
algorithms

Article

Relaxed Rule-Based Learning for Automated
Predictive Maintenance: Proof of Concept

Margarita Razgon ∗ and Alireza Mousavi

Department of Computer Science, Brunel University, London, Uxbridge UB8 3PH, UK;
Alireza.Mousavi@brunel.ac.uk
* Correspondence: Margarita.Razgon@brunel.ac.uk

Received: 12 July 2020; Accepted: 28 August 2020; Published: 3 September 2020

Abstract: In this paper we propose a novel approach of rule learning called Relaxed Separate-and-
Conquer (RSC): a modification of the standard Separate-and-Conquer (SeCo) methodology that does
not require elimination of covered rows. This method can be seen as a generalization of the methods
of SeCo and weighted covering that does not suffer from fragmentation. We present an empirical
investigation of the proposed RSC approach in the area of Predictive Maintenance (PdM) of complex
manufacturing machines, to predict forthcoming failures of these machines. In particular, we use for
experiments a real industrial case study of a machine which manufactures the plastic bottle caps. We
compare the RSC approach with a Decision Tree (DT) based and SeCo algorithms and demonstrate
that RSC significantly outperforms both DT based and SeCo rule learners. We conclude that the
proposed RSC approach is promising for PdM guided by rule learning.

Keywords: Predictive Maintenance; failure prediction; Rule Learning; Decision Tree; Machine Learning

1. Introduction

Rule Learning (RL) is a well known methodology of Machine Learning (ML). By the Occam
Razor principle [1], smaller models tend to make more accurate predictions. Based on this principle,
RL algorithms should be designed to create small sets of small rules.

Arguably, the best known specific method of RL is Decision Tree (DT) algorithm. However,
existing literature highlights the fact that if we insist on the ‘tree-likeness’ of the rules set, rules become
prohibitively long and complicated (Section 1.5.3. of [2]). This is due to the effect of fragmentation.
A detailed discussion of this phenomenon is provided in Example 2, see also a related discussion in [3].

Therefore, an alternative approach has been actively investigated in which rules are created one
by one without insisting on their set to fit a DT structure. In order to design an algorithm based on this
approach, the following two questions must be answered.

1. How to create a single rule?
2. How to create a collection of rules?

According to the Occam Razor principle, an algorithm for composition of a single rule must
endeavor to make the rule as small as possible and as precise as possible. Thus, the task of a rule creation
can be envisaged as an optimization problem with the objective function expressing a combination
of these two criteria (plus the high coverage criteria to avoid overfitting). For a reasonably complex
domain such an optimization problem is intractable [1], hence there is no hope to obtain an ‘optimal’
rule in a reasonable time. Consequently, the main methodology for obtaining a single rule are greedy
local search (mainly Hill Climbing) algorithms [2]. The common feature of these algorithms is the
absence of backtracking. In other words, a local search algorithm grows a rule adding constraints on
attributes one by one and cannot remove a constraint once it has been added.

Algorithms 2020, 13, 219; doi:10.3390/a13090219 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://dx.doi.org/10.3390/a13090219
http://www.mdpi.com/journal/algorithms

Algorithms 2020, 13, 219 2 of 22

In the above local search framework, the main effort concentrates on the heuristics for choosing
the next attribute constraint being added to a rule. Moreover, the constraints have a special form
outlined in Example 1 below. Also, we identify a dataset with a table, an attribute (attr) with a column
in the dataset, and an instance with the row of the dataset.

Example 1. Assume that our learning task is to learn a concept depending on 5 attributes attr1, . . . , attr5 of
a dataset. Assume that these attributes have integer values ranging between 0 and 50. Then the rules are of
the form attr1 ∈ [10, . . . , 40] ∧ attr3 ∈ [20, . . . 35]→ true. The above rule states that all the instances of the
dataset with the value of attr1 between 10 and 40 and the value of attr3 between 20 and 35 then this instance
‘belongs’ to the concept.

Note that the constraints in Example 1 are given in the form of intervals. Moreover, the same
attribute can occur more than once. In this case, the actual constraint on the attribute is the intersection
of the intervals of all the occurrences of this attribute. For example, the rule as in Example 1 can be
rewritten as follows attr1 ∈ [0, . . . , 40] ∧ attr3 ∈ [20, . . . 35] ∧ attr1 ∈ [10, 50]→ true.

The rule growth procedure starts from an empty rule and performs a number of iterations.
Each iteration chooses an attribute and an interval and adds to the rule being formed the respective
constraint, stating that the value of the chosen attribute belongs to the value of the chosen interval.
The procedure also needs a terminating condition. An obvious one is that all the instances covered
by the current rule are invariant w.r.t. the concept being studied (all belong or all do not belong to
the concept). However, such a terminating condition may lead to long rules and potentially prone
to overfitting. To avoid this situation, there are terminating conditions that stop the rule growth
procedure even in case there is no full invariance.

Let us now discuss approaches to forming a collection of rules. The main issue that needs to be
addressed is the handling of conflicting predictions. Indeed, suppose that the same instance is covered
by two rules, one of them states that the instance belongs to the concept, the other that the instance
does not. Another matter to address is the terminating condition for the procedure of forming a rule
collection: we add rules one by one to the collection, when are we to stop?

Both of the above issues can be relatively straightforwardly addressed by a methodology of
Separate-and-Conquer (SeCo) [2,3]. According to this methodology, when a new rule is formed,
the instances covered by this rule are removed. So, the newly formed rules are guaranteed to cover
new instances and the process will stop when there are no new instances (of course the terminating
condition can be relaxed to avoid overfitting). Unlike in the case of DT, the rules may overlap. Indeed,
suppose a rule R1 has been formed and the instances covered by it removed. When a new rule R2

is being formed, the procedure growing it does not ‘see’ the removed instances but this does not
mean that these instances cannot be covered. However, the rules formed by a SeCo procedure are
ordered in a chronological order (according to the time they have been formed). When a prediction is
about to be made about some instance x, the prediction is made by the first rule covering this instance.
To understand the intuition, assume that the instance x is covered by the 5th rule. Then rules 1 to
4 do not cover the instance hence there is no point using them for making the prediction. Rules 6
onward can cover the instance. However, rule 5 has been formed as a result of analysis of a larger
training set, so it is rational to assume that it will be more precise on instances covered by it and the
subsequent rules.

Both DT and SeCo methods suffer from fragmentation, though for SeCo algorithm the effect is
milder, as demonstrated by Example 2 below.

Example 2. [Fragmentation] Consider the same settings of the attributes as in Example 1. Suppose that the
concept can be described as the disjunction of the following two rules.

1. R1: attr1 ∈ [10, . . . , 20] ∧ attr2 ∈ [15, . . . 40]→ true.
2. R2: attr3 ∈ [20, . . . , 35] ∧ attr4 ∈ [25, . . . , 50]→ true.

Algorithms 2020, 13, 219 3 of 22

The sets of instances covered by R1 and R2 clearly overlap. Therefore, after a SeCo procedure discovers the
first rule, it is likely to be more difficult to discover the second rule.

Indeed, suppose such a procedure discovers R1. After that the rule learner will have to look at the part of
the dataset that is not covered by R1 and to discover rule R2.

A rule learner that learns non-overlapping rules (e.g., a DT algorithm) will have to discover rules that are
covered by R2 but not covered by R1. There are several way to present the corresponding set of rules, the most
compact of them would look as follows.

1. R3: attr1 ∈ [0, . . . , 9] ∧ attr3 ∈ [20, . . . , 35] ∧ attr4 ∈ [25, . . . , 50]→ true.
2. R4: attr1 ∈ [21, . . . , 50] ∧ attr3 ∈ [20, . . . , 35] ∧ attr4 ∈ [25, . . . , 50]→ true.
3. R5: attr2 ∈ [0, . . . , 14] ∧ attr3 ∈ [20, . . . , 35] ∧ attr4 ∈ [25, . . . , 50]→ true.
4. R6: attr2 ∈ [41, . . . , 50] ∧ attr3 ∈ [20, . . . , 35] ∧ attr4 ∈ [25, . . . , 50]→ true.

That is instead of a single rule of length 2, the rule learner will have to learn 4 rules of length 3. In case of
k short rules, the number of rules to be learned grows exponentially with the number of rules already learned.
We informally refer to this effect as fragmentation.

In case of a more general SeCo method, the situation is not as acute as in the case of non-overlapping rule
learning because there is no need to avoid overlapping with R1. However, the dataset resulting from removal of
the rows covered by R1 is smaller that the original dataset and, more importantly, is ’distorted’ by a non-uniform
removal of instances. As a result, learning of R2 in this distorted dataset becomes more difficult than in the
original one. In case of more than two rules to be learned, this difficulty becomes even more pronounced.

One way to address the above deficiency is somehow to assign weights to direct the RL algorithm
towards considering instances that have not been covered. The main two approaches doing that are
weighted covering [2] and boosting [4].

The weighted covering [2] attempts to generalize the SeCo method as follows. We can see SeCo
as a method that assigns weight 1 to the instances not yet covered by the existing rules and 0 to the
instances that are covered. Then new rules are sought over instances of non-zero weight. Weighted
covering uses more flexible methods of weights assignment. The related heuristics are organized so as
to choose heavier instances and this creates as a result a ‘fuzzy’ version of SeCo. It is important to note
that whatever way the weights are assigned, the part of the dataset covered by the existing rules will
be discriminated against the instances that are not yet covered. In other words the distortion of the
dataset as presented in Example 2 will still be present in case of weighted covering.

The boosting method [5] is a theoretical approach whose purpose is to show that a reasonable but
not very accurate learning algorithm can undergo several rounds of retraining to learn a concept with
an arbitrary degree of accuracy. The idea applied to RL [4] is that the learning algorithm first produces
a single rule and then, as a result of boosting, new rules are added to the collection.

In this paper we propose an alternative rule learning approach considering instances that have
already been covered by the previous rules. We call this approach Relaxed Separate-and-Conquer (RSC).
In particular, when a new rule is formed, it is required to cover at least one instance not covered by
the previous rules. This means that already covered instances are not excluded (like in the case of
separate-and conquer) nor are they discriminated against (like in the case of weighted covering).
However, the algorithm is forced to look not only at the already covered instances, but also elsewhere.

The proposed RSC approach generalizes both SeCo and weighted covering. In particular, any
reasonable rule growing heuristic for SeCo or weighted covering can be simulated by an appropriate
rule growing heuristic for the RSC method. Also, the rule growing heuristic can control ’tree-likeness’ of
the rules and hence can simulate any DT algorithm. More technical details related to the generalization
are provided in Section 2.1 (Theorem 1). In addition in this subsection we propose Conjecture 1
formalising the intuition outlined in Example 2 regarding the advantage of RSC over SeCo.

