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Abstract
The machining processes on the advanced machining workshop floor are becoming more sophisticated with the interde-
pendent intrinsic processes, generation of ever-increasing in-process data and machining domain knowledge. To manage
and utilize those above effectively, an industrial dataspace for machining workshop (IDMW) is presented with a three-layer
framework. The IDMW architecture is Schema Centralized–Data Distributed, which relies on Process-Workpiece-Centric
knowledge schema description and data storage in decentralized data silos. Subsequently, the pre-processing method for the
data silos driven by RFID event graphical deduction model is elaborated to associate decentralized data with knowledge
schema. Furthermore, through two industrial case studies, it is found that IDMW is effective in managing heterogeneous data,
interconnecting the resource entities, handling domain knowledge, and thereby enabling machining operations control on the
machining workshop floor particularly.

Keywords Industrial dataspace · Machining knowledge · Machining operations control · Knowledge representation ·
Knowledge graph

List of symbols

A�B A has an association with B
ct_abc URI of cutting tool abc
ft_abc URI of feature abc
mm_abc URI of machining methods abc
mstq_abc URI of quality measure tool abc
mps_abc URI of machining process status abc
mt_abc URI of machining tool abc
mts_abc URI of measure tool/sensor abc
mp_abc URI of machining process abc
qf_abc URI of quality feature abc
rXX The XXth response to sXX
sXX The XXth operation sequence
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t sP Arriving timeline from the last process to the cur-
rent process p

tsiP Starting timeline of loading workpiece to
machine tool table in process p

teiP Ending timeline of loadingworkpiece inmachine
tool table in process p

tspP Starting timeline of processing the workpiece in
process p

tepP Ending timeline to processing workpiece in pro-
cess p

tsoP Starting Timeline of putting workpiece off
machine tool table in process p

teoP Ending timeline of putting workpiece off
machine tool table in process p

teP Leaving timeline from the current process p
T p
P−1 Transportation time fromprocessp−1 to process

p
T x
P Processing time of x in process p

wk_abc URI of worker abc
wp_abc URI of workpiece abc
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Abbreviations

APP Applications
CNC Computer numerical control
CPS Cyber-physical-system
ERP Enterprise resource planning
IDMW Industrial dataspace for machining workshop
MEPN Machining error propagation network
MES Manufacturing execution systems
MOC Machining operations control
NGIT New generation of information technology
OBDA Ontology-based data access
OWL Web ontology language
RFID Radio frequency identification
SQL Structured query language
URI Uniform resource identifier

Introduction

Several strategies about advanced manufacturing have been
initiated worldwide recently, such as Industry 4.0 in Ger-
many (Zhong et al. 2017a, b), Industrial Internet in the USA
(Xu and Duan 2019), the Made in China 2025 (Zhou et al.
2018), and High-ValueManufacturing in the UK (UK 2012).
The implementation of those initiatives encourages the New
Generation of Information Technology (NGIT), representing
by cyber-physical-system (CPS) (Lu and Xu 2018), Big data
(Wang et al. 2016), and Knowledge Graph (Song et al. 2018),
to be used in manufacturing (Ye and Wang 2013). With the
NGITs’ help, collecting and processing all kinds of machin-
ing in-process data in real-time have become practicable.
NGITs also show massive potential in enabling intelligent
machining operations control (MOC) and thereby improv-
ing the quality and efficiency of ever-increasing complex
machining processes on the advanced machining workshop
floor.

Data management, especially in the context of big data
(Flyverbom et al. 2017), plays a more and more crucial role
in intelligentMOC. In an advancedmachiningworkshop, the
decision-making instructions should not rely on probabilistic
data (Ji et al. 2019). It would be unacceptable if only using
probabilistic uncertainty instructions to guide a real-world
machining process. Furthermore, the machining in-process
data have the feature of massive and varying, but the machin-
ing relations of resource entities seem relatively regular (Qi
and Tao 2018). Besides, the machining is a specialized disci-
pline, containing lots of expertise (domain knowledge). How
to discover, represent, store and reuse this kind of domain
knowledge and thereby to handle the in-process knowledge
need to be taken into consideration when applying data man-
agement in advanced machining workshops.

