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A B S T R A C T   

The construction industry is known to be overwhelmed with resource planning, risk management and logistic 
challenges which often result in design defects, project delivery delays, cost overruns and contractual disputes. 
These challenges have instigated research in the application of advanced machine learning algorithms such as 
deep learning to help with diagnostic and prescriptive analysis of causes and preventive measures. However, the 
publicity created by tech firms like Google, Facebook and Amazon about Artificial Intelligence and applications 
to unstructured data is not the end of the field. There abound many applications of deep learning, particularly 
within the construction sector in areas such as site planning and management, health and safety and construction 
cost prediction, which are yet to be explored. The overall aim of this article was to review existing studies that 
have applied deep learning to prevalent construction challenges like structural health monitoring, construction 
site safety, building occupancy modelling and energy demand prediction. To the best of our knowledge, there is 
currently no extensive survey of the applications of deep learning techniques within the construction industry. 
This review would inspire future research into how best to apply image processing, computer vision, natural 
language processing techniques of deep learning to numerous challenges in the industry. Limitations of deep 
learning such as the black box challenge, ethics and GDPR, cybersecurity and cost, that can be expected by 
construction researchers and practitioners when adopting some of these techniques were also discussed.   

1. Introduction 

Technology adoption in the construction industry is accelerating at a 
slower pace when compared to industries like finance, entertainment, 
healthcare and education [1]. Several businesses within these industries 
keep searching for innovative ways of staying ahead and remaining 
productive using technology. However, productivity in the construction 
industry is unstable or sometimes on the decline with under-investment 
in technology being a partial culprit [2]. Construction digitisation goes 
beyond acquiring the latest computers, software, servers or network 
even though these are also necessary components in technological 
advancement. The introduction of digital technologies such as Artificial 
Intelligence (AI), Big Data, machine learning and Internet of Things 
(IoT) into well-known construction practices can help place the industry 
among the top productive sectors [3]. However, if construction com-
panies are ready to make this switch to digitisation, what about 

construction employees? The general reluctance of construction em-
ployees to embrace innovation if it involves a steep learning curve is a 
cause for concern. These professionals prefer the hands-on and practical 
way of working and are less interested in fancy tools that could take a 
while to learn [4]. Nevertheless, companies are still able to enforce 
compliance with these adoptions through disciplinary measures and 
training when necessary [5]. According to UKGOV [6]; digitisation will 
allow the construction sector to deliver cheaper, faster and smarter 
services with even low-cost labour. Studies have attempted to leverage 
the massive amount of data generated continuously in the industry to 
address challenges such as supply chain management, sustainability 
problems, project performance management, as well as reduced pro-
ductivity and profitability. AI and its subsets remain one of the promi-
nent technologies adopted for tackling these drawbacks. 

The advent of AI has brought about an attempt to replicate the acute 
reasoning and problem-solving capabilities of the human brain [7]. 
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Application areas of AI were limited in the beginning since the field had 
little recognition [8]. However, AI is starting to gain its deserved sig-
nificance with the recent emergence of new algorithms that keep 
evolving and maturing. Neural networks, particularly deep learning, is 
one of these algorithms. Neural networks have been around for a while 
and were introduced as algorithms that use layers of connected nodes to 
mimic the neurological system in solving problems. Famous neural 
networks such as the multi-layer perceptrons (MLPs) were mainly used 
for recognition, classification and regression problems [9]. However, the 
major breakthrough came at the 2012 ImageNet large scale visual 
recognition challenge where Convolutional Neural Networks – a deep 
learning variant was used for image recognition [10]. The adoption of 
deep learning for similar tasks have been on the rise ever since. The 
strength of the algorithm lies in the extra layers it uses for better 
extraction of characteristics (features) within the problem it is trying to 
solve [9]. This efficiency, however, comes with additional computa-
tional requirements. 

Researchers in the construction industry have made several 
remarkable attempts to keep up with the pace of applying deep learning. 
The rapid advancement of GPU-accelerated computation techniques and 
availability of structured and labelled data has contributed to this 
adoption within the industry. Still, the level of efficiency achievable 
with the available unlabelled data remains unclear even though deep 
learning is good at supporting this kind of data [11]. It is therefore 
paramount to review existing applications and identify gaps in research 
which are yet to be addressed. To achieve this aim, this study first 
provides foundation knowledge on deep learning and then discusses 
existing implementations in construction. The study goes on to highlight 
prevalent challenges attributable to these and similar implementations. 
The paper is structured as follows: Section 2 discusses the research 
methodology and article selection process adopted in this study. Section 
3 briefly introduces deep learning and its architectures, while section 4 
discusses applications to constructionspecific challenges. Section 5 
presents future innovations and prospective challenges that could arise 
from the use of deep learning. Finally, section 6 summarises the research 
findings and suggests future research directions. 

2. Research methodology 

An extensive literature search was conducted to identify publications 
on existing applications of deep learning in the construction industry. 
Queries were run on two accessible journal databases: Scopus and Sci-
enceDirect for dates ranging from 2012 to 2020 (exceptions were made 
for some conceptual theories dating earlier than 2012). The chosen dates 
were largely influenced by the deep learning revolution that happened 
in the period and also the recent adoption of deep learning in the con-
struction industry. Deep learning became popular with the achieve-
ments of convolutional neural networks in the 2012 Imagenet Large 
Scale Visual Recognition Challenge (ILSVRC2012), and applications in 
the construction industry gained significance only as recent as 2014. It 
was observed from the query results that most of these researches 
focused on using specific architectures for state-of-the-art implementa-
tion, hence the reason for our choice of deep learning architectures. A 
search was carried out using keywords such as “deep learning”, “deep 
learning in the construction industry”, “recurrent neural networks”, 
“deep neural networks”, “convolution neural networks”, “Auto-En-
coders”. More focus was placed on construction journals to further 
streamline our query towards the aim of our research. Also, query results 
were limited to just English publications. 

