closer to the camera, therefore, it cannot be the background because 

another point (B) observed behind this point in this location. 

 

 

 

 

3.2.5 Blind Update 
In the classification step of our method, we update our background model by comparing the 

pixel of the new frame with the background model and replacing this with the new pixels if 

they are more valid. However, this will only allow us to replace those pixels which have already 

been identified as a background. Consequently, if we introduce a new object in the scene (as 
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part of the background) because it has a smaller distance from the camera compared to all 

previous pixels in the depth model and different colour to the colour model, it will never be 

recognised as a background. Therefore, it will never be part of the background samples. 

The term which referred in the literature as background history or background memory 

has always raised a question in subtraction techniques that which sample we can keep in the 

model and for how long we can use that. For instance, one of the classical approaches for 

updating the background model is that discard the old pixel model and replace with the new 

pixel after a period of time or number of a given frame (Usually after a couple of frames or 

seconds). These classical methods will update all the old pixels in the model where it is not 

always necessary to update the valid samples. 

On the other hand, updating the model only by those pixels which identified as a 

background or including foreground pixels is always raised in background subtraction 

algorithms. In the literature, it has been described as a blind and conservative update procedure. 

A conservative approach only updates the model by pixels which are identified as a background 

and it never uses the pixel which belongs to the foreground. Conservative approach could help 

the system to detect the moving objects sharply over the time in a steady situation. However, 

this approach which has been used in our background update stage (as illustrated in diagram 

3.3) only update the background pixels. This could cause a permanent misclassification, 

contribute to creating a ghost and failure in dynamic background scenarios. Most of the 

practical scenarios could reach to these situations.  

Despite all the effort made by the previous researches, developing a fast approach to 

eliminate the ghost in the dynamic background situations is still challenging for background 

detection techniques. For these reasons, as illustrated in the diagram in figure 3.3, we have 

added another background update phase for the colour and depth models which called “blind 

update”. 

A blind update will allow us to use any pixel for an update, whether it is classified as a 

background or foreground. The main downside of this method is poor detection of the slow-

moving objects which are becoming part of the background model during the time. Several 

solutions have been introduced to solve this issue such as using a background model of large 

size or first-in-first-out. However, these solutions have negative impacts, such as higher 

computational and memory usage or time limiting.   

Those pixels classified as part of the background in the scene, automatically will be used 

to update the background model. The method will swap the pixel from the new frame with the 

shortest in the depth model if these pixels have better values (longer distance compare to the 
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model). However, if our background will be dynamic, the system will permanently identify the 

background as part of the foreground. For each pixel, the system will swap the value of current 

depth (only if its non-ADO) and colour frame with the model randomly after every α number 

of frames (we recommend this value as 30). As most of the current RGB-D camera capture 30 

frames per second, the blind update will be applied every second. Updating the models blindly 

every second will allow the system to quickly adapt to the changes as well as tolerating slow-

moving objects. This method has the advantage of a memoryless update strategy, producing a 

fast and efficient update. Moreover, random sampling increases the time gaps and allows the 

adaptation of the background models that are classified as a foreground. 

 

3.3 Results 
 

In this section, the results achieved by the proposed method are compared with alternative 

background/foreground subtraction algorithms based on colour and depth data. We have 

evaluated the presented system in two different ways. First, we have evaluated the proposed 

moving object detection method with two datasets and then the entire system is tested via a live 

demonstration in an indoor environment. In the rest of this thesis, we refer to the proposed 

method in this chapter as Modelling Background and Nonparametric Segmentation method 

(MBNS). 

We have used two different indoor benchmark datasets. The first dataset contains 

sequences from two different types of MAVs. In the first sequence, we have evaluated the 

detection accuracy using an AR.Drone [11] and in the second sequences, we have used a 

Crazyflies [12], a smaller size quadcopter. Generally, small and fast-moving objects are 

challenging for moving object detection algorithms. Small moving objects are often filtered by 

algorithms as they are detected as noise. Fast-moving objects could register as a blurred area 

in the image captured by a low-cost camera. Also, synchronisation in RGB-D camera could 

fail in a fast-moving object. This means the position of moving object in the colour frame could 

be different in the depth frame. 

  To collect these two sequences, a Microsoft RGB-D Kinect V2 sensor has been used. 

The goal of this test is to measure the ability of the proposed method to detect a small and fast-

moving object such as the microdrones tested under different indoor challenging scenarios as 

detailed in table 3.1. We have also generated hand-labelled ground truth for these sequences to 

measure the accuracy of each method used in the comparisons. In particular, we have compared 
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the proposed method in this section with CLW [48], MOGRGB−D [45], GSMUF and GSMUB [7], 

PBAS [14] and Vibbin[51].  

It is worth mentioning that the original PBAS is using only colour frames and it is not 

optimised for RGB-D data. In this thesis, PBAS has been extended to use colour and depth 

(RGB-D) images in order to enable us to have the same input for all methods. This has been 

done similar to the [51] by fusing the result of colour and depth binary mask using a logical 

“OR” (non-exclusive) and the same parameters used as original PBAS. We refer to this method 

as PBAS𝑏𝑖𝑛. Further research can be conducted in the future to optimise the parameters for 

PBAS𝑏𝑖𝑛. 

We should state that all results for the proposed algorithm have been evaluated without 

using any post-filtering to compare the accuracy of the method. Clearly, the amount of noise 

may be reduced and the results will improve with post-filtering techniques such as 

morphological filtering. Therefore, using post-filtering is frequently adopted in some 

background subtraction methods [91].  

 
Table 3.1. Details of our dataset used for measuring the accuracy of the UAVs detection at 30fps. 

Sequence 

Name 

Number of 

Frames 

Frequency of 

frames used for 

ground truth 

Number of 

Ground truth 

Number of 

Frames where 

moving object is 

present 

Objective 

AR.Drone 350 Every 30 frames 12 220 Accuracy of 

UAV detection 

Crazyflie 275 Every 30 frames 10 230 Accuracy of 

small UAV 

detection 

 

 

For qualitative evaluation, a video is available on [115] to show the accuracy of the proposed 

method in some challenging scenarios such as a change in the background, removed an object 

from the background (intermittent motion), a change in the light and sunlight (illumination 

changes), micro UAV and appearance of shadow on the wall and floor. The following figures 

illustrate examples of this evaluation. The system automatically draws a rectangle around the 

foreground (drone) in these sequences. Figure 3.8 shows the proposed method could 

successfully detect the drone in a cluttered background. 
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Figure 3.8. Detection accuracy in a cluttered background. 

Red rectangle illustrates the detected foreground region. 

 

Figure 3.9 demonstrates the accuracy of the proposed method in a change of illumination (sharp 

sunlight) scenario. In this sequence, at first there is no sunlight and then suddenly sharp sunlight 

will shine on some parts of the room. Despite this interruption, the proposed method could 

fully detect the drone with high accuracy in this scenario.  

 

 

Figure 3.9. Detection accuracy in sharp illumination changes . 

Red rectangle illustrates the detected foreground region. 
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Figure 3.10 shows a large shadow on the wall and the papers on the floor. However, the system 

could successfully recognise the foreground (drone) from the shadow.  

 

Figure 3.10. Detection accuracy in the appearance of a shadow. 

Red rectangle illustrates the detected foreground region. 

 

Figure 3.11 demonstrates the accuracy of the proposed method when the light is switched off. 

In this scenario, the light is on at the beginning and then suddenly it will be switched off. The 

foreground is fully detected even though the colour frames are completely black. 

 

                                       (a)                                                              (b)  

Figure 3.11 . Detection accuracy when the light is switched off.  

Red rectangle illustrates the detected foreground region. (a) the detected region in the red rectangle, 

(b) depth data. 
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Additionally, we have tested the proposed method with the benchmark RGB-D dataset 

introduced in [48] to compare and rank the algorithms to ensure our proposed algorithm 

performs well among other currently available methods in different challenging scenarios. We 

have used the ground-truth provided with these datasets in order to measure the performances. 

This dataset has four different sequences and each sequence has been made to test the accuracy 

of the method in a specific challenging scenario. DCamSeq and ColCamSeq ground-truth has 

been produced to test the accuracy of individual method only in those sections in the images 

where every single problem is existing. This process guarantees that other challenging 

scenarios do not interrupt the algorithms segmentation. However, using these ground-truths for 

evaluation can produce inaccurate results. This is because some parts of the foreground ( human 

body) is shown as a background (black pixels) and this can influence the results. To prevent 

this, the ground-truth for DCamSeq2 and colorCam2 from SBM-RGBD dataset [116] has been 

used for DCamSeq and ColCamSeq evaluation. The ground-truths are the same as the original 

and the only difference is that the area outside of the problem is coloured grey. This means the 

grey area is not part of the evaluation. This will help to produce more accurate results. For CLW 

[48], MOGRGB−D [45] methods, the results are taken from [48] due to source codes and 

parameters are not publicly available.  

Generally, in the ground-truth, any moving object whether it is stationary for a short time such 

as humans, a car stopped at a traffic light, drone or any other moving object mark as white 

colour. However, small movements that continuously occur in the background classify as part 

of the background. For example, a wave on a water surface, tree branches or shakes of objects 

by wind (e.g. chandelier, curtains, light poles, flags, etc.). These background pixels are shown 

in black colour in the ground-truth. Also, the grey area demonstrates outside of the region of 

interest which is not either part of background or foreground. Table 3.2 shows the details of 

the dataset introduced in [48]. 

Table 3.2. Details of the dataset in [48] which used for evaluation in this section. 

Sequence 

Name 

Number 

of 

Frames 

Frequency of 

frames used for 

ground truth 

Number of 

Ground 

truth 

Number of 

Frame where 

moving object 

is present 

Objective Papers 

which also 

used these 

datasets 

GenSeq 300 Every 8 frames 39 115 Overall 

Performance 

[7][88] 

DCamSeq 670 Every 7 frames 102 400 Depth 

Camouflage 

ColCamSeq 360 Every 8 frames 45 240 Colour 

Camouflage 

ShSeq 250 Every 10 frames 25 120 Shadows 

Impact 
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We have used the following metrics to measure the performance of the proposed algorithm to 

be able to compare and rank the results. These metrics are as followed: 

 

False Positive (FP): Part of the Bg pixels which are classified as Fg. 

𝐹𝑃 =
Bg pixels classified as Fg

𝑇𝑜𝑡𝑎𝑙 Bg  𝑝𝑖𝑥𝑒𝑙𝑠
  × 100 

(3.5) 

False Negative (FN): Part of Fg pixels which are classified as Bg. 

𝐹𝑁 =
𝐹𝑔 𝑝𝑖𝑥𝑒𝑙𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝐵𝑔

𝑇𝑜𝑡𝑎𝑙 𝐹𝑔 𝑝𝑖𝑥𝑒𝑙𝑠
 × 100 

(3.6) 

Total Error (TE): The full number of misclassified Bg/Fg pixels inside the region of interest 

which normalised according to the image size. This has been calculated as: 

𝑇𝐸 =
(FN + FP)

𝑇𝑜𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠 
× 100 

(3.7) 

Where total pixels are all the pixels inside the region of interest. FP, FN and TE are all 

dependants to the total pixels. Therefore, a higher amount of FN and FP increase the value of 

TE. The range of these metrics is at a maximum of 100 and a minimum of 0. 

Similarity measure (S): Is non-linear metric that combines FN and FP which publicly known 

as Jaccard's index [117] and has been used in [118] as:  

𝑆(𝐴, 𝐵) =
|𝐴 ⋂ 𝐵|

|𝐴 ⋃ 𝐵|
 

(3.8) 

Where A denoted as detected region and B is ground-truth. Result closer to 1 shows Fg 

correctly identified similar to the ground-truth, otherwise will be closer to 0.  

 

similarity measure (𝐒𝐁): To investigate the misclassified pixels near to the boundaries of 

moving objects. It is measured similar to S, but only considering the regions of 10 pixels 

surrounding the ground-truth boundaries. 

Additionally, we used the proposed evaluation method in [62] to calculate the average 

ranking of method (RM) which combine the performance of each method across different 

metrics in each sequence and use overall ranking across category (RC) which shows in general 

how well an algorithm performs with respect to the other techniques by calculating an average 

(RM). 
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Let us denote the ranking of the ith technique for the metric m in the sequence sq as 

𝑟𝑎𝑛𝑘𝑖(𝑚, 𝑠𝑞). Then the average ranking of technique i for the 𝑁𝑚 number of metrics in the 

sequence sq is given as: 

𝑅𝑀𝑖 =
1

𝑁𝑚
∑ 𝑟𝑎𝑛𝑘𝑖(𝑚, 𝑠𝑞)

𝑚

𝑖=1

 
(3.9) 

Accordingly, the overall ranking among all the categories (RCi) for Ni number of techniques 

is calculating by taking the mean of average ranking across all the sequence as: 

𝑅𝐶𝑖 =
1

𝑁𝑠𝑞
 ∑ 𝑅𝑀𝑖

𝑠𝑞

𝑖=1

                                                                                                                        (3.10)  

𝑁𝑠𝑞 defined as the number of sequences which is 4 in the dataset demonstrated in table 3.2. In 

general RM, RC, TE, FP and FN the lower amount demonstrate better performance and higher 

S and 𝑆𝐵 demonstrate more similarity with ground-truth and therefore better performance.  

 

3.3.1 MAVs Sequences  
 

Figure 3.12 shows an example of this sequence and the binary mask of each method. (a) is 

colour frame and (b) is a depth frame and (c) ground truth for this frame. In this scenario, the 

moving object (Crazyflie) is fast and small. This will cause the sensor to frequently capture 

unmatched colour and depth images. Also, the colour frame is blurred due to the speed of the 

drone and some part of the drone has some unknown pixel’s value in the depth frames. These 

conditions create a very difficult and challenging scenario for the algorithms to correctly detect 

the pixels of the moving object. For these reasons, all tested methods have shown weak 

performance in this sequence. Also, due to the small size of the drone and therefore a small 

number of misclassified pixels compared to the total pixels of the frame, the TE shows small 

values but this doesn’t necessarily indicate that the methods are accurate. Table 3.3 shows the 

proposed algorithm could obtain the lowest TE and FP. This shows the system had less false 

detection in the whole area among other algorithms. However, the FN for the proposed method 

is very high which means the system could not successfully detect part of the foreground. Other 

methods also have the same problem except Pbasbin, but, it has also weak results in FP and S. 

On the other hand, the proposed method could achieve the highest similarity measure (S) which 
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shows the closest result to the ground truth. Average ranking of the proposed method (RM) is 

the lowest in this sequence which means it could achieve the best performance overall. 

 

 
Figure 3.12. The result of micro UAV sequence.  

 (a) Colour frame, (b) Depth frame, (c) Ground truth, (d) 𝑀𝑂𝐺𝑅𝐺𝐵−𝐷output, (e) 𝐺𝑆𝑀𝑈𝐵output, 

(f) 𝐺𝑆𝑀𝑈𝐹output, (g) 𝑃𝐵𝐴𝑆𝑏𝑖𝑛 output, (h) 𝑉𝑖𝑏𝑒𝑏𝑖𝑛 output, (i) Proposed method output. 

 

 

 



 

52 
 

Table 3.3. Craziflies sequence results. 

False positives (FP), False negatives (FN). Total error (TE). Similarity measure (S), Similarity measure 

in object boundaries (𝑆𝐵). Lower TE, FN and FP show better result and higher S and 𝑆𝐵 demonstrate 

higher similarity to the ground truth. 

 

  Method 
TE   FN   FP   S   SB  RM 

Avg.  St.Dev  Avg. St.Dev  Avg.  St.Dev  Avg. St.Dev  Avg.  St.Dev  

MOGRGB−D  0.63 0.17  51.25    13.56  0.02 0.02  0.34 0.17  0.37 0.14   3.2 

GSMUB  0.08 0.01  55.96 23.49  0.03 0.03  0.27 0.13  0.29    0.09   3.8 

  GSMUF  0.12 0.27  37.59 18.25  0.09 0.03  0.27 0.11  0.34    0.08   3.4 

PBASBin  0.63    0.06    0.20   0.57  0.63 0.06  0.11 0.04  0.44 0.07   3.2 

  VIBEBin  1.45 0.19  19.12 10.71  1.43 0.19  0.04 0.02  0.42 0.06   3.8 

Proposed 

Method 

 

 

0.05 0.01  42.63 17.85  0.01 0.02  0.42 0.18  0.42 0.11   1.8 

Table 3.4 demonstrates the result for the AR.Drone sequences. This table shows that the 

accuracy of detection in AR.Drone is higher than smaller drones such as the Crazyflie. The 

main reason for this is AR.Drone has a bigger surface and therefore, it receives more accurate 

depth data from the sensor. Table 3.4 shows that the proposed method could achieve the lowest 

TE and FP which shows this method has the lowest error compare to the other algorithms. 

Moreover, the similarity measurer in the images (S) and around object boundaries (SB) are the 

most similar to the ground truth. Similarly, the average ranking (RM) shows the best 

performance is for the proposed algorithm in overall of these metrics by achieving the lowest 

amount among all other methods.  

Table 3.4. AR.Drone sequence results. 

False positives (FP), False negatives (FN). Total error (TE). Similarity measure (S), Similarity measure 

in object boundaries (𝑆𝐵). Lower TE, FN and FP show better result and higher S and 𝑆𝐵 demonstrate 

higher similarity to the ground truth. 

 

  Method 
TE   FN   FP   S   SB    RM 

Avg.  St.Dev  Avg. St.Dev  Avg. St.Dev  Avg. St.Dev  Avg.   St.Dev  

MOGRGB−D  0.15 0.16  14.79     12.02  0.04 0.06  0.79 0.13  0.80 0.11    2.6 

GSMUB  0.49 0.29  74.97     11.66  0.01 0.01  0.25 0.12  0.26    0.12    4.2 

  GSMUF  0.31 0.26  9.59   6.52  0.25 0.21  0.69 

 

0.11  0.74    0.08    3.2 

PBASBin  1.25    0.33  0.25   0.80  1.25 0.33  0.33 0.09  0.66 0.10    4.2 

  VIBEBin  1.02 0.26  2.73   3.41  1.18 0.25  0.33 0.09  0.74 0.09    3.8 

Proposed 

Method 

 

 

0.13 

 

0.11  11.84   6.02  0.05 0.07  0.82 0.11  0.83 0.08    2.0 
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Figure 3.13 illustrates an example of this sequence and the output for all the compared methods. 

GSMUB(e) could not detect many foreground pixels and had a poor accuracy in this sequence. 

Instead,  PBASbinhas detected many background pixels as a foreground. The proposed method 

could achieve the best result in this sequence. 

 

 
Figure 3.13. The result of AR.Drone sequence.  