In this paper we apply the RSC method in the area of failure prediction of complex manufacturing
machines. These sophisticated machines are equipped with a series of sensors and actuators that

Algorithms 2020, 13, 219 4 of 22

provide a combination of real-time data about the state of machines (performance) and product state
(quality) during the production process. The attributes of the dataset correspond to sensors and the
values of the attributes are respective sensor readings. The binary outcome column is interpreted
as an alarm (outcome 1) or no alarm (outcome 0). The purpose of the failure prediction is to notify
the operator of a forthcoming failure. Therefore, there is no point to learn rules whose outcome is 0.
That is all the rules learned by a method we are going to present have 1 (an alarm) as the outcome.
This allows to introduce the following two simplifications.

1. The outcome can be omitted. Therefore, each rule can be presented as a conjunction of (attribute,
interval) pairs.

2. Since all the rules have outcome 1, conflicting predictions between overlapping rules cannot occur.

The failure prediction task explored in this paper is an important method of Predictive Maintenance
(PdM). PdM is a set of techniques helping engineers to organize maintenance based on actual
information about forthcoming failures [6]. The main aim of PdM is to reduce operating costs of two
other maintenance strategies [6]: (1) Run-to-Failure (R2F) where corrective maintenance is performed
only after the occurrence of failures; and (2) Preventive Maintenance (PvM) where equipment checks
are performed at fixed periods of time. PdM also prolong the useful life of the equipment [7] and
optimize the use and management of assets [8]. PdM uses predictive techniques, based on continuous
machine monitoring, to decide when maintenance is needed to be performed. Two main approaches
to the design of PdM software are Discrete-Event Simulation [9] and ML.

The ML approach is based on prediction of future performance based on historical data.
Large volumes of past performance data have been collected in large enterprises. With the advent
of modern ML approaches, the analysis of these data can provide very useful information about
the future performance. There are many results applying ML to the past performance data of the
equipment, see surveys [10–12] for comprehensive overviews. The existing ML methodologies for
PdM are based on methods such as Support Vector Machines [6,13–18], k-Nearest Neighbors [6,13,16],
Artificial Neural Networks and Deep Learning [16,19,20], stochastic processes [21], K-means [13,16,22],
Bayesian reasoning [23]. Ensemble methodologies where several methods are used and the weighted
average of their predictions are reported in e.g. [24–26].

Rule-based methods are rather under-represented in PdM. DT based methods have been proposed
in e.g., [16,27,28]. Random Forests (RF) based methods have been used in e.g., [29–31]. The use of more
generic rule-learning such as SeCo is even more limited in the area of PdM: we are only aware of
work [32] (thanks to the anonymous reviewer for bringing this paper to our attention). Our paper
reports a progress towards further exploration of the potential of rule learning in the area of PdM.

In the context of failure prediction, we report the following technical results.

1. We present a generic framework forming a collection of rules according to the RSC approach.
In particular, this framework allows implementation of a wide range of heuristics.

2. We present one particular heuristic that aims to maximize the precision of the newly formed rule
as well as the coverage of the positive instances that are not covered by the previous rules.

3. We present empirical investigation of the resulting rule learner. In particular, we compare the
RSC approach with a DT based and SeCo rule learners on two domains:

(a) A randomly generated dataset simulating alarms caused by small number of factors.
(b) A real industrial dataset collected from a machine which manufactures the plastic bottle caps.

This dataset records alarms occurred in this machine and the associated sensor readings.

In both cases the RSC algorithm significantly outperforms the DT based rule learner and SeCo
method using the same heuristic . The RSC produces a set of rules that is smaller and much more
accurate DT based and SeCo rule learners. We conclude that the RSC is a promising approach
deserving further investigation.

Algorithms 2020, 13, 219 5 of 22

The rest of the paper is organized as follows. In Section 2 we describe the Relaxed Separate-and-
Conquer (RSC) rule learning approach and provide its theoretical justification. In Section 3 we provide
the experiments. Section 4 concludes the paper.

2. Relaxed Separate-and-Conquer Rule Learning approach

In this section, we describe the Relaxed Separate-and-Conquer (RSC) method of rule learning.
We emphasize that, like Separate-and-Conquer (SeCo), this is an approach rather than a single
algorithm. Several heuristic choices need to be made in order to turn this approach into an algorithm.
We present the approach equipped with a quite straightforward heuristic based on a common sense.
We also demonstrate that the RSC approach generalizes SeCo and weighted covering methods, the latter
under a mild restriction.

In order to present the RSC approach, we introduce first the related terminology. Our dataset is
presented as a table called DATA having n + 1 columns. The first n columns are referred to as attributes
attr1, . . . , attrn. The values of attri are integer numbers between 0 and some maximum possible value
maxi. The last column is called the outcome and denoted by out. The out column is binary with possible
values 1 (interpreted as ‘alarm’) and 0 (‘no alarm’). Our aim is to learn the rules predicting alarms.
We assume that there are no two distinct rows with the same tuple of attributes, to make sure that the
dataset represents a function.

Definition 1. An attribute-value pair (AVP) is a pair (j, [a, b]) where 1 ≤ j ≤ n and 0 ≤ a ≤ b ≤ maxj.
A row DATA[i] of DATA is covered by (j, [a, b]) if a ≤ DATA[i][j] ≤ b. In other words, an AVP (j, [a, b])
restricts the values of attrj to [a, b].

Definition 2. A rule is a set of AVPs. A row of DATA is covered by the rule if it is covered by all the AVPs.
In other words, we can see a rule as a conjunction of AVPs.

Definition 3. A collection of rules is a set of rules. A row is covered by a collection of rules if it is covered by
at least one rule of the collection.

Thus we can see that a collection of rules can be seen as a monotone (no negations) Disjunctive
Normal Form (DNF) with AVPs used instead of Boolean variables.

The algorithm consists of a generic function for forming a collection of rules and growing a single
rule which needs an heuristic to choose the next AVP to add to the current rule (if any).

The main function is called RSC, which is an abbreviation of Relaxed Separate-and-Conquer.
It starts with an empty collection of rules and runs a function FormRule that returns a rule. If this
rule is not empty then it is added to a collection. If the rule returned by FormRule is empty then the
algorithm stops and the collection formed so far is returned. The pseudocode of RSC and FormRule
functions is given in Algorithm 1.

Note it is the responsibility of the function FormRule to ensure that the loop of the function RSC
stops: FormRule must eventually return an empty rule. FormRule runs a heuristic function called
ChooseNext. ChooseNext either returns an AVP which is added to the rule being formed or returns nil
that means that the heuristic determines that the current rule should not be grown further. In this case
FormRule returns the current rule.

The ChooseNext heuristic is, as we mentioned above, central in turning the approach into an
algorithm. The heuristic chooses whether to return an AVP and, if positive, which one to return.
The RSC approach does not prescribe a particular algorithm for ChooseNext, however imposes one
important constraint: the returned AVP must cover a row not covered by the current collection of
rules. The particular algorithm for ChooseNext presented below is just one possible variant fitting the
pattern. First of all, for the sake of speeding up, rather than running through all the AVPs the heuristic
runs only through half-intervals of the attributes as defined below.

Algorithms 2020, 13, 219 6 of 22

Algorithm 1 Relaxed Separate-and-Conquer (RSC) Rule Learning approach.

function RSC()
Collection← ∅
loop

Rule← FormRule(Collection)
if Rule = ∅ then

return Collection
end if
Collection← Collection ∪ {Rule}

end loop
end function

function FORMRULE(Collection)
Rule← ∅
loop

AVP← ChooseNext(Collection, Rule)
if AVP = nil then

return Rule
end if
Rule← Rule ∪ {AVP}

end loop
end function

Definition 4. An AVP (j, [a, b]) is a half-interval if either a = 0 or b = maxj.

In other words, (j, [a, b]) is a half interval if either a is the initial value of attrj or b is the final
value of this attribute. For attribute j there are 2 ∗maxj half-intervals and O(max2

j) AVPs in general.
Therefore, going through half-intervals only significantly saves the runtime. Note that the expressive
power is not affected because any AVP can be seen as a rule including two half-intervals.

The pseudocode of ChooseNext heuristic is provided in Algorithm 2. ChooseNext uses two
auxiliary functions: IsChosen and IsReplaced. The function IsChosen operates when no AVP has
been chosen yet to add to the current rule and this function decides whether the currently considered
interval is a viable (though possibly not the best) candidate for the rule growth. The function IsReplaced
operates when there is already a candidate AVP to be returned and a new one is considered, and the
function decides whether the new AVP is preferable to the current favorite.

It is the responsibility of IsChosen to ensure that the whole algorithm does not enter into an
infinite loop. In particular, when all the rows with outcome 1 have been covered by the current
collection of rules, IsChosen must reject all the candidate AVPs. Then an empty rule will be returned
by the function FormRule and the run of the main function RSC will be terminated.

In order to describe functions IsChosen and IsReplaced we need to introduce new terminology.
First of all, each row of table DATA is associated with its index (as usual row 1, row 2, and so on).
When we refer to a set of rows, we mean the set of their respective numbers.

Let R be a rule. We denote by POS(R) and NEG(R) the sets of rows covered by R that respectively
have positive and negative outcomes. That is, POS(R) ∪ NEG(R) is the total set of rows covered by R.

Definition 5. The precision prec(R) of a rule R is defined as follows. If POS(R) ∪ NEG(R) = ∅ then
prec(R) = 0. Otherwise, prec(R) = |POS(R)|/(|POS(R)|+ |NEG(R)|).

Let C be a collection of rules. Then POS(C) =
⋃

R∈C POS(R). In other words, the positive rows
covered by the collection is the union of the positive rows covered by the rules in this collection.

Algorithms 2020, 13, 219 7 of 22

Definition 6. Let C be a collection of rules and let R be a rule such that R /∈ C. Then the free coverage of R
w.r.t. C is POS(R) \ POS(C) and it is denoted by Free(R, C). In other words, the free coverage corresponds to
the positive rows that are covered by the new rule R being formed but is not covered by the current collection C
of rules.

Algorithm 2 ChooseNext heuristic for RSC approach.

function CHOOSENEXT(Collection, Rule)
CurAVP← nil
for each half-interval AVP do

if CurAVP = nil then
if IsChosen(Collection, Rule, AVP) then

CurAVP← AVP
end if

else
if IsReplaced(Collection, Rule, CurAVP, AVP) then

CurAVP← AVP
end if

end if
end for
return CurAVP

end function

The pseudocode of the function IsChosen is given in Algorithm 3. IsChosen uses two parameters
(thresholds) init_ f ree and init_prec. They are not specified by the algorithm and their right value is
determined by experiments. Thus IsChosen decides to not grow the rule with AVP if the result of
adding AVP to the current rule covers less ‘new’ positive rows than the specified threshold. For this
condition to prevent the whole algorithm running into an infinite loop, init_ f ree must be at least 1.
Setting the parameter to a larger value will force the new rules to cover more new positive rows and,
as a result, to potentially decrease the total number of rules needed. The initial precision threshold
init_prec is not necessary for a properly functioning algorithm. However, making sure that the initial
precision is sufficiently high, the algorithm potentially avoids creation of too long rules.