However, there are no specific ways of linking the
machining in-process data with domain knowledge. For the
connection between the raw machining data and the final
performance of quality and efficiency, the industrial datas-
pace for themachiningworkshop (IDMW) is introducedwith
the help of machining domain knowledge modeling on the
machining workshop floor. The term dataspace is defined as
the handling of knowledge schema and complex data in data
management. Accordingly, the IDMW is designed for tack-
ling the MOC issue through managing the heterogeneous
data, interconnecting the resource entities, and handling the
machining domain knowledge. With it, data can be sensed
and stored while knowledge can be represented and reused
effectively.

This paper will focus on the IDMW and its enabling tech-
nologies. The IDMW not only concerns the NGITs but also
takes the manufacturing logics and machining mechanisms
into consideration. The rest of the paper will be arranged
as follows. “Problems to be solved and critical review of
relatedwork” section summarises some challenging issues to
be solved and critically reviews the relatedworks. “Construc-
tion of the IDMW” section describes how to construct the
IDMW from the aspects of the framework, relation descrip-
tion, and distributed data storage. “Pre-processing of the data
silos during the runtime of IDMW” section elaborates the
Pre-processing of the data silos during the runtime of IDMW.
Furthermore, two industrial cases in different machining
domains are described in “Industrial case studies” section
to illustrate the application of the IDMW. Finally, further
discussions and conclusions are given. The IDMW explains
how to associate machining in-process data with domain
knowledge. It is good at managing heterogeneous data,
interconnecting the resource entities, and handling domain
knowledge on the advanced machining workshop floor par-
ticularly.

Problems to be solved and critical review
of related work

Problems to be solved

The development of NGIT can drive the machining process
to be more intelligent and controllable. However, there are
some challenging issues to be solved when carrying out data-
driven advanced machining, which illustrated in Fig. 1.

(1) Management of different varieties of in-process data in
a machining workshop.

Data are continually generated all the time, whether
machining or not. Each resource entity in a machining work-
shop can generate data (Leng et al. 2019), which sources and
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Fig. 1 Three challenging issues to be solved when carrying out data-driven advanced machining

formats are generally diverse. Briefly, there are two main
categories, which are static resource configuration data and
dynamic machining process-related data. The dynamic ones
can also be sub-divided into process flow data, product qual-
ity data, and conditionmonitoring data. How tomethodically
sense, collect, store andmanage these kinds of heterogeneous
data is the first challenging issue to be solved.

(2) Construction of machining knowledge schema based on
data fusion.

The heterogeneous data are hardly reflecting the machin-
ing process before being fused. Data will be stored in
databases, documents, and files located in different places,
so it is needed to use a knowledge schema to interconnect
the segregated data (Li et al. 2019). Machining knowledge
schema can represent the relations of resource entities within
the workshop. Thus, how to construct the proper machining
knowledge schema that can fuse data is the second challeng-
ing issue.

(3) Reuse of domain knowledge in machining operations
control.

There is a lot of domain knowledge about the machining
processes, e.g., the influence of tooling, fixtures, materials,
machining parameters on precision machining performance.
All the domain knowledge can be expressed as the relations
of resource entities in the knowledge schema. Thus, the third
challenging issue is how to reuse the domain knowledge in
machining operations control.

Critical review of related work

Dataspace means the space of data originally, which is an
abstraction in data management that aims to overcome some
of the problems encountered in the data integration system
in the field of informology (Belhajjame et al. 2013). Datas-
paces can be viewed as the next stage of data integration,
enabling data intelligence (Curry 2020).Moreover, the indus-
trial dataspace has not been proposed until recent years while
this section will elaborate on some relevant works from the
following three aspects.

