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Introduction

Given a graph T" with vertex set xsay, a group presentation can be

obtained from I' as follows. Let ¢ be a function which assigns to each edge
e of I', e having endpoints x ,y say, a non-empty set of cyclically reduced
words on x,y involving both x and y. Then G(I',¢) is the group with
generating set x and defining relators Uo¢ (e) where the union is taken over
all the edges e of I'. Thus the presentation varies according to the
function¢ , although observe that each defining relation in the presentation
for G (I', ¢) will always involve exactly 2 generators. Groups having

presentations of this form (e.g. Artin and Higman groups) have been studied in
recent work of A .K .Napthine and S.J.Pride [4.] and of S. J. Pride [ 5], [6,] .

In this paper we replace the graph I'by an abstract n-dimensional
simplicial complex C,(n >2) to obtain the groups G(Cp,¢p).Each defining
relator in the presentations now obtained will involve precisely n-generators.
Our aim is to generalise to these groups a Freiheitssatz for G(I',¢) due to

Pride which we now describe.

For e an edge of I', the group G(e) given by the presentation <x,y;
¢ (e)>, where x ,y are the endpoints of e, is called an edge group of

G(I',¢).
A 2-generator group with generators a, b say, has property - Wy, (with

a B o B
respect to a, b) if no word of the form a b1 a Kp k(ai,ﬂi € Z )is equal to

1 in the group unless the word is freely equal to 1.
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THEOREM (Pride [6, Theorem 4 ] ) The natural homomorphlsm G(I',,¢) — G(I',¢) is

injective for each full subgraph I'yof I'if one of the following conditions is

satisfied.

(1) Each edge group of G (I',¢) has property — W,

(2) T has no triangles and each edge group of G(I',¢) has property — W, .

Our main results are stated in §1 and the proofs are given in §3 and §4.
In §2 we describe a modification at interior vertices of certain small
cancellation diagrams and in §4 a geometric result (Lemma 4) is proven for
small cancellation diagrams whose almost interior regions each have degree at
least 3 and whose interior vertices each have degree at least 6. In §5 we

give examples and discuss consequences of the theorems.

We will assume that the reader is familiar with the basic definitions and
results of small cancellation theory [3, pp.235-252], frequent use of which is
made throughout this paper. (It should be noted however that there are

differences in our definitions to some of those given in [3].)

For the rest of this paper we drop the term abstract and merely write

simplicial complex without any fear of confusion.



§1 Statement of results

Let X be a set and let there be a collection of subsets of X  the
maximum number of elements of X contained in any of these subsets being n

where n>2. Let ¢, denote the full (n-dimensional) simplicial complex
generated by these subsets. Thus c,consists of the sets together with all

their non-empty subsets. The/- element sets (n>/¢>1) are called /-
simplices.

Let ¢y be a function which assigns to each n-simplex x = {xl,....,xn} in
C,a non-empty set of cyclically reduced words each involving {xl,....,xn} and

no other element of X. We define G(Cy,¢5)to be the group with generating
set those elements of X appearing in some /-simplex x of Cy and defining

relators

{¢,(x):x an n-simplex of Cp }.

For the n-simplexx of C, we define G(x) to be the group with presentation

<X;0p(x)>and call such a group a face group of G(Cp, ¢y ).

Let X, Xand let Cno be the full sub complex generated by all the /-

simplicies (n>/>1) of C,that are contained in X(. Then there is a

natural homomorphism

G(Cno s 0n) > G(Cp,0n)-

If this homomorphism is injective for any choice of Xpthen we shall say

that the Freiheitssatz (see §1 in [6]) holds for G(Cy,¢p)

Letx be an n-simplex whose members are in X and let X ,...X,

(k> 1) be (n-1)-simplices contained inx . We shall say that the group
having presentation<x,  :¢,(x)> has property Bk (with respect tox )
provided that there is no word of the form Wl(ﬁl)“'wk(ék)equal to 1 in
the group unless it is freely equal to 1. Here wi(éi)denotes a word

involving some subset of x. and no other members of X.
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Let xeX. We define the map dyx:¢c, > C, as follows: if yis an