The pseudocode of the function IsReplaced is provided in Algorithm 3. IsReplaced compares
two different AVPs to be added to the current rule. In order to compare them, IsReplaced forms two
new rules, Rule1 and Rule2, Rule1 with the current best candidate to be added to the current rule and
Rule2 with a new AVP added. If the Rule2 covers less new rows than init_ f ree then the new AVP
is immediately discarded. The new AVP replaces the current one if the precision of Rule2 is greater
than the precision of Rule1. Another reason to prefer the new AVP if Rule2 and Rule1 have the same
precision but Rule2 has a greater free coverage. In fact, the function is ready to sacrifice precision a little
bit for the sake of a greater coverage. In particular, we introduce a parameter prec_loss and consider
Rule2 preferable to Rule1 if the precision of Rule2 is at least the precision of Rule1 minus prec_loss but
the free coverage is larger.

The purpose of parameters. init_prec allows the whole algorithm to stop even if there is a small
percentage of rows with uncovered outcome. In particular, this parameter is used to fight off noise.
The parameter prec_loss helps to create rules that are possibly not 100% accurate but have a good
coverage. Change of these parameters can affect (positively or negatively) the quality of rule learning.
An extensive study of the right choice of parameters for SeCo has been performed in [33,34]. Studying
of the interplay of these parameters for the RSC is left for the future work.

SeCo with the ChooseNext heuristic. Below and in the next section, we use the SeCo method
running exactly the ChooseNext heuristic (Algorithm 2 and 3) as the RSC. The only modification we

Algorithms 2020, 13, 219 8 of 22

need is a different way to calculate precision: without taking into account the rows covered by the
collection of the existing rules. Let us state this formally.

Let C be the current collection of rules. Let COV(C) =
⋃

R∈C(POS(R) ∪ NEG(R)). Let R
be a new rule. Let FreePOS(R, C) = POS(R) \ COV(C) and FreeNeg(R, C) = NEG(R) \
COV(C). Let f ree_prec(R, C) be defined as follows. If FreePOS(R, C) ∪ FreeNEG(R, C) = ∅
then f ree_prec(R, C) = 0. Otherwise, f ree_prec(R, C) = |FreePOS(R, C)|/(|FreePOS(R, C)| +
|FreeNEG(R, C)|). SeCo uses f ree_prec(R, C) instead of prec(R) and exactly at the same places.

Algorithm 3 Two auxiliary functions for ChooseNext heuristic.

function ISCHOSEN(Collection, Rule, AVP)
Rule1 = Rule ∪ {AVP}
if |Free(Rule1, Collection)| < init_ f ree then

return f alse
end if
if prec(Rule1) < init_prec then

return f alse
end if
return true

end function

function ISREPLACED(Collection, Rule, CurAVP, AVP)
Rule1 = Rule ∪ {CurAVP}
Rule2 = Rule ∪ {AVP}
if |Free(Rule2, Collection)| < init_ f ree then

return f alse
end if
if prec(Rule2) > prec(Rule1) then

return true
end if
if prec(Rule2) < prec(Rule1)− prec_loss then

return f alse
else if Free(Rule2, Collection) > Free(Rule1, Collection) then

return true
end if
return f alse

end function

2.1. Advantages of RSC versus Methods of Separate-and-Conquer (SeCo) and Weighted Covering

Definition 7. Let C be a collection of rules and let R be a new rule. We say that R is reasonable w.r.t. C if
Free(R, C) 6= ∅.

The only constraint of the RSC method is that each new rule is reasonable w.r.t. the collection of
the previously formed rules. This condition is significantly weaker than that required for SeCo.

Indeed, let C be a collection of rules and recall that COV(C) =
⋃

R∈C(POS(R) ∪ NEG(R)).
The SeCo method, having formed C excludes rows COV(C) from the dataset. A new rule R must have
positive coverage outside of COV(C). Otherwise such a rule simply does not make sense. Clearly,
such a rule R is reasonable.

Algorithms 2020, 13, 219 9 of 22

Note also that ChooseNext heuristic receives the current collection C of rules as an argument.
Therefore, ChooseNext can compute COV(C) and hence implement any SeCo heuristic. We conclude
that the RSC method generalizes SeCo.

Having access to COV(C) also allows to implement any weight function within ChooseNext.
We conclude that any rule growing heuristic for weighted covering that guarantees to return a
reasonable rule w.r.t. C can be implemented within ChooseNext.

The above discussion is summarized by the following theorem.

Theorem 1. The RSC method is a generalization of the SeCo method. The RSC method also generalizes weighted
covering for an arbitrary rule growing heuristic, guaranteeing to return a reasonable rule w.r..t. the current
formed collection of rules.

Remark 1.

1. It is unlikely that the weighted covering can simulate RSC. Indeed, any assignment of weights discriminates
the rows covered by the existing collection of rules. This is a stronger constraint than the requirement of
the RSC that the new rule must be just reasonable.

2. Our implementation of the RSC method maintains COV(C) and Free(R, C), where C is the current
collection of rules and R is the new rule being formed. Therefore, simulation of weighted covering or SeCo
methods does not involve any computational overhead.

3. Since the ChooseNext heuristic receives the current collection of rules as an argument, it can enforce
tree-likeness of the collection of rules. Hence, any DT algorithm can be easily implemented within
this framework.

Thus we have seen that RSC generalizes SeCo. We need to show now whether there is any
advantage in this generalization. In the next section, we provide empirical evidence to that effect.
In the rest of this section we argue that RSC is better than SeCo also from the theoretical perspective.
In particular, we propose a conjecture that, in order to have a comparable performance, SeCo must
have a much larger training set.

This conjecture is stated for a broad domain called truth table learning, see Section 3.1.
We start from considering one particular scenario in which a rule learner has little choice but

to make a wrong conclusion. In particular, consider a set of rules R = (x1 ∧ x2) ∨ (x3 ∧ x4) over a
binary domain (that is, two rules x1 = 1∧ x2 = 1 and x3 = 1∧ x4 = 1). Assume further that the rule
learning algorithm runs on the following rather unfortunate training set: in all the rows covered by
R the variable x5 equals 1 and in all the rows not covered by R the variable x5 equals 0. In this case,
a rule learner, seeking to learn a short rule, would gladly report that the underlying rule is x5 (that is,
the outcome equals one whenever x5 = 1).

The above anomaly can easily occur in small training sets but the larger the training set becomes
the less likely anomalous patterns are to occur because many random choices tend to concentrate
around the expectation. In the particular example above, the values of x5 can be considered as
outcomes of independent coin tosses. If there are many such tosses then the percentages of 1 and 0
outcomes are likely to be close to 50%. Consequently, if there are many rows that are covered by rule R
and many rows that are not covered by rule R then the above anomaly is very unlikely to happen.

The discussion above suggests that a rule learning needs a sufficiently large training set in order
to work properly. Let us formalise this intuition. Suppose that we have n variables and the domain
of each variable has m values. Further on, let f be a function on this variable induced by a set S of
at most r random rules each involving at most k variables. Let A be a rule learner. Let us denote
by QA(n, m, r, k) the size of a training set such that with a high probability A guesses the function
correctly given the training set of this size. Denote QSECO and QRSC the respective sizes of training
sets for SeCo with the ChooseNext heuristic and RSC. Then we make the following conjecture.

Conjecture 1. QSECO(n, m, r, k) is exponentially (by factor about 2r) larger than QRSC(n, m, r, k).

Algorithms 2020, 13, 219 10 of 22

The intuition behind this conjecture is that SeCo in fact considers not one but many training sets
that are obtained from the original set by removal the rows covered by the already discovered rules.
Since we do not know in advance which rules will be discovered first, we must consider removal of
rows covered by all possible 2r subsets of rules. After those removals the remaining training set must
be sufficiently large to derive the remaining rules. On the other hand the RSC is not subject to such a
constraint. Thus we predict that the learning space needed for good performance of SeCo is larger by
an exponential factor in r than such a space for RSC. This exponential factor is a compensation price
for distortion of the learning space carried out by SeCo during its performance.

Conjecture 1 is closely related to so called Juntas Learning Problem [35] that is essentially a
theoretical abstraction of the task of feature selection. The important difference is that we consider not
a problem in general but rather specific algorithms for solving the problem.

3. Experiments

The purpose of this section is to empirically assess the potential of our Relaxed Separate-and-
Conquer (RSC) approach. For this purpose, we compare RSC with Decision Tree (DT) and
Separate-and-Conquer (SeCo) methods. We use the SeCo method equipped with the same heuristic
as RSC (but computed over the dataset yet uncovered by the current collection of rules). Below we
overview the DT method that we use for the experiments.

In the context of ML, DT is a directed rooted tree, whose non-leaf nodes correspond to conditions
on attributes of a dataset and leaves correspond to the outcomes. The outgoing edges of each non-leaf
node are labeled with True and False meaning whether or not the condition associated with that node
is satisfied. Thus each edge is associated with a condition which is either condition associated with its
tail or the negation of this condition.

The semantics of DT is tied to its root-leaf paths. Each such a path P is seen as the set of
conditions Cond1, . . . , Condq associated with the edges of P plus the outcome out associated with the
leaf. Thus each root-leaf path P of DT can be seen as a rule of the form Cond1 ∧ · · · ∧ Condq → out,
where Cond1 ∧ · · · ∧ Condq is the body of the rule consisting of conjunctions of individual conditions
and out is the outcome of the rule.

The procedure of turning a DT into a set of rules as described above is called linearization.
For example, the rules corresponding to the DT in Figure 1 are the following: (A < 3) ∧ (B > 5)→ 1;
(A < 3) ∧ (B ≤ 5)→ 0; (A ≥ 3)→ 1.

Figure 1. DT example

We use a standard DT algorithm provided by the ML Python library Scikit-Learn [36], with the
Gini index served as the splitter and the DT depth is upper-bounded by 7. To obtain a set of rules the
resulting DT is linearized. For failure prediction we have two types of outcome only: out = 1 associated
with a failure and out = 0 otherwise. We record only those rules whose outcome is 1. In other words,
we ignore the rules with outcome 0 explaining why a particular failure does not occur because these
rules are simply not relevant for our task.

