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Introduction

Given a graph Γ  with vertex set x say, a group presentation can be 

obtained from  as follows.  Let Γ φ  be a function which assigns to each edge  
e of ,   e having endpoints x ,y say, a non-empty set of cyclically reduced Γ
words on  x, y  involving both  x  and  y.  Then G( Γ , φ ) is the group with 

generating set x   and defining relators U φ  (e) where the union is  taken over  

a l l  the  edges e  of  Γ .   Thus the presentat ion var ies  according to the 
function φ  ,  although observe that each defining relation in the presentation 
for G ( Γ , ) will always involve exactly 2 generators. Groups having φ

presentations of this form (e.g. Artin and Higman groups) have been studied in 
recent work of A .K .Napthine and S.J.Pride [4.] and of S. J.  Pride [ 5],  [6,] .  

 
In this paper we replace the graph Γ by an abstract n-dimensional 

simplicial complex Cn(n ≥2) to obtain the groups G( ).n,n φc Each defining 
relator in the presentations now obtained will involve precisely n-generators. 
Our aim is to generalise to these groups a Freiheitssatz for G( , ) due to Γ φ

Pride which we now describe. 
 
For  e  an  edge  of  Γ ,  the  group  G(e)  g iven  by  the  presenta t ion  <x,y;  

φ (e)>, where x ,y are the endpoints of  e,  is  called an edge group of 
G( , ).  Γ φ

 
A 2-generator group with generators a, b say, has property - Wk, (with 

respect  to  a ,  b)  i f  no word of  the form ),(...11 ΖΖ∈ii
kbkaba βα

βαβα
i s  equal  to 

1 in the group unless the word is freely equal to 1. 
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THEOREM (Pride [6, Theorem 4 ] )    The natural homomorphlsm ),(G),(G o φΓ→φΓ  is 

injective for each full subgraph 0Γ of Γ if one of the following conditions i s  

sa t i s f ied .  

 
(1)  Each edge group of G ( φΓ, )  has property – W2  .  
(2) Γ  has no triangles and each edge group of G( φΓ, )  has property – W1 .  
 

Our main results are stated in §1 and the proofs are given in §3 and §4.  

In §2 we describe a modification at interior vertices of certain small 

cancellation diagrams and in §4 a geometric result (Lemma 4) is proven for 

small cancellation diagrams whose almost interior regions each have degree at 

least 3 and whose interior vertices each have degree at least 6.  In §5 we 

give examples and discuss consequences of the theorems. 

 
We will assume that the reader is familiar with the basic definitions and 

results of small cancellation theory [3, pp.235-252], frequent use of which is 

made throughout this paper.  (It should be noted however that there are 

differences in our definitions to some of those given in [3].) 

 
For  the res t  of  this  paper  we drop the term abstract  and merely write 

simplicial complex without any fear of confusion. 
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§1   Statement of results
 

Le t  X  be  a  s e t  and  l e t  t he r e  be  a  c o l l e c t i on  o f  s ubs e t s  o f  X the 
maximum number of elements of X contained in any of these subsets being n 
where n 2.  Let  denote the full  (n-dimensional) simplicial complex ≥ nc

generated by these subsets.   Thus consists of the sets together with a l l  nc

their  non-empty subsets .   The l -  e lement  sets  ( )  are  called l -1n ≥≥ l

simplices. 
 
Let be a function which assigns to each n-simplex nφ }nx,....,1x{x =  in 

nC a non-empty set of cyclically reduced words each involving  and }nx,....,1x{

no other element of X.  We define )n,n(G φC to be the group with generat ing 

set  those elements  of  X appearing in  some -s implex l x of  and defining nC

relators 

{ x:)x(nφ  an n-simplex of }. nC

For the n-simplex x  of  we define G(nC x ) to be the group with presentation 

>φ< )x(n;x and call such a group a face group of G( ,nC nφ  ) .   

                                                                                       
Let XX0 ⊂ and let  be the full sub complex generated by all the l -

0nc

s i mp l i c i e s  ( n > >1)  o f  t h a t  a r e  c o n t a i n e d  i n .  T h e n  t h e r e  i s  a  l nC 0X

natural homomorphism 

).n,n(G)n,
0n(G φ→φ CC  

I f  th is  homomorphism is  inject ive for  any choice of  then we shal l  say 0X

that the Freiheitssatz (see §1 in [6]) holds for )n,n(G φC  
 

Let x  be an n-simplex whose members are in X and let 
k1

x,.....x   

(k> 1) be (n-1)-simplices contained in x .  We shall say that the group 

having presentation )x(n:nx φ< > has property  (with respect tokB x ) 

p rov ided  t ha t  t he r e  i s  no  word  o f  t he  fo rm )kx(kw)...1x(1w e q u a l  t o  1  in 

the group unless it  is freely equal to 1.  Here )ix(iw denotes a word 

involving some subset of 
i

x  and no other members of X. 
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 L e t  x ∈X .  W e  d e f i n e  t h e  m a p   a s  f o l l o w s :  i f  nn:xd cc → y i s  an 

l l-simplex (n 1) of  then ≥≥ nC =)y(xd { }

⎪⎩

⎪
⎨
⎧

∉

∈−

.yxify

yxifxy   

 
 We shal l  say that  has  property N(p)  (p  ≥  3)  provided that there nc

cannot  be found  p  n-  s implices PX,.....1X of  together  with a  sequence of nc

maps of the form such that the image set of {xd PX,.....1X } is 

}}1x,p{x}x,{x},.....,3x,2{x},2x,1{x{ p1p−  whe re  ji xx ≠ fo r .pji1 ≤≤≤  

THEOREM 1.  The Freiheitssatz holds for )n,n(G φc  if one of the following 

conditions is satisfied. 
(1.1)  Each face group has property . 5B

(1.2)  Each face group has property and  has property N(3). 3B nC

We remark that if n=2 then properties   reduce to the properties 3B,5B

W2, W1 respectively which are given in the introduction; moreover, the 
g e o m e t r i c a l  r e a l i s a t i o n  o f  C 2  h a s  n o  t r i a n g l e s  i f  a n d  o n l y  i f  C 2 has 
property N (3) .   Consequent ly  Theorem 1 is  a  general isat ion of  Theorem 4 
of [6]. 