- {x Hif «x

y e
y if x ¢

¢-simplex (n>/2>1) of C, then dX(y)z{

< I<

We shall say that cyhas property N(p) (p = 3) provided that there

cannot be found p n- simplices Xy,..... XPOf Cp together with a sequence of
maps of the form dysuch that the image set of { Xj,.... Xp} is
{{xl,xz},{xz,x3}, ..... , {prl,xp}{xp,xl}} where x; #x;for1<i<j<p.
THEOREM 1. The Freiheitssatz holds for G(Cq,¢q) if one of the following

conditions is satisfied.

(1.1) Each face group has property Bs.

(1.2) Each face group has property B,and C, has property N(3).
3 n

We remark that if n=2 then properties BS’B3 reduce to the properties

W,, W, respectively which are given in the introduction; moreover, the
geometrical realisation of C, has no triangles if and only if C, has
property N (3). Consequently Theorem 1 is a generalisation of Theorem 4
of [6].

The condition (1.1) corresponds to when use is made of the small
cancellation hypothesis C (6); and the condition (1.2) corresponds to the
C(4), T(4) situation. The national question to ask is what can be said about
the C(3), T(6) case? Here the defining relators can have shorter length and
it has been necessary to introduce a further restriction.

For a given work w(x) in some. /-simplexx of wecy shall write

g(w(x)) to denote those elements of x inavolved in w(x) .
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THEOREM 2. The Freihestssatz holds for G(Cy,,¢p ) if the following conditions

are satisfied.

(1.3) (i) Each face group G(x) has property B, and C, has properties N(3),
N(4) and N(5);

(1.3) (i1) For any pair of distinct n-simplices x, yofc, whenever there

are words of the form Wl(il)w2(§2)w3(§3)’W1(Zl)u2(12)u3(13) equal (but

not freely equal) to 1 in the face groups G(x), G(y) respectively,

where éj,yj,are (n-1)-simplices of x,yrespectively andél,yl, then

the following holds: g(w3(§3))ug(u3(x3))3x ory.

We remark that conditions (1.1), (1.2) and (1.3)(i) reduce the question
of whether or not the Freiheitssatz holds for the group G(Cp,¢5) to an

analysis of the face groups. The condition (1.3)(i1) is concerned with how
pairs of face groups combine; we shall see how this condition arises from the
geometry in §4.

§2 Preliminaries

Let F be a free group with free basis uand let s be a symmetrised set

of non-empty words on u. Let M be a connected, simply connected S-

diagram. IfA is a region of M then g(A) denotes the set of elements of
u which occur in a label of A. If L is a subdiagram of M then g(L) -

Ug(A) where Aranges over the regions of L. Also, we denote by

g(0L) the set of elements of Uwhich occur as labels of boundary edges of
L.
In general s-diagrams may have vertices of degree 1. It can and will be

assumed here (apart from exceptions where indicated) that our s-diagrams

have no such vertices.
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Let xdenote the underlying set of the simplicial complex Cj.

Let r denote the smallest symmetrised subset in the free group with

basis X containing
U ¢n(x)

where the union is taken over all the n-simplicesx of Cy.

Let r denote the set
= P

U ¢ (x)

S
where ¢, (x) consists of all words not freely equal to 1 which are in the

normal closure of ¢,(x)in the free group whose basis is the underlying
set of x and where again the union is taken over all the n-simplices of

Cp.

In this paper we shall not, unlike the usual definition, demand that
each member of a symmetrised set be freely reduced. Thus observe that

we have thatf is a symmetrised set.

Let M be a connected, simply connected ﬁ-diagram. We are interested

in modifying such diagrams. We begin by making the following definition.