Choice of parameters. As specified in the previous section, the RSC algorithm requires setting of
three parameters: init_ f ree, init_prec, prec_loss. In all of our experiments, we set these parameters to
1, 1%, 0.5% respectively.

Algorithms 2020, 13, 219 11 of 22

The rest of the section consists of two subsection. In each subsection we consider a particular
domain and compare our RSC approach with the DT based and SeCo rule learners using this domain.

3.1. Learning the Truth Table of the Given Collection of Rules

Any function on finite domain variables can be defined using a truth table. The truth table consists
of all possible tuples of assignment of variables with their domain values, and each tuple is associated
with the respective value of the function.

In our first experiment we randomly generate a small collection of small rules, then randomly
select a subset S of rows of the truth table of the collection. Next, we run a RL algorithm (RSC, SeCo,
and a DT based rule learner) on S with the goal to create a collection of rules as close as possible
matching the original one.

The rest of the subsection is organized as follows.

1. We define a truth table for a collection of rules.
2. We specify an algorithm for generalization of a random collection of rules and of a random subset

of its truth table.
3. We describe the tests that we performed and their results.

Truth table for a collection of rules and the induced function.

A collection of rules can be associated with many truth tables. This is because, in addition to the
variables of the rules, the truth table can also contain many variables that are not essential for the rule.
However, since the RL algorithm does not ‘know’ that these extra variables are not essential, these
variables make the RL task more difficult.

For example, consider a single rule consisting of a single AVP (x1, [2, 4]). A truth table for this rule
may consist of 100 variables x1, . . . , x100. The domain of each variable can be e.g. {1, . . . , 10}. However,
the value of the respective function is determined only by the above AVP: it is 1 if the value of x1 is
between 2 and 4, and 0 otherwise.

Having in mind the above example, we give below a formal definition of a truth table for a
collection of rules. As an intermediate notion we also define a function induced by the collection of
rules, a notion that we will use for the description of a training set.

Definition 8. Let C be a collection of rules. Let X be the set of variables of C. For each x ∈ X, let val(x) be the
set of values of X used in the rules of C. Let X∗ be a set of variables such that X ⊆ X∗. For each x ∈ X∗, the
domain dom(x) of x is defined under the following constraint: if x ∈ X then val(x) ⊆ dom(x). Otherwise,
dom(x) is an arbitrary finite set. Then a function f induced by C is defined as follows. The domain of f is X∗.
Let X∗ = {x1, . . . , xn}. Let val1, . . . , valn be the tuple of assignments to the respective variables. If this tuple is
covered by at least one rule of C then the corresponding value of f is 1, otherwise it is 0.

Given X∗ and their domains as above, the truth table of C becomes the truth table of f . That is the rows of
the table correspond to the x1, . . . , xn and the last column is for the outcome. The rows of the table are all the
tuples of assignments to X∗ and their corresponding value of f as described above.

Generation of a random collection of rules and a random subset of the related truth table.

1. Choose the following parameters.

(a) num_attr, the number of attributes.
(b) max_val, the largest value for each attribute meaning that the attribute values will lay in the

interval [0, max_val].
(c) num_rules, the number of rules to be generated.
(d) len_rule, the length of the generated rules
(e) num_rows, the number of rows of the training set.

Algorithms 2020, 13, 219 12 of 22

2. Randomly generate a collection of C having number of rules num_rules. Each rule is a random
generation of len_rule AVPs that can be done as follows.

(a) Randomly choose len_rule attributes for the given rule.
(b) For each chosen attribute attr, randomly generate an interval [a, b] such that 0 ≤ a ≤ b ≤

max_val and the resulting AVP is (attr, [a, b]).

3. Randomly generate num_rows of the ‘truth’ table for the above rules in order to create a training
set. A row of the truth table is generated as follows.

(a) Randomly generate a value for each attribute between 0 and max_val.
(b) Let tp be the resulting tuple of attribute values.
(c) If tp is covered by C then out = 1, otherwise out = 0.
(d) Add out in the last column of tp.

To make the work of a rule learner more complicated, we also generate rows by introducing a
random noise. In order to do this, we choose a small parameter noise_prob (e.g. 0.005) and then, in the
above algorithm, after having computed the outcome, alter it with probability noise_prob.

Example 3 demonstrates the experiment.

Example 3. Suppose max_val = 1 that means that all the attribute values are binary: 0 or 1. Moreover, this
also means that the collection of rules become Disjunctive Normal Forms (DNFs).

Then num_rules becomes the number of conjuncts and len_rule becomes the length of the conjuncts.
Suppose that both of them equal 2. Let the collection of rules be (x1 ∧ x2) ∨ (x3 ∧ x4). Let also the number of
attributes be 10. Thus we have defined the function f (x1, . . . , x10) = (x1 ∧ x2) ∨ (x3 ∧ x4). The whole dataset
is just the truth table of this function. The num_rows parameter is the size of the training set (seen by the
algorithm). These num_rows rows are randomly selected out of the whole dataset. A RL algorithm is supposed
to guess the whole function out of these rows.

Testing and analysis of the results.

Now, suppose a RL algorithm returns a collection of rules g. How can we determine the closeness
of g to the function f induced by the collection of rules? The truth table of g consists of the same tuples
as the truth table of f (but the values of the function can, of course be different). Therefore, we proceed
as follows.

1. Calculate the numbers of rows that are satisfied by f , g and f ∧ g (both g and f) and denote them
by | f |, |g| and | f ∧ g|, respectively.

2. The number | f ∧ g|/| f | is the percent of rows covered by f that are also covered by g. The larger
this number the better is the quality of the learned model.

3. The number | f ∧ g|/|g| is the percent of rows covered by g that are also covered by f . The larger
this number the smaller the number of rows of g that are not covered by f and the better the
quality of g.

Note that the computation of the number of rows is in general an intractable problem. However,
since we consider small collections of small rules this can be done by a brute-force algorithm.

We test the algorithms (RSC, SeCo, and DT) in the modes specified by the following parameters.

1. The number of extra variables. Extra variables are those that do not take part in the rules of f .
They are inessential, however their presence can seriously hinder performance of an RL algorithm.
Getting rid of such variables is the main task of the feature selection algorithm. We consider two
extreme modes: few extra variables and many extra variables. We gradually increase the number
of variables in order to see a point where the rule learner starts to work much worse. In case of
many variables, the performance can be significantly improved with the introduction of feature

Algorithms 2020, 13, 219 13 of 22

selection algorithms. However, in this experiment we want to see how the algorithm deals alone
with this matter.

Having many variables has another interesting feature: the size of the truth table becomes very
large (100 variables with domain 2 in each of them result in a truth table of 2100 rows). This means
that a training set (in which rows are explicitly presented) becomes tiny compared to the whole
truth table. It is interesting to see how an RL algorithms would cope with this situation.

2. The number of extra values. Suppose x is a variable occurring in the rules of f . However, the
domain of x may contain many values that do not take part in any interval of an AVP of x in f .
When there are many additional values, the event of the function f equal 1 becomes rare and
hence it is more difficult for a rule learner to ‘spot’ the rule. We will check truth tables with few
and with many background values.

Thus the options of few/many extra variables and few/many extra values give us 4 modes of
testing combined. If we add presence/absence of random noise this will make 8 modes of testing
in total.

We perform experiments according to the above classification. Our conclusions based on these
experiments are summarized below.

1. Small number of extra variables. In this case the RSC algorithm correctly reconstructs the original
function. However, if we increase the number of values, the algorithm splits the original rules so
the number of resulting rules is larger than the number of the original rules. The effect of splitting
can be demonstrated on the following example. Consider a rule (x1, [1, 10]) ∧ (x2, [1, 10]). As a
result of splitting this rule can be represented by the following collection of four rules {[x1, [1, 5])∧
(x2, [1, 5]), (x1, [1, 5]) ∧ (x2, [6, 10]), (x1, [6, 10]) ∧ (x2, [1, 5]), (x1, [6, 10]) ∧ (x2, [6, 10])}
The larger the intervals the stronger output of our algorithm is affected by splitting. This effect can
be alleviated by using non-zero prec_loss parameter, for instance, about half percent (prec_loss is
defined for the function IsReplaces in Algorithm 3 in Section 2). As a result of this, the algorithm
is ‘encouraged’ to move to a larger interval even if the resulting precision is slightly smaller.
However, the fragmentation of the rules still exists. We believe this can be addressed by a
post-learning algorithm that tries to simplify the already created rules [4]. This is an interesting
topic for future research.

2. Many extra variables. In this case, the RSC algorithm has tendency to include irrelevant variables
into the rules. This inclusion has an interesting side effect: redundant variables in correct rules.
For example, suppose we have a rule [x1, [1, 5]) ∧ (x2, [1, 5]). If the number of variables is say
100 and the size of the sample of the truth table considered by the algorithm is say 1000 (tiny
proportion of total number of 2100 of the truth table) then there might be some irrelevant variable
with an interval whose precision is better then any interval of x1 or x2. In this case the algorithm
picks something like (x10, [1, 2]) and then a relevant variable. This effect makes the collection of
rules longer than needed. Still, in the vast majority of cases, the function of the collection of rules
formed was exactly the function of the original rules.

In about 1% of cases, we obtained rules with false positives. The reason for that is an effect of
‘shadowing’: when a training set is so tiny compared to the ‘full’ data, some statistical ‘anomalies’
are possible. For example, it may happen that an interval of an irrelevant variable perfectly
correlates with the rows where the function is 1. Clearly, in this case, the algorithm will pick the
correlating interval of an irrelevant variable.

The above situation can be fixed if the algorithm considers several random training sets of the
same size. This allows the ‘stray’ irrelevant variable to be ‘shaken off’.

If in additional to many extra variables some relevant variables contain many extra values, the
negative effects specified above are, of course moderately aggravated. For instance, the RSC
algorithm did not manage to correctly guess the function only in about 3% of cases.

Algorithms 2020, 13, 219 14 of 22

3. The influence of noise. The noise does not significantly affect the behavior of the algorithm as
specified above. In particular, the RSC algorithm is still able to recognize the main rules and does
not try to ‘collate’ the ‘noisy’ rows with the main ones.

4. Comparison of RSC with DT based and Separate-and-Conquer (SeCo) rule learners. Finally,
it is important to say that on this domain the RSC algorithm works much better than the DT and
SeCo (with ChooseNext heuristic) rule learners.

Indeed, in those rare cases where RSC returns an incorrect collection of rules, the difference
between the output and the original collection of rules has never been more than 2%. On the
other hand, the rules returned by the DT based rule learner even in case of few extra variables
and small domains are at least 20% different from the original collection of rules. In case of many
extra variables, the difference can be up to 40%. The SeCo (with ChooseNext heuristic) is only
marginally better than DT.