 
The condition (1.1) corresponds to when use is made of the small 

cancellation hypothesis C (6); and the condition (1.2) corresponds to the 
C(4), T(4) situation.  The national question to ask is what can be said about 
the C(3), T(6) case?  Here the defining relators can have shorter length and 
it  has been necessary to introduce a further restriction. 
 

For a given work w( x ) in some. l -simplex x  of we  shall  write nc

g(w(x)) to denote those elements of x inavolved in w( x ) .  
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THEOREM 2.  The Freihestssatz holds for )n,n(G φC  if the following conditions 
are  sat isf ied. 
 

(1.3) (i) Each face group G( x ) has property B2 and Cn  has properties N ( 3 ) ,  

N(4) and N(5); 
 

( 1 . 3 )  ( i i )  F o r  a n y  p a i r  o f  d i s t i n c t  n - s i mp l i c e s  y,x o f  wheneve r  there nc

are words of the form )
3

y(3u)
2

y(2u)
1

y(1w),3x(3w)2x(2w)1x(1w   e q u a l  (but 

not freely equal) to 1 in the face groups G( x ) , G( y ) r e s p e c t i v e l y ,  

w h e r e  ,jy,jx a r e  ( n - l ) - s i m p l i c e s  o f  y,x r e s p e c t i v e l y  a n d ,1y,1x  t h e n  

t h e  f o l l o w i n g  h o l d s : yorx))3v(3u(g))3x(3w(g ⊇∪ .  

 
 We remark that conditions (1.1),  (1.2) and (1.3)(i) reduce the question 
of whether or not the Freiheitssatz holds for the group  to an )n,n(G φC
analysis of the face groups.  The condition (1.3)(ii)  is concerned with how 
pairs of face groups combine; we shall see how this condition arises from the 
geometry in §4. 
 
§2 Pre1iminaries

Let F be a free group with free basis and let ~u s  be a symmetrised set 

of non-empty words on .  Let M be a connected, simply connected 
~
u s -  

d iagram.   I f Δ  i s  a  reg ion  of  M  then  g( Δ )  denotes  the  se t  o f  e l e m e n t s  o f  

~
u  w h i c h  o c c u r  i n  a  l a b e l  o f Δ .  I f  L  i s  a  s u b d i a g r a m  o f  M  then g( L )  -  

Ug( )  where ranges over  the regions of  Δ Δ L . Also, we denote by 

g( L∂ ) the set of elements of which occur as labels of boundary edges of ~
u

. L
 

In general s -diagrams may have vertices of degree 1.  It can and will be 

assumed here (apart from exceptions where indicated) that our s -diagrams 

have no such vertices. 
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L e t  d e n o t e  t h e  u n d e r l y i n g  s e t  o f  t h e  s i m p l i c i a l  c o m p l e x  .  
~
x nC

L e t  r  d e n o t e  t h e  s ma l l e s t  s y mme t r i s e d  s u b s e t  i n  t h e  f r e e  g r o u p  w i t h  

b a s i s  X~  c o n t a i n i n g  
)x(nU φ  

where the union is  taken over  a l l  the  n-s implices x  of  .  nC

Let  
∧

 denote the set  
=
r

)x(nU φ 
 
where )x(nφ   consists of all  words not freely equal to 1 which are in the 

normal  c losure  of  )x(nφ in  the  f ree  group  whose  bas i s  i s  the  under ly ing  

s e t  o f   x  and  where  aga in  the  un ion  i s  t aken  over  a l l  the  n - s impl ices  of 

nC .  
 

In  th i s  paper  we  sha l l  no t ,  un l ike  the  usua l  def in i t ion ,  demand that  
each member of  a  symmetr ised set  be f reely reduced.  Thus observe that  

we have that  is  a symmetrised set .  ∧
=r

Let 
∧

M be a connected, simply connected -diagram.  We are interested r̂
=

in modifying such diagrams.  We begin by making the following definition. 
 

L e t  v  be an inter ior  ver tex of  
∧

M of  degree m≥  3  (as  shown in 

Fig.2.1) and suppose that the (1 
∧
Δ j ≤  j ≤  m) are distinct simply connected 

regions of  ∧
M ;  and that  each ver tex on the l ine  segments jvw have degree 2  

apar t  f rom v  and   (1  ≤  j  jw ≤  m)  Then v  is  a  -ver tex i f  for  a t  l eas t  mc

one  j ∈  {1 , . . . ,m} there  ex is t s  some i ∈  {1 ,…,j -2 , j+1 , . . . ,m} such  that the 
label on each edge which occurs on the line segment jvw  belongs to  the set 

g( ). 
∧
Δi

  
Figure 2.1 
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We shall be interested in removing vertices.  Our modification can be mc

described as follows.  Cut along the line segment jvw .to obtain a new diagram 

∧
M * (see Fig.  2 .  2) . 
 
 Figure 2.2. 