(a) Colour frame, (b) Depth frame, (c) Ground truth, (d) 𝑀𝑂𝐺𝑅𝐺𝐵−𝐷output, (e) 𝐺𝑆𝑀𝑈𝐵output, 

(f) 𝐺𝑆𝑀𝑈𝐹output, (g) 𝑃𝐵𝐴𝑆𝑏𝑖𝑛 output, (h) 𝑉𝑖𝑏𝑒𝑏𝑖𝑛 output, (i) Proposed method output. 
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3.3.2 Benchmark Dataset 
In this section, the benchmark RGB-D dataset introduced in [48] is briefly discussed and then 

results for each method shown. 

GenSeq sequences 

This sequence has been designed in [48] to test the overall performance of the method in case 

of several possible errors that may occur in one scene. This sequence contains a scene with an 

individual person moving. Figure 3.14 illustrates an example of this sequence which clearly 

shows most of the moving object has been successfully detected by the proposed method. 

However, some false positive and false negative detection are visible in the subtraction result. 

Additionally, Table 3.5 shows the full results for all frames of this sequence. The proposed 

method has the lowest amount of total error (TE) and the highest similarity with the ground 

truth (S and SB). Consequently, it has the lowest average ranking of the method (RM) which 

shows it has the best performance in this sequence among all other methods. 

 

Figure 3.14. Result of the proposed method in frame 1026 of GenSeq sequence.  

(a) Colour frame, (b) Depth frame, (c) Ground truth, (d) Proposed method. 
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Table 3.5. GenSeq sequence results. 

False positives (FP), False negatives (FN). Total error (TE). Similarity measure (S), Similarity measure 

in object boundaries (𝑆𝐵). Lower TE, FN and FP show better result and higher S and 𝑆𝐵 demonstrate 

higher similarity to the ground truth. 

 

Method 
TE   FN   FP   S   SB     RM 

 Avg       St.Dev  Avg. St.Dev  Avg.   St.Dev   Avg.   St.Dev  Avg.  St.Dev  

MOGRGB−D  1.93    0.66  0.63  0.01  2.09 0.02  0.79 0.20  0.45 0.13 4.0 

CLW 1.30    0.42  1.49 0.02  1.27 0.01  0.83 0.21  0.53 0.14 3.0 

GSMUB  1.38    0.56  1.04 0.78  1.44 0.66  0.83 0.20  0.78 0.11 2.8 

GSMUF  1.30    0.52  4.08    15.38  1.30 0.60  0.83 0.20  0.78 0.14 3.2 

PBASBin  8.24   13.78  0.33  0.53  9.36   15.97  0.66 0.21  0.71 0.10 4.6 

VIBEBin  2.32     0.58  1.59  1.52  2.43 0.56  0.77 0.16  0.75 0.09 4.6 

Proposed 

Method 

1.09     0.46  2.85  7.43  1.02 0.56  0.88 0.14  0.79 0.12 2.0 

 

DCamSeq sequences 

The goal is to investigate the tolerance of the algorithms in case of depth camouflage existence. 

Figure 3.15 illustrates an example of this sequence. In order to have an accurate measurement 

on the depth camouflage, the ground-truth and ROI of this dataset are only around the cupboard 

and hand of the person in the scene. Therefore, other parts of the moving object (other part of 

that person) are out of the measurement area. 

Table 3.6 illustrates the result of this sequence, the total error (TE) and false negative 

(FN) of the proposed method is very high which shows weak detection in this sequence. 

Accordingly, after PBAS, the proposed method has the highest RM compare to other methods 

which demonstrate a weakness of our method. The main reason is that the depth model is not 

able to detect the entire hand when it is on top of the cupboard as the depth values of the hand 

and the cupboard is very similar. This problem can be solved by relying more on the colour 

model to produce the segmentation result. However, in that case, the system would be 

significantly less accurate in the shadows and colour camouflage scenarios. In this sequence 

GSMUB and GSMUF has achieved the lowest RM and shown the best result. 
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Figure 3.15. Result of the proposed method in frame 1073 of DCamSeq sequence. 

 (a) Colour frame, (b) Depth frame, (c) Ground-truth, (d) Proposed method. 

 

Table 3.6. DCamSeq sequence results. 

False positives (FP), False negatives (FN). Total error (TE). Similarity measure (S), Similarity measure 

in object boundaries (𝑆𝐵). Lower TE, FN and FP show better result and higher S and 𝑆𝐵 demonstrate 

higher similarity to the ground truth. 

 

Method 
TE   FN   FP   S   SB    RM 

Avg.    St.Dev  Avg. St.Dev  Avg.   St.Dev  Avg.  St.Dev  Avg.   St.Dev  

MOGRGB−D  2.11 1.29  15.25 0.09  1.31 0.02  0.61 0.14  0.61    0.11     2.0 

CLW 2.46 1.82  32.21    0.26  0.66 0.01  0.55 0.14  0.51    0.12     3.0 

GSMUB  2.42    1.70  49.84 10.73  0.55 1.57  0.37 0.17  0.40    0.14     4.0 

GSMUF  2.40 2.23  47.62    32.39  0.72 1.61  0.37 0.27  0.41    0.28     4.0 

PBASBin  5.06  12.38  46.23 32.46  3.59   13.09  0.30 0.21  0.38 0.23     6.2 

VIBEBin  2.20 1.86  40.58 23.51  1.29 2.15  0.41 0.22  0.48 0.22     3.2 

Proposed 

Method 

2.43 2.21  52.44 30.45  0.56 1.64  0.36 0.25  0.38 0.25     5.2 
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ColCamSeq sequences 

It has been made to investigate the possible error of the algorithms in the case of colour 

camouflage. Figure 3.16 illustrates an example of colour camouflage. In order to have an 

accurate measurement of the colour camouflage, the ground-truth and ROI of this dataset are 

only around the board and white box in the scene. Therefore, the other part of the moving object 

(the person) is out of the measurement area.  

Table 3.7 illustrates the result of ColCamSeq sequence. The proposed method could 

achieve the highest similarity measure and average in FP, FN and TE which lead to getting the 

lowest RM. This means the proposed method performed well in this scenario and could almost 

completely detect the whiteboard from the same background colour. The reason behind this is 

our depth model recognised the board is not part of the background and consequently the 

system detect it as a foreground. 

  

Figure 3.16. Result of the proposed method in frame 1078 of ColCamSeq sequence. 

 (a) Colour frame, (b) Depth frame, (c) Ground-truth, (d) Proposed method. 
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Table 3.7. ColCamSeq sequence results. 

False positives (FP), False negatives (FN). Total error (TE). Similarity measure (S), Similarity measure 

in object boundaries (𝑆𝐵). Lower TE, FN and FP show better result and higher S and 𝑆𝐵 demonstrate 

higher similarity to the ground truth. 

 

Method                           
TE   FN   FP   S   SB     RM 

Avg.   St.Dev  Avg. St.Dev  Avg.  St.Dev  Avg. St.Dev  Avg. St.Dev  

MOGRGB−D  3.49 3.40  3.38 0.02  6.13 0.14  0.91   0.09  0.81   0.08     4.8 

CLW 3.20 2.77  3.52 0.09  2.92 0.10  0.89   0.15  0.77   0.16     4.8 

GSMUB  1.72 2.66  2.70 6.83  3.50    7.39  0.93   0.09  0.92   0.08     2.0 

GSMUF  2.04 2.66  0.65 1.39  4.74   7.43  0.91   0.11  0.90   0.08     3.2 

PBASBin  8.60   8.99  0.13 0.36  17.32   20.20  0.76   0.26  0.81   0.14     5.4 

VIBEBin  4.47 7.02   0.39 1.25  10.68   19.22  0.86   0.13  0.86   0.09     4.8 

Proposed 

Method 

1.94 2.68  0.75 1.74  4.37 7.30  0.92   0.09  0.91   0.07     2.6  

 

ShSeq sequences 

This sequence considered to test the impact of shadows in the scene. As table 3.8 illustrates the 

result of this sequence, the proposed method could successfully detect the foreground object 

and avoid the shadow of the box on the floor. The total error shows that the proposed method 

has the lowest amount of errors and the highest similarity measures (S and SB) compared to the 

other methods. Accordingly, this allowed the proposed method to achieve the lowest RM which 

demonstrates the best performance between all other techniques. Figure 3.17 illustrates an 

example from ShSeq sequences which has been also demonstrated in the authors' paper [48]. 

This qualitative comparison shows the accuracy of the proposed method with other state of the 

art algorithms. These algorithms are (c)  MOGRGB−D, (d) CLW output, (e) GSMUB output, 

(f) GSMUF output, (g) PBAS output, (h) Vibebin output, (i) Proposed method output. 

Undoubtedly, MOGRGB−D, PBAS and Vibebin methods incorrectly detect the shadow area as 

part of the foreground region. GSMUB, GSMUF and the proposed method performed well in this 

frame. The proposed method only failed to detect trivial part of the box. However, the proposed 

method has shown great accuracy around object boundaries.  
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Table 3.8. ShSeq sequence results. 

False positives (FP), False negatives (FN). Total error (TE). Similarity measure (S), Similarity measure 

in object boundaries (𝑆𝐵). Lower TE, FN and FP show better result and higher S and 𝑆𝐵 demonstrate 

higher similarity to the ground truth. 

 

Method 
TE   FN   FP   S   SB  RM 

Avg.    St.Dev  Avg. St.Dev  Avg. St.Dev  Avg.   St.Dev  Avg.  St.Dev  

MOGRGB−D  3.94 1.54  0.59 0.02  4.50   0.07   0.77    0.09  0.66   0.05 5.6 

CLW 0.81 0.35  1.60 0.05  0.68   0.02   0.94    0.04  0.71   0.07 3.0 

GSMUB  0.87 0.33  0.98 0.88  0.88   0.42   0.93    0.03  0.76   0.06   3.4 

GSMUF  1.66 0.38  0.14 0.19  1.92   0.44   0.89    0.04  0.65   0.05 3.8 

PBASBin  3.92    2.73  0.35 0.31  4.48   0.10    0.78    0.11  0.60 0.03 5.4 

VIBEBin  3.72 0.99   0.06 0.15  4.31   1.17   0.78    0.07  0.64 0.03 4.4 

Proposed 

Method 

0.80 0.41  0.88 0.70  0.81   0.48   0.95    0.03  0.82 0.06 2.0 
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Figure 3.17. An example of ShSeq sequences. 

 (a) Colour data, (b) depth data codified in colour,(c) 𝑀𝑂𝐺𝑅𝐺𝐵−𝐷 (d) 𝐶𝐿𝑊 output, (e) 𝐺𝑆𝑀𝑈𝐵 output, 

(f) 𝐺𝑆𝑀𝑈𝐹 output, (g) PBAS output, (h) 𝑉𝑖𝑏𝑒𝑏𝑖𝑛 output, (i) Proposed method output. 
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The RM chart which illustrated in figure 3.18 summarises the results shown in Tables 3.5-8 by 

representing the RC and RM for an individual method in each sequence. The lower amount for 

RM and RC shows better result. As illustrated in this figure our method could achieve the 

lowest RM in GenSeq, ColCamSeq and ShSeq compared to the other five algorithms. This 

shows the best overall performance in all these benchmark datasets. However, in the DCamSeq 

the proposed method has the highest RM value. This means the proposed method is not able to 

perform well in case of depth camouflage but in all the other scenarios, it is able to demonstrate 

the best result. Indeed, according to RC values which has calculate the overall performance of 

the algorithms in these four sequences, the proposed method outperforms among these six 

methods as it could achieve one of the lowest amounts of RC. Despite the positive result PBAS 

previously achieved in colour only datasets, in these RGB-D sequences, it presented the 

weakest performance in all four scenarios by attaining the highest RM and RC. The main reason 

for this failure is that PBAS was originally introduced for colour frames only and it cannot 

tolerate the noise of depth frames. We have used the original parameters in this comparison. 

However, it might be possible to achieve better results by changing the parameters.  

 

Figure 3.18. RM chart. 

 shows the overall performance of 𝐶𝐿𝑊, 𝐺𝑆𝑀𝑈𝐹, 𝐺𝑆𝑀𝑈𝐵 , 𝑀𝑜𝑔𝑅𝐺𝐵−𝐷.PBAS and 𝑉𝑖𝑏𝑏𝑖𝑛 and proposed 

method in GenseqSeq, DCamSeq, ColCamSeq and Shseq sequences. Each bar represents the RM and 

the blue line shows RC. The lower RM and RC values are the better the performance is. 
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The results in figure 3.18 show the system is able to cope with the dynamic background by 

using the blind update which randomly exchanges pixels regardless of being background or 

foreground in every couple of frames. This will help the system to have a more valid and 

accurate model. However, it can also lead to weak detection in the case of a stationary or very 

slow-moving object which the moving object will be absorbed to the model after a while. In 

addition, non-parametric algorithms normally have difficulties in bootstrapping scenarios as 

these methods require some frames to built and update the model over time. To verify these 

weaknesses, three sequences which stationary moving object occurs in the scene from SBM-

RGBD [116] has been illustrated in figure 3.19. Where (a) is a colour image, (b) depth image, 

(c) ground-truth, (d) original method and (e) proposed method. And also the following 

sequences have been used for qualitative evaluation. 

 

1. Abandoned1: The scenarios in this video is made to test the tolerance of the method in the 

creation of the ghost phenomenon. A box will move from the stationary position to the top 

of the cupboard and stay stationary for some frames.    

2. Abandoned2: This sequence is made to test the tolerance of the method for a stationary 

foreground object. A bag will be dropped in the scene and remain there for a while. 

3. MovedBackground1: It aims to measure the accuracy of the method in case of background 

changes. A box drops from a cupboard and stays on the floor. 

4. adl24cam0: This sequence is made to test the tolerance of the method in the bootstrapping 

scenario. A man standing in the room from the beginning and he only sits and stands up 

again. 

The sequences are dynamic and each row in the figure represents one of the last few frames of 

the sequence. These sequences are abandoned1, moveBackground1, abandoned2 sequences 

where a stationary moving object exist. Segmentation results which are closer to the ground 

truth (white area) show more accurate detection. The grey area shows outside of the region of 

interest which is not part of the evaluation.  

In the first sequence (abandoned1), the brown box moves from the floor to the top of 

the cabinet and stays stationary. As the foreground stays stationary, it will gradually absorb to 

the model in the method.  

In moved background1, the brown box drops from the top of the cabinet to the floor 

and stays stationary. The foreground gradually absorbs to the model due to the blind update.  
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In abandoned2 sequences, a black bag drops in the scene and stays stationary. The 

foreground starts absorbing to the model and the foreground will gradually disappear in 

segmentation mask. This starts from the bottom of the bag as it is closer to the background.  

In adl24cam0 sequences, the person standing in the middle of the room and he exist 

there from the beginning frames. Therefore, foreground pixels will be in the background model 

during the initialisation which can cause poor detection accuracy. The background model 

gradually adapts to the background by replacing the real background pixels in the model. 

The proposed method clearly demonstrated poor accuracy in the results in these 

bootstrapping and stationary moving object sequences. Therefore, an investigation will be 

initiated in the next chapter to improve the weakness of the proposed method in detecting the 

bootstrapping, stationary moving objects and resolve the issue of depth camouflage scenarios 

with the current hardware. 
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Figure 3.19. Example of qualitative comparison in a stationary moving object dataset.  

The grey area shows outside of the region of interest. (a) Colour image, (b) Depth image, (c) Ground-

truth, (d) Proposed method.                                                                                                                                            

3.4 Real-time Experiment 

The proposed system has been tested in a live application within an indoor environment to test 

the accuracy of the system in a live application. A basic control system based on the proposed 



 

65 
 

approach has been implemented to controlling a MAV and navigate it around the area. The 

computational cost of the algorithm is calculated as the mean rate of the processing time of the 

algorithm. The test was performed on a laptop with an Intel (R) Core (TM) i7-6700HQ CPU 

@2.6 GHz and 8 GB RAM along with Microsoft Kinect v2 sensor and a parrot AR.Drone [11]. 

As illustrated in figure 3.20, the coloured cover has been added to the front of the drone for 

more accurate depth data on the drone body and recognition of the front of the drone for 

navigation by the control system. The drone body was originally black and it absorbs the IR 

signals which creates ADO on surfaces of the drone. 

 

 
Figure 3.20. An AR.Drone was used to testing the proposed method in real-time. 

 

It is worth mentioning that the proposed algorithm used during these tests has been 

implemented in Linux with AR. Drone SDK in C++ and OpenCV library [119] without any 

specific code optimisation as the aim of this experiment is to show that the proposed algorithm 
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can be successfully run at real-time frame rates and therefore no effort has been made to 

optimise the code/set-up. 

  The quadcopter could successfully land on the floor and the total flying time was 210 

seconds with a mean processing time of 68.8 ms and looking at the frame rate, it is about 15fps. 

The demonstration showed the proposed system could safely control the behaviour of the 

quadcopter (staying in the external camera frame and not collision to other objects such as a 

wall) in typical processing time required by other state-of-the-art systems [120][121] for each 

frame at real-time. Figure 3.21 shows the total time obtained by the system for the first 200 

frames of the test. The minimum time for a single frame on this test was 55 ms and the 

maximum was 82 ms. A flat pattern at the beginning of this figure demonstrates the 

initialisation stage of the proposed method and the rest of oscillations belongs to the main loop 

of the algorithm including segmentation and background model update process. 

 

 

 Figure 3.21. The computational time for the system to control the quadcopter.  

 The time for the first 200 frames is shown. 

 

 

 

 



 

67 
 

3.5  Summary 

In this chapter, we have presented a novel nonparametric approach for detection of different 

type of moving objects such as fast MAVs using background modelling and segmentation by 

the history of previously observed pixel values similar to the previous work of ViBe and PBAS 

algorithm. The proposed method has four steps which are: initialisation, post initialisation 

filtering, classification and update. Our system produces one model for colour and one for 

depth. By combining colour and depth model together to produce the final classification, we 

could improve the background segmentation accuracy in some challenging scenarios. These 

models get updated for each pixel which identified as a background. This update process is 

based on the distance of new pixel and existing pixels in the model. In fact, the lowest depth 

pixel in the model will be exchanged with the new pixel. This update method has never been 

implemented in this way before. Additionally, after α frames, the system blindly updates the 

models regardless of the pixel being background or foreground to prevent permanent 

misclassification and production of ghost phenomenon. These updates allow creating a more 

accurate depth model regardless of noisy depth frames. For this reason, the depth model has a 

greater influence on the final segmentation mask. In particular, the system relies more on the 

colour model when depth is not available or it cannot surly decide the foreground/background 

(e.g. near object boundaries). This helped the system to significantly reduce the amount of false 

detection in case of sudden illumination changes and appearing of shadow on the floor. 

The results and evaluation section demonstrated that the proposed algorithm in the two 

UAVs sequences that we have captured achieved the best performance by having the lowest 

RM. However, the FN is high in both sequences which indicate some part of the foreground 

has been identified as background due to the size, speed and surface of the UAVs. 