A typical situation when both DT and SeCo fail to discover the right set of rules can be described
by the following simple example. Suppose that the dataset consists of 10 attributes attr1, . . . , attr10,
each attribute can take values 1, . . . , 5 and the outcome is 1 only for rows covered by one of the
following two rules.

(a) attr1 ∈ [1, 4] ∧ attr4 ∈ [2, 5]
(b) attr2 ∈ [1, 3] ∧ attr3 ∈ [3, 5]

Both RSC and SeCo easily discover the first rule. RSC quickly discovers the second rule. However,
the SeCo rule have been removed. It picks an unrelated variable and then creates many irrelevant
rules just to cover the remaining rows. Unsurprisingly, on the testing set such rules are far from
being accurate.

3.2. Failure Prediction Using a Real Industrial Dataset

For our experiments we use a real industrial dataset collected from a machine which manufactures
the plastic bottle caps. This dataset consists of two following parts.

The first part is a collection of tuples of sensor readings provided in CSV format that have been
collected over more than one year from this machine. Each tuple of sensor readings is associated with
a timestamp. We create a table R with columns (attributes) corresponding to the sensors and the rows
being the tuples of corresponding readings. To make connection with the second part of the data, we
also keep the timestamps of the tuples in the memory.

The second part is information about alarms. This data consists of tuples having three
components: start and end timestamps of an alarm and alarm error code. The alarms are associated
with failures in this industrial machine, in the sense that if an alarm occurs, the machine should be
switched off to find the failure. The alarm error codes are organized into four groups: shutdown,
stoppage, mandatory action and message. The first two groups (shutdown and stoppage) are main
errors that should be predicted to prevent failures in the machine. Five types of shutdown and
stoppage alarms happen most often. In this section we refer to them by index i ∈ {1, 2, 3, 4, 5} for the
purpose of explanation.

The rest of this subsection is divided into the following four parts.

1. Testing the ability of the considered algorithms to predict the actual alarms occurring at the given
moment of time.

2. Testing the remaining useful life prediction (RUL), this is effectively the ability to predict an alarm
to occur in the near future.

3. Testing the true and false positive rates.
4. Making conclusion based on the obtained empirical results.

Prediction of actual alarms.

For all alarms, we form the respective datasets D1, . . . , D5. Each Di is formed as follows.

Algorithms 2020, 13, 219 15 of 22

1. We take the table R created from the first part of the dataset and add to it one extra column out.
2. For each row of R, we check whether alarm i occurred at the moment of the timestamp associated

with the row. If it did, the value of out in this row is set to 1. Otherwise, the value of out is set to 0.

As a result, we obtain datasets where the sensor readings serve as attributes and the values of the
last column serve as outcomes.

We perform the experiments for RSC, DT based and SeCo (with ChooseNext heuristic) algorithms
as follows.

1. We run the algorithm for each Di separately. For this, we randomly partition the rows of Di into
the training (70% of the rows) and testing sets (30% of the rows), and record all the rules.

2. Each rule is tested on the testing set corresponding to the predicted alarm. That is, for the
predicted alarm i any rule obtained from the the training set of Di is tested on the testing set of
Di. For each rule, we record its precision with respect to the testing set (see Definition 5).

3. We record together the rules obtained from the exploration of all datasets D1, . . . D5, replacing
the outcome 1 with the respective real alarm code, and remove those rules that cover less than
20 lines in the dataset as insignificant.

Some rules and their precision are reported in Table 1 for RSC, in Table 2 for a DT based rule
learner and in Table 3 for SeCo. Each row in the tables corresponds to a rule. The first column
‘alarm’ states the predicted alarm code. The second column ‘rules’ describes the body of the rule,
we grouped several rules predicting the same alarm. For example, the rule on the first row of Table 1
should be interpreted as follows. If the value of the attribute %ZP is 0 and the value of the attribute
Ads.HmiVis.EXTR.PRESS_I is in the interval [8.63,170.95] then alarm 1017 occurs. The rule on the last row
of Table 2 is interpreted as follows. If the value of the attribute %PS is greater than 40.7 and the value
of the attribute Ads.HmiVis.CENTR.POT_M1B is greater than 61.1 then alarm 3099 occurs. The last column
‘precision’ measures how much the given rule is precise for the dataset, calculating the percentage of
rows of the testing set on which the alarm actually occurs among those covered by the respective rule (as in
Definition 5).

Table 1. Relaxed Separate-and-Conquer (RSC) (RUL = 0 s.)

Alarm Rules Precision

1017
(%ZP= 0)∧(Ads.HmiVis.EXTR.PRESS_I∈[8.63,170.95]) 98%

(%ZP= 0)∧(TEMP_E1∈[185.73,194.97]) 95%

3042
(TEMP_CI∈[49.6,50.1])∧(TEMP_E10∈[164.76,199.1])∧(TEMP_ZP∈[21.4,184.8]) 96%

(TEMP_CI∈[49.6,50.1])∧(PRES_PI∈[0,0.8])∧(%E1∈[−33.34,15.1]) 97%

(Ads.HmiVis.CCM.CORSA_AP∈[113.3,114.5])∧(TEMP_CI∈[21.7,42])∧(TEMP_PI∈[26,31]) 96%

3167 (%E2∈[−5,4.07])∧(Ads.HmiVis.CENTR.PRESS_B∈[0.2,69.8])∧(TEMP_PI∈[12.9,20.6]) 97%

(TEMP_E1∈[170.53,195.02])∧(TEMP_PI∈[26.1,31])∧(TEMP_E4∈[180,197.1]) 94%

3197
(TEMP_PS∈[36.88,37.3])∧(Ads.HmiVis.EXTR.PRESS_I∈[7.83,170.8]) 96%

(TEMP_PS∈[36.9,37.3])∧(%CU∈[24.77,100]) 98%

(%PS∈[40.55,100])∧(Ads.HmiVis.EXTR.PRESS_I∈[17.58,161.93]) 97%

3099 (Ads.HmiVis.CENTR.POT_M1B∈[75.7,78.3])∧(%E5∈[−8.1,6.4])∧(%E1∈[−33.4,29.4]) 93%

(Ads.HmiVis.CENTR.POT_M1B∈[58.8,78.3])∧(TEMP_CI∈[21.7,28.5])∧(%TB∈[0,15.4]) 96%

Let us make one interesting remark. The rules generated by the above algorithms are overlapping
in the sense that a row of table R can be covered by more than one rule meaning that the set of rules
predict that more than one alarm is taking place during the corresponding timestamp. This means that
two or more alarms may occur simultaneously. In fact, classifying each alarm separately is a standard
ML approach for multiple classification tasks. It is called unordered rules and there is evidence that this
approach makes more accurate predictions than learning mutually exclusive rules, see e.g., [37].

Algorithms 2020, 13, 219 16 of 22

RUL prediction.

We also test the ability of algorithms to predict the remaining time to failure (or RUL - remaining
useful life). In particular, for a time t seconds, we modify tables D1, . . . , D5 to obtain the respective tables
Dt

1, . . . , Dt
5 as follows. Take table Di and set the out column to 1 in those rows whose timestamp is at

most t seconds before the timestamp of a row having out = 1 in Di. The resulting table is Dt
i . We report

experiments with two values of t: 60 and 120, chosen for the sake of demonstration. The resulting rules
and the testing results of the respective RSC, DT based and SeCo algorithms are reported in Tables 4–6
for RUL = 60 s and in Tables 7–9 for RUL = 120 s.

Table 2. Decision Tree (DT) based rule learner (RUL = 0 s).

Alarm Rules Precision
1017 (TEMP_E2>178.79)∧(%ZP<=2.46)∧(%TB<=4.3) 89%

3042

(TEMP_CI>47.55)∧(TEMP_ST<=49.15)∧(PORT_PS>0.8)∧(TEMP_E5>158.35)∧(TEMP_FU<=167.2) 90%

(TEMP_CI>47.55)∧(TEMP_ST<=49.15)∧(PORT_PS<=0.8)∧(%E2<=11.125)∧
(Ads.HmiVis.EXTR.PRESS_O<=15.76)∧(Ads.HmiVis.CENTR.PRESS_B<=15.03)

89%

3167

(Ads.HmiVis.CCM.CORSA_AP>114.22)∧(TEMP_PS<=25.92)∧(TEMP_CI<=44.95)∧
∧(Ads.HmiVis.CENTR.PRESS_B>0.17)∧(%TB<=17.01)

94%

(Ads.HmiVis.CCM.CORSA_AP>114.34)∧(TEMP_PS<=25.92)∧(TEMP_CI<=44.95)∧
∧(Ads.HmiVis.CENTR.PRESS_B<=0.17)∧(Ads.HmiVis.EXTR.PRESS_O<=14.36)∧(TEMP_PI>18.26)∧
(Ads.HmiVis.EXTR.PRESS_I>7.4)

88%

3197
(TEMP_PS>36.89)∧(Ads.HmiVis.EXTR.PRESS_I>5.57)∧%PI>−4.69) 92%

(TEMP_PS>36.89)∧(Ads.HmiVis.EXTR.PRESS_I<=5.57)∧(Ads.HmiVis.EXTR.PRESS_O>5.62) 91%

3099 (%PS>40.7)∧(Ads.HmiVis.CENTR.POT_M1B>61.1) 94%

Table 3. Separate-and-Conquer (SeCo) (RUL = 0 s).

