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Abstract

The well known problems of set covering, set partitioning
and set packing are defined and their interrelationship is
considered. A natural generalisation called the extended
set partitioning model is presented and the three standard
models are shown to be special cases of this
generalisation. In addition, the extended model includes
another type of set problem which can be of greater use in
certain applications. The model forms the basis of a
computer assisted bus crew scheduling system developed by
the authors. The system is in regular use by Dublin City
Services in the Republic of Ireland. Finally, the
equivalence between a special case of the set partitioning
problem and the shortest route problem is considered and it
is shown that this equivalence also applies to the extended
model.



Introduction

The well-known problems of set covering, set partitioning and
set packing have attracted wide attention for many years.
Applications include airline crew scheduling [1,11,15], bus crew
scheduling [11,12] plant location [5,18], circuit switching [13],
information retrieval [7], assembly line balancing [16],
political districting [10] and truck delivery [3]. The use of
these models in practice has not been an unqualified success. In
many applications the models become too large to solve exactly
[11]. In such cases heuristics are often used either to obtain
an approximate solution [1] or to reduce the model to a more
manageable size. A difficulty with the latter approach is that
the reduction may destroy the appropriateness of the model to the
application. In this paper an extended model is proposed in
which the three standard problems are special cases and which can
be of greater applicability. The model, called the extended set
partitioning model, forms the basis of a computer assisted bus
crew scheduling system that the authors have developed and
implemented at Dublin City Services in the Republic of Ireland.

In the next section the set covering, set partitioning and set
packing problems are defined and their interrelationships
examined. The extended set partitioning model and its properties
are presented in section 3. In section 4 an application of the
models to the problem of bus crew scheduling is discussed. The
extended set partitioning model is shown to be more useful than
the standard set partitioning model. In section 5 the
equivalence between a special case of the set partitioning
problem and a formulation as a shortest route problem is stated.
It is shown that the corresponding special cases of the other
models, in particular the extended set partitioning problem, can
also be formulated as shortest route problems. In the final
section it is noted that the extended set partitioning model may
be considered as a goal programming [6] formulation of the set
partitioning problem.

Background

In this section the set covering, partitioning and packing
problems are defined in 0-1 integer programming terms. The three
problems refer to different criteria for selecting a subclass
from a class of sets.

Let N denote the set of m integers 1,2,...m and let Q
denote a class of n subsets of N . Thus,
N ={1,2,. ..m},
and Q = {Q1,Q2,..Qpn} where Q,cN,j=12,..n.
Let ag=1if i QJ} i=12,.m,

=1if i ¢ Q j=12,.n,
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The set covering problem may be defined as

n
Minimise ZCij
j=!
n
' ajjX j >1 1=12,.m,
subject to i=1
Xje€ {0,1} j=12,..n,

where cj represents the cost of selecting the subset Q; (j =
1,2,...n). The problem represents the minimum cost selection
such that each member of the set N is included at least once.

The set partitioning problem may be defined as

n
Minimise Z CjiXj
j=1
n
‘ ainjzl 1=12,..m,
subject to i=1
Xj € {0,1} j=12,..n,

and represents the minimum cost selection such that each member
of N is included exactly once.

The set packing problem may be defined as

n
Maximise z PiXj
j=1
n

aijjx j <1 1=1,2,..m,
subject to i=1

xje {01} j=1,2,.n,

where pj represents the profit associated with selecting the
subset Q; , (j = 1,2,...n). This problem represents the maximum
profit selection such that no member of N is included more than
once.

The terms cover, partition and packing refer to any integer
feasible solution to the corresponding problems. By inspection
of the three sets of constraints it can be seen that a partition
is also a cover and a packing although the converse is not
necessarily true. Indeed, as pointed out by several authors
including Balas and Padberg [2] in their comprehensive survey of
set partitioning, a set partitioning problem may be transformed
to a set covering problem as follows.
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The set partitioning problem may be rewritten as

Minimise v <
Z Cjxj + Z GYi

j=1 i=1
. n
SUbJeCt to z aXj - yj =1 i=1,2,.m,

j=1

X € {0,1 } s

y; 2 0

where 0 is a sufficiently large positive number.

j=12,..n,
i=12,..m,

. . n . . . .
By substituting vi= Y apxj-l in the objective function
j=1
the following formulation 1is obtained.
.o n .
Minimise (-m 6 + ¢ix )
j=1
. n
SubJeCt to z ajjxj > 1 i=1,2,.m,