Let v be an interior vertex of M of degree m> 3 (as shown in

A
Fig.2.1) and suppose that the Aj (1 £j £ m) are distinct simply connected

regions of M ; and that each vertex on the line segments vw; have degree 2

apart from v and wj (1 £j <m) Then v is a cy-vertex if for at least

one je {1,...,m} there exists some ie {1,...,j-2,j+1,...,m} such that the

label on each edge which occurs on the line segment V_WJ belongs to the set
A
g(A,).

Figure 2.1
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We shall be interested in removing c vertices. Our modification can be

described as follows. Cut along the line segmenth .to obtain a new diagram
M * (see Fig. 2. 2).

Figure 2.2.

Observe that the labels on each region remain unchanged apart

A A
from the boundary label of Ai which is now a conjugate by a word in g( Ai)

of some cyclic permutation of the original label. Moreover M *
will also be a connected, simply connected diagram. Thus M * is an

-diagram with the same number of regions as M * but with fewercy, -vertices

= >

(provided that w is not then a cp,-vertex).

Lemma 1. LetM be a connected, simply connectedi -diagram such

AN

that for each regionﬁof M, A is simply connected and g(&) is

an n-simplex ofc,. Then the following hold:(i) if has property

N(3) then every interior vertex M of of degree 3 is a Cj3-vertex;

(ii) if cyhas properties N(3) andN(4) then every interior vertex of

M of degree 4 is a Cy-vertex; (iii) if C, has properties N(3), N(4)

and N(5) then every interior vertex of M of degree 5 is a Cs -vertex.

Proof We give the proof for (iii) only; parts (i) and (ii) can be proved
similarly.

Let v be an interior vertex of M of degree 5. Then v can be
illustrated as in Fig. 2.3 where each vertex on the line segment vw; . has

degree 2 apart from v and w. (1 <i <5).
Figure 2.3



Observe that it follows from the assumption no vertices of degree 1

A
and the statement of the lemma that the Ai are distinct, simply

connected regions. (Note however that the vertices wj. may not be
distinct - this makes no difference to our arguments.)

Suppose, by way of contradiction, that the vertex v in Fig. 2.3 is
not a Cs--vertex. Then there must be a; bi’ci e g(vwi)such that

a; eég(Ai+1), bi ¢ g(Ai+2),c- ég(&i+3) for 1<i<5. (Throughout the proof

subscripts shall be reduced mod 5 and we take 5 as 0.) Thus we have
g(Ai) ={aj,bj,ci,ai11,biM,Ciqlon}|> €\ nsbi,ghar, (1 <i<3)
If aj4 eg(ﬁi+3)then there is a sequence of dymaps with

a(Ai+3),a(Ai+1),a(Ai+2) having images {Ci+3 ,ai+1}, {ai+1,ai+2}
{ai+2,ci+3} respectively, contradicting the fact that c has property N(3).

This forces

g(ﬁi) = {ai,bi,ci,ciﬂ,bi+1ci+1,....} b Ci+2’bi+3’ai+4’ai+3 (1<1<5).

Now suppose that, for some i, aj+] € g (ﬁ i+4) . If we also have

ait4 € g(£j+2) then there is a sequence of dx maps with g(ﬁi”), g(ﬁi+1) ,
(Ai+2) havingimages {a; 4 4.2 41 }:{ai+1.2i 12} {ai +2.2i + 4 ) respectively; this
contradiction means that a. , ¢ g( Ai+2). Suppose now that we also have
a, 5 eg( ﬁi+1)Then there is a sequence of dx maps with g( ﬁi+4), g( ﬁi+1),
g(Ai+3)having images a5, 4081808 30135, 3085 )
respectively; this contradiction means that a;. 3 zg( 31+1) We conclude

from all this that there is a sequence of dyx maps with g( ﬁi+4), g( &i+1) ,
g(A;5)8(A s)havingimages {aj1 4,341}, {ai+1,3i+2},{3i+2-2i+3}
{ai+3,ai+4}respectively, contradicting the fact thatC,; has property N(4).