Alarm Rules Precision
1017 (%UG∈[0.87,6.19])∧(Ads.HmiVis.CENTR.PRESS_B∈[4.11,65.78])∧(TEMP_E2∈[175.8,192.32]) 93%

(%ZP= 0)∧(TEMP_E1∈[185.73,194.97])∧(%E6∈[−12.3,25.71])∧(Ads.HmiVis.CENTR.POT_M1B∈[54.62,81.78]) 90%

3042

(PRES_PI∈[0.3,4.2])∧(%E1∈[−20.17,5.75])∧(TEMP_E10∈[170.19,187.16])∧(TEMP_ZP∈[27.46,189.15]) 91%

(PRES_PI∈[0,3.89])∧(%E1∈[−24.8,8.3])∧(%E2∈[−37.89,12.21])∧%E4∈[−20.12,15.33]) 93%

(TEMP_CI∈[49.6,50.1])∧(PRES_PI∈[0.67,4.07])∧(%E3∈[−32.64,17.43])∧(TEMP_FL∈[175.4,199.4]) 92%

3167

(Ads.HmiVis.CCM.CORSA_AP∈[113.78,114.85])∧(TEMP_CI∈[22.42,44.86])∧(TEMP_PI∈[27.41,37.16])∧
(Ads.HmiVis.CENTR.PRESS_B∈[15.46,65.85])

90%

(%E1∈[173,184.3])∧(%E2∈[−15.8,24.52])∧(Ads.HmiVis.CENTR.PRESS_B∈[0.14,25.7])∧
(TEMP_PI∈[24.49,32.6])∧(TEMP_E1∈[178.5,193.02])∧(TEMP_E4∈[180.55,199.51])

94%

3197

(TEMP_PS∈[35.79,38.13])∧(Ads.HmiVis.EXTR.PRESS_I∈[4.63,169.18])∧(%CU∈[28.23,96.74])∧
(Ads.HmiVis.EXTR.PRESS_0∈[17.25,148.32])

91%

(TEMP_PS∈[37.35,38.69])∧(Ads.HmiVis.EXTR.PRESS_I∈[5.92,172.5])∧(%CU∈[24.77,100])∧
(Ads.HmiVis.CENTR.POT_M1B∈[71.48,77.84])∧(TEMP_CI∈[20.43,29.94])

93%

(%PS∈[40.55,100])∧(Ads.HmiVis.CENTR.POT_M1B∈[74.75,79.18])∧(Ads.HmiVis.EXTR.PRESS_O∈[3.74,12.5])

∧(Ads.HmiVis.EXTR.PRESS_I∈[17.58,161.93])
90%

3099
(Ads.HmiVis.CENTR.POT_M1B∈[75.7,78.3])∧(TEMP_CI∈[22.25,26.29])∧(%TB∈[1.75,13.16])∧
(%E5∈[−8.1,6.4])∧(%E1∈[−33.4,29.4])

90%

(TEMP_PS∈[32.41,39.79])∧(Ads.HmiVis.EXTR.PRESS_I∈[12.97,167.17])∧(TEMP_CI∈[21.7,28.5])∧
(%TB∈[0,15.4])∧(%PS∈[44.17,96.51])

93%

TP and FP rates.

We also calculate the True Positive (TP) and False Positive (FP) rates for our experiments. For this
task we form the dataset D = D1 ∨ D2 ∨ D3 ∨ ∨D4 ∨ D5. That is, if any alarm occurred at the moment
of the timestamp associated with each row, out = 1 in this row, otherwise, out = 0. We run RSC and
DT based rule learner on obtained dataset D for rule generation.

To calculate TP (correct prediction of alarms), we define A as a set of rows associated with any
alarm in the testing set of D (having out = 1) and a as a number of all rows in A. Then TP = t/a,
where t is the number of such rows of A which are covered by at least one rule. The results are
TP = 97% for RSC, TP = 90% for DT based rule learner and TP = 92% for SeCo.

To calculate FP (incorrect prediction of alarms), we define N be a set of rows in the testing set
of D which are not associated with any alarm (with out = 0) and n is the number of all rows in N.

Algorithms 2020, 13, 219 17 of 22

Then FP = f /n, where f is the number of such rows of N which are covered by at least one rule.
We obtain FP = 0.01% for RSC, FP = 0.2% for DT based rule learner and FP = 0.1% for SeCo.

Also, we perform TP and FP calculation on datasets D60 = D60
1 ∨ · · · ∨ D60

5 and D120 = D120
1 ∨

· · · ∨ D120
5 , and obtain similar results. TP and FP calculation are provided in Table 10.

The proposed algorithm outputs rules predicting alarms (outcome 1). There are no rules making
negative predictions (absence of the alarm). As a result, there are no false negative predictions.
This, in turn, means that those measures that involve false negatives (TN, FN) do not make sense:
for example, the accuracy coincides with the precision and the recall becomes equal 1.

Table 4. Relaxed Separate-and-Conquer (RSC) (RUL = 60 s).

Alarm Rules Precision

1017
(TEMP_E4∈[182.5,197.1])∧(%ZP= 0) 96%

(%UG∈[0,7.59])∧(TEMP_PI∈[12.9,19.6]) 95%

3042
(TEMP_CI∈[49.6,50.1])∧(%E5∈[−8.08,12.72]) 97%

(TEMP_CI∈[47.9,50.1])∧(%UG∈[0,13.25])∧(%FL∈[0,5.95]) 93%

3167
(Ads.HmiVis.CCM.CORSA_AP∈[114.09,114.52])∧(TEMP_CI∈[40.5,42]) 95%

(TEMP_E1∈[170.6,194.9])∧(TEMP_PI∈[26.1,31])∧(TEMP_E2∈[174,196.6]) 94%

3197
(TEMP_PS∈[36.82,37.3])∧(Ads.HmiVis.EXTR.PRESS_I∈[7.8,172.47]) 93%

(TEMP_PS∈[36.82,37.3])∧(%E2∈[4.58,100]) 95%

(TEMP_CI∈[21.7,37.2])∧(TEMP_ST∈[54.4,61.2]) 90%

3099 (%PS∈[45.03,100])∧(%PI∈[−100,−62.01]) 91%

(TEMP_CI∈[21.7,28.5])∧(Ads.HmiVis.EXTR.PRESS_O∈[4.8,133])∧(%ZF∈[10.2,100]) 89%

Table 5. Decision Tree (DT) based rule learner (RUL = 60 s).

Alarm Rules Precision

1017
(TEMP_E4>182.45)∧(%UG>8.84)∧(TEMP_E10<=193.86) 88%

(TEMP_E4>182.45)∧(%UG<=8.84)∧(%ZP<=10.08) 90%

(TEMP_CI>47.65)∧(TEMP_ST>49.25)∧(TEMP_PS<=23.85)∧(%E5<=12.89)∧(TEMP_FU<=180) 88%

3042 (TEMP_CI<=47.65)∧(%CU>29)∧(%E2<=5.64)∧(%E3>2.17) 85%

(TEMP_CI>47.65)∧(TEMP_ST<=49.25)∧(TEMP_E4<=166.05)∧(%E4<=13.54)∧(%FL<=21.73) 91%

3167

(TEMP_PS<=26.15)∧(Ads.HmiVis.CCM.CORSA_AP<=114)∧(TEMP_E1>170.54)∧(TEMP_PI>26.08) 93%

(TEMP_PS<=26.15)∧(Ads.HmiVis.CCM.CORSA_AP>114)∧(TEMP_CI<=44.95)∧(%E1<=43.57)∧
(Ads.HmiVis.CENTR.PRESS_B>0.18)

92%

3197
(TEMP_PS>36.85)∧(TEMP_ST>57.95)∧(Ads.HmiVis.EXTR.PRESS_I>5.57)∧(%E1>8.37)∧(%FL>6.98) 89%

(TEMP_PS>36.85)∧(TEMP_ST>57.95)∧(Ads.HmiVis.EXTR.PRESS_I<=5.57)∧(%E4<=5.78) 85%

3099 (%PS>41.15)∧(Ads.HmiVis.CENTR.POT_M1B>58.78)∧(TEMP_FU>182.1) 90%

Table 6. Separate-and-Conquer (SeCo) (RUL = 60 s).

Alarm Rules Precision

1017
(TEMP_E1∈[167.75,193.43])∧(TEMP_E4∈[180.43,194.98])∧(TEMP_PI∈[10.15,17.34]) 93%

(%UG∈[0.9,9.13])∧(TEMP_E1∈[166.12,196.57])∧(TEMP_CI∈[44.76,52.21])∧(TEMP_PI∈[11.69,18.51]) 89%

3042
(TEMP_CI∈[45.6,53.72])∧(TEMP_E2∈[174,196.6])∧(%FL∈[0.8,7.98])∧(%E5∈[−12.61,17.54]) 90%

(TEMP_CI∈[48.21,54.66])∧(%E2∈[−10.62,18.04])∧(%UG∈[0.98,10.15])∧(%FL∈[1.13,10.65]) 92%

3167

(Ads.HmiVis.CCM.CORSA_AP∈[116.76,121.39])∧(TEMP_CI∈[37.18,43.76])∧
(Ads.HmiVis.CENTR.PRESS_B∈[3.32,20.23])∧(TEMP_E6∈[173.74,199.32])

91%

(TEMP_E1∈[174.57,195.28])∧(%E3∈[−10.72,18.65])∧(TEMP_PI∈[22.18,33.78])∧(TEMP_E2∈[168.76,189.25]) 88%

3197

(Ads.HmiVis.CENTR.PRESS_A∈[10.74,22.86])∧(Ads.HmiVis.EXTR.PRESS_I∈[14.97,162.83])∧
(TEMP_PS∈[30.35,39.71])

90%

(TEMP_PS∈[31.73,35.12])∧(TEMP_CI∈[40.81,58.54])∧(%E4∈[31.72,73.18])∧
(Ads.HmiVis.EXTR.PRESS_I∈[15.14,178.52])∧(TEMP_PI∈[10.86,22.86])

91%

3099
(TEMP_CI∈[19.83,41.45])∧(Ads.HmiVis.EXTR.PRESS_I∈[17.89,65.71])∧(TEMP_ST∈[50.07,82.13]) 92%

(%PS∈[78.13,80.54])∧(%PI∈[−75.34,−12.53])∧(Ads.HmiVis.EXTR.PRESS_O∈[21.75,87.35])∧(%ZF∈[13.65,94.5]) 93%

Algorithms 2020, 13, 219 18 of 22

Table 7. Relaxed Separate-and-Conquer (RSC) (RUL = 120 s).

Alarm Rules Precision

1017
(TEMP_E4∈[182.47,197.1])∧(%ZP= 0) 91%

(%UG∈[0,7.61])∧(TEMP_FL∈[187.4,199.3])∧(%E1∈[−32.79,0]) 95%

3042
(TEMP_CI∈[48.5,50.1])∧(TEMP_E5∈[21.2,165.5])∧(%E1∈[−33.34,12.81]) 96%

(TEMP_CI∈[49.4,50.1])∧(%E4∈[−6.65,12.14]) 94%

3167
(Ads.HmiVis.CCM.CORSA_AP∈[113.8,114.5])∧(TEMP_CI∈[21.7,42.1]) 91%

(TEMP_E2∈[175.4,196.9])∧(TEMP_E1∈[169.9,195])∧(TEMP_PI∈[26.1,31]) 95%

3197
(TEMP_PS∈[36.8,37.3])∧(%E2∈[4.57,100]) 94%

(TEMP_E1∈[21.3,164.9])∧(Ads.HmiVis.CCM.CORSA_AP∈[113.47,114.52]) 96%

3099
(TEMP_CI∈[21.7,40.5])∧(TEMP_PS∈[17.8,25.3]) 92%

(%UG∈[19.73,100])∧(TEMP_CU∈[184.4,188.8])∧(%E3∈[5.49,100]) 96%

(%FL∈[7.99,8.17])∧(TEMP_CI∈[21.7,28.5]) 94%

Table 8. Decision Tree (DT) based rule learner (RUL = 120 s).