 
Observe that the labels on each region remain unchanged apart 

from the boundary label of which is now a conjugate by a word in g( )  
∧
Δi

∧
Δi

of some cyclic permutation of the original label.   Moreover 
∧

M * 

will  also be a connected,  simply connected diagram.  Thus 
∧

M * is an 

∧

=
r -diagram with the same number of regions as

∧
M * but with fewer  -vertices mc

(provided that   w  is  not  then a  -ver tex) . mc

 

Le mma  1 .   Le t
∧

M  b e  a  c o n n e c t e d ,  s i mp l y  c o n n e c t e d  - d i a g r a m s u c h  r̂
=

t h a t  f o r  e a c h  r e g i o n o f  
∧
Δ

∧
M ,  

∧
Δ  i s  s i m p l y  c o n n e c t e d  a n d  g ( )  i s  

∧
Δ

a n  n - s i m p l e x  o f .  T h e n  t h e  f o l l o w i n g  h o l d : ( i )  i f  h a s  p r o p e r t y  nc

N ( 3 )  t h e n  e v e r y  i n t e r i o r  v e r t e x  
∧

M  o f  o f  d e g r e e  3  i s  a  C 3 - v e r t e x ;  
( i i )  i f  h a s  p r o p e r t i e s  N ( 3 )  a n d N ( 4 )  t h e n  e v e r y  i n t e r i o r  v e r t e x  o f  nc

∧
o f  d e g r e e  4  i s  a  C 4 - v e r t e x ;   ( i i i )  i f   h a s  p r o p e r t i e s  N ( 3 ) ,  N ( 4 )  nCM

a n d  N ( 5 )  t h e n  e v e r y  i n t e r i o r  v e r t e x  o f  
∧

M o f  d e g r e e  5  i s  a  C 5  - v e r t e x .  
 
P roo f  We  g i v e  t h e  p r o o f  fo r  ( i i i )  o n l y ;  p a r t s  ( i )  a n d  ( i i )  c a n  b e  proved 
s imilar ly .  

L e t  v  b e  a n  i n t e r i o r  v e r t e x  o f  
∧

M  o f  deg ree  5 .   Then  v  can  be  
i l lus t ra ted  as  in  F ig .  2 .3  where  each  ver tex  on  the  l ine  segment jvw .  ha s  

d e g r e e  2  a p a r t  f r o m v   a n d  w .  ( 1  ≤ i  ≤ 5 ) .  
Figure 2.3 
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Observe that it follows from the assumption no vertices of degree 1 

and the statement of the lemma that the are distinct,  simply 
∧
Δi

connected regions. (Note however that the vertices wi.  may not be 
distinct -  this makes no difference to our arguments.) 

 
Suppose ,  by  way  of  con t rad ic t ion ,  tha t  the  ve r tex  v  in  F ig .  2 .3  i s  

no t  a  C 5 - -ve r tex .   Then  the re  mus t  be  )ivw(gic,ib,ia ∈ such  tha t  

)3i
ˆ(gic),2i(gib,)1i(gia ^

+Δ∉+Δ∉+Δ∉  f o r  1≤ i≤ 5 .  ( T h r o u g h o u t  t h e  proof 

subscripts shall  be reduced mod 5 and we take 5   as 0.)  Thus we have 

 ,....}1ic,1ib,1ia,ic,ib,ia{)i(g +++=Δ
∧

 ∋   )5i1(4ia,3ib,2ic ≤≤+++

 I f  then  the re  i s  a  sequence  o f  maps  wi th  )3i(g1ia +Δ∈+
∧

xd

)2i(a),1i(a),3i(a +Δ+Δ+Δ
∧∧∧

 having images  }2ia,1ia{},1ia,3ic{ ++++
}3ic,2ia{ ++  respect ively,  contradict ing the fact  that  has  property N(3). nc

This forces 

   ∋  ,....}1ic1ib,1ic,ic,ib,ia{)i(g +++=Δ
∧

).5i1(3ia,4ia,3ib,2ic ≤≤++++

 Now suppose that, for some i, )4i(g1ia +Δ∈+
∧

. If we also have 

)2i(g4ia +Δ∈+
∧

 then there is a sequence of dx maps with g( , g( , )4i +
∧
Δ )1i +Δ

∧

g(  having images { })2i+Δ
∧ { } { }4ia,2ia,2ia,1ia,1ia,4ia ++++++  respectively; this 

contradiction means that (g4ia ∉+ )2i+Δ
∧

.  Suppose now that we also have 

(g3ia ∈+ )1i+Δ
∧

Then there is a sequence of dx maps with g( , g( ,  )4i+Δ
∧

)1i+Δ
∧

g( hav ing  images   )3i+Δ
∧

}4ia,3ia{},3ia,1ia{},1ia,4ia{ ++++++

respectively; this contradiction means that (g3ia ∉+ )1i+Δ
∧

  We conclude  

from all this that there is a sequence of dx maps with g( , g( , )4i+Δ
∧

)1i+Δ
∧

)3i(g),2i(g +Δ+Δ hav ing images  },3ia,2ia{},2ia,1ia{},1ia,4ia{ ++++++
respectively, contradicting the fact that  has property N(4). nC}4ia,3ia{ ++
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 Thus consequently )41(g1ia +
∧
Δ∉+ ,....}1ia,ia{)i(g +=∧Δ  ∋  

 But this contradicts the assumption that 5i1for4ia,3ia,2ia ≤≤+++

nc has property N(5) .  

    �  
                                        
§3 Proof of Theorem 1

We require  some fur ther  comments  on s -diagrams.   Recal l  that  s  is  

a  symmetr ised set  of  non-empty words on the free basis     of  the group ~u

F. 
 

A region Δ   of  an s -diagram M wil l  be cal led a  boundary region i f  

 c o n t a i n s  a t  l e a s t  o n e  e d g e ;  Δ  w i l l  b e  c a l l e d  a l mo s t  interior M∂Δ∂ I

otherwise.  A boundary region  Δ   for which M∂Δ∂ I  is a consecut ive t   par
[3 ,p .248]  of  M wi l l  be  ca l led  a  s imple  boundary  region. 
 
 I f  t h e  w o r d  W  l i e s  i n  t h e  n o r m a l  c l o s u r e  o f  s  i n  F  t h e n W  

i s  e q u a l  i n  F  t o  a  p r o d u c t   w h e r e  r  iTis1
iT

r

1i
−

=
Π ≤  0 , sis ∈ . ,  a n d  T i  i s  

a  word  on  (1  
~
u ≤  i   r )  .   The  l eas t  va lue  o f  r  over  a l l  such  express ions  ≤

equal  in  F  to  W is  denoted  by  deg  (W).  
 