A
Thus a4 ¢ g(Al+4)consequently g(/A\i)#{ai,ai_,_l,....} 3
ai,9,83,3,8;, 4 for 1 <1< 5 But this contradicts the assumption that

Cphas property N(5) .

§3 Proof of Theorem 1

We require some further comments on s-diagrams. Recall that s is

a symmetrised set of non-empty words on the free basis u of the group

F.

A region A of an s-diagram M will be called a boundary region if

OANOM contains at least one edge; A will be called almost interior
otherwise. A boundary region A for whichdA(1OM is a consecutive part

[3,p.248] of M will be called a simple boundary region.

If the word W lies in the normal closure of s in F then W

r
is equal in F to a product II Ti_l

| e€s., and T; is
i= =

SiTi where r < O,si

a word onu (1 <1 <r). The least value of r over all such expressions

equal in F to W is denoted by deg (W).

A connected, simply connected s-diagram with boundary label W

is said to be minimal if it has deg (W) regions.

Proof of Theorem 1. Let X cxand let Cn, be the full subcomplex

generated by all the /-simplices (n>/>1) of c,which are contained in

Xo , Let Xpdenote the underlying set of Cnoand let W be a word on X(

equal to 1 in G(Cy,¢n). We must show that W equals 1 in G(Cp,¢p).
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The proof is by induction on deg(W) . If deg(W) = O then W is
freely equal to 1 and the result follows. So assume deg(W) > 0. Let

Whbe a cyclically reduceed word freely conjugate to W. Then there is
a connected, simply connected minimal r-diagram M with boundary label W

[3, pp. 237-238] . Let us assume that M has a boundary region Awith
g(A)cg(oM). Let M' be obtained from M by removing the interior of M and

one edge of OA(1OM (note that this may create vertices of degree 1), and
let W' be a boundary label of M'(readingdM' in the same

orientation asdM ). Then W' is a word on )N(Oconjugate to W in

G( Cno,(l)n) . Moreover, W' equals 1 in and G(Cy,¢p)deg(W') = deg(W)-1. But

a connected, simply connected subdiagram of a minimals-diagram is

minimal [2, Lemma 2.4]. We can therefore apply our inductive hypothesis
to obtain the results.
]

In the remainder of this section we justify the assumption made about
M in the above proof.

Define as equivalence relation ~ on the regions of M by A=A"if

and only if there are regions A = AO’AI"“" A = A'such that
g(AO) = g(Al) = ...g(A ) and with Ai’Ai+1 having an edge in common

fori = O,...,n-1. The regions in an ~-equivalence class give rise to a
connected subdiagram of M called a federation.

Lemma 3. (i) Let M be a connected, simply connected minimal r-diagram and

assume that each federation in M is simply connected. If (1.1) or (1.2)
holds the M has a boundary region A with g(A)c g(cdM).

(i1) If (1.1) or (1.2) holds then any federation contained in a connected,

simply connected minimalr-diagram is simply connected.
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This lemma completes the proof of the theorem. Let us assume (i) is
true and we shall prove (ii).

Assume (ii) is false and let K. be a counterexample with as few
regions as possible. Let F be a federation in K. which is not simply
connected, and let N be a bounded component of K - F. Then by (i) N

has a boundary region Awith g(A)c g(0N)=g(F). Hence g(A) = g(F)

contradicting the fact F is a federation.
Before proving (i).we need some further discussion.

Since we are now assuming that each federation is simply

. We can

=

connected the boundary labels of federations are elements of

therefore obtain from M an r-diagram M whose regions are the federations
with all their interior edges and vertices removed.

A connected, simply connected r-diagram M* is now obtained from M as
follows: firstly, by repeated use of the modification described in

§2, remove all the C; - vertices of M ; then remove each C4. — vertex
taking care to remove, as one proceeds, any C3 - vertex each modification
may produce; next remove all Cs - vertices again removing, as one
proceeds, any C4 - vertex and, in turn, C; - vertex which may be produced;
finally remove, in the usual way, all interior vertices of degree 2.