Articles were selected based on the title of the publication and the 
abstract. The final selection process involved the use of the 2017 Journal 
Citation Report (JCR) science edition for recognisable impact factors. As 
such, papers published in a journal that did not have a JCR recognisable 
impact factor were discarded. A total of 45 articles were reviewed and 
were mainly published in journals such as Advanced Engineering 
Informatics, Automation in construction, ICTACT journal of soft 

computing, Construction and Building Materials, Journal of Construc-
tional Steel Research, Case studies in construction materials, Journal of 
Construction Engineering and Management, International Journal of 
Online Engineering, International Journal of Control and Automation, 
Sustainable Energy, Grids and Network. 

3. Deep learning overview and architectures 

The ability of intelligent systems to learn and improve through 
experience gained from historical data is known as machine learning 
[12]. Machine learning requires an appropriate representation of input 
data in order to predict accurately. For example, a machine learning 
algorithm that is designed to predict the likelihood of a building 
contractor bidding for a project does not need to question the contractor 
physically. Instead, the algorithm makes a decision based on historical 
data of the contractor’s bid opportunities. Every representation of the 
project characteristics that enable the system to reach a decision is 
known as a feature. Representation learning (RL) helps machine learning 
algorithms not just to learn feature mappings but also the representation 
itself [13]. RL is usually not sufficient to solve the challenge of feature 
extraction, which often involves abstract features (patterns or groupings 
of more low-level features) critical to a prediction system’s decision in 
real-world applications. Deep learning (DL) addresses this challenge by 
building complex representations from simpler ones and having multi-
ple layers of abstraction. The algorithm allows models consisting of 
several processing layers to operate on and learn data representations 
using multiple levels of abstraction [14]. The relationship between deep 
learning, representation learning, machine learning and artificial intel-
ligence (DL ⊂ RL ⊂ ML ⊂ AI) is depicted in Fig. 1. 

A widely adopted approach used in training a DL model involves 
minimising the loss function – the difference (error) between the network 
output based on the model parameters θ and the actual expected output y 
through backpropagation [15]. This process can be challenging since it 
involves searching through the parameter space of multiple layers of 
non-linear operations. Due to the depth of the network, this usually 
takes longer time than a shallow neural network, thereby resulting in a 
time-consuming training process. Also, a statistical trade-off exists in the 
bias – closeness of the learning algorithm’s guess to its target and variance – 
error in the responsiveness of a learning algorithm to changes in the training 
set of predictive models since a higher bias (underfitting) would result in 
a lower variance in parameter estimation and vice versa [16]. Overfitting 
occurs when a model learns too closely to input data, and it affects its 
ability to predict unseen data (generalisation error) [17]. Regularisation 
is a technique used to tackle DL model overfitting [18]. The relationship 
between the loss function and the regularisation term Ω(θ) is repre-
sented as:  

L̃(X, y, θ) = L(f (x|θ), y) + αΩ(θ) (1) 

In recent times, several deep learning architectures have been 
explored for solving image classification, object detection, object 
tracking and activity recognition challenges [19]. Fig. 2 illustrates some 
of the common application areas of some of these architectures. 

3.1. Deep learning architectures 

Like most neural network architectures, DL architectures are 
composed of layers (input, hidden and output), neurons, activation 
functions ‘a’ and weights {W,b}. The neurons act as feature detectors 
and are organised in lower and higher layers. Lower layers detect basic 
features and feed them into higher layers which then identify the more 
complex features. Although most deep learning architectures are 
applicable to a range of prediction or classification tasks, they are 
sometimes combined through ensemble modelling for better perfor-
mance. This section describes some of the conventional deep learning 
architectures while highlighting their learning model and general 
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Fig. 1. Deep learning illustrated as a subset of Representation learning which is a subset of Machine learning, which is also a subset of Artificial Intelligence.  

Fig. 2. Key Deep Learning Tasks: Deep learning addresses the limitations of hand-crafted feature extraction by automatically extracting features within an image. 
The algorithm excels in computer vision problems such as image classification, image captioning object detection and tracking. Deep learning is sometimes used to 
enhance and augment training data of low quality in order to improve a model’s accuracy. 
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application areas. Table 1 summarises the essential functions, structure 
and general application areas of the discussed DL architectures. 

3.1.1. Deep neural network (DNN) 
A Deep Neural Network is typically a standard neural network with 

“depth”. The depth of a neural network is determined by the number of 
hidden layers (second and third layers in Fig. 3) between the input and 
output layers. Even though no threshold determines when a neural 
network can be identified as “Deep”, most researchers have agreed that a 
CAP (Credit Assignment Path) depth > 2 can be considered “Deep” while 
Schmidhuber [20] considers CAP > 10 to be very deep learning. DNNs 
are trained to model complex non-linear relationships by extracting 
uniquely abstract features that help improve its performance. Each layer 
of its multi-layered composition is dedicated to a particular feature 
identification [21]. 

3.1.2. Convolutional neural network (CNN) 
CNNs are widely used for image processing applications [10]. The 

architecture came into limelight after the results of AlexNet (A deep 
learning network used for image classification) at the ImageNet 
competition [10]. Unlike conventional MLPs, CNN neurons are arranged 
in a way that matches the width, height and depth of images. In addition 
to input layers, output layers and activation functions, CNNs particularly 
have two additional layers, the convolution and pooling layers (depicted 
as the second to seventh layers in Fig. 4). The convolution layer con-
volves the image by using different convolutional filters and shifting the 
receptive fields gradually. It is common practice to insert a pooling layer 
between successive convolutional layers. The pooling layer, on the other 
hand, reduces the size of the output from the convolution layer by 
calculating the mean, max, median or other statistical features of the 
image at different pixels. 

3.1.3. Recurrent neural network (RNN) 
RNNs are best suited for handling sequential data. They outshine 

other forms of deep learning when processing time-dependent infor-
mation [22]. Parameters across different time steps are shared based on 
sequential data properties. RNNs are mostly applied in video and speech 
processing since they can keep information on a previously processed 
audio chunk or video frame in order to make predictions of successive 
data. A RNN’s output yt at any time t is dependent not only on input xt 
but also on xt− i at times t i. Like other deep learning architectures, RNNs 
can also be trained using the backpropagation algorithm. More specif-
ically, a backpropagation variant – Back Propagation Through Time 
(BPTT), is the standard training algorithm for RNNs [20,23]. A sample of 
RNN architecture is shown in Fig. 5. 