A  connec t ed ,  s imp ly  connec t ed  s -d i ag ram wi th  bounda ry  l abe l  W 

is  said to  be minimal  i f  i t  has  deg (W) regions.  
 
Proof  of  Theorem 1.   Let  and let   be the ful l  subcomplex x0x ⊆ onc

genera t ed  by  a l l  t he l - s impl i ces  (n≥ ≥1)  o f  wh ich  a re  con ta ined in  l nc

X 0  ,   Le t  deno t e  t he  unde r ly ing  s e t  o f  and  l e t  W be  a  word  on 0~x onc 0~x  

equal to 1 in G( ). We must show that W equals 1 in G( ). n,n φC n,n φC
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The proof is by induction on deg(W) . If deg(W) = O then  W  is 
freely equal to 1 and the result follows.  So assume deg(W) > 0.  Let 
W be a  cyc l ica l ly  reduceed  word  f ree ly  con juga te  to  W.   Then  there  i s 
a connected, simply connected minimal r -diagram M  with boundary label W  

[3 ,  pp .  237-238]  .   Le t  us  assume tha t   M  has  a  boundary  reg ion  with Δ
g( Δ ) ) .   Let M '  be obtained from M  by removing the interior of  M  and M(g ∂⊆

one edge of   (note  that  this  may create  ver t ices  of  deg r ee  1 ) ,  and  M∂Δ∂ I

l e t  W'  be  a  bounda ry  l abe l  o f  M ' ( r e ad ing 'M∂  i n the same 
or ien ta t ion  as M∂ ) .  Then W'  i s  a  word  on  0X~ conjugate  to  W in 

G( ) . Moreover, W' equals 1 in and n,on φC )n,n(G φC deg(W') = deg(W)-l. But 

a connected, simply connected subdiagram of a minimal s -diagram is 

minimal [2, Lemma 2.4].  We can therefore apply our inductive hypothesis 
to obtain the results.  
           �  
 

In the remainder of this section we justify the assumption made about 
M  in the above proof. 
 

Def ine  as  equ iva lence  re la t ion  ~  on  the  reg ions  o f  M by  Δ=Δ '  i f  
and  only  i f  there  a re  reg ions  'n,....,1,0 Δ=ΔΔΔ=Δ such  tha t  

)n(g...)1(g)0(g Δ=Δ=Δ and with 1i,i +ΔΔ  having an edge in common 

fo r  i  =  O , . . . , n -1 .   The  r eg ions  i n  an  ~ -equ iva l ence  c l a s s  g ive  r i s e  t o  a 
connected subdiagram of M  called a federation. 
 
Lemma 3.  (i)  Let M be a connected, simply connected minimal r -diagram and 

assume that each federation in M  is simply connected.  If (1.1) or (1.2) 
holds the M  has a boundary region Δ   with )M(g)(g ∂⊆Δ .  
(ii)  If (1.1) or (1.2) holds then any federation contained in a connected, 
simply connected minimal r -diagram is simply connected. 
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This lemma completes the proof of the theorem.  Let us assum is e (i) 
t rue and we shal l  prove ( i i ) .  
 

Assume (ii)  is  false and let  K. be a counterexample with as few 
regions  as  poss ib le .   Le t  F  be  a  federa t ion  in  K.  which  i s  not  s imply  
connected, and let  N be a bounded component of K - F.   Then by (i) N 
has  a  boundary  reg ion  wi th  Δ g )F(g)N(g)( ⊆ ∂ =Δ .   Hence  g( )  =  g (Δ F )  
contradicting the fact  F  is a federation. 

Before proving (i).we need some further discussion. 

Since we are now assuming that each federation is simply 

connected the boundary labels of federations are elements of  .  We can 
~
r
=

therefore obtain from M an r-diagram M̂  whose regions are the federations 
with all their interior edges and vertices removed. 

                                                                                                                                                             
 A connected, simply connected r-diagram ∗M̂  is now obtained from M̂  as  
fo l l ows :   f i r s t l y ,  by  r epea t ed  u se  o f  t he  mod i f i ca t i on  de sc r ibed  i n  
§2, remove all  the C3 -  vertices of  M̂  ;  then remove each C4.  – vertex 
taking care to remove, as one proceeds, any C3 - vertex each modification 
may produce;  next  remove al l  C5   -  ver t ices  again removing,  as  one 
proceeds, any C4  - vertex and, in turn, C3 - vertex which may be produced; 
finally remove, in the usual way, all interior vertices of degree 2. 

 
The procedure described above is illustrated in Fig. 3,1 where a 

possible sequence of modifications is given for an interior vertex of degree 
5  (We are of course assuming that the vertices involved in Fig. 3.1 are Cm  - 
vertices, m∈{3,4,5}; and we have not removed the interior vertices of degree 2.) 
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Fig. 3.1 
 
 The next observations follow immediately from Lemma 1. 
(3.1) If has property N(3) then each interior vertex of nC M̂ * has deg r ee  
a t  l e a s t  4 ;  
(3.2) if  has properties N(3), N(4) and N(5) then each interior vertex of nC

M̂ * has degree at least 6. 
 

I f   are  dis t inct  regions of  2
ˆ,1

ˆ ΔΔ M̂  with an edge in  common then 

g(  ) ∩   g(  ) is contained in some (n-l)-simplex of  (otherwise they 1Δ̂ 2Δ̂ nC

would  no t  be  f rom d is t inc t  federa t ions  o f  M  )  .   Reca l l ing  tha t  i f * Δ̂

of M̂  * has been obtained from  of  Δ̂ M̂  then g( Δ *) = g( ), it is clear ˆ Δ̂

that the same property holds for g( *) ∩ g ( *).  We therefore have: 1Δ̂ 2Δ̂

(3.3) if is an interior edge of ∗ê ∗M̂  then the labelling set of i s  ∗ê

c o n t a i n e d  i n  s o m e  ( n - 1 ) - s i m p l e x  o f  ;  nC

(3.4) if each face group G( x ) of G )n,nc( φ has property Bk then each almost 

interior region of ∗M̂ has degree at least k+1. 
 