In the other four public datasets, the proposed method has the most accurate and reliable 

outcomes in comparison with other state-of-the-art methods. Furthermore, we have shown that 

the GSMUF and the proposed method achieved the best overall results by having the lowest RC 

as illustrated in figure 3.18. This system also improved the overall performance of the detection 

of high-speed moving MAVs by combining the depth and colour model to produce the 

segmentation and update models to make it more accurate time after time. These outcomes are 

also supported by the table 3.5-3.8, where it has been highlighted the robustness of the proposed 

method by achieving the lowest value of RM in three sequences and only a poor performance 

in one sequences (DCamSeq) as the proposed method has difficulty in detecting the moving 

object in the occurrence of depth camouflage. The accuracy of the proposed algorithm in the 
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depth camouflage could not meet the standard and it requires further improvements. This 

problem can be improved by reducing the acceptable threshold amount and use a more accurate 

depth sensor.  

On the other hand, the system is able to cope with the dynamic background by using 

blind update which randomly exchanges pixels regardless of being background or foreground 

in every couple of frames. This will help the system to have a more valid and accurate model. 

However, it can also lead to weak detection in the case of a stationary or very slow-moving 

object which the moving object will be absorbed to the model after a while. Therefore, in the 

next chapter, we are going to investigate to improve the weakness of the proposed method in 

detecting the stationary moving objects and resolve the issue of depth camouflage scenarios 

with the current hardware. 
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Chapter 4                                   

Moving object detection using 

adaptive blind update policy and 

RGB-D camera 
 

 

4.1 Introduction 
 

Background subtraction is one of the main phases of many computer vision applications. The 

main goal of these algorithms is to separate the moving objects (known as foreground) in the 

scene from a robust model of the static environment (known as background)[100]. 

Traditionally a scene model requires a regular update to adapt to the changes over the time in 

the real-world scenarios. These changes could be appearing as a new object in the scene, 

moving a scene’s object or illumination changes.  

In the previous chapter, a nonparametric method has introduced which stores the 

previously observed pixel values in the models and the system use update methods to keep the 

model updated to the changes in the environment. However, how to update the background 

models efficiently and effectively is still challenging for the proposed method in the previous 

chapter and other state-of-the-art methods. The type of samples we can choose to create the 

scene model and for how long it is valid is important for any model. For example, first-in-first-

out is one of the classical approaches for updating the background model which discards the 

old samples in the model and substitute them with the new pixels after several frames or 

seconds. These traditional approaches update all the old pixels in the model which often is not 

essential as those pixels may still be valid samples. On the other hand, updating the scene model 

only by those pixels that are recognised as background or also involving the foreground pixels 

has always been discussed. These procedures are known as a blind and conservative update 

policy [8]. Conservative update scheme never incorporates those pixels classified as part of 

foreground region. Theoretically, this policy is a suitable choice which can produce a sharp 

detection of the moving objects. However, in most practical scenarios, it can lead to deadlock 

situations and production of ghosts’ phenomenon. For instance, a change to the background of 

the scene can cause the background model to incorrectly contain foreground samples. This 
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prevents to update background model and therefore cause a permanent misclassification which 

many real-world scenarios lead to these situations.  

On the other side, blind update such as the method used in ViBe [8], MoG [9] and 

proposed method in the previous chapter incorporates all sample values into the background 

model update regardless of being identified as foreground or background. In the previous 

chapter, we have realised that the main drawback of the blind update is a weak detection of a 

slow-moving object or those foregrounds that stopes and remain static for some period of time. 

These regions which contain the foreground area, gradually will become part of the scene 

model. In the literature, these motionless objects are typically called Stationary Foreground 

Objects (SFOs) [6]. Detection of SFOs is one of the well-known topics of background 

subtraction techniques which attracted the attention of many researchers in the last few years 

[10]. In SFO scenarios, pixels of the stationary object gradually absorb to the background 

model and eventually the model will adapt to the motionless objects. In this chapter, we are 

going to tackle this issue and a new blind update scheme will be proposed which is able to 

improve the detection accuracy of SFOs as well as fast-moving objects. In particular, in this 

chapter, we are going to address and investigate the following research question that what is 

the effect of using adaptive blind update policy on pixel-wise moving object detection. This 

method is new and has never been tested before. This method is part of our contribution to this 

thesis. Also, we have published some content of this chapter earlier in an IEEE journal [122]. 

In the remaining of this chapter, section 4.2 will be a discussion about the background of 

stationary foreground objects, section 4.3 will be in detail structure and explanation of the 

proposed method, section 4.4 experimental results, and comparison of the proposed method 

with other state-of-the-art algorithms in publicly available datasets and real-time evaluation 

has been described in detail, section 4.5 is the summary of this chapter.   

4.2 Background 
 

In order for the scene model to continuously adapt to the changes in the background, the model 

requires a continuous update. An example of these changes is illumination changes, appearing 

or removing an object in the scene or moving a scene’s object. On the other hand, if the model 

rapidly receives an update, then the system will face difficulties to detect the stationary 

foreground objects as the foreground will gradually absorb to the model. This is one of the 

main weaknesses of the method introduced in the previous chapter [3]. We will call this method 

as NBMS in the rest of this thesis. To overcome these challenges identified in the previous 
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chapter, it is important how the samples were collected to create the scene model and for how 

long these samples are useful. This problem has been broadly discussed in the literature. 

The authors of [10] proposed a multi-object tracker adapted for conveying systems 

which is based on a feedback loop from tracking to detection. The main goal of their work was 

to stop the adaptation of the regions which belongs to stationary objects. They have used state-

of-the-art background subtraction techniques ViBe [8] and the Gaussian Mixture Model 

(GMM) [13] to implement their ideas. The neighbouring update process of ViBe has been 

disabled for pixels of stationary objects to prevent the absorption of SFOs into the background 

model. On the other hand, the learning rate of α is considered to incorporate pixel samples in 

the GMM model. For the stationary objects, the α is set to zero. According to the authors of 

[10], significant improvements in tracking results have been achieved in real video sequences. 

The new method proposed in [41], attempted to efficiently recognise the SFOs based 

on three nonparametric background models (long term, medium term, and short term).  The 

goal of this method was to improve the detection quality of classical moving object detections 

and using novel Finite State Machine in scenarios featuring moving objects that become 

motionless (e.g. people in offices or vehicles on urban roads). 

Recently, a new nonparametric method based on a self-adapting parameter called 

DTNBM has been introduced [50]. This method uses a dual target updating approach which 

can simultaneously tackle the background and foreground pixels. In addition, it can use 

different updating tactic for different types of pixels. A controlling threshold adaptation 

procedure is intended to help DTNBM to be applied in different scenarios. This shows adapting 

update policies could significantly help background subtraction methods to increase the 

application of these methods in various challenging situations. This ability inspired us to 

investigate in more detail an adaptive updating strategy into our moving object detection 

method to be able to deal with a different type of moving object such as fast, slow and stationary 

moving object. 

Another way to increase the accuracy of the background subtraction method in SFOs is 

to have more information about the scene in the past by increasing the number of samples in 

the model. However, this approach is not practical in a live application due to the high 

computational cost. Besides, some foreground pixels could be stored in the background model 

which leads to misclassification. Another solution to this problem is to track the moving object 

and update the model based on tracking of the moving object. This is not new and has been 

previously applied differently. For example, recently the authors of [123] introduced a non-

parametric method based on KDE [29] which models the motion of every foreground object 
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and predicts the position of each object in the current frame. This helps to decrease the search 

zone for the foreground object and increases the probability of the data to match the model for 

each pixel.  

All previously stated researches indicate that the best way to improve the detection 

accuracy of a stationary moving object is through tracking the object and using adaptive tactics 

in order to change the updating parameters based on the speed of moving object. Although 

previous researchers could improve the detection accuracy of slow and stationary moving 

objects, this issue is still challenging as there is no universal method to be able to detect the 

moving object in all challenging scenarios including SFO and therefore this topic requires 

further research. In this chapter, we are going to investigate adaptive blind update with the aid 

of depth data and colour frames in pixel-wise moving object detection. 

 

4.3 Proposed method 
 

The proposed method in this section is an improvement of the method introduced in the 

previous chapter known as NBMS [3]. This method is more complex and it has significantly 

improved the accuracy of the original method to deal with more challenging situations such as 

stationary moving objects, bootstrapping and shadows. The main novelties and contributions 

of this research are as follows; 1) Adding adaptive blind update method which changes the 

frequency of blind update based on the speed of moving object. 2) The segmentation rules are 

more effective and sophisticated compared to the original method. 3) Bootstrapping detection 

and segmentation proposed to improve the accuracy in bootstrapping scenarios. Bootstrapping 

sequences are generally defined as those sequences that foreground objects exist in all frames 

from the beginning [124]. Shadow detection method proposed based on CIE L*a*b* colour 

space [125]. The method is also thoroughly evaluated in all sequences of SBM-RGBD 

challenge dataset [116].  

 Our method creates background models by a history of previously observed pixel 

values. Then current pixels will be compared to the model for foreground segmentation. The 

proposed method involves different phases to cope with the changes in the background and 

effectively works in a live application. Figure 4.1 demonstrates the flowchart diagram of the 

proposed method. 
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Figure 4.1. Flow chart of the proposed object detection method.  

 

The proposed method similar by the original method, stores the first N frames to produces one 

model for colour and another model for depth frames. This step called the “System 

Initialisation” which require to remove ADO pixels in “ADO Removal” before creating the 

“background Model”. These steps are explained in detail in the previous chapters (Section 3.2.1 

and 3.2.2). However, in this method, the segmentation process starts after the minimum number 

of samples stored in the model. If any moving object has been detected during the initialisation 

stage, then bootstrapping had occurred. We called this stage “Check for Bootstrapping”. When 

bootstrapping is occurring, some pixels of the foreground stores in the background model. 

Therefore, the segmentation result (foreground detection) will be only a fraction of the 

foreground. To solve this problem, during initialisation the system needs to find the shape of 

each object existing in the scene by using edge detection techniques. This has been reached by 

combining the results of the colour and depth frames achieved by canny edges detection 

algorithm [99]. The system checks each object exists in the scene with the segmentation result 

(foreground). If a high percentage of any object in the scene is identified as a foreground, then 

the whole object will be added to the foreground mask. This significantly aids the system to 

increase the detection rate in the bootstrapping scenarios compared to the original method. 

However, in some rare cases, this could also increase misclassification. 

Once the initialisation has finished and the background model has been completed, the 

system moves to the main loop to start comparing individual pixels to the model to begin the 

segmentation of the pixels as a foreground or background and produce the result which is called 

“Fg segmentation”. 

After segmentation, the background model will be updated with two methods “regular 

background update” and “blind update”. First, only those pixels marked as a background will 

be updated.  In addition, after 𝛼 number of frames, the system blindly swaps the new pixels 

with the background model regardless of being marked as foreground or background. The rate 
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of 𝛼 was fixed in the NBMS and defined before running the application (explained in section 

3.2.5). However, in the proposed method, the frequency of blind update (𝛼) will be changed 

based on the speed of the moving object. This significantly helps the system to improve the 

weakness of the original method and increase the detection rate of a slow and stationary moving 

object. The main reason behind this is the rate of 𝛼 will be significantly reduced in the case of 

a stationary moving object and consequently, the blind update will less frequently apply to the 

background model. This prevents the moving objects from absorbing into the background 

model for much longer than the original method. Also, another step has been added to the 

proposed method called “check the background change”. When a change in the background is 

occurring, the system will significantly increase the frequency of blind update in order for the 

model to adapt to the changes in the environment. The system identifies a change in the 

background by comparing the depth frame with a sample depth image (usually with an initial 

frame when the moving object doesn’t exist in the scene). If an area of a scene has a longer 

depth compared to the samples, it demonstrates a change in the background has occurred. 

As figure 4.1 demonstrates, the proposed method has three main steps of initialisation, 

segmentation, and update. In the remaining of this section, the new steps of this figure will be 

described in more detail. 

 

4.3.1 Fg Segmentation 
 

Traditionally Probability Density Functions (PDF) and statistical parameters such as mean or 

variance are the most common components of the background subtraction algorithms. 

Alternatively, statistical significance can be used to build a model based on previously 

observed colour pixel values and depth data. The hypothesis is that, if the same pixel value has 

been observed a number of times in the same location, the pixel has a high chance of being part 

of the background. 

The process of background subtraction will require classification of each pixel as 

background or foreground. The value of the current pixel in the colour frame will be compared 

with the colour model in each location to discover if it is close to some of the samples in the 

model. In parallel, depth pixels will be compared to the depth model to determine if the pixel 

is at the same distance or further to the camera. In some cases, RGB and depth have the same 

individual segmentation result. In other words, by comparing the pixel to the models, both 

(colour and depth) individually agree whether the pixel is part of the background or not. 

However, in some other challenging scenarios, they are strongly against each other. This means 
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one of the sensors (colour or depth) has been affected by the noise or limitation of the sensor. 

An example of these situations could be colour camouflage such as foreground having the same 

colour as the background, change of illumination, shadow or depth camouflage such as moving 

the hand on the wall. 

To produce the final decision (foreground mask), the system should find out from which 

sensor the noise is coming from and which sensor is more reliable. We have introduced a set 

of rules based on the facts that the system follows in the segmentation process to reduce the 

effect of these noises for producing the foreground masks. Figure 4.2 demonstrates the 

flowchart diagram of the rules which the system follows for the segmentation of each pixel. 

Thus, this diagram shows in detail the whole “Fg segmentation” step in figure 4.1. 

Unlike RGB cameras, depth sensors are resistant to illumination effects. Besides, the 

depth accuracy has been significantly increased in the last few years with the creation of new 

sensors such as Microsoft Kinect V2 sensor [113][114]. Consequently, our method has relied 

more on depth outcome to produce the result. However, depth sensors still have some limitation 

such as depth camouflage. Generally, these limitations can be eliminated by using colour 

frames to identify the moving object. In some cases, both sensors can fail to detect the moving 

object or by error detect the background as part of the foreground, for example, a shadow on 

the ground or moving a hand on the wall.  

To solve this issue in the dynamic background and improve the detection accuracy, 

some researchers used CIELa*b* colour space, where the chrominance components are totally 

unlinked from the luminance component [126]. For example, the authors of [127], applied 

random homogeneous region-based background modelling in the CIELa*b* colour space to 

detect swimmers in swimming pool environments, or in [85] CIELa*b* colour along with 

depth data used for a real-time segmentation application. The main reason the authors choose 

this colour space was consistency in perception which concluded to better performance. 

CIE L*a*b* colour coordinate for the colour frames is defined by the Commission 

Internationalede L’Eclairage (CIE) in 1978 and then officially introduced by Hunter and 

Harold in 1987 [125]. One of the most significant characteristics of the L*a*b* space is device 

independence. L*a*b* colour space is built on one channel for Luminance (lightness) (L) and 

two other channels for colour (green-red and blue-yellow) (a and b). L* = 0 represents the 

darkest black, and L = 100 the brightest white. a* and b*, will represent true neutral grey values 

at a* = 0 and b* = 0. The a* axis represents green at negative values and red at positive values. 

The b* axis represents blue at negative values and yellow at positive values.  
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Unlike the RGB space, L*a*b* colour is intended to approximate human vision where the L 

element closely indicates the human perception of lightness [128]. Thus, it can be used to check 

the colour value of pixels (a and b) without interfering of illumination (L) component.  

In the proposed method in this chapter L*a*b* colour coordinate have been 

implemented instead of RGB colour space which significantly helped the system to improve 

the segmentation accuracy and detection of the shadow area. This method identifies an area as 

a shadow where the L component is low (close to 0) and the depth frame on that location shows 

no change compared to the depth model. 

 Formally, if we denote a 3d point as an X=(x,y,z) ∈ R3, d(X) the value in the depth and 

v(X) the value in a given colour at location X in the new frames. 𝑣𝑖 and di shows an index of i 

in a background sample value of each background pixel located at X which demonstrated by a 

collection of N background depth and colour sample values taken before as: 

𝑀(𝑋)𝐿𝑎𝑏= {𝑣1, 𝑣2, 𝑣3, …, 𝑣𝑛}                                                                                  (4.1) 

𝑀(𝑋)𝐷= {𝑑1, 𝑑2, 𝑑3, …, 𝑑𝑛}                                                                                    (4.2) 

We refer to fg as a foreground pixel, bg as a background pixel, 𝑀(𝑋)𝐷 as a background depth 

model and 𝑀(𝑋)𝐿𝑎𝑏 as a background colour model at location X.  

At first, to identify each pixel of the new frame as a bg or fg, the system checks the 

depth data. If the depth is ADO (an unknown value) at that pixel location, it only compares the 

colour value with the 𝑀(𝑋)𝐿𝑎𝑏. This mean, the system will solely rely on the decision of the 

colour if depth value is not available in any pixel location. If the difference in colour value is 

smaller than ThRGB (acceptable threshold), we count the pixel as a similar colour. Each pixel 

location which finds at least cardinality amount denoted by # 𝑀𝑖𝑛 similar pixels will be 

classified as a bg. Although, the # Min is insensitive, it has a positive correlation with the 

number of samples. This means higher samples in the model require higher # Min value. 

Therefore, as a default we recommend # 𝑀𝑖𝑛 = N/5. This number of samples is reasonably 

enough to cover the noises and on the other hand, it is sufficient observed samples to decide 

whether the pixel is part of the background or foreground. 

It then checks if bootstrapping has occurred in the sequence. If the system detects any 

moving object during the initialisation stage, it will categorise the sequence as a bootstrapping. 

Normally when bootstrapping is occurring, the moving object (foreground) will exist in the 

background model. This will significantly reduce the detection rate. To improve the detection 

in bootstrapping sequences, we have set up a special rule. 
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We attempt to find the shape of each object existing in the scene by combining the results of 

colour and depth canny edge detection. Then extracts all edges of the scene as an object. The 

system checks each object exists in the scene with the segmentation result (foreground). If a 

high percentage of any object in the scene is identified as a foreground, then the whole object 

will be added to the foreground mask. In the next step, we compare all the non-ADO depth 

pixels with 𝑀(𝑋)𝐷. If the difference is larger than 𝑇ℎ𝐷 (acceptable depth tolerance threshold), 

we count the pixel as having longer depth value. Each pixel location which finds at least # 𝑀𝑖𝑛 

similar pixels, will be classified as bg. Then, pixels which are on the edges and around object 

boundaries will be only classified based on the colour result as depth value is not accurate 

around object boundaries [88][48]. All other pixels will be compared with the 𝑀(𝑋)𝐷.Those 

pixels who cannot find # 𝑀𝑖𝑛 in the same or longer range by considering some tolerance 𝑇ℎ𝐷, 

will be classified as fg. for the remaining pixels, the colour value of L component will be then 

checked. If it represents a dark value, then we count this area as a shadow and the pixel will be 

classified as bg. The remaining pixels will be compared with the depth model again without 

any tolerance this time, if it could find enough similarity, the pixel will be classified as bg. All 

other pixels will be decided by comparing to the 𝑀(𝑋)𝐿𝑎𝑏. Note the value of tolerance in this 

system is different from other methods. Experimentally, we have realised that depth sensors 

are more accurate in closer areas. Therefore, the depth tolerance value should depend on the 

distance of the pixels to the sensor. In fact, the larger the value of depth pixel is, the higher the 

tolerance needs to be. 