3.1.4. Auto-encoder (AE) 
Auto-Encoders (AEs) are mainly used for data denoising and 

dimensionality reduction [24,25]. Unlike other MLPs, AEs extract fea-
tures from the input layer with the aim of replicating the same input data 
in the output layer. AEs involve an encoding and decoding process 
which forces the network to ignore the noisy part of the input and 
instead focus on encoding/representation of the more informative seg-
ments. The output layer in AEs has the same dimension (number of 
nodes) as the input layer (illustrated in Fig. 6) aimed at replicating the 
input data rather than having to predict Y given X like in most MLPs. The 
hidden layer plays a vital role by ensuring that the network actually 
learns the features of the input data and not just output the same version 
of the input data. 

3.1.5. Restricted Boltzmann machine (RBM) 
RBMs are a variant of Markov Random Field (MRF) used to learn 

probability distributions of its inputs even when the target outputs are 
not specified. Its architecture is a bipartite graph of hidden and visible 
units that may have symmetric connections between them but without 
connecting neurons within each unit (exemplified in Fig. 7). This form of Ta
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connection ensures conditional independence of the hidden and visible 
units [26]. RBMs have been applied to feature learning, collaborative 
filtering and dimensionality reduction. 

3.1.6. Deep Belief Network (DBN) 
Connections in DBNs exist between adjacent layers but not neces-

sarily between all units of every layer. The network is a generative 
model composed of a stack of SAEs (stacked autoencoders) or RBMs 
(shown in Fig. 8) which singularly are in some way limited by what they 
can represent. Training a DBN involves initial steps of unsupervised 
learning as the network learns input reconstruction through probability. 
A variant of DBNs, Convolutional DBN(CDBN) is well known for image 
processing and object recognition tasks. One key feature of the model is 
its ability to scale quite well with images with high dimensionality [27]. 

3.1.7. Generative Adversarial Networks (GAN) 
The name “GAN” was proposed and popularised by Goodfellow et al. 

[28]. The network is composed of two sub-networks: (1) The Generative 
network – a conventional multilayer perceptron whose goal is to map 
the input vector X using its parameters θG to a feature space G (X, θG), 
with or without prior knowledge of the input vector data distribution. 
(2) The discriminative network – a binary classifier that finds the dif-
ferences between the original data and data generated by the generative 
network. GANs are mostly used for data distribution learning (that is, 
generating same data distribution in output as is in input) from unla-
belled datasets and image generation [29]. A sample of GAN architec-
ture is shown in Fig. 9. 

Fig. 3. Deep neural networks (DNNs) architecture.  

Fig. 4. Convolutional neural Networks (CNNs) architecture.  

Fig. 5. Recurrent neural networks (RNNs) architecture.  
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4. Existing DLA applications to construction-specific challenges 

In this section, existing applications of the deep learning architec-
tures highlighted in the previous section are discussed. The construction 
problems addressed using these techniques are mentioned while draw-
ing attention to the accuracies of some of these applications. Some of the 
construction challenges presented in this section include Structural 
health monitoring and prediction, Construction operations and site 

safety, Building occupancy modelling and energy prediction, among 
others. Fig. 10 shows the number of reviewed publications where each 
deep learning architecture was applied. It is evident from the chart that 
CNN is the most implemented architecture in addressing construction 
problems and GANs are the least applied. Other architectures are also 
sparsely employed and need to be also explored. To this end, the next 
section highlights innovative ideas with more diverse applications. 
Table 2 below summarises reviewed papers, the architecture utilised, 
and challenges addressed. 

4.1. Structural health monitoring and prediction 

Early detection of damage in high-rise building structures has been 
the centre of structural engineering research in recent times. This has 
resulted in the proposition of visionbased [61] and vibration-based 
monitoring techniques [62,63]. Deep learning approaches like CNN, 
DNN and DBNs are being used to investigate the durability of building 
construction materials before and after construction. For instance, Deng 
et al. [40] proposed a CNN model developed with softmax regression to 
predict the compressive strength of recycled concrete before construc-
tion. The model was based on learning the apposite fine and coarse 
aggregate replacement ratio, cement-water ratio, as well as suitable 
combinations of recycled concrete. Similarly, a prediction tool based on 
a trained DNN model was proposed by Nguyen et al. [64] to predict the 
strength of foamed concrete and help engineers in mixture design 
optimisation of this type of concrete. 

Fig. 6. Autoencoders (AEs) architecture.  

Fig. 7. Restricted Boltzmann machines (RBMs) architecture.  

Fig. 8. Deep belief network (DBN) architecture.  

Fig. 9. Generative adversarial networks (GAN) architecture.  
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Structural damages resulting from concrete crack can also be 
detected after construction using deep learning. A review by Koch et al. 
[39] revealed that DBNs are now gaining interests in concrete damage 
assessment as they are suitable for concrete texture/shape analysis and 
classification. In the study of Dorafshan et al. [41]; a refined version of 
the conventional AlexNet-DCNN (Deep Convolutional Neural Network) 
was used for image-based concrete crack detection. Similar CNN-based 
approaches were implemented in the studies of Cha et al. [65] and 
Pathirage et al. [66] to detect concrete crack and autonomous crack, 
respectively. Also, Beckman et al. [42] used a depth camera and faster 
region-based CNN (RCNN) for concrete spalling damage detection. 
Rafiei & Adeli [67] highlighted the importance of ambient vibrations in 
the structural health assessment of completed structures. These vibra-
tions indicate the local and global health indices of a building and a high 
vibration resistance suggests a healthy structure. The authors proposed 
an unsupervised RBM model for predicting the structural health index 
(SHI) of a building. In closely related research, Pathirage et al. [66] also 
proposed an autoencoder based framework for identifying structural 
damages. The proposed framework employs dimensionality reduction 
techniques combined with DNNs to learn the relationship between 