The procedure described above is illustrated in Fig. 3,1 where a
possible sequence of modifications is given for an interior vertex of degree
5 (We are of course assuming that the vertices involved in Fig. 3.1 are C,, -
vertices, me {3,4,5}; and we have not removed the interior vertices of degree 2.)
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Fig. 3.1

The next observations follow immediately from Lemma 1.
(3.1) If Cjhas property N(3) then each interior vertex of M * has degree

at least 4;
(3.2) if C, has properties N(3), N(4) and N(5) then each interior vertex of

M * has degree at least 6.

If ApAz are distinct regions of M with an edge in common then
g( AI ) N g(A2 ) is contained in some (n-1)-simplex ofC,; (otherwise they
would not be from distinct federations of M ) . Recalling that if A *
of M * has been obtained from A of M then g(A *) = g(A ), it is clear
that the same property holds for g( AI ) Ng (Az*). We therefore have:
(3.3) if é+is an interior edge of M #* then the labelling set of &% is
contained in some (n-1)-simplex of Cp;
(3.4) if each face group G(x) of G(cn,d)n)has property By then each almost

interior region of M *has degree at least k+1.

Proof of Lemma 3(i). Suppose (1.1) holds. If M has only one region the

. . . . ~ . A
result is immediate so we can assume otherwise. Then M *, our modified r-

diagram, has the property that each almost interior region will have degree at
least 6 (by (3.4)), and that each interior vertex will have degree at least

3. Therefore M * has a simple boundary region A* with at most three

interior edges [3, Theorem V.4.3]. Now A* arises from some federation
F in M where some regionA of F is a boundary region of M.

Condition Bstogether with (3.3) now implies that
g®)=g(F)=g(A x)c g(@A*n oM*) < g(aM*) = g(aM).
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If (1.2) holds then each almost interior region of M * has degree at
least 4 (by (3.4)) and each interior vertex of M #* has degree at least 4

(by (3.1)) Consequently M *has a simple boundary region with at most
2 interior edges [3, Theorem V.4.3]. Now argue as above.
[

§4 Proof of Theorem 2

The proof of Theorem 2 is similar to that of Theorem 1. We do
however require a further technical result in order to obtain the analogue of
Lemma 3(1).

Convention: when drawing diagrams in this section double lines
shall indicate that the line segment may have vertices of degree 2.

Lemma 4. Let M be a connected, simply connected s-diagram (having

no vertices of degree 1) where each almost interior region has degree at

least 3, each interior vertex has degree at least 6, and whose boundary is a

simple closed curve. Suppose further that M has at least one interior vertex

and that M does not have a boundary region having interior degree equal to

1. Then M has two simple boundary regions Al,Az(see Fig.4.1) each

having interior degree 2 and having a single edge in common.

Figure 4.1

Proof. We proceed by induction on the number of interior vertices of M.  If
M has a single interior vertex then the diagram is a "wheel" having at
least six spokes and the result holds. So assume that M has more than one
interior vertex.
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We know that M has a simple boundary region Awith at most 2
interior edges [3, Theorem V.4.3]. Therefore, by our hypothesis, A has
precisely 2 interior edges e,e,say. Remove from M the interior of A

together with 0 An 0M apart from the vertices vi=ej(1OM, v =c, oM to

2
obtain the diagram M' (see fig. 4.2). Then M' satisfies the conditions of
the lemma but has one fewer interior vertex than

Figure 4.2

M. Observe however that M' may have a boundary region A' of interior

degree 1. Let V3den0te the vertex of Anot on 0M. If 0A' does not
involve V3 then M must have a boundary region of interior degree 1, a
contradiction. If 0A' involves V3 then the assumption about the degree of

almost interior regions or interior vertices of M is contradicted. We
conclude that no such A' exists and that, by our inductive hypothesis, M'

has two simple boundary regions A'I,A'2, each having interior degree 2 and

having a single edge in common.