Proof  of  Lemma 3(i) .    Suppose (1.1)  holds.   I f  M  has  only one region the 

result is immediate so we can assume otherwise. Then ∗M̂ , our modified -
∧

=r

diagram, has the property that each almost interior region will have degree a t  
leas t  6  (by  (3 .4) ) ,  and  tha t  each  in te r ior  ver tex  wi l l  have  degree  a t  leas t  
3 .   Therefore   ∗M̂  has  a  s imple  boundary  reg ion  ∗Δ̂  wi th  a t  most  th ree  
in ter ior  edges  [3 ,  Theorem V.4 .3] .   Now ∗Δ̂  a r i ses  f rom some f e d e r a t i o n  
F  i n  M  w h e r e  s o m e  r e g i o n Δ  o f  F  i s  a  b o u n d a r y  r e g i o n  o f  M .   
Condi t ion  toge ther  wi th  (3 .3)  now impl ies  tha t  5B

 g(∆) = g( F ) = g( )  ∗Δ̂ ⊆ ).()ˆ()ˆˆ( MgMgMg ∂=∗∂⊆∗∂∩∗Δ∂



-13-  
 
 

If  (1.2) holds then each almost interior region of ∗M̂   has degree a t  
leas t  4  (by  (3 .4) )  and  each  in te r ior  ver tex  of  ∗M̂   has  degree  a t  l eas t  4  
(by  (3 .1 ) )  Consequent ly  ∗M̂ has  a  s imple  boundary  reg ion  wi th  a t  most  
2  inter ior  edges [3,  Theorem V.4.3] .   Now argue as  above. 

� 
 
§4  Proof of Theorem 2

 
The proof of Theorem 2 is similar to that of Theorem 1.  We do 

however require a further technical result  in order to obtain the analogue of 
Lemma 3(i). 
 

Convention:   when drawing diagrams in this  sect ion double l ines  
sha l l  ind ica te  tha t  the  l ine  segment  may  have  ver t i ces  o f  degree  2 .  
 
Lemma 4.   Let M be a connected, simply connected s-diagram (having 
no vertices of degree 1) where each almost interior region has degree at 
least 3, each interior vertex has degree at least 6, and whose boundary is a 
simple closed curve.  Suppose further that M has at least one interior vertex 
and that M does not have a boundary region having interior degree equal to 
1.   Then M has two simple boundary regions 2,1 ΔΔ (see Fig.4.1) each 

having inter ior  degree 2 and having a  s ingle  edge in  common.  
 

Figure  4.1 
 
Proof.  We proceed by induction on the number of interior vertices of M. If 
M has a  s ingle  inter ior  ver tex then the diagram is  a  "wheel"  having at  
least six spokes and the result holds.  So assume that M has more than one 
inter ior  ver tex. 
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We know that  M has a  s imple boundary region Δ with at  most  2  
in te r io r  edges  [3 ,  Theorem V.4 .3] .  There fore ,  by  our  hypothes i s ,  Δ  h a s  
p r ec i s e ly  2  i n t e r i o r  edges  s ay .  Remove  f rom 2e,1e M the  i n t e r i o r  of   Δ  

together  with ∂ Δ n ∂M apart  f rom the ver t ices  M1e1v ∂= I ,  M2e2v ∂= I  to  

ob ta in  the  d iagram M'  ( see  f ig .  4 .2 ) .  Then  M'  sa t i s f i es  the condit ions of  
the lemma but  has  one fewer inter ior  ver tex than 
 

Figure 4.2 
 

M.  Observe however that M' may have a boundary region Δ ' of interior 
degree  1 .   Le t  deno te  the  ver tex  o f  3v Δ not  on  ∂M.  I f  ∂ '  does  no t  Δ

involve then M must have a boundary region of interior degree 1, a 3v

contradiction. If  ∂ '  involves  then the assumption about the degree of Δ 3v

almost  inter ior  regions or  inter ior  ver t ices  of  M is  contradicted.  We 
conclude that no such '  exists and that,  by our inductive hypothesis,  Δ M' 

has two simple boundary regions   each having inter ior  degree 2 and ,'
2,'

1 ΔΔ

having a  s ingle  edge in  common.  
 

 I f   do not  involve vertex  then i t  is  obvious that  the '
2,'

1 Δ∂Δ∂ 3v

conclusion of the lemma holds for M;  so assume otherwise.  If  all 321 v,v,v

are involved in then it  is  easy to check that the conditions '
2,'

1 Δ∂∪Δ∂

about  the  degree  o f  a lmos t  in te r io r  reg ions  o r  in te r io r  ve r t i ces  o f  M are  
contradicted.   The remaining cases  are  i l lustrated in  Fig.  4 .3.  
 

Figure 4.3 
 

The argument in each of the four cases illustrated in Fig. 4.3 is similar. We 
shall assume, with out  any loss, that  M' is as  in (i) of Fig. 4.3. 
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R e m o v e  f r o m  M '  t h e  i n t e r i o r  o f  t o g e t h e r  w i t h  '
2

'
1 Δ∪Δ

)'M'
2()'M'

1( ∂Δ∂∪∂Δ∂ II  a p a r t  f r o m  t h e  v e r t i c e s   ( s e e  F i g .  4 . 3 )  to  4u,3v

obta in  the  d iagram M" .  As  before  we  can  conc lude  tha t  M"  has  two 

s imple  boundary  reg ions  sa t i s fy ing  the  conclus ion  of  the  lemma. "
2,"

1 ΔΔ

 
I f   do  no t  i nvo lve  t he  ve r t i c e s  ( s ee  F ig .  4 . 3 ( i ) ) then "

2
"
1, Δ∂Δ∂ 31 v,u

once more we can check that  the conclusion holds for  M. If  both the 
ver t ices   and   are  involved in  then a  contradict ion can be 1u 3v "

2
"
1 Δ∂∪Δ∂

obtained as in the previous case.  The remaining cases for M" together wi th  
the  cor responding  d iagrams for  M are  i l lus t ra ted  in  F ig .  4 .4 . 