Alarm Rules Precision
1017 (TEMP_E4>182.56)∧(%UG<=9.67)∧(TEMP_E5>181.58) 89%

(TEMP_CI>47.55)∧(TEMP_ST<=49.25)∧(%E4<=13.59)∧(TEMP_PI>21.09) 90%

3042 (TEMP_CI<=47.55)∧(%CU<=30.14)∧(%ZP>15.55)∧(TEMP_E9<=164.66) 88%

(TEMP_CI<=47.55)∧(%CU>30.14)∧(%E2<=4.74)∧(Ads.HmiVis.EXTR.PRESS_I<=10.38) 89%

(TEMP_PI>26.08)∧(Ads.HmiVis.CCM.CORSA_AP<=114.48)∧(TEMP_E1>170.59)∧(TEMP_E4>179.15) 91%

3167
(TEMP_PI>26.08)∧(Ads.HmiVis.CCM.CORSA_AP>114.48)∧(TEMP_PS<=25.9)∧
(TEMP_CI<=44.95)∧(TEMP_E7>184.75)

90%

3197

(Ads.HmiVis.EXTR.PRESS_I>5.56)∧(Ads.HmiVis.EXTR.PRESS_O<=5.79)∧(TEMP_PS>36.75)∧
(%CU>22.87)∧(Ads.HmiVis.CENTR.PRESS_B>0.22)∧(%ZF<=8.38)

92%

(Ads.HmiVis.EXTR.PRESS_I>5.56)∧(Ads.HmiVis.EXTR.PRESS_O<=5.79)∧(TEMP_PS>36.75)∧
(%CU<=22.87)∧(TEMP_FU<=183.96)

91%

3099 (%PS>40.55)∧(Ads.HmiVis.CENTR.POT_M1B>58.68)∧(%ZP<=11.93) 93%

Table 9. Separate-and-Conquer (SeCo) (RUL = 120 s).

Alarm Rules Precision

1017
(TEMP_E1∈[173.52,195.67])∧(TEMP_E2∈[167.13,183.73])∧(%E5∈[−26.15,3.75])∧(%ZP∈[0,74,2.69]) 89%

(%UG∈[0.3,9.62])∧(TEMP_FL∈[176.86,197.81])∧(%E1∈[−35.7,0.76])∧(%E2∈[−40.35,1.6]) 93%

3042

(TEMP_CI∈[42.19,53.9])∧(TEMP_E1∈[36.81,112.52])∧(%E3∈[−38.7,17.51])∧(TEMP_PS∈[22.5,36.51]) 92%

(TEMP_CI∈[47.4,58.42])∧(%UG∈[40.19,88.61])∧(%E3∈[−15.8,47.5])∧
∧(TEMP_PS∈[16.5,42.62])∧(%E4∈[−18.75,35.9])

91%

3167

(Ads.HmiVis.CCM.CORSA_AP∈[109.54,119.83])∧(TEMP_E7∈[168.9,194.61])∧
(Ads.HmiVis.CENTR.PRESS_B∈[6.28,23.75])∧(TEMP_CI∈[19.35,38.6])

90%

(TEMP_E6∈[187.4,192.84])∧(Ads.HmiVis.CENTR.PRESS_A∈[8.86,27.71])∧
(TEMP_PI∈[29.82,33.78])∧(TEMP_E8∈[125.7,186.6])

94%

3197

(TEMP_PS∈[33.56,43.68])∧(Ads.HmiVis.EXTR.PRESS_I∈[18.76,146.67])∧
(%E2∈[7.8,87.4])∧(%E6∈[3.78,87.92])

93%

(Ads.HmiVis.CENTR.PRESS_B∈[4.81,84.65])∧(%E1∈[16.85,86.9])∧(TEMP_CU∈[163.7,193.89])∧
(%E6∈[5.25,76.92])∧(Ads.HmiVis.CCM.CORSA_AP∈[103.87,87.3])∧(TEMP_E3∈[27.2,136.85])

91%

3099
(TEMP_CI∈[22.87,67.85])∧(TEMP_PS∈[7.89,18.82])∧(%UG∈[29.15,74.63])∧(%E1∈[8.14,77.34]) 89%

(%FL∈[2.96,18.7])∧(TEMP_CI∈[24.12,35.9])∧(TEMP_CU∈[167.8,191.3]) 88%

Table 10. TP and FP calculation.

RSC DT Based SeCo
TP 97% 90% 92%
FP 0.01% 0.2% 0.1%

Conclusions of experiments.

Based on the experiments, the following conclusions are reached.

1. The levels of precision for individual rules produced by the RSC algorithm are higher than those
of DT based and SeCo rule learners.

2. The rules produced by RSC are significantly shorter than those produced by DT based and SeCo
rule learners.

3. The TP rate for RSC algorithm is much higher than that of DT based and SeCo rule learners:
on average it is 97% versus 90% and 92%, respectively. We attribute this improvement to the
shortening of rules.

Algorithms 2020, 13, 219 19 of 22

4. The FP rate for RSC algorithm is also much better than for DT based and SeCo rule learners: 0.01%
versus 0.2% and 0.1%, respectively.

4. Conclusions

In this paper we have considered a new approach of RL: Relaxed Separate-and-Conquer (RSC).
We have demonstrated that RSC equipped with a simple heuristic outperforms the DT based rule

learner and the SeCo algorithm equipped with the same heuristic on two domains in the area of failure
prediction. We have concluded that RSC is a promising approach deserving further investigation.

We identify two interesting directions of future research: combining the RSC algorithm with a
meta-methodology to increase accuracy and using the RSC in an unsupervised environment.

We identify two methodologies for increasing accuracy: random forest (RF) and post-pruning.
Both these methodologies are in fact meta-methodologies: they are applicable to many learning algorithms.

The RF algorithm [38] aims to improve the precision of DT algorithm. The RF algorithm generates
many (independent) random DTs. Separate prediction is made using each DT, and the prediction made
by the whole model is the average of these predictions (suitably rounded if needed). The methodology
of boosting a model by making multiple random choice is not inherently connected to DTs. For example,
a well-known methodology in the area of AI search called randomized restarts [39] does exactly this to
backtracking: the backtrack search stops at a random moment of time and starts again from a random
point of the search space; this process is repeated many times over an over again. This rather pervasive
nature of the methodology and also its serious theoretical justification based on the Law of Large
Numbers [38] give us a reason to expect that RSC can also be boosted by this approach.

The methodology of post-pruning is applicable to any rule learning algorithm. The input of a
post-pruning algorithm is a set of rules already created w.r.t. the given data set. The algorithm tries to
make the given set of rules more compact (shortened and possible smaller). Numerous studies of this
approach [40–42] show significant roles of post-pruning in reduction of overfitting. We plan to study
methods of overfitting that increase the accuracy of RSC.

Unsupervised failure prediction is very important from the practical perspective. Indeed, some
companies have log records related to the past performance of their equipment, but these records
contain just sensor readings without alarms or failure notifications. Looking at these records, it is
impossible to know when the alarms or failures actually occurred. It is natural however to assume that
at the times around failures the sensor readings exhibited some anomalies that leads to the need of
using methods of anomaly detection [17,43].

We plan to use RL for unsupervised PdM as a two stages process. In the first (preprocessing)
stage, we will run an anomaly detection algorithm. As a result, the initially unsupervised data become
supervised as the column of anomaly/no anomaly outcome is added. In the second stage, a supervised
RL algorithm will be applied. Thus the process will produce rules for anomalies. It will be interesting
to compare the resulting method with methods of mining rare patterns in the area of association
rules [44].

Author Contributions: Conceptualization, M.R. and A.M.; methodology, M.R. and A.M.; software, M.R.;
validation, M.R. and A.M.; formal analysis, M.R.; investigation, M.R. and A.M.; resources, M.R. and A.M.;
data curation, M.R. and A.M.; writing–original draft preparation, M.R.; writing–review and editing, M.R. and
A.M.; visualization, M.R.; supervision, A.M.; project administration, A.M.; funding acquisition, A.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This project has received funding from European Union’s Horizon 2020 research and innovation
program under grant agreement Z-BRE4K No. 768869.

Acknowledgments: We thank the anonymous reviewers for their very helpful reviews for the initial version of
our paper.

Conflicts of Interest: The authors declare no conflict of interest.

Algorithms 2020, 13, 219 20 of 22

Abbreviations

The following abbreviations are used in this manuscript:

attr attribute
AVP attribute-value pair
DNF Disjunctive Normal Form
DT Decision Tree
FP False Positive
ML Machine Learning
PdM Predictive Maintenance
PvM Preventive Maintenance
R2F Run-to-Failure
RF Random Forests
RL Rule Learning
RSC Relaxed Separate-and-Conquer
RUL remaining useful life
SeCo Separate-and-Conquer
TP True Positive

References

1. Kearns, M.J.; Vazirani, U.V. An Introduction to Computational Learning Theory; MIT Press: Cambridge, MA,
USA, 1994.

2. Fürnkranz, J.; Gamberger, D.; Lavrač, N. Foundations of Rule Learning; Cognitive Technologies;
Springer: Berlin/Heidelberg, Germany, 2012.

3. Fürnkranz, J. Separate-and-Conquer Rule Learning. Artif. Intell. Rev. 1999, 13, 3–54. [CrossRef]
4. Cohen, W.W.; Singer, Y. A Simple, Fast, and Effective Rule Learner. In Proceedings of the Sixteenth National

Conference on Artificial Intelligence and Eleventh Conference on Innovative Applications of Artificial
Intelligence, Orlando, FL, USA, 18–22 July 1999; The MIT Press: Cambridge, MA, USA, 1999; pp. 335–342.

5. Schapire, R.E. The Strength of Weak Learnability. Mach. Learn. 1990, 5, 197–227. [CrossRef]
6. Susto, G.A.; Schirru, A.; Pampuri, S.; McLoone, S.F.; Beghi, A. Machine Learning for Predictive Maintenance:

A Multiple Classifier Approach. IEEE Trans. Ind. Inform. 2015, 11, 812–820. [CrossRef]
7. Qiao, W.; Lu, D. A Survey on Wind Turbine Condition Monitoring and Fault. IEEE Trans. Ind. Electron.