If 8A'1, 8A'2 do not involve vertex V3 then it is obvious that the
conclusion of the lemma holds for M; so assume otherwise. If v,,v,,v; all

are involved in GA'I,UaA'z then it is easy to check that the conditions

about the degree of almost interior regions or interior vertices of M are
contradicted. The remaining cases are illustrated in Fig. 4.3.

Figure 4.3

The argument in each of the four cases illustrated in Fig. 4.3 is similar. We
shall assume, with out any loss, that M'is as in (i) of Fig. 4.3.
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Remove from M' the interior of A, UA,together with
(6A'1ﬂ6M')u(6A'2ﬂ6M) apart from the verticesvy,u, (see Fig. 4.3) to

obtain the diagram M" . As before we can conclude that M" has two
simple boundary regions Anl,Auzsatisfying the conclusion of the lemma.

If O0A,,0A, do not involve the vertices u,,v;(see Fig. 4.3(i)) then

once more we can check that the conclusion holds for M. If both the

verticesu; andv, are involved in 0A, UOA,then a contradiction can be

obtained as in the previous case. The remaining cases for M" together with
the corresponding diagrams for M are illustrated in Fig. 4.4.

Figure 4.4

Once again, without loss, we can assume that M" is as in ( 1) of Fig.

4.4, As before we remove from M" the interior of AHIUAHZ together

with ((6A"1ﬂ8M)U(8A"2ﬂ8M")apart from the vertices u; and wy(see Fig.

4.4(1)) and apply similar arguments to the new diagram obtained.

Proceeding in this way either the conclusion of the lemma is
obtained or M is as illustrated in Fig. 4.5. (Note that the diagram
for M given there corresponds to remaining with subcase (i) throughout.
For the other cases the final part of our proof is the same.)

Figure 4.5

Let us assume that M is indeed as in Figure 4.5. Then remove
the boundary layer [ 3 ,p.260] of M to get the diagram I\AfI all of
whose regions have degree at least 3 and whose interior vertices each
have degree at least 6. But each boundary vertex of 1\?[ has degree at

least 4; this contradicts Corollary V.33 of [3]. This final

contradiction completes the proof. O
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Lemma 5. Let M be a connected, simply connected, minimal r-diagram.

Assume that each federation in M is simply connected. If (1.3)  holds
then M has a boundary region A with g(A) < (M)

Proof. Let M*be a modified r-diagram obtained from M as described in
§3. It follows from (1.3) (i), (3.2) and (3.4) that each almost interior

region of M*has degree at least 3 and that each interior vertex has

degree at least 6. Let D* be an external disc [3, p.247] of M* obtained
from the external disc D of M.

If f)* has no interior vertices then the same will hold for D and

the result follows. If D* has a boundary region of interior degree 1

then we can use property B, and (3.3) and argue as in Lemma 3(i) to

obtain the result. It can be assumed therefore D* that has at least one

interior vertex and has no boundary regions of interior degree 1,

VANVAN
whence, by Lemma 4, D* has two simple boundary regions A?,A*z say, each

having interior degree 2 and having a single edge in common.

Consequently there are distinct n- siniplices X,y of ¢, such that

3 AR
g(A1) c and g(Ap)c

[
<

We want to show that either g(A]) c g(@M*) or g(A3)cg(dN*)  and
argue as in lemma 3(i1) to obtain the result. Let us assume neither holds.
Then using (3.3) together with the fact that the face groups G(x), G(y)

kA%

have property B, , it can be deduced that the boundary labels ofﬁl,Az,

(reading from the vertex é*N oM * inboth cases) are of the form
Wl(él)w2(22)W3(23)W1(Zl)u2(22)u3(z3)respectively, where the

éj,yj(lfj < 3) are (n-1)- simplices of x,yrespectively and the



-17-

labelling set of e*is a subset of X :yl' But (1.3) (ii) now implies

that

g(0M*) 2 a(w;(x3) Us(uy(y,) 2% or y

This contradiction provides us with the result.
U

In order to complete the proof of Theorem 2 it suffices to argue
as in the proof of Theorem 1. We omit the details.