As illustrated in figure 4.2, the system first checks whether the depth pixel is available 

or is ADO. If the pixel is ADO, the segmentation will be only based on the colour result. If the 

pixel is non-ADO, then it compares the value of depth pixel with the depth model. If the pixel 

is larger than some pixels (#𝑀𝑖𝑛) in the model, the pixel will be identified as a background 

pixel. This step is shown as “Longer depth compare to the model”. If the pixel is not larger 

than samples in the model, then the system in “Is bootstrapping occurring” step checks if 

bootstrapping happened in the scene. In the next step, it checks whether the pixel is on the 

object boundaries in “is pixel on the edges”. If the pixel is on the boundaries, then the depth 

pixel is not reliable and therefore it only relies on the result of colour. After that, it compares 

the depth pixel with the model and considering some tolerance in “Few similarity 

depth+tolerance samples”. If it couldn’t find #𝑀𝑖𝑛 similarity with the model, the pixel will be 

identified as foreground otherwise, the system checks if shadow occurs in “Is it shadow”. In 

the last step “Few similarity depth with samples?”, it again checks the pixel against the model 
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without tolerance and if cannot find some similarity, it will segment the pixel based on the 

decision of colour. 

 
Figure 4.2. Flowchart of the proposed segmentation method. 
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4.3.2 Background Model Update 

The proposed method is using two schemes to continuously update the background model with 

the new frames. Regular and blind update aids the models to adapt to the changes in the 

background over the time. An example of these changes is a new object appearing in the scene, 

illumination changes and change to the location of an object completely in a different area to 

the background. Similar to the original method [3], the regular update will only update those 

pixels identified as a background. This has been discussed in detail in the previous chapter 

(section 3.2.4). 

4.3.3 Blind update policy 

 

Conservative scheme that has been used in the regular update will only affect those pixels that 

have been identified as part of the background. The main drawback of this policy is that 

misclassified foreground pixels will be held in the background model. Then real background 

pixels will permanently classify as foreground and never enter the scene model. This will lead 

to a deadlock situation and creation of ghost phenomenon. On the other side, blind policy 

updates the scene model with any pixel regardless of being part of the foreground or 

background. This policy has some advantages such as being able to adapt to the changes in the 

background and prevent the production of ghost phenomenon. The weakness of a blind update 

is that slow and stationary objects will gradually become part of the background. Moreover, 

the frequency of blind update has also been discussed in the literature. Using a high rate of 

blind update could cause some foreground pixels misclassified as background. However, the 

background pixels are rarely misclassified. 

In this chapter, we are proposing an adaptive blind update for background model which 

reduce the weakness of blind update and allows the model to adapt to complex scenarios. The 

scene with fast-moving foreground objects can tolerate more frequent blind update than slow-

moving objects. This is because slow-moving objects will gradually absorb to the model. 

Therefore, the frequency of a blind update is fundamental and depends on the type of moving 

object (fast, slow or stationary). Consequently, by tracking the moving object, the frequency 

of blind update can be changed based on the speed of the object. We have defined three speeds 

categories for the moving object as fast, slow and stationary. When the moving object is fast, 

the blind update could occur more often. In the case of slow-moving, we will reduce the 

frequency and once it is stationary, the blind update rate should be near zero. The proposed 
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method is based on three main stages: 1) Constantly detection of moving object, 2) Track the 

moving object, 3) calculate the frequency of blind update.  

In this research, RGB-D sensor has been used which allows us to produce the 3D 

position of any pixel in the scene. A simple tracking method has been used in this research to 

reduce the cost of computation, although it is possible to employ more complex tracking 

methods. 

If we denote the central position of the moving object as 𝑋𝑡 = (𝑥1, 𝑦1, 𝑧1) at the time t, 

a second after (t+1), the moving object will be at 𝑋𝑡+1 = (𝑥2, 𝑦2, 𝑧2).  Then the distance taken 

by the moving object can be calculated as: 

 

𝐷𝑚(𝑋𝑡, 𝑋𝑡+1) = √(𝑥2−𝑥1)2 + (𝑦2−𝑦1)2 + (𝑧2−𝑧1)2               (4.3)

  

The distance taken by the foreground in a second can be used to change the frequency of blind 

update as the following: 

 

𝛼 = {

  𝐻𝑖𝑔ℎ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑢𝑝𝑑𝑎𝑡𝑒        𝐷𝑚 > 𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 𝐿𝑜𝑤 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑢𝑝𝑑𝑎𝑡𝑒          𝐷𝑚 < 𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

  ≈ 0                                              𝐷𝑚 ≈ 0                  
                         (4.4) 

 

Where 𝛼 is the frequency of blind update and 𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is the amount of distance that defines 

the fast or slow-moving object. If the moving object travel more than 𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 will be 

considered as fast-moving and lower than that will be considered as a slow-moving object. 

 

4.4 Results and evaluation 
 

To evaluate the performance of the proposed method, three experiments have been carried out 

in this chapter. At first, the proposed method has been compared in Total Error (TE), Similarity 

measure (S) and Similarity measure in object boundaries (SB) to the original method introduced 

in the previous chapter [3]. Then the result of the proposed method has been compared with 

the other state-of-the-art algorithm to measure the accuracy of our approach. To achieve this, 

the proposed method has been tested on the publicly available dataset called SBM-RGBD 

introduced in [116]. The ground-truth, ROI (region of interest) and a MATLAB code to 

evaluate the results has been provided with this dataset to compare the accuracy of an individual 

method. 
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According to the SBM-RGBD organisation [116], to have a more precise evaluation, the parts 

around foregrounds are categorised as an unknown motion due to motion blur and 

semitransparency that do not allow an accurate segmentation. Thus, these parts are defined as 

outside of evaluation. Figure 4.3 illustrates an example of ground truth in this dataset where 

the outside in region of interest is assigned to a pixel value of 85, background pixels 0, 

foreground pixels 255 and unknown motion as 170. 

 

 
Figure 4.3. Sequence ChairBox in [116]. 

 (a) colour, (b) depth images, (c) ROI, (d) ground truth 

 

 

In particular, the evaluation is based on the following metrics: Recall, Specificity, False 

Positive Rate, False Negative Rate, Percentage of Wrong Classifications, Precision and F-

Measure. This dataset has 33 sequences under seven different challenging categories in 

Illumination Changes, Colour  Camouflage, Depth Camouflage, Intermittent Motion, Out of 

Sensor Range, Shadows and Bootstrapping. Table 4.1 illustrates the summary of this dataset. 

We should state that the proposed method has been evaluated with the entire dataset and only 

one set of tuning parameters have been used to produce the segmentation result for all the 

sequences. A detailed result of the proposed method (BSABU) including a qualitative 

segmentation result for each sequence is available on [129]. 

At last, we have tested the algorithm in the real-time application to measure the 

computational cost of our method. This test shows that the system can successfully run the 

application in real-time with approximately 12 frames per second. 
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Table 4.1. Full details of SBM-RGBD datasets introduced in  [116]. 

 

Category Sequence Name  Number 

of 

Frames 

Number 

of Ground 

truth 

Frame number 

where moving 

object occur 

Main 

effected 

sensor 

Test Objective 

 

 

 

 

 

Bootst 

rapping 

adl24cam0 70 4 1  

 

 

Colour  

Depth 

Sequences containing 

foreground objects in all their 

frames  bear_front 290 15 1 

Bootstrapping_ds 399 11 1 

fall01cam0 160 9 1 

fall20cam0 110 6 1 

 

 

 

Colour  

Camouflage 

Cespatx_ds 429 11 133  

 

Colour  

Sequences containing 

foreground objects that are 

having similar colour  to the 

background 

Hallway 618 18 48 

colour Cam1 300 29 57 

colour Cam2 360 26 61 

 

 

 

Depth 

Camouflage 

DCamSeq1 600 46 1   

 

Depth 

Sequences containing 

foreground objects that are 

having a similar depth to the 

background 

DCamSeq2 670 52 98 

Despatx_ds 465 12 145 

Wall 218 80 60 

 

 

 

Illumination 

Changes 

 

ChairBox 529 62 1  

 

  

  Colour  

Sequences including strong 

and mild illumination  
Ls_ds 408 2 0 

TimeOfDay_ds 1232 2 0 

genSeq1 410 25 103 

 

 

 

 

Intermittent 

Motion 

Shelves 554 134 183  

 

 

Colour  

Depth 

Sequences with scenarios 

known for making “ghosting” 

artifacts in the detected 

motion.  Removed foreground 

objects or abandoned 

foreground objects. 

Sleeping_ds 300 9 85 

abandoned1 250 47 1 

abandoned2 250 72 52 

movedBackgroun

d1 

250 78 1 

movedBackgroun

d2 

250 37 1 

 

 

 

 

OutOfRange 

MultiPeople1 1190 39 118  

 

 

Depth 

Sequences including 

foreground or background 

objects that are too far or close 

from the sensor 

MultiPeople2 1400 53 91 

TopViewLab1 670 33 110 

TopViewLab2 650 33 120 

TopViewLab3 700 39 135 

 

 

 

 

Shadows 

Shadows_ds 331 9 150  

 

Colour  

Depth 

Sequences that foreground 

objects caused creation of 

shadows. These are visible-

light shadows in the colour  

frames or IR shadows in the 

depth frames 

fall01cam1 160 7 62 

genSeq2 300 26 119 

shadows1 260 28 65 

shadows2 250 26 104 
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4.4.1 Comparison to the original Method 
 

In this section, the results achieved by the proposed method will be compared with the original 

algorithm. For more precise comparison, four more sequences which stationary moving object 

occurs in the scene from SBM-RGBD has been added to the publicly available sequences used 

in the previous chapter [3]. The following sequences have been used for comparison. 

 

5. SHSQ: This sequence aims to measure the effect of shadows in the scene by moving a box 

on the floor. 

6. Genseq: This sequence has been made to measure the overall performance of the method 

by having several challenging scenarios that occur in one scene. This sequence is a scene 

with an individual person moving a box containing strong and mild illumination changes. 

7. Colcam: The moving object (the board) in this sequence has the same colour as the 

background to explore the possible errors of the method in colour camouflage. 

8. DCamSeq: In this sequence, moving object (the hand) is moving around the cupboard and 

therefore, it has the same depth as the background to explore the possible errors of the 

method in depth camouflage. 

9. Abandoned1: The scenarios in this video is made to test the tolerance of the method in 

creation of ghost phenomenon. A box will move from the stationary position to the top of 

the cupboard and stay stationary for some frames.    

10. Abandoned2: This sequence is made to test the tolerance of the method for a stationary 

foreground object. A bag will be dropped in the scene and remain there for a while. 

11. MovedBackground1: It aims to measure the accuracy of the method in case of background 

changes. A box drops from a cupboard and stays on the floor. 

12. MovedBackground2: The video starts with a bag on the floor and will be removed from 

the scene. Similar to moved Background1 the goal is to measure the algorithm in 

background changes. 
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To quantitatively evaluate the accuracy of each method, the following metrics have been 

used to compare the outcomes. These metrics are explained in detail in the previous chapter 

(section 3.3). 

False Positive (FP): Pixels belong to the background which are classified as foreground. 

False Negative (FN): Pixels belong to the foreground which are classified as background. 

Total Error (TE): The total amount of misclassified foreground and background pixels which 

normalised to the image size. 

Similarity measure (S): This non-linear metric previously has been used in [118] and called 

Jaccard's index [117]. It combines the FN and FP. This explained thoroughly in the previous 

chapter as equation 3.3.  

𝑆(𝐴, 𝐵) =
|𝐴 ⋂ 𝐵|

|𝐴 ⋃ 𝐵| 
                                                                                                                             (4.5) 

Similarity measure (SB): It only explores the misclassified pixels surrounding the foreground 

objects boundaries. It is calculating as S, but only covers the regions of 10 pixels around the 

ground-truth boundaries. 

Figure 4.4 illustrates an example of qualitative comparison in a stationary moving 

object dataset. Where (a) is colour image, (b) depth image, (c) ground-truth, (d) original method 

and (e) proposed method. The sequences are dynamic and each row in the figure represents 

one of the last few frames of a sequence. These sequences are abandoned1, moveBackground1, 

abandoned2, movedBackground2 and shseq sequences where a stationary moving object exist. 

Segmentation results which are closer to the ground truth (white area) show more accurate 

detection. The grey area shows outside of the region of interest which are not part of the 

evaluation. The proposed method clearly could achieve more accurate results in these 

stationary moving object sequences.  

In the first sequence (abandoned1), the brown box moves from the floor to the top of 

the cabinet and stays stationary. As the foreground stays stationary, it will gradually absorb to 

the model in the original method. However, in the proposed method, the system significantly 

reduces the blind update as the item is stationary and consequently the foreground detection 

remains sharp and more accurate. 
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Figure 4.4. Example of qualitative comparison in a stationary moving object datase t.  

The grey area shows outside of the region of interest (a) Colour image, (b) Depth image, (c) Ground-

truth, (d) Original method, (e) Proposed method.                                                                                                                                                         

 

In moved background1, the brown box drops from the top of the cabinet to the floor 

and stays stationary there. The foreground gradually absorbs to the model due to the blind 

update. However, the proposed method can keep the sharp detection of the foreground due to 

the reduction of frequently in the blind update. 

In abandoned2 sequence, a black bag will be dropped in the scene and stay stationary 

there. The foreground starts absorbing to the model in the original method and the foreground 

will gradually disappear in segmentation mask. This starts from the bottom of the bag as it is 

closer to the background.  
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In moved background2 sequence, the bag will be removed from the scene and both 

methods could successfully maintain the background model.  

In shseq, both methods could avoid the shadow. However, due to the advanced 

segmentation method, the proposed algorithm could produce a more accurate result in object 

boundaries, less noise and the hand is fully detected. 

 The results show that both methods could completely prevent ghost production in the 

movedBackground2 sequence which the bag has been removed from the scene to measure the 

tolerance of the algorithms in background changes. However, in stationary moving objects, the 

proposed method could achieve better results by preventing the absorption of the moving object 

into the background model.    

Figures 4.5-7 demonstrate the accuracy of the proposed method in this chapter and the 

original method introduced in the previous chapter (NBMS) [3] in TE, S and SB. The lower 

amount of TE and higher S and SB shows better performance. As illustrated in the figures, the 

performance of both methods is very close in those sequences that the stationary object or slow-

moving object doesn’t exist for a while (Genseq, Colcam, SHSQ). However, in those sequences 

with a stationary moving object (abandoned1, abandoned2, movedBackground1, 

movedBackground2) the proposed method could have achieved better results in all sequences.  

 

 
Figure 4.5. Total error (TE). The lower amount shows better performance.  
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Figure 4.6. Similarity measure (S).  

The higher amount shows more similarity with the ground truth and therefore better performance. 

 

 

 
Figure 4.7. Similarity measure in object boundaries (𝑆𝐵).  

The higher amount shows more similarity with the ground truth around the object boundaries and 

therefore better performance. 

 

The proposed method in this chapter (BSABU) is also compared to the other methods in the 

drone datasets (Crazyflie and AR.Drone) which were introduced in chapter three (section 

3.3.1). Table 4.2 illustrates the results of BSABU and other methods in Crazyflie sequences. 

The results show similar performance to the original method introduced in chapter 3. Also, 

Table 4.3 illustrates the results of BSABU and other methods in AR.Drone sequences. In this 

sequence, the proposed method demonstrated similar performance compared to the original 

method introduced in chapter 3. These results indicate the proposed method and the original 

method have very similar performance in scenarios which stationary moving object and 

bootstrapping doesn’t exist. 
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Table 4.2. Craziflies sequence results. 

False positives (FP), False negatives (FN). Total error (TE). Similarity measure (S), Similarity measure 

in object boundaries (𝑆𝐵). Lower TE, FN and FP show better result and higher S and 𝑆𝐵 demonstrate 

higher similarity to the ground truth. 

 

  Method 
TE   FN   FP   S   SB  RM 

Avg.  St.Dev  Avg. St.Dev  Avg.  St.Dev  Avg. St.Dev  Avg.  St.Dev  

MOGRGB−D  0.63 0.17  51.25    13.56  0.02 0.02  0.34 0.17  0.37 0.14 4.2 

GSMUB  0.08 0.01  55.96 23.49  0.03 0.03  0.27 0.13  0.29    0.09 4.8 

  GSMUF  0.12 0.27  37.59 18.25  0.09 0.03  0.27 0.11  0.34    0.08 4.4 

PBASBin  0.63    0.06    0.20   0.57  0.63 0.06  0.11 0.04  0.44 0.07 3.8 

  VIBEBin  1.45 0.19  19.12 10.71  1.43 0.19  0.04 0.02  0.42 0.06 5.0 

MBNS 

 

0.05 0.01  42.63 17.85  0.01 0.02  0.42 0.18  0.42 0.11 2.2 

BSABU 0.04 0.02  40.73 15.05  0.04 0.03  0.40 0.20  0.41 0.14 3.0 

                 

Table 4.3. AR.Drone sequence results. 

False positives (FP), False negatives (FN). Total error (TE). Similarity measure (S), Similarity measure 

in object boundaries (𝑆𝐵). Lower TE, FN and FP show better result and higher S and 𝑆𝐵 demonstrate 

higher similarity to the ground truth. 

 

  Method 
TE   FN   FP   S   SB    RM 

Avg.  St.Dev  Avg. St.Dev  Avg. St.Dev  Avg. St.Dev  Avg.   St.Dev  

MOGRGB−D  0.15 0.16  14.79     12.02  0.04 0.06  0.79 0.13  0.80 0.11 3.2 

GSMUB  0.49 0.29  74.97     11.66  0.01 0.01  0.25 0.12  0.26    0.12 5.4 

  GSMUF  0.31 0.26  9.59   6.52  0.25 0.21  0.69 0.11  0.74    0.08 4.0 

PBASBin  1.25    0.33  0.25   0.80  1.25 0.33  0.33 0.09  0.66 0.10 5.2 

  VIBEBin  1.02 0.26  2.73   3.41  1.18 0.25  0.33 0.09  0.74 0.09 4.6 

MBNS 0.13 0.11  11.84   6.02  0.05 0.07  0.82 0.11  0.83 0.08 2.2 

BSABU 0.15 0.17  14.03   7.80  0.04 0.08  0.82 0.15  0.82 0.15 2.4 

                 

4.4.2 SBM-RGBD Dataset 
 

In this section, we have evaluated the proposed method with the entire SBM-RGBD datasets 

and compared our results with other state-of-the-art methods in SBM-RGBD challenge. These 

methods are RGBD-SOBS [53], RGB-SOBS [95], SRPCA [124], SCAD [52], 
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cwisardH+[130], AvgM-D, Kim and MFCN [34]. Table 4.4 demonstrates the average results 

of the entire dataset. A detailed result of the proposed method (BSABU) for each sequence is 

available on [129]. The SBM-RGBD dataset comes with a MATLAB code to measure the 

accuracy of the moving object detection across various challenges. Formally TP, TN, FP, and 

FN show the total number of True Positive, True Negative, False Positive and False Negative 

for each video. The seven metrics used in this challenge for evaluating the results of moving 

object detection are: 

1. Recall                                                           𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
             (4.6) 

 

2. Specificity                                                    𝑆𝑝 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                     (4.7) 

 

3. False Positive Rate                                      𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                        (4.8) 

 

4. False Negative Rate                                     𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃+𝐹𝑁
                       (4.9) 

 

5. Percentage of Wrong Classifications           𝑃𝑊𝐶 =  100 ×
𝐹𝑁 + 𝐹𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
     (4.10) 

 

6. Precision                                                       𝑃𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                    (4.11) 

 

7. F-Measure                                                     𝐹 =
2 × 𝑃𝑟𝑒𝑐 × 𝑅𝑒𝑐

𝑃𝑟𝑒𝑐 + 𝑅𝑒𝑐
                     (4.12) 

 

Table 4.4. Average results of all available methods in SBM-RGBD datasets. 