 
Figure 4.4 

 
 Once again,  without loss,  we can assume that M" is as in (  i)  of F i g .  

4 . 4 ,  A s  b e f o r e  w e  r e mo v e  f r o m M "  t h e  i n t e r i o r  o f   t oge the r  "
2

"
1 ΔΔ U

wi th  ( "M"
2()"M"

1( ∂Δ∂∂Δ∂ IUI ) apa r t  f r om the  ve r t i c e s   and  (see  F ig .  1u 2w
4.4( i ) )  and  apply  s imi lar  a rguments  to  the  new diagram obtained. 
 
 P roceed ing  in  th i s  way  e i the r  the  conc lus ion  of  the  l emma i s  
o b t a i n e d  o r  M  i s  a s  i l l u s t r a t e d  i n  F i g .  4 . 5 .   ( N o t e  t h a t  t h e  d i a g r a m  
for M given there corresponds to remaining with subcase (i)  throughout.  
For the other cases the final part of our proof is the same.) 

 
Figure 4.5 

 
 Le t  us  assume tha t  M   i s  indeed  as  in  F igure  4 .5 .   Then  remove  

t h e  b o u n d a r y  l a y e r  [  3  , p . 2 6 0 ]  o f  M  t o  g e t  t h e  d i a g r a m  a l l  o f  
∧

−
M

whose  reg ions  have  degree  a t  leas t  3  and  whose  in te r ior  ver t ices  each  

have  deg ree  a t  l e a s t  6 .  Bu t  e ach  bounda ry  ve r t ex  o f   ha s  deg ree a t  
∧

−
M

l e a s t  4 ;  t h i s  c o n t r a d i c t s  C o r o l l a r y  V . 3 3  o f  [ 3 ] .  T h i s  f i n a l   
 
contradiction completes the proof.      �  
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Lemma 5.   Let M be a connected, simply connected, minimal r -diagram. 

Assume tha t  each  federa t ion  in  M  i s  s imply  connec ted .   I f  (1 .3 ) holds 
then M has a boundary region Δ  with )()(g M∂⊆Δ   

Proof .   Le t  be  a  modif ied  r -d iagram obta ined  f rom M  as  descr ibed  in  *M
∧

§3 .   I t  fo l lows  f rom (1 .3 )  ( i ) ,  (3 .2 )  and  (3 .4 )  tha t  each  a lmos t  in te r io r  

reg ion  of  has  degree  a t  l eas t  3  and  tha t  each  in te r io r  ver tex  has  *M
∧

degree  a t  leas t  6 .   Le t  be  an  externa l  d isc  [3 ,  p .247]  of   obtained *D
∧

*M
∧

from the external disc D of M .  

I f   h a s  n o  i n t e r i o r  v e r t i c e s  t h e n  t h e  s a m e  w i l l  h o l d  f o r  D  a n d  *D
∧

t h e  r e s u l t  f o l l o w s .   I f   h a s  a  b o u n d a r y  r e g i o n  o f  i n t e r i o r  degree  1  *D
∧

then  we can  use  proper ty  B 2  and  (3 .3)  and  argue  as  in  Lemma 3 ( i )  t o  

ob t a in  t he  r e su l t .   I t  c an  be  a s sumed  the r e fo re  t ha t  ha s  a t  l eas t  one  *D
∧

in te r io r  ve r tex  and  has  no  boundary  reg ions  o f  in te r io r  degree 1, 

whence, by Lemma 4,  has two simple boundary regions say ,  each  *D
∧ ∧

Δ
∧
Δ *

2,*
1

hav ing  in te r io r  degree  2  and  hav ing  a  s ing le  edge in common.   

Consequen t ly  the re  a re  d i s t inc t  n -  s in ip l i ces  nofy,x c  such that  

         y)*
2(gandx)*

1(g ⊆Δ⊆Δ
∧∧

 

We want to show that either  and 
∧∧∧∧

∂⊆Δ∂⊆Δ *)N(g)*
2(gor*)M(g)*

1(g
argue as in lemma 3(i)  to obtain the result .   Let us assume neither holds .   
Then using (3.3)  together  with  the fact  that  the  face groups G( x ), G( y ) 

have property B2 , it can be deduced that the boundary labels o f  ,*
2,*

1
∧∧
ΔΔ

( r e a d i n g  f r o m  t h e  v e r t e x   i n b o t h  c a s e s )  a r e  o f  t h e  f o r m  *ˆ*ˆ Me ∂I

)3y(3u)2y(2u)1y(1w)3x(3w)2x(2w)1x(1w r e s p e c t i v e l y ,  w h e r e the 

jy,jx (1≤ j  ≤  3)  are (n-1)- simplices of y,x respectively and the  
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l abe l l ing  se t  o f  i s  a  subse t  o f  
∧
*e

1
y1x = •   Bu t  (1 .3 )  ( i i )  now impl ies   

that  

 yorx))3y(3u(g))3x(3w(g)*M(g ⊇⊇
∧

∂ U  

This  contradict ion provides  us  with  the resul t . 
� 

 
In  o rder  to  comple te  the  p roof  o f  Theorem 2  i t  su f f i ces  to  a rgue  

as  in  the  proof  of  Theorem 1 .   We omi t  the  de ta i l s .  
 
§5 

I n  o r d e r  t o  o b t a i n  p r e s e n t a t i o n s  G ( n,n φc )  f o r  w h i c h  t h e  

F r e i h e i t s s a t z  w i l l  h o l d  w e  r e q u i r e  s o me  e x a mp l e s  o f  f a c e  g r o u p s  
having some Bk property. 