=1
X, € {0,1}

, m
where cj=cj + 6 z ajj
i=1
which is a set covering problem (since the constant term —m6 may
be dropped) with the same set of optimal solutions as the set
partitioning problem. By a similar argument the set partitioning
problem may also be formulated as a set packing problem. These
equivalences, however, only apply when the set partitioning
problem has a feasible solution. Unfortunately, when set
partitioning is applied in practice it is often the case that no
feasible solution exists for the formulated model. There are two
principal reasons for this. One is that the formulation may
represent an 'ideal' which is in fact unattainable. The other
reason is that, in order to arrive at a model which is manageable
in terms of both size and computational workload, the number of
variables (subsets Q; available for selection) may have to be
reduced by some heuristic which excludes from the model those
subsets which seem highly unlikely to be included in the optimal
solution. The full (impractical to solve) model may have a
feasible solution whereas the reduced (practical to solve) model
may not.

Our experience with set partitioning problems with no feasible
solutions led us to develop a more general model which yields a
solution as near as possible to the desired set partition. This
model called the extended set partitioning problem is explained
in the next section.

The Extended Set Partitioning Problem

A set partitioning problem with no feasible solution is one in
which an ‘exact cover’ does not exist. The set packing problem
is a relaxation in which ‘undercover’ is permitted whereas the
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set covering problem is a relaxation in which 'overcover' is
permitted. Whenever an exact cover does not exist one might be
tempted to solve either the set packing problem or the set
covering problem whichever is more appropriate to the given
application. For example, in crew scheduling applications, it is
desired to cover each trip of a given timetable with exactly one
crew. This approach can lead to a formulation which is a set
partitioning problem [11,12] . However, such a formulation often
results in a problem with no feasible solution caused by the many
regulations and desirable features governing the validity of crew
duties. Consequently a formulation based on set covering has
been suggested [12,15] in which the interpretation is that each
trip must be covered at least once. The resultant solution can
then be amended manually to remove the over cover and produce a
crew schedule that can be implemented. The motivation behind
this approach is to find the most useful solution that exists
given that an exact cover may not exist. This purpose is better
served by considering a more general model. The extended set
partitioning formulation, defined below, has set packing, set
partitioning and set covering as special cases and also
encompasses a fourth model to be considered in which both
undercover and overcover are permitted. The model is defined as
follows.

n m u : m o
Minimise Y ocjxj o+ Xow ju i+ ¥oow oy
j=1 i=1 i=1
1 n
subject to ey xjru-o = i=1.2.. m
J:
‘e (0.0 J=12,.....n,
u e (0,1} 1=1,2,.....m,
o;=> 0 and int  eger

where Wiu (> o) 1s the penalty associated with not covering the

ith member,(undercover), and Wio (> 0) 1s the penalty associated
with each overcover of the ith member.
The trivial case of w}l =w? =0 for any 1 <1 < m is not

considered since it is equivalent to the freeing of constraints.
Thus it is assumed that at least one of the pair (w}l ,w?) is

strictly positive for each i = 1,2,...m.

The interpretations associated with uj; and o; are as follows.
uj = 1 if the ith member is not covered,

= (0 otherwise;
the number of times that the ith member is

04
overcovered.
Interpretations of the Model

Set Covering If w}l ,(1=1,2,...m), is set to a sufficiently large

positive number (greater than T oo say) and wio, (i=1,2,...m), is
]
j=1
set to zero, then the extended model and the set covering model

have the same optimal solution(s).
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Set Packing If wo, 1=1,2,...m, is set to a sufficiently

large positive number and wl, 1 =1,2,...m, is set to zero then
the extended model (with ©;=-P;; j=12...n) and the set

packing model have the same optimal solution(s).

Set Partitioning If both w? and wi, 1=1,2,...m, are set to a

sufficiently large positive number then the extended model and
the set partitioning model have the same optimal solution(s),
assuming that the latter is feasible. The extended model is
guaranteed to be feasible and, in cases when the set partitioning
model has no feasible solution, will yeild an optimal solution
involving undercover and/or overcover. The solution is one in
which the sum of undercover and overcover is minimised and, in
this sense, is the nearest possible to a partition.

General Interpretation The nature of the solution to the
extended model depends on the size of the penalties applied to
undercover and overcover. The model was originally developed to
be used in situations in which a partition is desired. However,
deviations from an exact cover (partition) are permitted, but at
a cost defined by the individual penalties applied to each
member. Even in cases where a partition exists the solution to
the extended model may not be a partition. The least cost
partition may be more expensive than a solution involving
undercover and/or overcover. Thus the extended model provides a
flexibility to enable a wider class of solutions to be considered
which, in certain cases, leads to a better solution.