Name Recall Specific

ity 

FPR FNR PWC Precision F-Measure 

RGBD-SOBS 0.8391 0.9958 0.0042 0.0895 1.0828 0.8796 0.8557 

RGB-SOBS 0.7707 0.9708 0.0292 0.1578 5.4010 0.7247 0.7068 

SRPCA 0.7787 0.9738 0.0262 0.1499 3.2243 0.7477 0.7474 

SCAD 0.8847 0.9932 0.0068 0.0439 0.9088 0.8698 0.8757 

cwisardH+ 0.7622 0.9817 0.0183 0.1664 2.8806 0.7556 0.7470 

AvgM-D 0.7065 0.9869 0.0131 0.2221 2.8848 0.7498 0.7157 

Kim 0.8493 0.9947 0.0053 0.0793 1.0292 0.8764 0.8606 

MFCN 0.9186 0.9984 0.0016 0.0100 0.2373 0.9103 0.9143 

Proposed-

Method(BSABU) 
0.8211 0.9955 0.0045 0.1075 1.0854 0.8795 0.8477 
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In addition, for more precise comparison the evaluation method in [62] is used to calculate the 

average ranking of a method (RM) which combines the performance of each method across 

different metrics in each sequence for whole datasets illustrated in figure 4.9.   

Formally, let us denote the 𝑁𝑚as number of metrics in sequence sq and ranking of the 

ith method for the metric m as 𝑟𝑎𝑛𝑘𝑖(𝑚, 𝑠𝑞). The average ranking of the method i is given as: 

 

𝑅𝑀𝑖 =
1

𝑁𝑚
∑ 𝑟𝑎𝑛𝑘𝑖(𝑚, 𝑠𝑞)

𝑚

𝑖=1

                                                                                                        (4.13) 

Figure 4.8 illustrates qualitative comparison in 7 different challenging sequences in SBM-

RGBD datasets with more than 15000 frames. These sequences are; bear_front 

(Bootstrapping), colorCam1 (Colour Camouflage), Wall (DepthCamouflage), ChairBox 

(Illumination Changes), TopViewLab2 (Out of Range), movedBackground2 

(IntermittentMotion) and shadows2 (Shadows). All methods which participate in SBM-RGBD 

challenge and report their results are listed in this comparison. These methods are; (a) Colour 

frame, (b) Colour coded depth frame, (c) ground-truth, (d) RGBD-SOBS, (e) RGB-SOBS, (f) 

SRPCA, (g) SCAD, (h) cwisardH+, (i) AvgM-D , (j) Kim, (k) MFCN, (l) Proposed-Method 

(BSABU). The ground truth (c) is also available with this dataset and results which are more 

similar to the ground truth (c) are better. Figure 4.8 shows some methods are not consistent 

which leads them to achieve poor detection result in some sequences and accurate on others. 

For example, RGBD-SOBS (d) only detect some part of the foreground in Bootstrapping and 

intermittent motion sequences, RGB-SOBS (e) method totally failed to detect the foreground 

in colour camouflage and intermittent motion sequences. SRPCA (f) method incorrectly 

detected a large number of background pixels as a foreground in bootstrapping, colour 

camouflage, depth camouflage, and out of range sequences. cwisardH+ (h) method also failed 

in bootstrapping, depth camouflage, intermittent motion sequences. AvgM-D (i) method totally 

failed to detect the foreground in illumination changes and out of range sequences. However, 

four methods (SCAD, Kim, MFCN, Proposed-Method (BSABU)) could show more consistent 

detection in all sequences. SCAD (g) and Kim (j) also couldn’t detect the entire foreground in 

the bootstrapping and illumination changes sequences. Therefore, according to the figure of 

4.8, the proposed method and MFCN could achieve the most reliable and consistent results 

among all these sequences. 
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Figure 4.8. Qualitative comparison in 7 challenging scenarios.  

 (a) Colour frame, (b) Colour coded depth frame, (c) Ground-truth, (d) RGBD-SOBS, (e) RGB-SOBS, 

(f) SRPCA, (g) SCAD, (h) cwisardH+, (i) AvgM-D, (j) Kim, (k) MFCN, (l) Proposed-Method 

(BSABU) 
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In order to have more accurate detection comparison of mentioned methods, figure 4.9 

illustrates the quantitative comparison of mentioned methods in all 33 sequences of SBM-

RGBD datasets. the MFCN method could detect the moving objects accurately in almost all 

categories and achieve the best results in all average results. However, this method requires 

many hours of training process for this dataset which is an extensive process compared to our 

method which requires only a few seconds to create the model. After MFCN, the proposed 

method could achieve the best results in DepthCam, Intermittent motion, and shadows 

sequences. Accurate detection in DepthCam sequences shows the method could manage the 

weakness of the depth sensors (absence of depth value, similar depth and sensor error in the 

depth value) by using colour frames. On the other hand, it also managed the appearance of 

shadows by using L*a*b* Colour and shadow detection method. The adaptive blind update 

significantly aided the proposed method to manage intermittent motion sequences which 

normally is based on the appearance of a new object or removing an object from the 

background.  

 

 

Figure 4.9. Average ranking of all existing methods in each category of the dataset. 

 A lower amount shows better performance in the category. 
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The weakest detection of the proposed method and most of the other methods belong to 

Bootstrapping sequences. The reason for this is that the moving object is included in the 

background from the beginning and consequently, it will be added to the background model. 

Therefore, the moving object will be assumed as a background. In some bootstrapping 

sequences, the ground truth starts from sequence 1 which is impossible for our method to detect 

the moving object (person) as the background model has not yet been created. Therefore, we 

have added histograms of oriented gradient [131] to help the detection of people at the 

beginning of each sequence.  

On other sequences, the results are acceptable compared to the other methods which shows 

the stability of the algorithm in all sequences. In other words, it is proven that it is able to 

detect most moving objects in these challenging scenarios and does not completely fail in any 

scenario.  

4.4.3 Real-time Experiment 
 

The proposed system has been tested in a live application with the processing time of 

approximately 12 fps (frame per second) or 80 ms for a 640x480 video. The computational 

cost of the algorithm is calculated as the mean rate of the processing time of the algorithm. The 

test was performed on a computer with an Intel (R) Core (TM) i7-6700HQ CPU @2.6 GHz 

and 8 GB RAM along with Microsoft Kinect v2 sensor.  

It is worth mentioning that the proposed algorithm used during these tests has been 

implemented in C++ and OpenCV library [119] without any specific code optimisation as the 

aim of this experiment is to show that the proposed algorithm can successfully run at real-time 

rates and therefore no effort has been made to optimise the code/set-up. 

 

4.5 Summary  
In this chapter, a moving object detection using adaptive blind updating is proposed. The main 

contribution of this chapter is adding adaptive blind update method, more complex 

segmentation, proposed bootstrapping detection, proposed shadow detection method based on 

L*a*b* colour space and complete evaluation of this method.  

The proposed method in this chapter is able to deal and adapt to the complex scenarios 

such as environmental changes, illumination changes, bootstrapping, shadow, as well as 
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detecting the fast, slow and stationary objects while reducing the creation of ghost 

phenomenon.   

By tracking the moving object, the frequency of blind update will be changed according 

to the speed of the moving object. This strategy will significantly help the scene model to adapt 

to moving objects with different speed. A simple tracking method has been used in this work 

to reduce computational costs. In addition, the proposed shadow detection method based on 

L*a*b* colour space helps the system to increase detection accuracy in shadow and depth 

camouflage scenarios. Also, this method is able to detect bootstrapping sequences and then use 

an edge detection technique to improve the detection accuracy in bootstrapping scenarios. 

 Experimental results show that the proposed method can significantly improve the 

accuracy of the algorithm when stationary objects exist. On the other hand, on fast-moving 

sequences, the algorithm achieved slightly improved or equal results to the original method. 

The best performance of this method is only achievable when one moving object exists. 

In general, the main advantages of the proposed method are to improve segmentation 

accuracy in stationary moving objects, bootstrapping, shadow and depth camouflage scenarios. 

Overall the proposed method proved it is more consistent in all situations. The main 

disadvantage of the proposed method is that the system has a higher computational cost 

compared to the original method. However, this method can still be applied in live applications.  

Although this method performed well compared to the other existing methods, the 

regular update in this method is still using a basic updating mechanism. Methods introduced 

so far in this thesis are storing the pixels in the model and the pixels of the new frames will be 

compared with the models in order to identify them as background or foreground. These models 

are requiring a constant update to be able to adapt to the changes occurring in the background 

such as illumination changes. The traditional optimization approaches such as linear 

programming which has been implemented in the proposed methods are often cannot discover 

the optimal solution for problems with various peaks in a short amount of time. Therefore, in 

the next chapter, we are going to investigate the use of artificial intelligence in the update 

method to improve the weakness of the proposed methods. In particular, we are going to use 

AI to increase accuracy and efficiency by reducing the computation costs of nonparametric 

background subtraction methods. 
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Chapter 5                            

Background modelling and 

segmentation using a Genetic 

Algorithm and Hill Climbing 

 

5.1 Introduction 
 

Nonparametric background modelling and segmentation which are introduced in the previous 

chapters are storing the pixels in the model and then the new frames will be compared with the 

models in order to identify as background or foreground. These models are requiring a constant 

update to be able to adapt to the changes occurring in the background such as illumination 

changes. 

The traditional optimization approaches such as linear programming and dynamic 

programming often cannot discover the optimal solution for problems with various peaks. In 

these cases, related researchers are using Evolutionary Computation (EC) methods in image 

segmentation. These approaches combine the classical segmentation methods with the EC 

techniques such as Genetic Algorithm [132][133]. EC is an umbrella term that combines 

Genetic Programming (GP), Genetic Algorithms (GA) and evolution strategies [134]. 

Typically, EC is responsible for optimising parameters and maximizing or minimizing 

objective functions in these hybrid systems [135]. These methods help to solve complex 

problems by discovering the optimal solution through simulating a natural system of biological 

evolution via using the processes of selection, mutation, and reproduction. This allows 

individuals in a population to compete to reach the same goal. Among these methods typically 

GA is a universal optimisation method in large space to search and find the solutions. GA has 

been introduced based on Darwin’s theory of the evolution and survival of the fittest. This 

theory is discussed in detail in [136]. 

EAs methods have been effectively applied to an extensive range of problems such as 

parameters estimation [137], classification [138], optimization [139], pose estimation [140], 

motion estimation [141],  and adaptation to environmental variations in computer vision 

applications [142].  
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In this chapter, a new update method based on Hill Climbing (HC) and Genetic Algorithm has 

been proposed and added to the object detection algorithm introduced in chapter three [3] based 

on colour and depth frames. This method generates an individual model for colour frames and 

additional model for depth frames. These models store the previously observed pixels. Then, 

the system will label each new pixel as foreground or background by comparing them to these 

models. Due to the number of stored samples, the size of involved search space is large and 

consequently update process is usually an expensive task in terms of computation. For example, 

in 800 × 600 image size with 20 samples the search size would be 9,600,000. Therefore, in live 

applications, a powerful search method is required to efficiently find the optimal background 

model instead of comparing all pixels one by one in the loop. The optimal background model 

can be calculated by a fitness function based on the distance of depth data. This will be 

discussed in more detail in section 5.3. First Hill-Climbing algorithm has been tested to check 

if it can efficiently find the optimal model and then a separate Genetic Algorithm has been 

investigated to search for the optimal background model. Using the Hill-Climbing algorithm 

in the field of computer vision is not completely new and has been previously applied 

differently in some other research [143][144]. Results show that HC is more accurate in the 

overall detection rate, around object boundaries and also is able to tolerate more illumination 

changes compared to the GA algorithm. In addition, the proposed method based on HC is more 

efficient than the original and GA methods in terms of computational cost. It is worth 

mentioning that our proposed method in this chapter belongs to a draft paper[145] and some 

contents of this chapter are from this journal paper. 

In the remainder of this chapter, in section 5.2 related work will be discussed, section 5.3 

the moving object detection algorithm, background modelling and update process proposed in 

this chapter will be explained in detail. In section 5.4, the result of the proposed method will 

be compared to the other state-of-the-art methods. Section 5.5 will be a real-time evaluation. 

Section 5.6 will be comparisons of all proposed methods in this thesis and section 5.7 is a 

summary of the entire chapter.  

 

5.2 Related Work 
In chapter three a novel sample-based method using colour and depth data was proposed [3]. 

This approach creates separate models for colour and depth information. This model used a 

fast initialisation process by storing the first N number of colour and depth frames to produce 

the models according to the background of the scene. The ADO removal strategy reduced the 



 

97 
 

noises in depth frames by filling the unknown pixel values before storing to the depth model. 

In order to do this, the system exchanged all the unknown values with the estimated values. 

This method is based on the assumption that neighbouring depth pixels are most likely to have 

a similar value. This assumption is used to remove the unknown pixels by replacing them with 

one of the nearest pixel values. The advantage of this effective method is being fast and simple 

which can significantly decrease the number of errors by having more accurate depth pixel 

values in the depth model. To produce the final foreground mask image, this method merges 

the results from colour and depth models. In order to do this in each location the value of the 

colour pixel will be compared to the colour model to check if the pixel value is close to some 

of the sample values in the model or not. 

Depth pixels were similarly compared to the depth model to find out if the pixel was in 

the same distance or was closer to the camera. On the other hand, if the value of the pixel were 

unknown (ADO), the system would only rely on the colour model outcome in that pixel 

location. In particular, those pixels which have a close or greater distance to some of the depth 

sample values in the depth model would be considered as a background. Other pixels were 

compared with the depth model again while the threshold has been increased. Those pixels 

which failed this condition were identified as a foreground. All the other pixels were compared 

with the colour model. Accordingly, if the remaining pixels could find some similarity with the 

colour model, they were identified as a background, otherwise, they were classified as a 

foreground.  

Figure 5.1 demonstrates a flow chart diagram of the segmentation method. Those pixels 

which were classified as the background would be compared to the model. If they have better 

values (higher distance), they were then be exchanged by the lowest value in the model. The 

amount of tolerance the system can accept is fixed in this method. However, a closer point to 

the camera was more sensitive compared to the pixels located further from the camera [121]. 

In addition to the regular update, after some frames, the system would replace the new pixel 

with one of the samples in both models regardless of segmentation result. One of the main 

drawbacks in this system was that the update mechanism was based on a simple logical method 

which compared all pixels in the model after every new frame. This makes this method 

inefficient to deal with the noise of the sensors because the noise could have high value and 

therefore stay in the model for a long period of time. For this simple update mechanism, the 

system was unable to store reliable pixels to accurately detect the moving object in depth 

camouflage scenarios. Also, this update mechanism is comparing all pixels in the model after 

every new frame in the loop which is significantly inefficient in terms of computational cost.  
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Therefore, the proposed method in this chapter is instead to use advanced optimisation method 

such as GA and Hill Climbing to improve the accuracy and efficiency of this segmentation 

method. 

 
Figure 5.1. Flow chart of the proposed classification  method introduced in chapter 3 

[3]. 

 

5.3 Proposed Method 
 

The method proposed in this section uses a nonparametric background modelling and 

segmentation which has been introduced in chapter three [3]. The main contribution of this 

chapter is adding a new update method to efficiently find the optimal background model and 

adapt the model to the changes in the background such as illumination changes. The 

background model update has always raised a question about which sample we should store in 

the model and for how long we can use them [8]. Classical approaches typically discard the old 
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pixels in the model and exchange them with the new pixel after a few frames or seconds. These 

approaches exchange all the old values regardless of whether they are valid samples or not. 

Recently, The ViBe [8] algorithm introduced random substitution with the model which might 

allow the valid sample pixel to stay longer in the model. In [3], a new model update method 

has been introduced which replaces the pixel by the smallest distance in the model with the 

pixel from the new frame in the same location. This helps to maintain an updated model with 

the new changes as well as keeping the valid samples in the models. However, the new samples 

are not necessarily always the best samples of the scene. On the other hand, traditional methods 

update the model pixel by pixel, instead, in this chapter, the model will be updated by each 

sample frame in the model in order to prevent permanent wrong background pixel allocation 

as it could be added to the model by error or noise of the sensor. In addition, the method is 

more efficient as it doesn’t need to compare the new pixel with all other pixels after every 

frame. In order to find the optimal background model, we need a powerful search method to 

search and update the background model. To do this, we have implemented two different type 

of optimization methods (Hill-climbing and Genetic Algorithm) to discover which one is more 

suitable for this problem. One (The Genetic Algorithm) is a global search strategy and the other 

one (Hill-Climbing) is a local search optimisation algorithm. First, we have implemented our 

update method based on Random Mutation Hill Climbing (RMHC) algorithm which is a type 

of heuristic search and it increases efficiency to find a solution in a reasonable amount of time. 

Typically, heuristic search methods do not necessarily always find an optimal solution but 

alternatively may discover an acceptable solution in a short period of time which is an 

important factor in live applications. Hill climbing is also referred to as a greedy local search 

since it goes ahead without thinking where to go next [146]. However, greedy algorithms in 

some cases are able to obtain decent results [147]. The goal of using Hill Climbing is to find 

out if this method is capable of selecting the true background pixels from previously observed 

pixels and store them in the background model in a shorter period of time. As Hill-Climbing 

algorithm sometimes gets stuck in local optima, separately this method is also implemented 

with Genetic Algorithm to assess if this update strategy can reach to the global optima and 

outperform the Hill Climbing method. We called these methods nonparametric background 

modelling using GA (NBM-GA) and nonparametric background modelling using Random 

Mutation Hill Climbing (NBM-HC). In the remaining of this section, in 2.1 the NBM-GA will 

be explained and in 2.2 NBM-HC will be discussed in more detail. 
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5.3.1 Background Modelling using a 

Genetic Algorithm (NBM-GA) 
 

The proposed background modelling and segmentation method involve several steps to be able 

to successfully create the background model and then detect the moving objects by comparing 

the new frames with this model in the live application. Figure 5.2 illustrates the flowchart of 

the proposed Genetic Algorithm.  