§5
In order to obtain presentations G(Cp,¢) for which the

Freiheitssatz will hold we require some examples of face groups
having some By property.

Example 5.1 Let G(x) = <Xx;¢y(x)> and suppose that ¢,(x) consists of a

single element w (x)™ where m is a positive integer and w(Xx) is a
cyclically reduced word. If m > 1, 2, 4 (respectively) then G(x) has
property B,, B3 ,Bs (respectively).

For suppose that Z is a non-empty cyclically reduced word which is

equal to 1 in G(x). By a theorem of Gurevich [1] (see, for example,
Theorem A of [7]), Z contains a subword of the form Tm_lT1 where T is

a cyclic permutation of w(z)il,TETsz, and T involves every member of x
Let x= {x; ...,x5 } where x; is the ith element of x to appear in T

for ] <1 <n. If m>] then Z contains a subword of the form
where u.,v.are words in some subset of xfor 1 <i <n. Itis clear that

in this case we can conclude that G(x) has property B, . The other two

cases m > 2 and m > 4 are similar.
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Let w(x) be a reduced word in the n-simplex x of ¢,. Then w(x) is
freely equal to expressions of the form Wl(él)“'wf(ér) where Wi(éi) is a
word in the (n-1)-simple x cxfor I<i<r. We shall say that w(x)
has simplex length q , and write s. 1.(w(x)) = q, if q is the minimum

value r takes over all such expressions.

Thus s. I.(w(x))>1 if and only if w(x) involves every member of the
n-simplexx. Observe also that the face group G(x) has property By, if

and only if s.1.(Z*) > k+1 for all conjugates Z* of each non-empty
cyclically reduced word Z equal to 1 in G(Xx).

Let F be a free group and let R be a word in F. Let symm R
denote the smallest symmetrised subset of F containing R. If S
is a word in F we write s > ¢ symmR, ¢ a rational number, to mean that

there is a u € symmR with u =st in reduced form and |s| > c|u|(here

| . | denotes the length of the word).

Lemma 6. Let xbe an n-simplex of ¢, and suppose that symm (¢p(x))

satisfies the condition C (1/6). Then the following hold:
(1) Ifs. 1.(w)> 2 for each word w € symm(¢,(x)) ; s.1. (s) > 1 for

each word s > 1/2 symm (¢p(x)) ; and s.1.(s)>2 for each word s > 5/6 symm

(¢ (x)); then G(x) has property B..

(i1) Ifs,l. (w) > 3 f or each word w € symm(¢,(x)); and s.1.(s)> 2 for

each word s > 1/2 symm( ¢, (X)), then G(x) has property Bs .

(iii) If s.1 (w) > 5 for each word w €(¢n(x)) symm; s.1. (s) > 2 for each

word s> 1/2  symm (¢p(x)); and s.1. (s) > 3 for each word s > 5/6 symm

(¢n (%)), then G(x) has property Bs.




-19-

Proof. Let Z be a non-empty cyclically reduced word equal to 1 in
G(x). Using Theorem V.4.5 [3] we deduce that either Z belongs to

symm (¢p(x)) or for some cyclically reduced conjugate Z* of Z either Z*
contains two disjoint subwords each > 5/6 symm (¢, (X)) or Z* contains three
disjoint subwords each > 1/2 symm (¢p(x)).

We shall prove (ii), the proofs of (i) and (iii) being similar.
By a remark made earlier, in order to show that G(x) has property Bj it

is enough to show that any cyclically reduced conjugate of Z has
simplex length at least 4.