Machining in-process data collection, storage,
andmanagement

In-process data are continuously generating during machin-
ing, and the NGITs make them possible to be sensed and
collected. These in-process data are with the features of mas-
sive, multi-source, high-dimensional, and heterogeneous,
due to the complex interactions between production orders
and machining processes (Zhong et al. 2017a, b). Some
researchers have focused on real-time data collecting, min-
ing, analyzing, storing, and managing during machining
processes (Babiceanu and Seker 2016). The CPS is config-
ured for collecting data timely, relying on different kinds
of sensing devices, such as radio frequency identification
(RFID), sensors, and laser scanners. (Liu et al. 2017). For
instance, Lee (Lee et al. 2015) advanced a unified 5-level
CPS architecture as a guideline for manufacturing. And a
CPS-driven architecture based on CNC machining data was
proposed to achieve the intelligent MOC (Zhang et al. 2016).
Besides, information systems, represented by manufacturing
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execution systems (MES) and enterprise resource planning
(ERP), play the role of managing the complex data, tracking
and documenting the transformation of raw materials to fin-
ished goods (Qiu and Zhou 2004). Their affiliated databases
accept responsibility for saving different kinds of data (Tao
et al. 2018). MES and ERP have received considerable
attention that several software vendors such as SAP, Ora-
cle, Siemens have released mature products (Parthiban and
Nataraj 2019). Moreover, some researchers have proposed
novel data solutions based on big data tools (Cui et al. 2020).
And some scholars also haveput forwarddistributed architec-
tures for data management within the machining workshop
(Kovalenko et al. 2019; Mezgebe et al. 2019; Novas et al.
2012). For example, Novas has succeeded in using a multi-
agent system to develop a collaborative system (Novas et al.
2012).

In summary, with the NGITs’ help, machining in-process
datawill be sensed, collected, stored, andmanaged.However,
these kinds of in-process data are distributed, heterologous,
and heterogeneous, which is difficult to be handled in exist-
ing data systems. Besides, the scale of the in-process data
is also too large to store in the traditional database. In addi-
tion, there is little research on discovering implicit relations
among different types of data in different locations.

Machining domain knowledge representation

Domain knowledge can make machining operations more
intelligent. Many expert systems have succeeded in describ-
ing knowledge with specific formats, storing them in the
structural database, and sharing them with others for reusing
(Gao and Nee 2017; Evans et al. 2017; Zammit et al. 2017;
He and Jiang 2019). Besides, the knowledge graph, as one
of the state-of-the-art technologies, is becoming a popular
way to express large-scale knowledge (Nickel et al. 2016).
Some domain knowledge graphs were also studied in the
fields of the additivemanufacturing (Wang et al. 2018), prod-
uct design (Chhim et al. 2019), service-oriented business
interactions (Lu et al. 2019), and digital twin-driven smart
manufacturing (Lu et al. 2020).

In summary, domain knowledge representation has made
some progress, especially in the knowledge schema mod-
eling. In-process data will generate in-process information
and knowledge. However, most of the current knowledge
systems do not have the feature of converting raw data into
useful knowledge. Namely, the knowledge base cannot man-
age in-process data while the database cannot save intricate
knowledge.

Dataspace and industrial dataspace

Dataspaces was first introduced in the informatics as a novel
abstraction for data management (Franklin et al. 2005).

Modeling of data, integrating resource entities, discovering
relations of resource entities, and indexing of information
have been separately studied (Mirza et al. 2010; Niinimaki
and Thanisch 2019). In the context of manufacturing, indus-
trial dataspace was regarded as a broker to run CPS by
mediating between bottom manufacturing data and upper
software (Monostori et al. 2016). In the meantime, the
International Data Spaces was proposed to create a secure
data space that supports enterprises of different industries
and different sizes in the autonomous management of data
(Pullmann et al. 2017; Ahmadian et al. 2018). The Indus-
trial Data Space can be seen as a manufacturing data
management system in the cross-enterprise level (Angrish
et al. 2017). In industrial applications, Ontology-Based Data
Access and Knowledge Graph were used to integrate, store,
index, semantically query, and knowledge reasoning (Xiao
et al. 2018). GE Co. proposed a semantic-driven framework
SemTK, which can realize tried-and-true storage and access
to heterogeneous data. Moreover, the Polystore KGs with
SemTK, which is good at constructing and querying, were
employed in four industrial cases (McHugh et al. 2017).