2015, 62, 6536–6545. [CrossRef]
8. Kumar, A.; Chinnam, R.B.; Tseng, F. An HMM and polynomial regression based approach for remaining

useful life and health state estimation of cutting tools. Comput. Ind. Eng. 2019, 128, 1008–1014. [CrossRef]
9. Mobley, R.K. An Introduction to Predictive Maintenance; Butterworth-Heinemann: Oxford, UK, 2002.
10. Carvalho, T.P.; Soares, F.A.; Vita, R.; da P. Francisco, R.; Basto, J.P.; Alcalá, S.G. A systematic literature review

of Machine Learning methods applied to Predictive Maintenance. Comput. Ind. Eng. 2019, 137, 106024.
[CrossRef]

11. Wuest, T.; Weimer, D.; Irgens, C.; Thoben, K.D. Machine Learning in Manufacturing: Advantages, challenges,
and applications. Prod. Manuf. Res. 2016, 4, 23–45. [CrossRef]

12. Zhang, W.; Yang, D.; Wang, H. Data-Driven Methods for Predictive Maintenance of Industrial Equipment:
A Survey. IEEE Syst. J. 2019, 13, 2213–2227. [CrossRef]

13. Durbhaka, G.K.; Selvaraj, B. Predictive Maintenance for Wind Turbine Diagnostics using vibration
signal analysis based on collaborative recommendation approach. In Proceedings of the 2016
International Conference on Advances in Computing, Communications and Informatics, Jaipur, India,
21–24 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1839–1842.

14. Garcia Nieto, P.J.; García-Gonzalo, E.; Sánchez-Lasheras, F.; de Cos Juez, F. Hybrid PSOSVMbased method
for forecasting of the Remaining Useful Life for aircraft engines and Evaluation of its reliability. Reliab. Eng.
Syst. Saf. 2015, 138, 219–231. [CrossRef]

15. Mathew, J.; Luo, M.; Pang, C.K. Regression kernel for prognostics with Support Vector Machines.
In Proceedings of the 2017 22nd IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), Limassol, Cyprus, 12–15 September 2017; pp. 1–5.

http://dx.doi.org/10.1023/A:1006524209794
http://dx.doi.org/10.1007/BF00116037
http://dx.doi.org/10.1109/TII.2014.2349359
http://dx.doi.org/10.1109/TIE.2015.2422112
http://dx.doi.org/10.1016/j.cie.2018.05.017
http://dx.doi.org/10.1016/j.cie.2019.106024
http://dx.doi.org/10.1080/21693277.2016.1192517
http://dx.doi.org/10.1109/JSYST.2019.2905565
http://dx.doi.org/10.1016/j.ress.2015.02.001

Algorithms 2020, 13, 219 21 of 22

16. Mathew, V.; Toby, T.; Singh, V.; Rao, B.M.; Kumar, M.G. Prediction of Remaining Useful Lifetime (RUL)
of turbofan engine using machine learning. In Proceedings of the 2017 IEEE International Conference on
Circuits and Systems (ICCS), Thiruvananthapuram, India, 20–21 December 2017; pp. 306–311.

17. Sipos, R.; Fradkin, D.; Mörchen, F.; Wang, Z. Log-based Predictive Maintenance. In Proceedings
of the The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
New York, NY, USA, 24–27 August 2014; pp. 1867–1876.

18. Zhang, X.; Liang, Y.; Zhou, J.; Zang, Y. A novel bearing fault diagnosis model integrated permutation
entropy, ensemble empirical mode decomposition and optimized SVM. Measurement 2015, 69, 164–179.
[CrossRef]

19. Heng, A.; Tan, A.; Mathew, J.; Montgomery, N.; Banjevic, D.; Jardine, A. Intelligent Conditionâ based
Prediction of Machinery Reliability. Mech. Syst. Signal Process. 2009, 23, 1600–1614. [CrossRef]

20. Kolokas, N.; Vafeiadis, T.; Ioannidis, D.; Tzovaras, D. Forecasting faults of industrial equipment using
Machine Learning Classifiers. In Proceedings of the 2018 Innovations in Intelligent Systems and Applications
(INISTA), Thessaloniki, Greece, 3–5 July 2018; pp. 1–6.

21. Zhang, Z.; Si, X.; Hu, C.; Lei, Y. Degradation data analysis and Remaining Useful Life estimation: A review
on Wiener-process-based methods. Eur. J. Oper. Res. 2018, 271, 775–796. [CrossRef]

22. Uhlmann, E.; Pastl, R.; Geisert, C.; Hohwieler, E. Cluster identification of sensor data for Predictive
Maintenance in a Selective Laser Melting machine tool. Procedia Manuf. 2018, 24, 60–65. [CrossRef]

23. Lewis, A.D.; Groth, K.M. A Dynamic Bayesian Network Structure for Joint Diagnostics and Prognostics of
Complex Engineering Systems. Algorithms 2020, 13, 64. [CrossRef]

24. Hu, C.; Youn, B.D.; Wang, P.; Yoon, J.T. Ensemble of Data-Driven Prognostic Algorithms for Robust Prediction
of Remaining Useful Life. Reliab. Eng. Syst. Saf. 2012, 103, 120–135. [CrossRef]

25. Xiao, Y.; Hua, Z. Misalignment Fault Prediction of Wind Turbines Based on Combined Forecasting Model.
Algorithms 2020, 13, 56. [CrossRef]

26. Wang, B.; Lei, Y.; Li, N.; Li, N. A Hybrid Prognostics Approach for Estimating Remaining Useful Life of
Rolling Element Bearings. IEEE Trans. Reliab. 2020, 69, 401–412. [CrossRef]

27. Li, G.; Chen, H.; Hu, Y.; Wang, J.; Guo, Y.; Liu, J.; Li, H.; Huang, R.; Lv, H.; Li, J. An improved Decision
Tree-based fault diagnosis method for practical variable refrigerant flow system using virtual sensor-based
fault indicators. Appl. Therm. Eng. 2017, 129, 1292–1303. [CrossRef]

28. Li, H.; Parikh, D.; He, Q.; Qian, B.; Li, Z.; Fang, D.; Hampapur, A. Improving Rail Network Velocity: A Machine
Learning Approach to Predictive Maintenance. Transp. Res. Part C: Emerg. Technol. 2014, 45, 17–26. [CrossRef]

29. Canizo, M.; Onieva, E.; Conde, A.; Charramendieta, S.; Trujillo, S. Real-time Predictive Maintenance for
Wind Turbines using Big Data frameworks. In Proceedings of the 2017 IEEE International Conference on
Prognostics and Health Management, Dallas, Texas, USA, 19–21 June 2017; IEEE: Piscataway, NJ, USA, 2017;
pp. 70–77.

30. Santos, P.; Maudes, J.; Bustillo, A. Identifying maximum imbalance in datasets for fault diagnosis of
gearboxes. J. Intell. Manuf. 2018, 29, 333–351. [CrossRef]

31. Shrivastava, R.; Mahalingam, H.; Dutta, N.N. Application and Evaluation of Random Forest Classifier
Technique for Fault Detection in Bioreactor Operation. Chem. Eng. Commun. 2017, 204, 591–598. [CrossRef]

32. Kauschke, S.; Fürnkranz, J.; Janssen, F. Predicting Cargo Train Failures: A Machine Learning Approach for a
Lightweight Prototype. In Discovery Science, Proceedings of the 19th International Conference, DS 2016, Bari, Italy,
19–21 October 2016; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2016; Volume 9956,
pp. 151–166.

33. Fürnkranz, J.; Flach, P.A. An Analysis of Stopping and Filtering Criteria for Rule Learning. In Machine Learning:
ECML 2004, Proceedings of the 15th European Conference on Machine Learning, Pisa, Italy, 20–24 September 2004;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3201, pp. 123–133.

34. Janssen, F.; Fürnkranz, J. An Empirical Investigation of the Trade-Off between Consistency and Coverage in
Rule Learning Heuristics. In Discovery Science, Proceedings of the 11th International Conference, DS 2008, Budapest,
Hungary, 13–16 October 2008; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008;
Volume 5255, pp. 40–51.

35. Mossel, E.; O’Donnell, R.; Servedio, R.A. Learning juntas. In Proceedings of the 35th Annual ACM
Symposium on Theory of Computing, San Diego, CA, USA, 9–11 June 2003; ACM: New York, NY, USA, 2003;
pp. 206–212.

http://dx.doi.org/10.1016/j.measurement.2015.03.017
http://dx.doi.org/10.1016/j.ymssp.2008.12.006
http://dx.doi.org/10.1016/j.ejor.2018.02.033
http://dx.doi.org/10.1016/j.promfg.2018.06.009
http://dx.doi.org/10.3390/a13030064
http://dx.doi.org/10.1016/j.ress.2012.03.008
http://dx.doi.org/10.3390/a13030056
http://dx.doi.org/10.1109/TR.2018.2882682
http://dx.doi.org/10.1016/j.applthermaleng.2017.10.013
http://dx.doi.org/10.1016/j.trc.2014.04.013
http://dx.doi.org/10.1007/s10845-015-1110-0
http://dx.doi.org/10.1080/00986445.2017.1292259

Algorithms 2020, 13, 219 22 of 22

36. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res.
2011, 12, 2825–2830.

37. Clark, P.; Boswell, R. Rule Induction with CN2: Some Recent Improvements. In Machine Learning - EWSL-91,
European Working Session on Learning; Springer: Berlin/Heidelberg, Germany, 1991; pp. 151–163.

38. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
39. Gomes, C.P.; Selman, B.; Crato, N.; Kautz, H.A. Heavy-Tailed Phenomena in Satisfiability and Constraint

Satisfaction Problems. J. Autom. Reason. 2000, 24, 67–100. [CrossRef]
40. Cohen, W.W. Fast Effective Rule Induction. Machine Learning. In Proceedings of the Twelfth International

Conference on Machine Learning, Tahoe City, CA, USA, 9–12 July 1995; pp. 115–123.
41. Fürnkranz, J.; Widmer, G. Incremental Reduced Error Pruning. Machine Learning. In Proceedings of

the Eleventh International Conference, Rutgers University, New Brunswick, NJ, USA, 10–13 July 1994;
Morgan Kaufmann: Burlington, MA, USA, 1994; pp. 70–77.

42. Fürnkranz, J. Pruning Algorithms for Rule Learning. Mach. Learn. 1997, 27, 139–172. [CrossRef]
43. Benedetti, M.D.; Leonardi, F.; Messina, F.; Santoro, C.; Vasilakos, A.V. Anomaly Detection and Predictive

Maintenance for photovoltaic systems. Neurocomputing 2018, 310, 59–68. [CrossRef]
44. Koh, Y.S.; Ravana, S.D. Unsupervised Rare Pattern Mining: A Survey. ACM Trans. Knowl. Discov. Data

2016, 10, 1–29. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1006314320276
http://dx.doi.org/10.1023/A:1007329424533
http://dx.doi.org/10.1016/j.neucom.2018.05.017
http://dx.doi.org/10.1145/2898359
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Relaxed Separate-and-Conquer Rule Learning approach
	Advantages of RSC versus Methods of Separate-and-Conquer (SeCo) and Weighted Covering

	Experiments
	Learning the Truth Table of the Given Collection of Rules
	Failure Prediction Using a Real Industrial Dataset

	Conclusions
	References