structural damage and vibration attributes. 
In addition, road construction projects have seen applications of 

deep learning to asphalt and pavement rut prediction upon the realisa-
tion that conventional Mechanistic-Empirical Pavement Design Guide 
(MEPDG) functions are incapable of accurate predictions [68,69]. Gong 
et al. [37] combined both approaches and integrated DNNs with MEPDG 
for better rut prediction. The proposed DNN architecture took predicted 
rut data (asphalt concrete type, subgrade type and granular base type) as 
well as other features such as climate, traffic, structure and material 
parameters as inputs from the MEPDG. In closely related research, 
Khaitan et al. [36] proposed a DCNN model trained on Imagenet dataset 
to detect pavement stress and classification. This automated detection 
has remained a significant research focus for transportation agen-cies 
who are primarily focused on identifying cracks in Portland Cement 
Concrete (PCC) and Hot-Mix Asphalt (HMA) surfaces. Zhang et al. [70] 
also made a similar proposition of more fine-grained, pixel-level CNN 
technique for pavement crack detection. 

In a completely different approach to structural condition evalua-
tion, Zhong et al. [71] proposed a CNN-based method of classifying 
building quality problems. The suggested technique automatically 

Fig. 10. Application chart of deep learning architectures in construction journals.  

Table 2 
Summary of existing deep learning applications in the construction industry.  

Application DNN CNN RNN Autoencoders RBM DBN GAN Reference 

Classification of Building Information Modelling 3D models    ✓  ✓  [30,31] 
Housing/Construction cost prediction     ✓   [32,33] 
Building energy system behaviour prediction     ✓   [34] 
Short-term building cooling load prediction ✓       [35] 
Pavement stress detection and classification  ✓      [36] 
Asphalt pavement rut prediction ✓       [37] 
Building-design energy prediction ✓       [38] 
Compressive strength and crack prediction of recycled concrete  ✓      [39–42] 
Safety guardrail detection  ✓      [43] 
Workforce Activity Assessment  ✓      [44,45] 
Long term electricity and heating load prediction   ✓     [46,47] 
Construction equipment activity recognition   ✓     [48–51] 
Heavy equipment parameters prediction   ✓     [52] 
Occupancy Modelling       ✓ [53] 
Worker’s protective equipment detection  ✓      [54–56] 
Worker’s postural evaluation  ✓ ✓     [57–60]  
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classifies texts contained within a building quality complaint (BQC) 
document using word embedding techniques. The idea was to enhance 
the efficiency of complaint management. 

4.2. Construction site safety 

Construction tasks that involve manual operations can be physically 
demanding and often require abnormal postures that lead to temporary 
or permanent injuries and pain. Conventional methods of workers 
observation involve posture data collection through questionnaires and 
site observations. These methods are prone to subjective bias and are 
mostly inefficient [72]. Modern approaches of addressing 
postural-based hazards include computer vision-based [73,74] and 
wearable sensor-based [75,76] solutions. For example, the study of Yang 
et al. [60] combined both solutions by using wearable sensors and a 
variant of RNN (long short-term memory (LSTMs)) to examine a 
worker’s lower body movements during physical loading. Likewise, the 
study of Zhang et al. [57] combined 3D-view invariant features from an 
onsite camera with CNN architecture for a better and more accurate 
postural ergonomic evaluation and classification. The 3D-view invariant 
features were needed for almost real-time non-ergonomic posture 
recognition of the arms, legs and back postures [58]. combined CNN and 
anthropometric planes to detect workers and their body joints. In 
another study, Yu et al. [59] used CNN combined with a physical fatigue 
model and biomechanical analysis to detect fatigue in construction 
workers automatically. Similarly, Weili et al. [77] used CNN for safety 
harness detection while Qi et al. [78] used the same approach for stee-
plejack detection. Both studies sought to address construction accidents 
caused by falls from heights. 

The study of Zdenek et al. [43] investigated how to improve safety on 
construction sites by using CNN models for safety guardrail detection. 
The research was inspired by the fact that most construction accidents 
are caused by unguarded edges that result in falls from heights. In 
closely related research, Fang et al. [54] proposed a method of auto-
matically detecting the use of personal protective equipment (PPE) by 
construction workers. The suggested approach used another variant of 
CNN, faster RCNN due to its high speed and precision in detecting 
workers without their hats from site images. Nath et al. [56] also used 
CNNs for multiple PPE detection (hard hats and safety vests) from im-
ages. Similarly, a single shot multibox detector (SSD) and CNN was 
suggested by Wu et al. [55] for detecting construction personnel wearing 
hardhats. 

4.3. Workforce assessment and activity recognition 

The study of Luo & Xiong [44] proposed a CNN model that monitors 
and assesses activities carried out by construction workers during rein-
forcement installation. Training and testing were carried out on a 
dataset which contained videos of workers during reinforcement 
installation in Wuhan, China. The model was intended to assist con-
struction managers in ensuring that project deliverables were met. In a 
similar study by Fang et al. [79]; a method of automatically detecting if a 
construction worker is working within his/her certification restriction 
was proposed. The proposed system was composed of subsystems for 
video clips extraction, worker’s face and competency identification and 
worker’s trade recognition. Luo et al. [45] trained a model for recog-
nising construction activities from still site images rather than videos. 
The model involved a two-step method of learning and was first trained 
to recognise 22 classes of construction objects using CNN. The second 
learning step clustered the identified objects into construction activities 
using a semantic correlation between two different objects. The model 
was able to detect a total of 17 construction activities in an entirely 
automated manner. Similarly, Rashid & Louis [48] used an LSTM-based 
RNN for real-time, automated construction equipment activity recog-
nition. The suggested approach used data-augmentation techniques to 
generate time-series data for better and more reliable equipment 

recognition. The study of Seo et al. [74] further emphasised the capa-
bility of CNNs to train efficient classifiers for construction object 
detection. 