To implement this method, we have defined each gene as a pixel value and the number of genes 

in each chromosome is equal to the number of pixels in an image frame. The first N number of 

colour and depth frames will be stored as a vector of pixel value (integer) to create the 

background models which generate an initial population. This step is called “Generate Initial 

Population”.  Depth data is typically noisy and has restrictions in measurement for some 

materials which are normally referred to as “Absent Depth Observations (ADO)”[7] or 

“Holes”[91]. Therefore, to remove all unknown values, the “ADO removal” step will be 

applied to all depth frames before storing them in the model. Then, the “Background Model/ 

Population” step is used to complete the background model and the algorithm starts in the main 

loop. In the “Bg/Fg Segmentation” step, every pixel from the new frame will be compared with 

the models to be labelled as background or foreground. This step follows the MBNS method 

proposed in chapter three [3].  

As soon as the segmentation mask has been produced, the system starts to validate the 

results by comparing it to the previous result. Experimentally, we have found that around 1% 

of depth frames are extremely noisy which could lead to a segmentation result with a high 

amount of false positive. Therefore, the foreground mask will be compared with the previous 

one and if the number of foreground pixels significantly increased, that segmentation is invalid, 

and the system will skip the update process. This stage is called “Valid Segmentation”. This 

can reduce some noise from the detection mask. After validating the foreground/background 

segmentation, updating the models will commence. In order to update the models, the fitness 

of individual chromosome needs to be calculated and a parent required to be selected from the 

population to mate with the new chromosome (the new frame). In the remaining of this section, 

some important steps of this algorithm will be discussed in more detail. 
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Figure 5.2. The flow chart of proposed background modelling and object detection 

method based on Genetic Algorithm. 

5.3.1.1 Fitness Function 
Each image frame is represented as a chromosome and encoded as a vector of pixel value 

(integer). A chromosome is a single string of genes which means that the individual pixel value 

in this method represents a gene. The GA needs to compare the fitness of each chromosome 

and rate how good a chromosome is to perform reproduction. Our fitness function calculates 

the total distance of the background pixels from the maximum distance for the individual 

chromosome in the depth model. This will allow the system to rank the depth samples. This 

rule could be incorrect in some scenarios such as a sensor error. In other words, those pixels 

belong to the model do not exist in the scene. However, GA crossover and mutation update 

stage is added to enable the system to cope with these errors from time to time. 

 Formally, if we denote a 𝑀𝑅𝐺𝐵−𝑑 as a model to store n number of RGB images and 𝑀𝐷 

to store n number of depth images (chromosomes),𝑓𝑖 and xi shows an index of i in a background 

image samples.  

𝑀𝑅𝐺𝐵−𝑑= {𝑓1, 𝑓2, 𝑓3, …, 𝑓𝑛}                                                                                      (5.1) 

let us denote the following function F to measure the fitness of chromosome f:  

          F(f)= ∑ (𝑑𝑀𝑎𝑥 − 𝑑𝑖)
𝑛

𝑖=0
                                                                                             (5.3) 

Where 𝑑𝑀𝑎𝑥 is the maximum distances the sensor can capture, diis the distance of the ith 

background pixel in image f and n is the total number of stored background pixel in the image 

f. The rationale behind the calculation of fitness function is that depth pixels further from the 

camera have more possibilities to be the background pixels as explained in figure 3.7. Once 

the fitness function is calculated, a Roulette Wheel will be used to choose the sample to receive 

an update. 
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5.3.1.2 Roulette Wheel Selection 
Pixels with the lowest depth value have more chance to be picked in the roulette wheel. The 

chance of each chromosome to be selected is proportional to its fitness compared to the total 

fitness of the other chromosomes.  

Typically, Depth pixels are noisy and sometimes the largest pixel value doesn’t mean the best 

pixel for the model. Therefore, the proposed method in this chapter is using GA and Roulette 

Wheel which is a powerful tool for performing a search and optimization. GA is responsible 

for searching and finding the optimal background models over the time instead of other 

approaches. The main advantage of using a Roulette Wheel is that the updated model is able to 

avoid being trapped in a local optimal solution as depth data is noisy and stochastic.  

This will begin by choosing a random number from 0 to ∑F(fitness). Then reduce each 

fitness from the random number until it reaches 0. The last fitness which the random number 

became 0 will be chosen to receive an update. This allows all samples (chromosomes) in the 

model to have a chance to receive an update. However, chromosomes with better fitness will 

have more probability to receive an update. This allows the update procedure to not get trapped 

in the local optimal which could lead to constant misclassification and reduce some noises in 

the results such as sensor errors or wrong background detection. Formally the probability of 

individual chromosome i is calculated as follows: 

 

𝑃(𝑖) =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖)

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑗)
𝑛

𝑗=1

                                                                                                                 (5.2) 

 

Where P(i) is the probability of solution i, fitness(i) is the fitness of solution i and n is the 

number of solutions (chromosomes). A uniform crossover will be applied, once the parents are 

selected (the first parent will be the new frame and the other parent for mating is selected by 

the Roulette Wheel from the model).  

 

5.3.1.3 Uniform Crossover 
 

A uniform crossover will be applied by flipping a coin for each chromosome (50% chance 

each) to decide the genes from which parent will be included in the offspring. A random 

crossover increases time gaps and allows the background models to adapt to the changes in the 

background. A random number will be chosen from 0 and 1 for all the genes in the 
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chromosome. For each gene, if the random number is 0 and the identified background pixel is 

better, it will be included in the off-spring, otherwise, the gene from the other parent will be in 

the off-spring. Then, in “GA mutation update” stage, a mutation will be applied. 

5.3.1.4 GA Mutation Update 
 

Mutation update will help to update the pixels from other observed pixel values in the pool 

instead of the genes from the two parents. This update allows all the pixels in the pool have a 

chance without considering them as either part of the foreground or background. This update 

has been added into our algorithm to enable the system to cope with the changes in the 

background during the time by exchanging the foreground as well as the background pixels. 

To achieve this, some genes from random chromosomes will be included in the same location 

in the offspring. Naturally, the mutation is a very slow phenomenon and used for a random 

exploration, but it should not lead the GA to a pure random search as it would be the case if 

many genes suddenly mutated. Therefore, low mutation rate ensures that not too many 

mutations are considered at once. Consequently, the mutation probability (MP) in this work 

considered as 
1

𝑁×2
 . The GA pseudocode proposed in this chapter is as follows: 

 

 Algorithm 5.1: The proposed Genetic Algorithm Pseudo 

Code 

Input:      

                       μ     Population size (μ = 20) 

                       NG     Number of Generations (30 generations per second)                                                                             

                      CP     Crossover Probability (50% each parent) 

                      MP     Mutation Probability (2.5%) 

                      n     The number of integers (genes) making up each Chromosome       

 

1: Initialize:  

         Generate initial population μ with chromosomes of length n from beginning 

frames 

 

2: while (not end of sequence) 

3: for i = 0 to NG-1 

  4:          Let compute the fitness of all chromosomes 

5: By Roulette Wheel select a chromosome X. (The chance of a chromosome       

surviving is based on proportional of its fitness to the total of the others) 

6: Crossover background pixels in X and the new chromosomes with a chance of 

CP per chromosome to create offspring X’. 
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7:       Mutate X’ with random chromosomes from the pool and a chance of MP per 

gene. 

8:       Replace X’ with the X. 

  9: end for 

10: end while 

Output: Population of best background models 

 

 

 

5.3.2 Background Modelling using a 

Random Mutation Hill Climbing 

(NBM-HC) 
The Random Mutation Hill Climbing method (RMHC) is an offshoot of Hill Climbing 

algorithm. The goals of RMHC is to find a point in the search space that maximises some 

objective function (fitness). The movement starts off at some random area in the search space. 

It then looks randomly at its close neighbours until it finds a place with better fitness. This 

move continues searching for progress from this new point until the final goal is achieved. The 

Random Mutation Hill Climbing algorithm used in this chapter due to the nature of the problem 

we are going to solve. The depth pixel produced by RGB-D camera is not always accurate and 

it produces some noisy pixels. Thus, the segmentation algorithm in this method needs at least 

cardinality denoted by #Min similar samples in the model in order to identify the pixel as 

background. Therefore, even finding the best solution with Hill climbing will not help to 

segment the pixels, as only one sample in the model can be created from the noise/fault of the 

sensor. Consequently, we need to constantly update the entire model. The Random Mutation 

Hill Climbing method in this chapter is as follows: 

NBM-HC method has some advantages over NBM-GA such as being simpler to 

implement, faster and more efficient in terms of computational costs. However, Hill climbing 

algorithms may get stuck in the local optima. In the next section, both methods will be 

evaluated and the results are discussed in detail. 
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 Algorithm 5.2: The proposed Random Mutation Hill 

Climbing Pseudo Code 

  1: Initialize:  

    Create the N initial background model solutions with the beginning frames. 

2: Choose a random point in the search space (N) called S and calculate the fitness of this  

    point named F                               

3: for i = 0 to iteration -1 

4: Then choose another random point close to S called S’with the fitness of F’ 

5:       Compare the F’ and F 

6:              if (F  > F’) 

7: continue the search 

  8:  end if 

  9: if ( F < F’) 

 10: move from S to S’ 

 11: Randomly exchange some background pixels in S with the better pixels (higher 

distance)  in the new frame 

 12: end if 

 13:  end for  

Output: Best solutions in Background Model 

 

 

5.4 Results 

 
In this section, the results obtained from the proposed methods (NBM-GA and NBM-HC) will 

be compared with other object detection algorithms using RGB-D dataset. As both NBM-GA 

and NBM-HC are based on random numbers, we ran the algorithm for twenty times and the 

average results has been used in this section. Additionally, the standard deviation of these 

results also added to the table 1-4. The methods compared in this chapter are CLW [48] , GSMUF 

and GSMUB [7], PBASbin[14], Vibbin[51] and MBNS [3]. The original PBAS algorithm is based 

on colour frames only. In this chapter, it has been extended to use colour and depth (RGB-D) 

frames similar to [51], by merging the outcome of colour and depth binary mask using a logical 

“OR” (non-exclusive). We refer to this technique as PBASbin. It is worth mentioning that all 

output for the proposed method is evaluated without any morphological filtering to help us 

measure the accuracy of the proposed method. Undoubtedly, post filtering functions will 

reduce the noises and the results will be improved. 
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To compare and rank the performance of the algorithms, the following metrics are applied to 

measure the accuracy of the results. False Positive (FP), False Negative (FN), Total Error (TE) 

, Similarity measure (S), 𝑆(𝐴, 𝐵), similarity measure (SB), Average ranking (RM), Average 

ranking among all the sequence. Please note these metrics are explained in detail in chapter 3 

(section 3.3). 

The proposed methods in this chapter (NBM-GA and NBM-HC) first evaluated in the drone 

datasets (Crazyflie and AR.Drone) were introduced in chapter three (section 3.3.1). Table 5.1 

illustrates the results of the proposed methods and other methods in Crazyflie sequences. NBM-

HC achieved the lowest RM which shows the best performance compared to the other methods 

in this challenging sequence. However, still the false negative is very high, S and SB are low 

which shows despite the improvements, it is possible to enhance the detection accuracy even 

further in this sequence. 

 

Table 5.1. Craziflies sequence results. 

False positives (FP), False negatives (FN). Total error (TE). Similarity measure (S), Similarity measure 

in object boundaries (𝑆𝐵). Lower TE, FN and FP show better result and higher S and 𝑆𝐵 demonstrate 

higher similarity to the ground truth. 

 

  Method 
TE   FN   FP   S   SB  RM 

Avg.  St.Dev  Avg. St.Dev  Avg.  St.Dev  Avg. St.Dev  Avg.  St.Dev  

MOGRGB−D  0.63 0.17  51.25    13.56  0.02 0.02  0.34 0.17  0.37 0.14 6.2 

GSMUB  0.08 0.01  55.96 23.49  0.03 0.03  0.27 0.13  0.29    0.09 6.8 

  GSMUF  0.12 0.27  37.59 18.25  0.09 0.03  0.27 0.11  0.34    0.08 6.0 

PBASBin  0.63    0.06    0.20   0.57  0.63 0.06  0.11 0.04  0.44 0.07 5.0 

  VIBEBin  1.45 0.19  19.12 10.71  1.43 0.19  0.04 0.02  0.42 0.06 6.2 

MBNS 

 

0.05 0.01  42.63 17.85  0.01 0.02  0.42 0.18  0.42 0.11 2.8 

BSABU 0.04 0.02  40.73 15.05  0.04 0.03  0.40 0.20  0.41 0.14 4.0 

NBM-GA 0.05 0.01  42.05 16.62  0.01 0.02  0.41 0.20  0.41 0.13 3.6 

NBM-HC 0.04 0.01  41.93 15.55  0.01 0.02  0.42 0.19

= 

 

 0.42 0.12 2.0 

 

Table 5.2 illustrates the results of the proposed methods and other methods in AR.Drone 

sequences. NBM-HC achieved the lowest RM which shows the best performance compared to 

the other methods in this scenario. However, the improvements compared to the original 

method and NBM-GA is not significant. 
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Table 5.2. AR.Drone sequence results. 

False positives (FP), False negatives (FN). Total error (TE). Similarity measure (S), Similarity measure 

in object boundaries (𝑆𝐵). Lower TE, FN and FP show better result and higher S and 𝑆𝐵 demonstrate 

higher similarity to the ground truth. 

 

  Method 
TE   FN   FP   S   SB    RM 

Avg.  St.Dev  Avg. St.Dev  Avg. St.Dev  Avg. St.Dev  Avg.   St.Dev  

MOGRGB−D  0.15 0.16  14.79     12.02  0.04 0.06  0.79 0.13  0.80 0.11 4.8 

GSMUB  0.49 0.29  74.97     11.66  0.01 0.01  0.25 0.12  0.26    0.12 7.0 

  GSMUF  0.31 0.26  9.59   6.52  0.25 0.21  0.69 0.11  0.74    0.08 5.6 

PBASBin  1.25    0.33  0.25   0.80  1.25 0.33  0.33 0.09  0.66 0.10 6.8 

  VIBEBin  1.02 0.26  2.73   3.41  1.18 0.25  0.33 0.09  0.74 0.09 6.2 

MBNS 0.13 0.11  11.84   6.02  0.05 0.07  0.82 0.11  0.83 0.08 3.0 

BSABU 0.15 0.17  14.03   7.80  0.04 0.08  0.82 0.15  0.82 0.15 3.8 

NBM-GA 0.13 0.11  12.51   6.48  0.04 0.09  0.82 0.14  0.83 0.12 2.6 

NBM-HC 0.12 0.10  12.29   5.95  0.04 0.08  0.83 0.13  0.83 0.09 2.0 

 

The proposed method in this chapter and other algorithms have been tested with the 

benchmark RGB-D dataset introduced in [48]. We compare these results and rank all the 

methods to confirm our proposed algorithms achieves the best result between the existing 

methods in various challenging scenarios. To measure the accuracy of each method, the results 

have been compared to the ground-truth provided with this dataset. This dataset is made from 

four sequences and every sequence is designed to measure the accuracy of the methods in one 

of the challenging scenarios. Figure 5.3 illustrates an example of this dataset.  

GenSeq sequence consists of a person who is moving a box in an office environment 

and can test the algorithm in a general condition when several possible errors may occur in one 

scene. This sequence has 300 frames in total and contains 39 hand-labelled ground-truth. Table 

5.3 illustrates the full outcome for all the frames in this sequence. NBM-HC outperforms by 

achieving the lowest TE (total error), the highest similarity with the ground-truth and around 

the object boundaries (S and SB) which helped the method to receive the best average ranking 

(RM) among all other methods. However, the original method performed to some extent better 

than NBM-GA in this sequence such as achieving lower FN. 
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Figure 5.3. An example of dataset introduced in [48]. 

 (a) Colour frame, (b) Depth frame, (c) Ground truth, (d) NBM-GA, (e) NBM-HC 

 

 
Table 5.3. GenSeq sequence results. 

False positives (FP), False negatives (FN). Total error (TE). Similarity measure (S), Similarity measure 

in object boundaries (𝑆𝐵). Lower TE, FP and FN illustrate better outcome and higher S and 𝑆𝐵 shows 

more similarity to the ground truth. 

 

Method 
TE   FN   FP   S   SB     RM 

 Avg.       St.Dev  Avg. St.Dev  Avg.   St.Dev   Avg.   St.Dev  Avg.  St.Dev  

MOGRGB−D  1.93    0.66  0.63  0.01  2.09 0.02  0.79  0.20  0.45 0.13 6.4 

CLW 1.30    0.42  1.49 0.02  1.27 0.01  0.83     0.21  0.53 0.14 4.8 

GSMUB  1.38    0.56  1.04 0.78  1.44 0.66  0.83     0.20  0.78 0.11 4.6 

GSMUF  1.30    0.52  4.08    15.38  1.30 0.60  0.83  0.20  0.78 0.14 5.2 

PBASBin  8.24   13.78  0.33  0.53  9.36   15.97  0.66  0.21  0.71 0.10 7.0 

VIBEBin  2.32   0.58  1.59  1.52  2.43 0.56  0.77  0.16  0.75 0.09 7.0 

MBNS 1.09   0.46  2.85  7.43  1.02 0.56  0.88  0.14  0.79 0.12 2.2 

NBM-GA 1.21   0.79  3.72  1.06  1.23 0.94  0.87  0.15  0.79 0.13 3.4 

NBM-HC 1.08   0.55  3.72  3.51  1.07  0.70  0.88  0.07  0.79 0.08 2.4 

 

DCamSeq has been created to measure the tolerance of the algorithm in case of depth 

camouflage by moving a hand around the file cabinet which is part of the background. This 

sequence has 670 frames and contains 102 ground-truth. Table 5.4 shows the result of all the 
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methods in this sequence. Both proposed methods could significantly improve the accuracy in 

TE, FN, S and SB compared to the original method. In fact, NBM-HC outperformed in this 

sequence and could achieve the best results by receiving the lowest RM in this sequence while 

MBNS achieved one of the weakest results in this sequence. Figure 5.4 illustrates the 

qualitative comparison of this sequence among NBM-HC, NBM-GA and MBNS. MBNS 

disclosed poor performance in this sequence as most parts of the hand was not detected by this 

algorithm. NBM-HC and NBM-GA demonstrated the highest accuracy in this frame by 

detecting most pixels of the foreground correctly. However, both methods contain a high 

number of false positive.  

 

 

Figure 5.4. Frame 1061 of DCamSeq sequence introduced in [48]. 