In summary, the terms Dataspace and Data Space are
already defined in the literature, and its description methods,
structures, and functions are involved. However, the above
dataspaces are usually used for managing knowledge in the
level of enterprise and cross-enterprise, while there is less
research on dataspace in the workshop level. Furthermore,
managing heterogeneous data, interconnecting the resource
entities and handling domain knowledge are urgently needed
in the dataspace of workshop level.

Construction of the IDMW

From “Problems to be solved and critical review of related
work” section, it can be seen that research on machining
in-process data, industrial database, manufacturing datas-
pace has been carried out whether in literature or industrial
practices. Nevertheless, there is still no dataspace building
for the machining workshop specifically. In the meanwhile,
the existing dataspaces usually focus on the data adminis-
tration in the field of information technology, considering
less about manufacturing logics andmachining mechanisms.
There are no clear ways yet on how to transform machining
in-process data into reusable knowledge. Besides, how to
discover the links between knowledge and raw data is also
unclear. Evidently, an ideal IDMW should not only realize
data management but also discover hidden relations among
resource entities. Thus, setting up a proper framework of
IDMWcan facilitate heterogeneous data storage andmachin-
ing domain knowledge handling.
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Fig. 2 Framework for industrial dataspace for the machining workshop

Framework of IDMW

IDMW is a complicated and high-dimensional space, includ-
ing lots of resource entities, data, and knowledge. As Fig. 2
shows, IDMW can be divided into three parts from the
machining roles they played, i.e., hardware, middleware, and
software. Hardware refers to the MOC-associated resource
entities, mainly including the Machine Tools, Cutting Tools,
Fixtures,Workers,MeasuringTools,Workpieces,Machining
Methods, and Machining Process Status. Software contains
all the industrial applications (APP), systems, software,
databases, and knowledge bases that support the MOC.Mid-
dleware is the intermediary ofHardware and Software,which
is composed of networks, sensors, and RFID devices.

All hardware and middleware resource entities can be
regarded as the Physical Layer in IDMW. The other two are
Application Layer and Digital Layer, which all belong to the
Software part. In Application Layer, there is a leading appli-
cation portal and several pre-setmachining scenarios, each of
which is supported by a kind of algorithm. For instance, the
model of machining error propagation network (MEPN) (Li
and Jiang 2017) can be employedwhen dealingwith themul-
tistage machining processes for one-of-a-kind production.
Besides, Application Layer offers interfaces for users with
various functions, such as inquiry, search, recommendation,
monitoring. Machining domain knowledge, in the form of an
algorithm or amodel, can be viewed as knowledge schema in

Digital Layer. Furthermore, Digital Layer will manage data
collected from the CPS in middleware.

From the view of the application, the Physical Layer in
IDMW is mainly for data sensing and collecting, which
is the prerequisite work for currying on the utilization of
domain knowledge. Digital Layer can be subdivided into
two levels, which are the entities’ relation storage based
on the knowledge schema, and the data management based
on the structured query language (SQL) relational database
technology. Furthermore, the machining-related knowledge
and several decentralized databases are in the Digital Layer,
which will support the multiple usages of knowledge in the
supreme level, i.e., the Application Layer. Thus, the archi-
tecture of Schema Centralized–Data Distributed has been
formed in IDMW.

Process-workpiece-centric relation schema
description in IDMW

The uniform schema is employed to describe the relations of
machining-related resource entities (Jiang et al. 2019). Exist-
ing standards and modeling languages, such as ISA-88/95,
OWL 2, AutomationML, and UML, could help to define the
concepts of meta-data model such as vocabularies, terms,
elements, components (Vogt et al. 2019). In the context of
manufacturing, ontologies are used to capture domain knowl-
edge. There aremanyways to design hierarchy classes during
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Fig. 3 Differences between non-process-workpiece-centric and the proposed process-workpiece-centric schemas

ontology development. The conventional method is to clas-
sify resources according to their physical characteristics.
Since the intelligent machining can be seen as the process
that a smart workpiece is processed a smart machining work-
station, the main resource entities are machining process
and workpiece. Hence, a Process-Workpiece-Centric rela-
tion descriptive schema is invented. Moreover, the Protégé
tool is employed for ontologymodeling.Differences between
a conventional relation schema description (Liu et al. 2020)
and the proposedProcess-Workpiece-Centric one can be seen
in Fig. 3. The Process-Workpiece-Centric schema takes the
MachiningProcessFactor andWorkpieceFactor as two main
subclasses of Factor, which is more suitable for intelligent
machining. Creating the standardized description model is
to provide a unified way to represent relations of resources
entities in machining workshops.