A deep learning framework was proposed by Hernandez et al. [49] 
for heavy construction equipment activity analysis. Heavy construction 
equipment like tunnel boring machines (TBMs) are prominent for un-
derground drilling. Recent studies have focused on the harmonisation 
and analysis of TBM operating status and parameters [80]. Being able to 
predict essential operating parameters for TBMs contributes majorly to 
this cause since the prediction of geographical conditions before initi-
ating excavation can be quite challenging. A TBM parameter prediction 
approach proposed by Gao et al. [52] involved a combination of three 
different kinds of Recurrent Neural Networks – long-short term memory 
(LSTM) networks, gated recurrent unit (GRU) networks and traditional 
RNNs. Results of experiments proved that the three types of RNN-based 
predictors recorded reliable prediction accuracy of parameters including 
the thrust, velocity, pressure and torque. Similarly, Slaton et al. [50] in 
their work combined CNN and LSTM to predict the activities of heavy 
construction equipment (roller compactor and excavator) monitored 
using accelerometers. Sherafat et al. [51] used DNNs and 
Time-Frequency masks (TFMs) to achieve the same purpose. A 
comprehensive review and comparison of automated worker and 
equipment activity recognition methods was reported in the study of 
Ahn et al. [81]. 

4.4. Building occupancy modelling and performance simulation 

Occupancy modelling helps predict the energy requirement of a 
building based on its potential number of occupants. This information is 
important for construction companies to be able to simulate the building 
requirements even before construction. Building facilities can then be 
properly allocated to ensure optimal energy efficiency based on simu-
lation results. Chen & Jiang [53] proposed a GAN model for occupancy 
modelling. The model’s reliability was tested and compared against two 
other conventional occupancy modelling approaches (Inhomogeneous 
Markov Chain (IMC) and agent-based model (ABM)), and results showed 
that the GAN model outperformed other approaches. 

Likewise, Singaravel et al. [38] developed a DNN model capable of 
mimicking and outperforming the performance of a Building Perfor-
mance Simulation (BPS) at an even faster response rate. The research 
aimed to match the ever-increasing requirements of identifying 
energy-efficient design options right from the building design stage. The 
results of the research showed that: (1) DNNs have higher accuracies 
when compared to a simple Artificial Neural Network, (2) BPS has a 
slower computation speed when compared to DNNs (BPS took 1145s to 
simulate 201 cases while DNNs required just 0.9s) (3) DNN models are 
reusable for learning new situations using transfer learning (a technique 
that involves reusing existing architectures or models known for good 
classification or prediction performances). (4) DNNs can be used for 
multi-task representations in component-based ML models. The authors 
concluded that deep models are highly suitable for exploring design 
space due to its high computation speed. Similarly, Fan et al. [35] 
developed a model using DNNs for short-term building cooling load 
prediction in their research. The authors concluded that deep learning 
enhances the performance of cooling load prediction systems, even 
without specifying the target output. 

4.5. Building energy demand prediction 

Innovations in smart technologies have empowered the prediction of 
long to mediumterm electricity consumption of residential and com-
mercial buildings right from the design stage. Native information 
modelling systems have limited access to building schedule and equip-
ment information required for forecasting. Rahman et al. [46] addressed 
this issue by developing a RNN model targeted at medium to long term 
electricity load prediction at an hourly rate. A performance analysis was 
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carried out to test the reliability of the predictions using different elec-
tricity consumption patterns. The test cases included: (1) The public 
safety building in Salt Lake City, Utah (2) Residential buildings in 
Austin, Texas. Results showed that in the Salt Lake City public safety 
building test case, the proposed RNN models performed better than 
native MLPs in predicting HVAC critical and normal load profiles over 
an 83-day time horizon. Prediction of energy demand on the second test 
case (Austin, TX) for one year revealed more forecast errors in con-
ventional MLPs compared to the RNN models. 

Mocanu et al. [34] proposed the use of two RBM variants – Condi-
tional Restricted Boltzmann Machine (CRBM) and Factored Conditional 
Restricted Boltzmann Machine (FCRBM) in the prediction of energy 
systems behaviours. Research motivation was drawn from the 
complexity of energy consumption prediction as it is influenced by 
factors such as occupancy patterns, climate change and thermal system 
performance. The complexity of other prediction methods resulting 
from the influence of these variables instigated the need for a novel 
prediction method. Experimental results showed the efficacy of FCRBM 
as it outperformed SVMs, RNNs and other ANNs. In similar research, 
RNN models were used by Rahman & Smith [47] to predict heating 
demand in commercial buildings for long periods. A framework was 
developed in the study to describe how these long-term predictions 
could help in the design of thermal tanks. The models were tested on 
University of Utah’s campus building heat demands over several weeks 
and performed better than a 3-layer MLP. The authors also reported that 
the prediction accuracy of the models could also work for future sizing 
designs of a thermal storage tank. 

4.6. Construction cost prediction 

Construction cost prediction is usually influenced by factors such as 
the duration of construction, construction type, labour and equipment. 
These factors, as well as changes in economic variables and indexes 
(EV&Is), are often overlooked by conventional construction cost esti-
mators. However, these features are essential in predicting an already 
hard-to-predict construction cost. Rafiei & Adeli [33] presented a con-
struction cost estimation model based on an RBM variant DBMs (Deep 
Boltzmann Machines) and took EV&Is into account. Test data from the 
construction cost for 372 multi-storey and mid-rise buildings (three to 
nine stories) were used to verify the model’s accuracy. Estimated costs 
and target costs were not far off with the DBM model, which recorded 
better accuracies than backpropagation neural networks and SVM 
models. In similar research by the same authors, housing cost was pre-
dicted right from the design stage using an RBM model and an eccentric 
genetic algorithm Rafiei & Adeli [32]. The proposed model took sea-
sonal changes, time-dependent variables as well as other economic 
indices as input. The goal of the research was to help construction 
companies make decisions on whether to embark on a construction 
project based on the magnitude of the sale market. 