Applications To Crew Scheduling

Crew scheduling by computer has received considerable attention
during the past 20 years or so. Annual symposia organised by the
Airline Group of the International Federation of Operations
Research Societies (AGIFORS) have been held since 1961. Airline
crew scheduling and allied problems play a prominent role in
these symposia. Attention to crew scheduling in urban mass
transit systems has gained momentum with international workshops
on vehicle and crew scheduling held in Chicago (1975), Leeds
(1980) [19] and Montreal (1983) [14] .

In its simplest form the problem may be stated as follows. Given
a timetable with m trips, find the least cost set of crew
duties such that each trip is covered by one crew. One approach
is to generate the set of all possible duties that comply with
the rules governing duty validity and then make a selection from
this set of n generated duties. Such a formulation leads to
the set partitioning problem defined in section 2 in which c;
denotes the cost of selecting the jth generated duty and a;j=1
if the jth generated duty covers the ith trip. In bus crew
scheduling a trip is defined as a portion of a bus journey
between two consecutive relief points at which crews can join or
leave the bus. The rules governing duty validity are many and
vary from operator to operator but generally involve issues such
as the maximum number of buses that a crew can work in a single
duty (usually between 1 and 3), the maximum work time, the
lengths of breaks and time bands within which meal breaks must be
taken. In addition many unwritten rules apply. An experienced
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scheduler can rapidly judge whether a given crew schedule is
operationally acceptable. He may decide, for example, that a
balanced schedule is needed in which the minimum as well as the
maximum work time for a duty is specified. The large number of
rules is a mixed blessing for the set partitioning formulation.
On one hand the model is restricted to a more manageable size
since the number of generated duties is reduced. On the other
hand no feasible solution may exist. A relaxation to the set
covering model overcomes the difficulty and provides a solution
in which the overcover can be removed in a way which the
scheduler considers most appropriate. Unfortunately such an
approach often results in a schedule that is more expensive and
requires more crews than is desired. For example, a minor
alteration in the timetable or a small relaxation in one of the
rules may lead to a schedule costing significantly less. If a
schedule is considered to be unsatisfactory in this respect it is
far from a simple task to amend the set covering solution to
produce an acceptable schedule.

Application of the extended model to crew scheduling can result in
a solution in which some trips are covered more than once (as in
the set covering approach) and some trips left uncovered. The
undesirability of both these occurrences is controlled by the
undercover and overcover penalties applied to each trip.
Consequently the model does not insist that each trip is covered
if the cost of doing so is excessively large. In such cases,
however, the schedule is incomplete and hence operationally
unacceptable. Fortunately, with practical crew scheduling
problems, the incompleteness is confined to only a very few
trips. The solution from the extended model can, with usually
little trouble, be amended to form a crew schedule that can be
imp lamented.

The extended model forms the basis of a computer assisted crew
scheduling system developed by the authors. The system is in
regular operational use by Dublin City Services in the Republic
of Ireland. Full details of the development and implementation
of both the model and the system are contained in [12]. The
experience of the schedulers at Dublin City Services is that the
system usually produces complete schedules. In those cases in
which an incomplete schedule is produced it is a relatively
simple task to make the necessary amendments to render it
acceptable. Their opinion is that the system 'breaks the back' of
the problem.

Special Cases Reformulated As Shortest Route Problems

In this section the special case of applications in which each
column of the constraint matrix has only one segment of ones is
considered. A column with a segment of ones is defined as a
set of column elements ajj,

ajj= 0 1=1,2,...k-1 for k > 1,
ajj= 1 i=k,...k + p,
ajj= 0 i=k+p+1,..mfork+p<m.
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In crew scheduling terms this represents a problem in which each
crew must do a single stretch of working on a single bus. Such
duties comprise a consecutive set of trips and the problem is
known as the one-part duty crew scheduling problem.

It has been pointed out by Shepardson and Marsten [17] and
others, that, when formulated as a set partiioning problem, the
one-part duty problem is equivalent to a shortest route problem.
The network contains (m+1) nodes and n edges, one for each
column (generated duty). If the jth generated duty covers trips
k,...k + p then the associated edge runs from node k to node
k+ p +1 with length cj . The problem of covering each trip

exactly once at minimum total cost is thus the problem of finding
the shortest route between node 1 and node m + 1 . It may be
observed that the network contains no cycles since j > 1 for
every edge (i,]).

It is less widely known that the set covering formulation of the
one-part duty problem is also equivalent to a shortest route
problem. In this case the network is augmented by m edges of
the form (i + 1, 1), 1= 1,2,...m, of zero length.