If Z € symm (¢,(x)) then, according to the assumption made in
the statement of (ii), each cyclically reduced conjugate of Z has simplex
length at least 4 and the result holds. Otherwise Z is conjugate to Z*
which has the form

either U W W WUy W, WeW Uy
or WW W WU W, W W UsWoWeWolly
where w.. is a non-empty reduced word inx satisfying s.l. (Wi) =1 (1<i29),

and s.1. (ijj+1 )>1 forj=1,2,4,5,7,8, and u; is a word

in x (1 <i<4). It may happen that any of s.I. (w3u2w4), s.l. (w6u3u1w1),
s.l. (w6u3w7), s.l.(w9u4u1w1) is equal to 1. It is clear however that this

does not prevent the simplex length of any cyclically reduced
conjugate of Z*, and therefore of Z , being at least 4.

l
_ o2 -1.2_-1_ -1 . .
Example 5.2 G(x)= <X{5X9,X33X X5 X3X) X5X3 X Xy Xg >t is straightforward to
check that the smallest symmetrised subset of the free group on
-1,2_-1 1

XX, X3 containing the relator x12x2x3x1 X5X 3 XIXE X3= R, say, has no

pieces of length 2 and so satisfies C'(1/6). If s > 1/2 symm R it is
an easy exercise to verify that s.l. (s) > 2. Also, each member of
symm R has simplex length greater than 3. Thus, by Lemma 5 (ii), G(x)

has property B; . Observe that s.1. (R) =5 whence G(x) does not have
property Bs.
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We turn our attention to cyclic presentations- Suppose the
group H has a presentation on m generators X;....X,, and m defining
relators obtained from the single word R(x; ,...,Xx2 }, m>n>2, by
permuting the subscripts modulo m via the powers of the permutation
(12...in). If we have that R(x;, . .. X,) is a cyclically reduced word
involving each x; (1 <1 <n) then H = H(C;,¢,) where here C, is the

simplicial complex generated by the n-simplices X; :{Xj""xj+n—1}’ <]

< m, the subscripts being reduced modulo m, and where

Lemma 7. The Freiheitssatz holds for H(Cy,¢p),the presentation

described for the group H in the previous paragraph, if one of the

following holds:

(1) K = <X{,...,Xpn;R(X15.....Xpn) > has property Bs; or

(i1) K has property B and m > 1 + 3(n-1); or

(iii) K has property B, m > 1 + 5(n-1), and H(Cp,¢q),satisfies
condition (1.3) (ii) of Theorem 2.

Proof. If m > 1 + p(n-1) then chas property N(p) . Now use Theorems 1

and 2. O

Example 5.3

2 -1,2 -1 -1
H (Cph,0n),=<X]swu XTXTXG41Xi 42X, X7 X LoXiXe [ 1Xi42
(1<i<7, subscripts mod 7) >

Here m = 7, n = 3 and, by Example 5.2 and Lemma 7 (ii), the Freiheitssatz
holds for H(Cy,¢p),. Observe that the smallest symmetrised subset of the

free group on X5 X containing the set of defining relators of

H(Cy,9p),given here does not satisfy C' (1/6) - for example X5X3 is a

piece.
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Example 5 . 4
H(Cp.0n) = <Xpux p(x x0)2(1 < < 11, subseripts mod 11)>.

Here m = 11 and n = 3. The group K;=<x,,X,X;;(X,X,X5')> has property
B, (but not B3) by Example 5.1. Therefore if we can show

that condition (1.3) (ii) of Theorem 2 is satisfied then the
Freiheitssatz will hold by Lemma 7 (iii).

LetK, =< x2’x3,x4;(x2x3x21)2>. It suffices to look at K; and K»
only. If Zj(respectively ZZ) is a non-empty cyclically reduced word

equal to 1 in Kj (resp Kp) then, by the theorem of Gurevich mentioned
in Example 5.1, some cyclically reduced conjugate of Zi_'_ !

(resp. Z; 1) contains a subword of the form xlxzxglxlxzxgl

(resp. X2X3XZIX2X3XZI). It now follows that there cannot exist two words

of simplex length 3 which satisfy the conditions in the statement of
(1.3)(11) - thus this condition is trivially satisfied by H (Cy,dp).
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