 (a) Colour frame, (b) Depth frame, (c) Ground truth, (d) MBNS, (e) NBM-GA, (f) NBM-HC. 
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Table 5.4. DCamSeq sequence results. 

False positives (FP), False negatives (FN). Total error (TE). Similarity measure (S), Similarity measure 

in object boundaries (𝑆𝐵). Lower TE, FP and FN illustrate better outcome and higher S and 𝑆𝐵 shows 

more similarity to the ground truth. 

 

Method 
TE   FN   FP   S   SB    RM 

Avg.    St.Dev  Avg. St.Dev  Avg.   St.Dev  Avg.  St.Dev  Avg.   St.Dev  

MOGRGB−D  2.11 1.29  15.25 0.09  1.31 0.02  0.61 0.14  0.61    0.11 3.6 

CLW 2.46 1.82  32.21    0.26  0.66 0.01  0.55 0.14  0.51    0.12 4.6 

GSMUB  2.42    1.70  49.84 10.73  0.55 1.57  0.37 0.17  0.40    0.14 5.6 

GSMUF  2.40 2.23  47.62    32.39  0.72 1.61  0.37 0.27  0.41    0.28 5.6 

PBASBin  5.06  12.38  46.23 32.46  3.59   13.09  0.30 0.21  0.38 0.23 8.2 

VIBEBin  2.20 1.86  40.58 23.51  1.29 2.15  0.41 0.22  0.48 0.22 5.0 

MBNS 2.43 2.21  52.44 30.45  0.56 1.64  0.36 0.25  0.38 0.25 6.8 

NBM-GA 1.21 1.20  16.19 12.03  1.01 1.88  0.63 0.21  0.68 0.19 2.6 

NBM-HC 1.39 1.63  9.84 7.84  1.36 2.26  0.65 0.21  0.70 0.19 2.6 

 

ColCamSeq has been designed to measure the accuracy of the algorithms when colour 

camouflage has occurred by moving a white box to the white background. This sequence 

contains 360 frames and 45 ground-truth. Table 5.5 shows the result of this sequence. Overall, 

both proposed methods performed well and received the best average ranking in this sequence. 

However, NBM-HC performed slightly better by achieving lower TE and FP. The main reason 

behind the success of this scenario is the depth model will not be able to find any similarity 

with the depth pixels. Therefore, the object will be recognized as part of the foreground. 

ShSeq sequence has been created to measure the effect of shadows in the scene. Table 

5.6 demonstrates the outcome of this sequence. Although NBM-GA and NBM-HC performed 

well in this sequence, MBNS presented slightly higher accuracy in FN and similarity with the 

ground-truth (S and SB) which helped this method to receive the lowest RM and consequently 

the best overall outcome between all methods. Both NBM-GA and NBM-HC have a high rate 

of FN compare to the MBNS due to the technique this method store the samples in the model. 

Figure 5.5 demonstrates frame number 446 from ShSeq sequences which have been also 

demonstrated in the author's papers in [48] and [3]. 
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Table 5.5. ColCamSeq sequence results. 

False positives (FP), False negatives (FN). Total error (TE). Similarity measure (S), Similarity measure 

in object boundaries (𝑆𝐵). Lower TE, FP and FN illustrate better outcome and higher S and 𝑆𝐵 shows 

more similarity to the ground truth. 

 

Method                           
TE   FN   FP   S   SB     RM 

Avg.   St.Dev  Avg. St.Dev  Avg.  St.Dev  Avg. St.Dev  Avg. St.Dev  

MOGRGB−D  3.49 3.40  3.38 0.02  6.13 0.14  0.91   0.09  0.81   0.08     6.6 

CLW 3.20 2.77  3.52 0.09  2.92 0.10  0.89   0.15  0.77   0.16 6.2 

GSMUB  1.72 2.66  2.70 6.83  3.50    7.39  0.93   0.09  0.92   0.08 2.4 

GSMUF  2.04 2.66  0.65 1.39  4.74   7.43  0.91   0.11  0.90   0.08      4.0 

PBASBin  8.60   8.99  0.13 0.36  17.32   20.20  0.76   0.26  0.81   0.14   7.0 

VIBEBin  4.47 7.02   0.39 1.25  10.68  19.22  0.86   0.13  0.86   0.09   6.4 

MBNS 
 

1.94 2.68  0.75 1.74  4.37  7.30  0.92   0.09  0.91   0.07      2.8  

NBM-GA 2.40   3.09  0.58 1.72  5.57 8.38  0.91 0.11  0.90  0.07      4.2  

NBM-HC 3.32 7.22  0.76 1.78  4.55 19.74  0.92  0.10  0.91  0.07      4.0  

 

 

Table 5.6. ShSeq sequence results. 

False positives (FP), False negatives (FN). Total error (TE). Similarity measure (S), Similarity measure 

in object boundaries (𝑆𝐵). Lower TE, FP and FN illustrate better outcome and higher S and 𝑆𝐵 shows 

more similarity to the ground truth. 

 

Method 
TE   FN   FP   S   SB  RM 

Avg.    St.Dev  Avg. St.Dev  Avg. St.Dev  Avg.   St.Dev  Avg.  St.Dev  

MOGRGB−D  3.94 1.54  0.59 0.02  4.50   0.07   0.77    0.09  0.66   0.05 7.4 

CLW 0.81 0.35  1.60 0.05  0.68   0.02   0.94    0.04  0.71   0.07 4.2 

GSMUB  0.87 0.33  0.98 0.88  0.88   0.42   0.93    0.03  0.76   0.06   5.0 

GSMUF  1.66 0.38  0.14 0.19  1.92   0.44   0.89    0.04  0.65   0.05 5.4 

PBASBin  3.92    2.73  0.35 0.31  4.48   0.10    0.78    0.11  0.60 0.03 7.0 

VIBEBin  3.72 0.99   0.06 0.15  4.31   1.17   0.78    0.07  0.64 0.03 6.0 

MBNS 
 

0.80 0.41  0.88 0.70  0.81   0.48   0.95    0.03  0.82 0.06 2.6 

NBM-GA 0.80 0.34  1.39 0.80  0.70   0.42   0.94    0.03   0.81 0.06 3.2 

NBM-HC 0.79 0.33  1.23 0.85  0.73   0.42   0.94    0.03   0.81 0.06 3.0 
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Figure 5.5. Frame 446 of ShSeq sequences. 

The proposed methods could not perform as good as MBNS (a) Colour image, (b) Colour coded depth 

data, (c) 𝐶𝐿𝑊 output, (d) 𝐺𝑆𝑀𝑈𝐵 output, (e) 𝐺𝑆𝑀𝑈𝐹 output, (f) PBAS output, (g) 𝑉𝑖𝑏𝑒𝑏𝑖𝑛 output, (h) 

MBNS output, (i) Hill climbing, (j) Proposed method output.  

 

Figure 5.6 illustrates the RC and RM for each individual method in each sequence. The lower 

amount shows a better result. According to this figure, NBM-HC outperformed in accuracy 

compared to the other state-of-the-art algorithms by achieving the lowest RM in ColCamSeq 

and GenseqSeq and DCamSeq. This verifies that our method achieved the best overall 

performance in these sequences. Also, in Shseq, it has performed moderately well. In the 

DCamSeq, MBNS obtained a high RM value which demonstrated poor performance. However, 

this weakness has improved significantly in both NBM-HC and NBM-GA by only changing 

the approach to update the background models. This confirms that these updating strategies 

completely change the performance of these methods. Consequently, the overall performance 

of our algorithms in these four sequences outperforms among these other seven methods by 

achieving the lowest amount of RC. NBM-GA received second place after NBM-HC as this 

method obtained slightly lower performance in some of the sequences such as GenseqSeq. 

Figure. 5.7 illustrate convergence graph from NBM-HC and NBM-GA methods for an average 

of twenty runs and best fitnesses. It can be seen that converged in the methods NBM-HC and 

NBM-GA are close to each other. The average fitness at iteration 580 in NBM-GA is to some 

extent lower than NBM-HC. However, the average of the best fitness is contradictory. 

Consequently, NBM-HC method is helpful in speeding up the best convergence.  



 

113 
 

 

Figure 5.6. RM chart illustrates the overall performance.  

𝐶𝐿𝑊, 𝐺𝑆𝑀𝑈𝐹, 𝐺𝑆𝑀𝑈𝐵 , PBAS and 𝑉𝑖𝑏𝑏𝑖𝑛, MBNS, NBM-GA and NBM-HC (proposed method) in 

GenseqSeq, DCamSeq, ColCamSeq and Shseq sequences. The lower RM and RC demonstrate better 

performance. 

 

 

Figure 5.7. Convergence graph from NBM-HC and NBM-GA methods for twenty times 

runs on dataset introduced in [48].  
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In order to have a better understanding about the accuracy of NBM-HC method, a qualitative 

comparison of NBM-HC with other state of the art algorithms in SBM-RGBD Challenge [116] 

including the proposed method in the previous chapter known as (BSABU) is shown in figure 

5.8. This figure belongs to frame number 534 of DCamSeq2 dataset. Although this sequence 

(Depth Camouflage) was the main weakness of the original method (MBNS), this evaluation 

proof this is not the case for BSABU and NBM-HC. In fact, it is opposite for these two 

methods. This sequence is very challenging and many background subtraction algorithms have 

difficulties to detect the foreground in this sequence. Clearly, RGBD-SOBS [53], AvgM-D, 

CwisardH+[130] and Kim totally failed to detect the fingers in this sequence. RGB-SOBS [95] 

detected the hand with high accuracy because it is not using depth data and therefore this 

method will have many other weaknesses in other situations such as colour Camouflage, 

illumination changes and shadow sequences as we have seen in the previous chapter. SRPCA 

[124] could detect the fingers but the accuracy is low, and all fingers are connected to each 

other. In fact, only SCAD [52], BSABU and NBM-HC could fully detect the hand in this 

sequence. 

 

 

Figure 5.8. Frame 534 of DCamSeq2 (Depth Camouflage) dataset. 

(a) colour frame, (b) depth frame, (c) ground truth, (d) RGBD-SOBS, (e) RGB-SOBS, (f) SRPCA, (g) 

AvgM-D, (h) Kim, (i) SCAD, (j) CwisardH+, (k) BSABU, (l) NBM-HC. 
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5.5 Real-time Experiment 
Using an evolutionary algorithm as part of the loop sometimes is very expensive in terms of 

computation and could increase the time required to build a model or solution. In this section, 

both proposed methods (NBM-GA and NBM-HC) has been tested in a live application to 

measure the speed of these moving objects algorithms. The performance of each method is 

calculated as the mean rate of the processing time. Data captured by Microsoft Kinect sensor 

and the evaluation was performed on a computer with an Intel (R) Core (TM) i7-6700HQ CPU 

@ 2.6 GHz and 8 GB RAM and the. Figure 5.9 and figure 5.10 illustrate the speed of processing 

moving object detection using GA and HC per frame in second. Although both methods 

performed well and demonstrated that are capable of being used on real-time applications, 

NBM-HC with average processing of 0.0626 second (S) performed better than NBM-GA, 

looking at the frame rate, it is about 16 frames per second. In addition, NBM-HC performed 

better than the original method (MBNS) which shows using Hill climbing not only increased 

the accuracy but also increased the performance in terms of speed and computational costs. 

The maximum time to process the frame in NBM-HC is 0.097 S and the minimum is 0.047 S. 

In NBM-GA the maximum time taken to process a frame is 0.099 S and minimum is 0.056 S. 

It is important to note in this evaluation the proposed algorithms implemented in C++ and 

OpenCV library [119] without applying any specific code optimisation as the primary goal of 

this experiment was to prove the proposed algorithms are able to effectively run at real-time. 

Thus, not any effort has been made in implementation to optimise the code.  

 

Figure 5.9. The computational time for NVM-GA to process each frame.   

The time for the first 200 frames is shown in seconds. 
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Figure 5.10. The computational time for NVM-HC to process each frame.   

The time for the first 200 frames is shown in seconds. 

 

5.6 Summary 

 
In this chapter, a novel method for moving object detection similar to the previous work of 

MBNS algorithm has been presented. The proposed method is built based on four major steps 

including; initialization, post initialization filtering, classification, and update. 

The main contribution of this chapter is to use EC methods in the update stage instead 

of pixel-wised update. Hill climbing (NBM-HC) and GA (NBM-GA) have been implemented 

to search and find the optima background model. The proposed methods produce one model 

for colour and another for depth data. The system then combines the results from the colour 

and depth model to produce the final segmentation mask. The fitness function calculates the 

total distance of background pixels for each sample in the depth model and then models are 

updated by the Genetic Algorithm for pixels identified as a background. The crossover 

operation exchanges the pixels from the chosen parent in the models with the new frames. The 

chosen parent will be selected by Roulette Wheel which allows all the chromosomes to have a 

chance to be selected. This helps the system to avoid being trapped in the local minima and 

maxima. These local optima can be created by noise. This means, the pixel has a high depth 

value (it is probably the background pixel) however, it is not true in reality and it does not exist. 

This is only created by the fault of the sensor. The Roulette Wheel cause this method to 

sometimes remove such a pixel in the update procedure. This is not the case in the regular 
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update of the original method. This is one of the main advantages of this method over MBNS 

method. Additionally, a mutation will be applied without considering they are classified as 

foreground or background in order to prevent permanent misclassification. 

The results and evaluation section demonstrated that applying GA to solve the 

background modelling problem addressed in this chapter can improve the accuracy over the 

original method (MBNS). Even though the worst average NBM-GA run could accomplish 

more accurate detection than the MBNS, there is no evidence to prove that the GA on average 

perform better than the Hill-Climbing algorithm introduced in this chapter. In fact, the results 

indicate a contrary. It is clear that both proposed algorithms (NBM-GA NBM-HC) have the 

most accurate and reliable outcomes in comparison with MBNS and other state-of-the-art 

methods by achieving the lowest RC as demonstrated in figure 5.6. The results in table 1-6 

proved that the proposed methods could improve the robustness in three different benchmark 

sequences by achieving the lowest value of RM. Also, these updating strategies could 

significantly improve the weakness of the original method and allow the proposed methods to 

achieve the best results in DCamSeq sequence. 

This research investigated the first attempt to compare the performance of GAs against 

Hill-Climbing directly on this type of background modelling and moving object detection 

problem. This research started with the assumption that GAs do not get stuck in local optima 

and should obtain higher performance by giving a chance to all frame solutions to stay in the 

model. However, based on the evidence demonstrated in this chapter, being stuck in local 

optima is not a problem for NBM-HC as it updates the model with the new frames. This is 

interesting as usually GA perform better than Hill-Climbing algorithm as GA can reach to 

global optima [148]. However, this is not always the case and in some problems similar to the 

background modelling problem, HC outperformed GA [147][149]. Therefore, it would be 

interesting to investigate if this problem categories as elementary landscapes introduced in 

[150]. This would require further research as elementary landscapes are normally quite 

complex and tools required to recognize elementary landscapes are abstruse [151]. In addition, 

only a small percentage of optimisation problems have local search spaces that correspond to 

elementary landscapes [152]. 

Also, it would be interesting in further studies to implement other types of optimisation 

algorithms instead of Hill Climbing or Genetic Algorithm. Also, in some sequences, the 

amount of false negative is relatively high which need further investigation and improvement. 

A possible solution for this problem would be using a more accurate depth sensor.                
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Chapter 6                            

Conclusions and Future Research 
 

In this chapter, a summary of the work presented in this thesis will be discussed and then 

indicate some directions for further research in the future which follow from this thesis. 

6.1 Comparisons of all proposed methods in 

this thesis 
 

In this section, all proposed methods in this thesis will be compared in terms of accuracy and 

efficiency. Figures 6.1,6.2 and 6.3 illustrates the accuracy of all methods in total error (TE), 

comparison to the ground truth (S) and comparison to the ground truth in object boundaries 

(SB). These figures show that BSABU, NBM-GA and NBM-HC significantly improved the 

weakness of the original method (NBMS) in depth camouflage scenario (DCamSeq) which 

NBM-HC performed better than others. Instead, BSABU performed slightly better in shadows 

(SHSQ) and Genseq sequences. The main reason for this is using CIE L*a*b* colour space in 

BSABU which allows the colour pixels to separate the colour value without interfering of 

illumination (L) component. Also, BSABU has another advantage over other proposed 

methods which is high accuracy in stationary foreground objects and bootstrapping scenarios. 

On the other hand, according to figure 6.4 the NBM-HC method is faster and more efficient in 

terms of computation. Therefore, we would suggest using the BSABU where efficiency is not 

a priority and NBM-HC where speed is an important element and bootstrapping doesn’t exist. 

 
Figure 6.1. Total error (TE). 

 0.00

 0.50

 1.00

 1.50

 2.00

 2.50

 3.00

 3.50

ColCam Genseq SHSQ DCamSeq

To
ta

l e
rr

o
r 

(T
E)

Sequences

NBMS BSABU NBM-GA NBM-HC



 

119 
 

 The lower amount shows better performance.   

 
Figure 6.2. Similarity measure (S).  

The higher value shows better performance. 

 

 

  
Figure 6.3. Similarity measure around object boundaries (𝑆𝐵).  

The higher value shows better performance. 

 

 

 
Figure 6.4. The efficiency (FPS) of the proposed methods in this thesis.  
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6.2 Concluding Remarks 
 

Motion and change detection by a fixed camera still is a challenging task in the field of 

computer vision, especially for the real-time automated surveillance and object tracking 

applications. This is mainly due to some problems related to the moving objects and monitored 

environment such as the characteristics of the moving object, the same foreground colour as 

the background, complex dynamic environment (e.g. curtains or tree leaf movement), 

variations in illumination and weather conditions (e.g. sunshine), along with the distance from 

the camera. Therefore, in recent years, many researchers have introduced different strategies 

to overcome these problems. One of these motion detection strategies was nonparametric 

background subtraction algorithms such as ViBe and PBAS which in the last few years became 

popular among researchers due to robustness and being simple to implement. However, these 

methods suffer from some limitations such as the production of a ghost, weak detection of slow 

and stationary moving objects and detection under major illumination changes. By finding a 

new way to reduce these limitations and increasing the accuracy of the foreground masks, we 

could obtain more robust and consistent results. One of the strategies to overcome these issues 

is to use depth sensors such as Microsoft Kinect which illumination doesn’t affect depth 

sensors. However, these sensors also have some limitations such as depth shadows, depth 

camouflage, absorption by black objects, absent observations, and lower sensitivity at longer 

distances which require a powerful software to reduce the effect of these limitations by 

combining a colour and depth sensors. Therefore, the aim of this thesis was to improve the 

detection accuracy of moving object detection by achieving more precise and consistent 

detection in different challenging scenarios. 