Example 5.1   Let G( x ) = >φ< )x(n;x  and suppose that  )x(nφ  consists of a  

s ing le  e lement  w m)x(   where   m  i s  a  pos i t ive  in teger  and  w( x )  i s  a  

cyc l i ca l ly  reduced  word .   I f  m >  1 ,  2 ,  4  ( respec t ive ly )  then  G( x )  has  

property (respectively). 5B,3B,2B

For suppose that  Z is  a  non-empty cycl ical ly  reduced word which i s  
equal  to  1  in  G( x ) .   By a  theorem of  Gurevich  [1]  ( see ,  for  example ,  

Theorem A of  [7]) ,   Z  contains  a  subword of  the form 1T1mT −   where  T is 

a cyclic permutation of  2T1TT,1)x(w ≡± , and   involves every member o f1T x   

L e t  x =  { x 1  . . . , x n  }  w h e r e  x i  i s  t h e  i t h  e l e m e n t  o f  x  t o  a p p e a r  in   T  

for  l  ≤  i  ≤  n .   I f  m>l  then  Z  contains  a  subword of  the form 

  nvnx...2v2x1v1xnunx...2u2x1u1x1TT ≡

w h e r e  a r e  w o r d s  i n  s o m e  s u b s e t  o f  iv,iu x f o r  l  ≤  i  ≤  n .   I t  i s  c l e a r  that  

in this case we can conclude that G( x ) has property B2 .   The other two 

cases  m > 2 and m > 4 are  s imilar .  
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Let w( x ) be a reduced word in the n-simplex x  of .  Then w(nc x ) is 

freely equal  to  expressions of  the form )ix(iwwhere)rx(rw)...1x(1w  i s  a  

w o r d  i n  t h e  ( n - 1 ) - s i mp l e   xx
i

⊆ fo r  1≤  i  ≤  r .   We  s h a l l  s a y  t h a t  w( x )  

has  s implex  l eng th   q  ,  and  wr i t e  s .  l . (w( x ) )  =  q ,  i f   q   i s  the  min imum 

va lue   r   t akes  over  a l l  such  express ions . 
 

Thus s.  l .(w( x ))>1 if and only if w( x ) involves every member e  of th

n-s implex x .   Observe also that  the face group G( x )  has  property  B Bk,  if  

and only if s.l .(Z*) ≥  k+1 for all  conjugates Z* of each non-empty 
cycl ical ly  reduced word  Z  equal  to  1  in  G( x ) .  

L e t  F  b e  a  f r e e  g r o u p  a n d  l e t  R  b e  a  w o r d  i n  F .  L e t  s y m m  R  
d e n o t e  t h e  s m a l l e s t  s y m m e t r i s e d  s u b s e t  o f  F  c o n t a i n i n g  R .  I f s 
is  a  word in  F we wri te  s  > c  symmR, c   a  ra t ional  number ,  to  mean that  
there  is  a  u  ∈  symmR with u ≡ s t  in  reduced form and |s |  >  uc (here  

  denotes the length of the word). .

Lemma 6.    Let x be an n-simplex of  and suppose that symm (nc )x(nφ ) 

sa t i s f i e s  the  cond i t ion  C ’  (1 /6 ) .   Then  the  fo l lowing  ho ld :  
(i)    If  s.  1. (w) > 2 for each word w ∈  symm( )x(nφ ) ;  s. l .  (s) > 1 for 
each word s > 1/2 symm ( )x(nφ ) ; and s.l.(s)>2 for each word s > 5/6 symm 

( )x(nφ ); then G( x ) has property B2. 

( i i )   I f  s , l .  (w)  >  3  f  o r  each  word  w ∈   symm( )x(nφ ) ;  and  s . l . ( s )>  2  for  

each  word  s  >  1 /2  symm( )x(nφ ) ,  then  G( x )  has  proper ty  B 3  . 

( i i i )  I f  s . l  (w)  >  5  fo r  each  word  w ∈( )x(nφ )  symm;  s . l .  ( s )  >  2  fo r  each 

word  s >  1/2    symm ( )x(nφ ); and s.l. (s)  > 3 for  each  word s > 5/6 symm 

( )x(nφ ), then G( x ) has property B5. 
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P roof .    Le t  Z  be  a  non-empty  cyc l i ca l ly  reduced  word  equa l  to  1  in  
G( x ) .   Us ing  Theorem V.4 .5  [3]  we  deduce  tha t  e i ther  Z  be longs  to  

symm ( )x(nφ )  or  for  some cycl ical ly  reduced conjugate  Z* of  Z ei ther  Z* 

contains two disjoint subwords each > 5/6 symm ( )x(nφ ) or Z* contains three 

disjoint subwords each > 1/2 symm ( )x(nφ ).  

W e  s h a l l  p r o v e  ( i i ) ,  t h e  p r o o f s  o f  ( i )  a n d  ( i i i )  b e i n g  s i m i l a r .  
By  a  remark  made  ea r l i e r ,  in  o rder  to  show tha t  G( x )  has  p roper ty  B 3  i t  

i s  e n o u g h  t o  s h o w  t h a t  a n y  c y c l i c a l l y  r e d u c e d  c o n j u g a t e  o f   Z   h a s  
s implex length at  least  4 .  

If  Z ∈  symm ( )x(nφ ) then, according to the assumption made in  

the  s ta tement  of  ( i i ) ,  each  cyc l ica l ly  reduced  conjuga te  of  Z  has  s implex  

length  a t  l eas t  4  and  the  resu l t  ho lds .  Otherwise  Z  i s  conjugate  to  Z* 

which has  the form 

either 3u6w5w4w2u3w2w1w1u  

or             4u9w8w7w3u6w5w4w2u3w2w1w1u

where . is a non-empty reduced word iniw x  satisfying s.l .  ( )  = 1 ( l≤ i≤9) ,  iw

and s . l .  (   )  > 1  for  j  = 1 ,2 ,4 ,5 ,7 ,8 ,  and u1jwjw + i  i s  a  word 

in x  (1 ≤ i ≤ 4) .  It may happen that any of s.l. ( ), s.l. ( ,  4w2u3w 1w1u3u6w )

s . l .  ( ,  s . l .  i s  equa l  to  1 .   I t  i s  c l ea r  however  tha t  th i s  7w3u6w ) )1w1u4u9w(

does  no t  p reven t  the  s implex  l eng th  o f  any  cyc l i ca l ly  reduced  

conjugate  of  Z* ,  and  therefore  of   Z  ,  be ing  a t  l eas t  4 . 