4.7. BIM model classification 

The adoption of BIM models has brought about a change in the 
construction industry over the years [82]. The introduction of 3D geo-
metric models made BIM models even more robust, and have become 
the centre for recent academic research [83]. These studies focus on 
managing the complexities of 3D modelling and maintaining 3D model 
libraries for BIM. Conventional CAD 3D modelling has been able to 
generate enough 3D models sufficient for reuse in future BIM projects. 
Wang, Zhao & Wu [31] trained a deep learning model for 3D model 
classification in a BIM environment using Stacked Auto-Encoders 
(SAE). The authors went ahead to test the model on a publicly available 
3D model library and achieved good results. Likewise, Wang et al. [30] 
also proposed another approach to 3D BIM model classification using 
DBNs. In their approach, the authors made use of a feature extraction 
algorithm to extract features of 3D models and generate a feature matrix. 

The feature matrix was then trained on a DBN architecture built from a 
stack of RBMs using an efficient training procedure. The proposed 
method also recorded good classification performance on a 3D model 
library taken from a PSB model database just like with the first 
approach. 

5. Future innovations and prospective DL challenges 

This section discusses potential DL application areas in construction 
and also highlights challenges that can be encountered in these 
applications. 

5.1. Future innovations 

The vast amount of data continuously generated by small and large 
construction firms provides opportunities yet to be explored by the 
construction industry, which is still at the nascent stage of applying AI 
solutions. This section discusses potential deep learning approaches to 
construction problems like Generative design, cash flow prediction and 
project risk analysis. 

5.1.1. Better building designs using generative design (GD) 
Designers and architects often need to explore several alternatives 

when designing complex artefacts like buildings and highways. Gener-
ative design helps designers with a wide range of design choices than 
what is manually achievable. GD allows automatic generation of design 
ideas based on initial design objectives specified [84]. The challenge 
then lies in the selection of the best design idea. The final design choice 
is dependent on the subjective discretion of the architect, indicating his 
taste and intentions. Deep learning can be exploited in the selection of 
the best design choice. First, the building requirements and constraints 
are identified using either CNN or RNNs. A system can then be devel-
oped for contextual design suggestions using GANs. Building images 
available on the internet can be downloaded using tools such as Google’s 
custom search API and used to train GAN models. Generative adversarial 
networks (GANs) are known to be best suited for photorealistic image 
designs [85]. Also, autoencoders have been explored for the rapid 
design, synthesis and evaluation of engineered systems. An example of 
this application to offshore structures was demonstrated in the study of 
McComb [86]. 

5.1.2. Cash flow prediction 
Cash remains a critical element in construction that affects the 

profitability and robustness of a project. Inadequate cash flow can 
negatively influence contractors’ delivery since it would imply a 
shortage of resources to support their daily activities [87]. Hence, the 
need to predict cash flow over a time series spanning the period of 
project delivery. Contractors would appreciate a forecast of the cash 
flow for an opportunity right from the beginning of the tendering pro-
cess as this information can be used to identify likely problems on time. 
Thereby leading to the overall success of the project. Also, contractors 
can assess the effects of determining factors/levers like sales, labour 
costs, material costs, margin, retention and risks on the overall outcome 
of the project. Several models and different approaches have been put 
forward for construction cash flow prediction. Common techniques 
include the use of fuzzy logic [88,89] and neural networks [90,91]. 
However, these models focused on just variable cost weights. Recurrent 
neural networks can be trained on time-dependent real-world data for 
cashflow prediction. Some level of uncertainty and explainability using 
interpretable models should also be included in these predictions as it 
would help improve the credibility of these predictions to project 
managers. 

5.1.3. Integration of chatbots and BIM 
BIM has been employed mostly by large subcontractors while its 

adoption by smaller subcontractors is yet to be fully explored [92]. A 
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significant hindrance to the full implementation of BIM is the fact that 
existing BIM tools only provide mobile and web interfaces that might 
require some time and efforts to master. Input interfaces such as 
keyboards and touchscreen are unrealistic for construction workers 
whose hands are often busy with other construction works. The 
achievements of deep learning can be leveraged as it provides promising 
opportunities for the modernisation of BIM interfaces. More 
specifically, the integration of voice recognition techniques like natural- 
language-understanding (NLU) and automatic-speech-recognition 
(ASR) would provide construction operatives with a more natural 
form of interacting with BIM tools and an even faster way of exploring 
and reviewing 3D designs. Existing research has used voice recognition 
techniques for construction tasks such as recording and updating of site 
material logs [93] as well as project progress tracking and documenta-
tion [94,95]. Given the susceptibility of construction sites to noise, there 
is a need for voice technologies that can distinguish a site worker’s voice 
from noise generated by construction equipment. A site worker should 
be able to query the BIM tool using commands like “How do I install the 
window type A? “or “Show me materials in stock that meet this design 
specification”. Up-to-date information in BIM models can be queried and 
searched just by using few words to interact with the voice assistants. 
The introduction of this feature would improve the productivity of 
construction firms even at the level of downstream subcontractors. 

5.1.4. Retrofitting adviser for energy savings 
Building engineers have been able to integrate a Building Perfor-

mance Simulation (BPS) system into the building design process to 
achieve a significant decrease in the contributions of residential and 
commercial buildings to overall energy consumption in cities. However, 
the industry still needs a retrofitting adviser to suggest what components 
of a building should be taken out or replaced in order to cut energy 
expenses. Building component recognition and classification can be 
achieved using CNNs after which the likely contribution of each 
component can then be estimated. These contributions should be 
compared with other substitute components to determine whether a 
replacement would result in improved energy savings. 

5.1.5. On-site safety and health monitoring 
Early detection of tiredness or fatigue in construction workers can go 

a long way in improving their productivity on a construction project and 
also facilitate early project completion. A deep learning model to detect 
fatigue in construction workers will enable project managers to quickly 
identify which of their workers need to be taken off for a short rest rather 
than keep them working and reducing their efficiency on the job. A 
model was proposed by Ding et al. [96] that currently outperforms other 
descriptor-based methods targeted at detecting unsafe behaviours on 
construction sites. The model was trained using a combination of CNN 
and LSTM. The same approach could be used to identify workers’ fatigue 
from video feeds collected on construction sites. 