The extended model, when applied to the one-part duty problem can
also be formulated as a shortest route problem. The network of
the set partitioning formulation is augmented by the addition of
2m edges; m edges of the form (i + 1, 1) of length w?,

i=1,2,...m and m edges of the form (i, 1 + 1) of length
w}‘,izl,Z,...m are added.

The set packing problem can also be equivalenced to the shortest
route problem by letting c¢j= “Pjs j =,...n, and adding edges

to the set partitioning network of the form (i, 1 + 1),
1=1,2,...m, of zero length.

This shortest route formulation of set packing applications is
likely to result in negative edge lengths but, as in the
formulation of the set partitioning problem, the network contains
no negative cycles and therefore an algorithm such as that due to
Ford [9] may be applied. In the shortest route formulation of
the other problems it is likely, in practice, that all edge
lengths will be non-negative and the more efficient algorithm due
to Dijsktra [8] can be applied.

Conclusions

A new model has been proposed which is different from the
standard problems of set covering, set partitioning and set
packing but which includes them as special cases. The model
includes a fourth type of set problem which has useful
applications. It is especially useful in situations in which a
partition, although desirable, either does not exist or is not
necessarily the best solution. The model, when used in this
mode, may be considered as a (discrete) goal programming [6]
formulation of the set partitioning problem.



REFERENCES

10.

11.

12.

13.

14.

15.

BAKER, E.K., BODIN, L.D., FINNEGAN, W.F. and PONDER, R.J.,
Efficient Heuristic Solutions to an Airline Crew Scheduling
Problem, Trans. AIIE., 11 (1979), 79-85.

BALAS, E. and PADBERG, M.W., Set Partitioning - A Survey,
SIAM Review, 18, 4, (1976), 710-760.

BALINSKI, M.L. and QUANDT, M.H., On an Integer Program for a
Delivery Problem, Opns. Res., 12, (1964), 300-304

BELLMAN, R.E., On a Routing Problem, Quart .Appl .Math., 16,
(1958), 87-90.

BILDE, O. and KRARUP, J., Sharp Lower Bounds and Efficient
Algorithms for the Simple Plant Location Problem, Annals of
Discrete Mathematics, 1. (1977), 79-97.

CHARNES, A., and COOPER, W.W., Management Models and Industrial
Applications of Linear Programming, Wiley (New York), (1961).

DAY, R.H., On Optimal Extracting from a Multiple File Data
Storage System: an Application of Integer Programming, Opns.Res.,
13, (1965), 482-494.

DIJKSTRA, E.W., A Note on Two Problems in Connexion with Graphs,
Num. Math., 1, (1959), 269-271.

FORD, L.R. Jr., Network Flow Theory, The Rand Corporation, P923,
August 1956.

GARFINKEL, R.S., and NEMHAUSER, G.L., Optimal Political
Districting by Implicit Enumeration Techniques, Man. Sci., 16,
(1970), B495-B508.

MARSTEN, R.E. and SHEPARDSON, F., Exact Solution of Crew
Scheduling Problems Using the Set Partitioning Model: Recent
Successful Applications, Networks, 11, (1981), 165-177.

MITRA, G., and DARBY-DOWMAN, K., CRU-SCHED - A Computer Based Bus
Crew Scheduling System using Integer Programming, presented at
the Third International Workshop on Transit Vehicle and Crew
Scheduling, in Montreal (June 1983), and published in [14] .

PYNE, I.B., and McCLUSKEY, E.J. Jr., An Essay on Prime Implicant
Tables, SIAM, J., 9, (1961), 604-631.

ROUSSEAU, J.M., (ed), Proceedings of the Third International
Workshop on Transit Vehicle and Crew Scheduling, held in
Montreal, June 27-30, 1983, to be published by North-Holland
(1984).

RUBIN, J., A Technique for the Solution of Massive Set Covering
Problems with Applications to Airline Crew Scheduling,
Trans.Sci., 7, (1973), 34-48.



16.

17.

18.

19.

10

SALVESON. M.E., The Assembly Line Balancing Problem, Trans. ASME,
77, (1955), 939-947.

SHEPARDSON, F. and MARSTEN, R.E., A Lagrangian Relaxation
Algorithm for the Two Duty Period Scheduling Problem, Man. Sci.,
26, 3, (1980), 274-281.

TORREGAS, C., SWAIN, R., REVELLE, C., and BERGMAN, L., The
Location of Emergency Service Facilities, Opns. Res., 19,
(1971), 1363-1373.

WREN, A. (ed), Computer Scheduling of Public Transport, (papers
based on presentations at the International Workshop held at the
University of Leeds, 16-18 July 1980), North-Holland, (1981).



	The set partitioning problem may be rewritten as 