� 

Example 5.2  G( x )=  >−−−< 3x1
2x1x1

3x2
2x1

1x3x2x2
1x;3x,2x,1x It is straightforward to 

check that  the smalles t  symmetr ised subset  of  the f ree  group on

3x,2x,1x   containing the relator 3x1
2x1x1

3x2
2x1

1x3x2x2
1x −−− = R, say, has no 

pieces of  length 2 and so sat isf ies  C'( l /6) .   I f  s  > 1/2 symm R i t  is
an  easy  exerc ise  to  ver i fy  tha t  s . l .  ( s )  >  2 .   Also ,  each member  of
symm R has simplex length greater than 3.  Thus, by Lemma 5 (ii) ,  G( x )

has  proper ty  B 3  .   Observe  tha t  s . l .  (R)  =  5  whence  G( x )  does  not  have  

property B5. 
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 We  t u r n  o u r  a t t e n t i o n  t o  c y c l i c  p r e s e n t a t i o n s -   S u p p o s e  t h e   
g roup  H has  a  presenta t ion  on  m  genera tors  x 1 ….x m,   and  m def in ing  
r e l a t o r s  o b t a i n e d  f r o m t h e  s i n g l e  w o r d  R ( x 1  , . . . , x 2  } ,  m≥n≥2 ,  by  
permut ing  the  subscr ip t s  modulo  m v ia  the  powers  of  the  permuta t ion  
(12. . . in) .   I f  we have that  R(x1 ,  .  .  .  xn)  is  a  cycl ical ly  reduced word 
involving each xi (1 ≤ i ≤ n) then H = H( n,n φC ) where here  is the nC

s i mp l i c i a l  c o mp l e x  g e n e r a t e d  b y  t h e  n - s i mp l i c e s  }1njx...,jx{jx −+= ,  ≤  j  

≤  m,  t he  subsc r ip t s  be ing  r educed  modu lo  m,  and  whe re            
.  mj1for)1njx,.....,jx(R)jx(n −+=φ ≤ ≤

Lemma 7.    The Freiheitssatz holds for H ),n,nC( φ the presentation 
desc r ibed  fo r  t he  g roup  H  in  t he  p r ev ious  pa rag raph ,  i f  one  o f  t he  
fo l l owing  ho lds :  
( i )  K  =   ha s  p rope r ty  B>< )nx,....,1x(R;nx,.....,1x 5 ;  o r  
( i i )  K  has  p rope r ty  B  and  m  1  +  3 (n - l ) ;  o r  ≥
( i i i )  K  has  p rope r ty  B 2 ,  m ≥  1  +  5 (n - l ) ,  and  H ),n,n( φC sa t i s f i e s  
cond i t i on  (1 .3 )  ( i i )  o f  Theo rem 2 .  
Proof.  I f  m ≥  1  + p(n-l)  then has property N(p)  .   Now use Theorems 1  nc

and  2 .           �  
 
Example  5 .3

H 2ix1
1ixix1

2ix2
1ix1

ix2ix1ix2
ix;7x,.......1x),n,n( +

− − −
++ +++=<φC   

 ( 1≤ i≤7 ,  subsc r ip t s  mod  7 )  >  

Here m = 7, n = 3 and, by Example 5.2 and Lemma 7 (ii),  the Freiheitssatz 
holds for  H ),n,n( φC .  Observe that  the smallest  symmetr ised subset  of  t h e  

f r e e  g r o u p  o n  c o n t a i n i n g  t h e  s e t  o f  d e f i n i n g  r e l a t o r s  o f  7x,...1x

H given here does not satisfy C' (1/6) - for example  is a  ),n,n( φC 3x2x

p iece .  
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Example 5 . 4

H  = ),n,n( φC 2)1
2ix1ixix(;11x,.....,1x −

++< (1 ≤  i  ≤  11,  subscripts  mod 11)>.  

H e r e  m  =  1 1  a n d  n  =  3 .   T h e  g r o u p  K 1 =  h a s  property 21
321321 )xxx(;xx,x −<

B2 (but not B3) by Example 5.1.  Therefore if we can show 
t h a t  c o n d i t i o n  ( 1 . 3 )  ( i i )  o f  T h e o r e m 2  i s  s a t i s f i e d  t h e n  t h e  
Freihei tssatz  wil l  hold by Lemma 7 ( i i i ) . 

Le t 2)1
4x3x2x(;4x,3x,2x2K −=< >.  I t  su f f ices  to  look  a t   and   1K 2K

on ly .   I f  ( r e spec t i ve ly  )  i s  a  non -empty  cyc l i ca l l y  r educed  word  1Z 2Z

equa l  to  1  in   ( resp  )  then ,  by  the  theorem of  Gurev ich  mentioned 1K 2K

in Example 5.1, some cyclically reduced conjugate of 1
1Z±   

(r e sp . )  con t a in s  a  subword  o f  t he  fo rm 1
2Z± 1

3x2x1x1
3x2x1x −−  

1
4x3x2x1

4x3x2x   (resp. −− ) .   I t  now fo l lows tha t  there  cannot  ex is t  two words 

of simplex length 3 which satisfy the conditions in the statement of  
(1 .3) ( i i )  -  thus  th is  condi t ion  i s  t r iv ia l ly  sa t i s f ied  by  H  ).n,n( φC
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Figure 4.3 
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