Besides, researchers can leverage the achievements of CNN and other 
deep learning techniques in object recognition to encourage the use of 
robotic technologies in the construction industry. This would improve 
safety on sites as robots will be able to identify and avoid objects within 
their navigation area accurately. Evidence from previous studies shows 
that BIM is currently explored for providing navigation details to robots 
deployed for internal usage in buildings [97–99]. Future research could 
look at integrating object recognition models in similar systems to 
improve the robot’s navigation accuracy. 

5.1.6. Project risk mitigation and analysis 
Construction projects encounter time, safety, quality and cost risks. A 

large project is prone to more risks since several sub-contractors work in 
parallel on job sites. Deep learning can help contractors prioritise risks 
on site and enable the team to direct their limited resources and time 
towards the bigger risk factors. To be able to perform a project risk 
analysis, milestones need to be identified and probable problem 

occurrences highlighted. A robust deep learning model can be trained to 
recognise milestones and tasks straight from Gantt charts using histor-
ical data on the project manager’s landmarks. This approach would look 
to train a model directly on the chart, unlike traditional project man-
agement prediction models that use UML representations [100] for 
predicting. The charts used for training would contain milestones that 
are split into tasks and uniquely identified with an ID, name, expected 
duration, type and start date. 

5.2. Prospective challenges of DL applications 

Some challenges are persistent in the application of deep learning 
despite its success in several sectors. It is envisaged that some of these 
challenges are expected to be encountered with applications in the 
construction industry. The availability of data, data privacy and ethics, 
lack of in-house capability for DL, adversarial ML are some of the dis-
cussed challenges in this section. The presented list of challenges in the 
section is not exhaustive, and there are other challenges that could 
emerge with the application of DL in the industry. 

5.2.1. The black box challenge 
Earlier machine learning applications developed and applied models 

without having to worry about explaining how the models have arrived 
at those decisions. However, the need for prediction explanations has 
surfaced recently to have a better understanding of underlying learning 
techniques and also make better-informed decisions. Deep learning al-
gorithms have to ascertain that the predictions made are right and can 
be trusted. For example, a DL system that estimates a reduction in the 
amount of concrete used should be able to explain this reduction. Project 
managers would benefit from these explanations as they would be able 
to better work with involved engineers in making decisions. 

Researchers have recently come up with different explanation tools, 
some of which include: LIME (Local Interpretable Model-agnostic Ex-
planations), DALEX (Descriptive mAchine Learning EXplanations), IML 
(Interpretable Machine Language). Unlike earlier proposed explanatory 
tools like Modeltracker [101] and Gestalt [102], these tools are now able 
to provide specific explanations of predictions. However, these earlier 
tools can still be used to complement LIME and other more recent 
interpretation tools since some of them require additional feature en-
gineering and sometimes do not explain why a decision cannot be 
trusted. All of these models follow the model-agnostic rather than the 
model-specific interpretability method because the latter has the 
disadvantage of accuracy loss and single algorithm use. The 
model-agnostic approach does not inspect internal model parameters 
but extracts explanations by treating the model as a black-box while 
ruffling the model inputs and studying how it reacts [103–105]. Table 3 
gives a summary of state-of-the-art machine learning explanation 

Table 3 
Summary of Interpretable model Algorithms.  

Algorithm Acronym Completeness Technique Reference 

Local Interpretable 
Model-Agnostic 
Explanations 

LIME Individual 
Explanation 

Model 
Agnostic 

[106] 

Descriptive mAchine 
Learning 
EXplanations 

DALEX Individual 
Explanation 

Model 
Agnostic 

[107] 

Partial Dependency 
(PD) Plots 

PDP Average 
Explanation 

Model 
Agnostic 

[108] 

Interpretable Machine 
Learning 

IML Individual 
Explanation 

Model 
Agnostic 

[109] 

Individual 
Conditional 
Expectation PD 

ICEPD Individual 
Explanation 

Model 
Agnostic 

[110] 

Plot a Model’s 
Residuals, Response 
and PD 

PLOTMO Average 
Explanation 

Model 
Specific 

[111]  
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models. 

5.2.2. Data availability 
Deep learning best works with the availability of large data; other-

wise, models would struggle if trained on small data. Being able to access 
data for a particular problem freely is often difficult, most especially 
with the recent introduction of the data ethics and GDPR (General Data 
Protection Regulation) regulations. Data augmentation techniques 
involving minor alterations such as image rotation and flipping may be 
required to supplement limited training data. However, data augmen-
tation can also lead to potential loss of relevant data or outliers needed 
for training. A wider range of data in the construction industry is 
structured, and data augmentation of this kind of data can be tricky. 
Fortunately, researchers have recently looked into solutions to help with 
automatic structured data extraction and to enable centralised focus on 
other aspects of training and model optimisation [112,113]. Nonethe-
less, most companies are still at the nascent stage of experimenting with 
these solutions as they are working towards understanding the chal-
lenges that come with the use of some machine learning tools for data 
extraction. 

5.2.3. Ethics, data privacy and protection 
The number one challenge most deep learning researches face is the 

issue of data privacy. Care must be taken with data sources though as the 
recent introduction of GDPR applies to all companies holding data from 
EU citizens [114]. More specifically, GDPR gives human rights pro-
tections against the use of a person’s data without meaningful infor-
mation about the logic behind the usage and also possible impacts. 
Ethical issues can be hard and complex. A deep learning model may 
introduce an unintended bias based on sex or race, for example. 
Although these models are targeted at increasing productivity and profit 
levels, they may result in unintended consequences. Researchers have 
therefore introduced guides as to what level of explanations is needed 
for an algorithm in order to prevent ethical complications [115–117]. 
Deep learning researchers still need to be conscious of this challenge and 
consider it in every research that involves data collection. 