 In chapter 3 of this thesis, we investigated how the pixel-wise nonparametric method 

can improve RGB-D moving object detection. To apply this, we have introduced a new 

nonparametric moving object detection method using an RGB-D camera in an indoor 

environment. This method is known as MBNS and worked by the history of previously 

observed pixel values based on four major steps; initialisation, post initialisation filtering, 

classification and update. It first creates one model for colour frames and another one for depth 

frames. It then compares each pixel of the new frame with the models in order to identify them 

as a foreground or background. After segmentation, the models will be updated in two ways. 

First, in the regular update, those pixels identified as a background will be updated based on 

their distance. In particular, the smallest sample (pixel) in the model will be replaced with the 
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pixel in the new frame in the same location. Secondly, in order to prevent permanent 

misclassification, some pixels will randomly be swapped with the new frame regardless of 

being foreground or background. This updating strategy is called blind update. This process 

will be repeated for all pixels of every new frame. This method has been evaluated in four 

different sequences from benchmark dataset which outperformed other state-of-the-art 

methods. It has also been tested in two different fast-moving objects (quadcopters) in the 

sequences captured by us. In addition, it has been tested in a live application to measure the 

speed and computational cost. This method demonstrated that it is capable of being 

implemented in live applications. 

During an extensive evaluation process, despite the excellent results achieved by the 

proposed method compared to the other state of the art algorithms, we have discovered this 

method has weaknesses in some challenging scenarios such as detection of slow and stationary 

moving objects, depth camouflage and bootstrapping scenarios. The main reason for the weak 

detection of a slow-moving object is that the moving object gradually absorbs to the model by 

the blind update and consequently, it will disappear from the detection mask. Another weakness 

of the proposed method is dealing with the bootstrapping sequences. In bootstrapping, 

generally the moving object exists in the scene from the first frame (during the initialisation) 

therefore, the foreground will exist in the background model and only a fraction of the moving 

object will be detected by the algorithm. 

Thus, in chapter 4, we have tried to handle these issues (SFOs and bootstrapping) by 

proposing an adaptive blind update policy, shadow detection method, detection of 

bootstrapping and changes to the background. In particular, we investigated what is the effect 

of using adaptive blind update policy on pixel-wise moving object detection and if it can 

resolve the weakness of the original method in scenarios where stationary and slow-moving 

objects exist.  

The adaptive blind update policy tracks the moving object and adjusts the frequency of 

the blind update based on the speed of moving object. This allows the method to be able to 

simply detect the stationary, slow and fast-moving objects. On the other hand, the proposed 

method detects any changes occurring in the background and increase the blind update in order 

the model adapt to the recent changes in the environment. If the system detects any moving 

object during initialisation, then bootstrapping has occurred and it starts finding the shape of 

the moving object by a combination of colour and depth edge detection result. The objects that 

some part of them has been identified as the moving object will be added to the foreground 

mask. 
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Additionally, illumination changes and shadow detection method has been proposed for this 

method in order to improve detection accuracy in case of shadow, illumination changes and 

depth camouflage. To achieve this, CIE L*a*b* colour coordinate for the colour frames has 

been used. Unlike the RGB space, L*a*b* colour is intended to approximate human vision 

where the L element closely indicates the human perception of lightness. Thus, it can be used 

to check the colour value of pixels (a and b) without interfering of illumination. In this system, 

shadow has been defined as an area where the lightness (L component) is very low (dark) and 

the depth model indicates no change in the depth values. This method has been extensively 

evaluated in SBM-RGBD datasets which has 33 sequences under seven different challenging 

categories in Illumination Changes, Colour Camouflage, Depth Camouflage, Intermittent 

Motion, Out of Sensor Range, Shadows and Bootstrapping. This method is also separately 

compared with the original method which results demonstrated significant improvement in the 

accuracy of those sequences containing a slow and stationary moving object.  

Overall, the proposed method proved it is more consistent in most scenarios. The main 

disadvantage of the proposed method was the system has a higher computational speed 

compared to the original method. However, this object detection with a lower number of frames 

per second can be applied in live applications with the current hardware. 

In chapter 5, instead of using a simple update mechanism, we have implemented a more 

sophisticated method using EC optimisation algorithms such as Hill Climbing and Genetic 

Algorithms to search and find the optimal background model. This improved the detection 

accuracy and efficiency of our method. In particular, we investigated what is the effect of using 

heuristic searches in pixel-wise moving object detection. To apply this, GA has been added to 

the method. A fitness function has been implemented to rank each solution based on the total 

distance of depth pixels in each frame in the depth model and then the crossover operation 

exchanges the pixels from the chosen parent in the models with the new frames. The chosen 

parent will be selected by the Roulette Wheel which allows the other chromosomes also to have 

a chance to be selected. This allows the system to prevent being trapped in a local optima 

solution. This is one of the main advantages of this method over the original method (MBNS). 

The results and the evaluation section demonstrated that applying GAs to solve the background 

modelling problem addressed in chapter five improved the accuracy over the original method 

(MBNS). However, there is no evidence to prove that the GA on average performed better than 

the Hill-Climbing algorithm introduced (NBM-HC). In fact, the results demonstrated the 

opposite. Both proposed algorithms (NBM-GA NBM-HC) have the most accurate and reliable 

results in comparison with MBNS and other state-of-the-art methods. Also, these updating 
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strategies could significantly improve the weakness of the original method and helped NBM-

GA and NBM-HC methods to achieve the best results in DCamSeq sequence. In addition, 

NBM-HC has the lowest computational cost compared to all other solutions proposed in this 

thesis. Therefore, we suggest NBM-HC method should be used where the efficiency is 

important and bootstrapping or the stationary moving object doesn’t exist in the scene. On the 

other hand, BSABU can deal with all type of moving objects with a higher computational cost. 

 

6.3 Research Achievements 
 

In the literature review in chapter 2, we have noticed that despite the extensive research in the 

past, the problem of moving object detection remains challenging in many situations. 

Therefore, our aim during the research presented in this thesis was to improve the accuracy of 

moving object detection by achieving more precise and consistent detection in different 

challenging scenarios. To achieve this aim, first, we have identified the challenging scenarios 

which normally background subtraction algorithms have difficulties to detect the full 

silhouette.  

Then the weaknesses and advantages of the current methods have been investigated such 

as accuracy of object detection, the accuracy of detection around object boundary, consistency 

and capability of applying the method in the live applications (efficiency). Based on these 

previous researches, new methods are proposed in this thesis to improve the weaknesses of 

previous methods and obtain a more reliable algorithm to tackle the moving object detection 

problem in farther challenging scenarios. These include detection of a fast and slow-moving 

object, detection. In particular, based on previous studies, we investigated how to address the 

below three research questions in this thesis. The first research question was investigated in 

chapter 3, the second research question was addressed in chapter 4 and the last question was 

investigated and implemented in chapter 5. 

• How pixel-wise nonparametric RGB-D approach can improve the accuracy of moving 

object detection problem?  

• What is the effect of using adaptive blind update policy on pixel-wise nonparametric 

moving object detection? 

• What is the effect of using heuristic searches in nonparametric moving object detection? 
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The proposed methods in these chapters enhanced the accuracy and efficiency of RGB-D 

moving object detection in many challenging scenarios. The proposed methods in chapter 

3,4 and 5 follow nonparametric approaches and created based on the following hypothesis: 

 

• If any pixel value has been observed many times in the same location, the pixel has a 

high chance of being part of the background.  

• Another hypothesis applied in our methods is to use a combination of colour and depth 

data to cover each other’s weaknesses.  

• The other hypothesis that has been introduced and implemented in this thesis is that if 

two separate pixels in the 3D dimensional space with the same length (x) and height 

(y) observed, the pixel with a higher depth (d) most likely is the background pixel.  

• Besides, we made an assumption that neighbouring depth pixels are most probably to 

have a similar value. This assumption is used to remove the unknown pixels by 

replacing them with one of the nearest pixel values called ADO removal strategy. The 

advantage of this effective method is being fast and simple which helped to 

significantly decrease the number of errors by having more accurate depth pixel values 

in the depth model.  

All these hypotheses and assumptions applied to our methods and more details will be 

discussed in the next section. 

 

 6.4 Discussion of proposed methods, 

limitations and parameter’s optimisations 
 

Figure 6.5 illustrates the summary of this thesis that how hypothesis and literature 

review could lead us to the research questions and how these questions have been addressed in 

this thesis. The first research question (how pixel-wise nonparametric RGB-D approach can 

improve the accuracy of moving object detection problem?) has been addressed in chapter 3 

and the evaluation results in this chapter (table 3.3-3.8 and figure 3.18) demonstrated the 

proposed pixel-wise nonparametric RGB-D moving object detection method (MBNS) 

outperform in drones and four publicly available datasets by achieving the most accurate and 

reliable outcomes in comparison with other state-of-the-art methods. The proposed method 

created accurate depth model regardless of noisy depth frames and this helped the system to 
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significantly reduce the amount of false detection in case of colour camouflage, sudden 

illumination changes and appearing of shadow on the floor. However, this method suffers in 

depth camouflage scenarios.  

The second research question (What is the effect of using adaptive blind update policy 

on pixel-wise nonparametric moving object detection?) has been addressed in chapter 4. 

Extensive evaluation results on adaptive blind update policy method in SBM-RGBD challenge 

benchmark [129] illustrated in figure 4.9. This figure showed that the proposed method could 

outperform in several scenarios such as Depth-Camouflage, Intermittent motion, and Shadows 

sequences and satisfactory detection rate in others. In other words, the proposed method 

detected the moving objects in all different situations and it did not fail in any scenario. This 

means BSABU is a consistent and reliable method. 

 In chapter 5, the third research question (what is the effect of using heuristic searches 

in nonparametric moving object detection?) has been investigated by using optimization 

algorithms such as Genetic Algorithm and Hill climbing to update the models. According to 

the evaluation results in figure 5.6, these algorithms could help the method to update the models 

more efficiently and detection results have been improved with these methods. Hill climbing 

based method (NBM-HC) has the lowest computational costs compared to all other methods 

proposed in this thesis. This proved Hill-Climbing helped the original method to increase the 

accuracy as well as being more efficient in updating the models. 

Overall, the methods we have introduced in this thesis improved moving object 

detection accuracy in many challenging scenarios. During extensive tests, we could not find 

any situation where proposed methods are unable to detect the moving objects. However, there 

are still situations such as depth-camouflage and bootstrapping that the results could improve 

further, and the foreground mask would be detected more accurately. In addition, according to 

section 6.1, NBM-HC slightly increased the accuracy and efficiency of the proposed original 

method (chapter 3) by using heuristics searches. However, this amount of optimisation is not 

enormous and can be achieved in other ways such as optimising the programming code (c++) 

or using GPU programming. Therefore, we would suggest using the BSABU method where 

efficiency is not a priority as this method is more consistent in many different challenging 

scenarios and NBM-HC where speed is an important element and bootstrapping doesn’t exist.  
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Figure 6.5.  Summary of this thesis.  

 

On the other hand, some other factors such as the type of depth sensor and parameter’s 

optimisations can affect the performance of these methods. For example, the number of stored 

pixels in the models (N). The higher number of N can increase the accuracy of the methods. 

However, the method needs more frames for initialisation and more memory to store the pixel 

values. Therefore, the computational cost will be increased in compensate to increase the 

accuracy. During the research in this thesis, we have selected N= 20, as this number of samples 

in other methods (such as 𝑉𝑖𝐵𝑒𝑏𝑖𝑛[51]) proved that it is sufficient for moving object detection 

and also it is possible to keep these samples in the memory with the current hardware. 

𝑇ℎ𝐷 (acceptable depth) is a sensitive parameter and plays a key role in the proposed 

methods. This value needs to be accurately selected according to the faults of the sensor. 

Increasing the 𝑇ℎ𝐷 can increase the FP in depth camouflage scenarios and reduce TN in shadow 

and illumination changes. Generally, the 𝑇ℎ𝐷 needs to be greater for the sensors with higher 

noise. Therefore, this can be measured based on the noise of the sensor.   

The #𝑀𝑖𝑛 is used as the minimum number of similar samples in the model to the new 

pixel. It should depend on the number of samples (N). A higher amount of N requires larger 
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#𝑀𝑖𝑛 and therefore it is recommended as N/5. This amount can tolerate a reasonable amount 

of noise in the background and also it is enough to not accept noise as the foreground. 

Blind update frequency also plays an important role in the update procedure which 

generally more frequent update can increase the detection in high speed moving object and 

reduce accuracy in slow and stationary moving objects. This has been extensively discussed in 

chapter 4. 

For GA the population size selected as the same as N (μ = 20) is based on the same 

rationale. The number of generations is selected as 30 generations per second as this was the 

maximum generation we could run on the live application. Crossover probability of 50% each 

parent and the mutation probability (MP) of  
1

𝑁×2
. Naturally, the mutation is a very slow 

phenomenon and used for random exploration, but it should not lead the GA to a pure random 

search as it would be the case if many genes suddenly mutated. Therefore, low mutation rate 

ensures that not many mutations are considered at once. In the next section, we recommend 

several ways to improve our current research even further in the future. 

 

6.5 Recommendations for Future Research 
 

Even though we have introduced several new moving object detection methods that are capable 

to deal with the challenging scenarios caused by the moving object or complex background, 

the work possibly can be further developed in a number of ways: 

• More complex decision-making system for the adaptive blind update can be developed 

to deal with more than one moving object. This enables the system to be able to adjust 

the frequency of the moving object based on more than one moving object. For 

example, if there are one slow-moving object and one fast-moving object in the scene, 

the system would be able to adjust the frequency in a way to be suitable for both objects 

or some area of the scene can have high frequency and another area could have a lower 

rate for the blind update. 

• In this thesis, we have used a basic tracking system to track the moving object and 

adjust the frequency of the blind update based on the speed of the moving object. 

However, this possibly can be improved by implementing more accurate and advanced 

tracking techniques. 
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• One of the main issues of using depth sensors is the limitation in the distance these 

sensors can capture. For instance, Microsoft Kinect can only obtain a maximum length 

of 6-8 meters and after only 3 meters, the accuracy starts reducing. Therefore, in a large 

area such as a factory or long hallway, it would be practical to use several sensors 

together and implement a synchronisation algorithm to control all these sensors in one 

place. 

• Due to the limitation we had during this research, we could only use low-cost depth 

sensors like Microsoft Kinect. Using more advanced depth sensors and reducing the 

depth tolerance in the algorithm would possibly solve the issue of depth camouflage, 

shadow and illumination changes. 

• In the background modelling and moving object detection problem, the Hill-Climbing 

algorithm outperformed GA. It would be interesting to investigate if this problem 

categories as elementary landscapes as only a small percentage of optimisation 

problems have local search spaces that correspond to elementary landscapes. This 

would require further research as elementary landscapes are normally quite complex 

and tools are required to recognize elementary landscapes are abstruse. 

• In chapter 4, we have introduced a method based on adaptive blind update policy 

(BSABU) and in chapter 5, we have introduced a method based on Hill Climbing 

algorithm (NBM-HC). The combination of these two methods would improve the 

detection accuracy of individuals. This can be achieved by some machine learning 

techniques such as Ensemble Classifier that can combine these two methods to produce 

one optimal solution. Such a system can rely more on BSABU when a stationary 

moving object, bootstrapping and shadow exist in the scene and rely more on NBM-

HC on all other scenarios. 
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APPENDIX A 
 

C-LIKE SOURCE CODE FOR PROPOSED METHOD (MBNS) 

Pseudo-code for the main part of our algorithm for grayscale depth and colour images. 

default values for all the parameters of the algorithm is also given in the below code. 

 

int width, height; 

// Total number of samples 

int N=20; 

// Random frame frequency (blind update frequency) 

int M=40; 

// Minimum number of close samples  

int # Min= N/4; 

// Input Current Colour Image 

byte ColourImage[width][height]; 

// Input Current Depth Image 

byte DepthImage[width][height]; 

// Background Colour Model 

byte ColourModel[N][width][height]; 

// Background Depth Model 

byte DepthModel[N][width][height]; 

// Output Bg/Fg segmentation Mask 

byte segMask[width][height]; 

 

byte background=0; 

byte foreground=255; 

int NoTolerance=5; 

int colourTolerance =DepthTolerance=30; 

int ADO = 650; // or 0   

 

 

// For each pixel  

for ( int i=0;i < width; i++) 

    { 

        int ioff= step*i; 

        //compare with all pixels Models 
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        for (int j=0; j< height; j++)  

        { 

            int countColor =0, index=0, countDepth=0, 

            countDepthNoTolerance=0; 

    

       

      //  1. Compare color and depth pixel to the background models 

        while(index<N) 

            { 

                //difference of two colour pixels 

                int dist= ColourModel[index][i][j]- ColourImage[i][j]; 

                if (dist<= ColorTolerance && dist>= ColorTolerance) 

                    countColor ++;  

                

                //difference of two depth pixels 

                dist= DepthImage [i][j]- DepthModel [index][i][j];  

                if(Depthsample != ADO) 

                { 

                    If (dist+ DepthTolerance >= 0 ) 

                        countDepth ++; 

 

                    if (dist2+ NoTolrance > 0) 

                     countDepthNoTolerance++; 

                } 

 

                index++; 

            } 

           

        // 2. Classification 

 

          bool isBackground=false; 

            //If depth is ADO, Only rely on color frame  

            if (DepthImage[i][j]== ADO) // 0 or 650 

              { 

                 if(countColor>=# Min  ) 

                    isBackground=true; 

                  else 

                    isBackground=false; 

               } 

 

           //If depth is strongly saying is background then the system will accept it 

           else if (countDepthNoTolerance > # Min) 

                 isBackground=true; 

 

           // If depth is strongly saying is not background then the system will accept it 

            else if (countDepth < # Min) 

                isBackground=false; 

 

           //All remaining pxiels will be decided by color frame 

          else if ( countColor >= # Min) 
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                isBackground=true; 

 

     //3. Update the model by background pixels 

 

         if (isBackground) 

            { 

                segMask[i][j] =0; 

                int SmallestDepthAmount=0; 

                int SmallestDepthNumber=0; 

            //find the smallest depth amount and the position in the model 

               findThesmallestDepth( SmallestDepthAmount, SmallestDepthNumber); 

 

                  //randon number (0-N) 

                 rand= GetRandomNumber(0,N);  

                 //randomly swap the pixel with the model 

                   ColourModel[rand][i][ j]= ColourImage[i][j]; 

 

               If ( (SmallestDepthAmount <  DepthImage[i][j])  && (DepthImage[j][j] !=  ADO) ) 

                   DepthModel [SmallestDepthNumber][i][ j]= DepthImage [i][j]; 
 

            } 

           else 

                segMask[i][j] =255; 

 

              //4. Blind randomly update the models  

 

              //Update after N number of frame 

             if (FrameNumber%N == 0)  

             { 

              // replace randomly chosen sample 

              rand= GetRandomNumber(0,N);  

              ColourModel[rand][i][ j]= ColourImage[i][j]; 

               

              If (DepthImage != ADO) 

              DepthModel [rand][i][ j]= DepthImage [i][j]; 

              } 

    } 

 