5.2.4. Lack of a one-size-fits-all model 
All of the existing and suggested application areas discussed in pre-

ceding sections cannot be addressed using one generic deep learning 
model. Every problem needs to be addressed separately with a model 
trained specifically for that purpose. Techniques such as transfer learning 
(reusing existing architectures or models known for good classification 
or prediction performances) may be used to kick-start model training 
but adequate weight optimisation and hyper-parameter tuning is still 
needed. This is not a one-size-fits-all solution in its entirety, and this 
remains one of the main challenges of deep learning to be investigated. 

5.2.5. CyberSecurity/adversarial ML 
Deep learning models are prone to threat from hackers/adversaries 

as they constantly keep working relentlessly to ensure they remain 
innovative enough to beat security defences. In some cases, machine 
learning has even been thought of as a tool for possible malware threat 
creation [118]. A breach in a security defence believed to be resistant to 
human intervention but easily compromised using machine/deep 
learning techniques can bring about a drop in the level of trust that has 
been accorded with AI. Examples of security attacks using AI include 
password generation using Generative Adversarial Networks [119], 
CAPTCHA bypassing systems [120,121] and machine learning-based 
voice cloning systems [122,123]. In addition, deep learning is suscep-
tible to a completely different result if an alteration occurs in its dataset 
[124]. Adversaries may take advantage of this feature of the algorithm 
and distort results that may have adverse implications. Recently, re-
searchers have begun to look into this and have started exploring 
possible attack resilient and defensive models for deep learning [125]. 

5.2.6. Lack of in-house capability for AI/DL/ML 
Finding engineering experts with enough information technology 

knowledge to apply deep learning techniques can be difficult. A 
reasonable approach could be to train these engineering experts on the 
job. However, this might not be feasible since these engineers best un-
derstand construction problems and optimal solutions and machine 
learning is out of their expertise. The same challenge occurs in 
outsourcing construction challenges to deep learning experts without 
construction background. These experts do not have an understanding of 
how the construction sector works. Also, deep learning experts with the 
technical expertise and experience to bring in innovative solutions to 
construction problems are generally scarce. 

5.2.7. Cost implications 
The implementation of state-of-the-art technology always comes at a 

price. Training a model on a deep neural network requires powerful 
machines with GPU processors in order to avoid months of training. 
However, these machines are not cheap even though they are capable of 
speeding up the entire training process to just a few hours. Companies 
that are willing to adopt deep learning technique should also understand 
that there is a financial sacrifice involved. It is worth noting that 
employing the services of deep learning experts can be quite costly. The 
exact cost implication of implementing deep learning is difficult to 
quantify as it depends on expertise requirements and hardware used for 
training. More studies should focus on finding cost-efficient approaches 
to the full adoption of deep learning in the industry. 

6. Conclusions 

This review was conducted with an underlying objective of advo-
cating for the investigation of areas where deep learning could be 
applied in the construction industry. However, it is worth noting that 
deep learning is not an automatic algorithm with a plug ‘n’ play func-
tionality. Just like any other machine learning technique, numerous 
procedures still need to be followed in order to achieve the best results. 
Steps such as data cleansing and preprocessing, data augmentation, 
hyper-parameter tuning, and model validation are critical to attaining 
optimal model performance. The omission of any of these steps or 
improper execution could result in models that do not meet expecta-
tions. For example, the selection technique when choosing a validation 
dataset is important because it influences a model’s generalisability. The 
study of Rafiei & Adeli [33] is a perfect example of an application that 
failed to explore the model’s validity in different scenarios. The pro-
posed model fails in unbalanced economic scenarios as well as in un-
predictable government policies. Similarly, hyper-parameter tuning is 
equally essential since it determines how quickly a model converges to 
its global optimum. The research conducted by Chen & Jiang [53] ex-
emplifies how the chosen number of hidden nodes or weight initialisa-
tion of an architecture can influence a model’s performance. In other 
studies, model predictions or estimations do not occur in real-time even 
though it could highly influence the quick implementation of mitigation 
measures. In structural health monitoring, for example, wireless sensors 
can be exploited for real-time estimates which could prove useful in the 
event of earthquakes or heavy winds. Despite these and similar limita-
tions, the authors conclude that remarkable progress is being made in 
the adoption within the industry, and even more accomplishments could 
be recorded. 

In conclusion, the authors have through this review revealed how the 
success of deep learning could be leveraged and successfully applied in 
the construction domain as it has been in other sectors. This acceptance 
will bring about a great leap in the productivity levels of construction 
engineers. Construction companies would also be able to save more on 
project cost and time management. This study has carefully reviewed 
the current state of deep learning applications in the construction in-
dustry and highlighted future opportunities. An overview of the deep 
learning algorithm and its architectures was presented. To achieve the 
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aim of this study, the authors also carefully analysed previous researches 
that have implemented each of these deep learning algorithms. The 
authors believe that there is currently insufficient applications of deep 
learning in this domain as compared to the applications of other digital 
technologies like BIM and other machine learning algorithms. As a 
result, possible applications of deep learning have been proposed. 
However, these opportunities are not exhaustive, and future research 
can further explore additional areas of the industry where deep learning 
can be applied. Previous applications of deep learning have encountered 
challenges like ethics and data privacy, lack of in-house expertise, and it 
is foreseen that similar challenges might be experienced in the con-
struction industry. The authors have, therefore mentioned the implica-
tions of some of these challenges to serve as advanced notice for future 
research. Highlighted challenges are not exhaustive either and should be 
further investigated in future research. 

Finally, this research also highlighted some state-of-the-art inter-
pretable models that could be exploited for deep learning explanations. 
Recent research has found that these models are a probable approach to 
finally solving the machine learning/deep learning “black box chal-
lenge”. To the best of our knowledge, this is the first comprehensive 
review of the applications of deep learning in the construction industry 
and would serve as a utility tool for construction engineers and re-
searchers who would like to explore the possibilities of exploiting the 
use of deep learning in tackling construction problems. 
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