Each resource entity in the workshop has its own uni-
form resource identifier (URI). For example, a worker
wk_4115001008 measures the machining quality fea-
ture q f _wp_ lg r_0245_280_cylindrici t y of the workpiece
wp_ lg r_0245, with a measuring tool mstq_wale_RS1600
in the machining process mp_280_of _wp_ lg r_0245. It
can be written with non-Process-Workpiece-Centric relation
description

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

< wk_4115001008 > � < mstq_wale_RS1600 >

< mstq_wale_RS1600 > � < wp_ lg r_0245 >

< mstq_wale_RS1600 > � < q f _wp_ lg r_0245_280_cylindrici t y >

< wp_ lg r_0245 > � < mp_280_of _wp_ lg r_0245 >

(1)

It can also be representedwithProcess-Workpiece-Centric
relation description
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

< wp_ lg r_0245 > � < mp_280_of _wp_ lg r_0245 >
⎧
⎪⎨

⎪⎩

< wp_ lg r_0245 > � < q f _wp_ lg r_0245_280_cylindrici t y >

< mp_280_of _wp_ lg r_0245 > � < wk_4115001008 >

< mp_280_of _wp_ lg r_0245 > � < mstq_wale_RS1600 >

(2)

In the second description, the primary relation, that is, the
Process-Workpiece relation, will be identified preferentially,
which contributes to find the relations among distributed
Individuals quickly. From the perspective of a single pro-
cess in a workstation, all its machined workpieces can be
quickly associated. From the angle of the machining process
flow of a workpiece, its machining process can be connected
in series easily.

In the Process-Workpiece-Centric descriptive schema, all
the non-core resource entities can be linked to whether
MachiningProcessFactor or WorkpieceFactor. Individuals
of MachiningProcessFactor are the virtual processes that
make up the machining process flow, and the Individuals
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Fig. 4 The ontology development process for a process-workpiece-centric schema

of WorkpieceFactor are smart workpieces. For example, a
framework of resources followed by the W3C web ontol-
ogy language (OWL) standard can be seen in Fig. 4,
whereCuttingTool,Fixture,MachiningTool,MeasuringTool,
and Worker are subclasses of MachiningProcessFactor, and
MachiningMethod, MachiningProcessStatus are subclasses
of WorkpieceFactor.

Distributed data storage in digital layer based
on process-workpiece-centric schema

Then, the distributed data are linked to the entities in the pre-
fabricated Process-Workpiece-Centric schema. Although the
raw machining data can be directly stored as Object Proper-
ties orData Properties of Individuals, they are still designed
to be stored apart of the schema as multiple data silos.

The Schema Centralized–Data Distributed architecture
canmake the operation of IDMWmore secure and robust. On
the one hand, the instantaneous data generated by the RFID
change the status of the resource entities. This kind of change

will modify the Data Properties of Individuals, where these
data are not very big in scale. On the other hand, data gen-
erated by the sensors are generally with features of massive,
high-dimensional, heterogeneous, and distributed. As Fig. 5
shows, vision sensors generate a series of monitoring video
files (.mp4), acceleration sensors create massive continuous
data files (.mat), and temperature sensors offer discrete seri-
alized sampling data saved in the SQL relational database
(.sql). These kinds of data are continuously generated as long
as the workshop runs, but they are with limited information
before being associated with the Process-Workpiece-Centric
schema.

Pre-processing of the data silos
during the runtime of IDMW

The runtime of IDMW can be divided into three major pro-
cedures mainly, which are Determination of timelines driven
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Fig. 5 Different kinds of data from distributed sensors associated by knowledge schema

by RFID event graphical deduction model, Pre-processing of
disparate data silos, and Reuse of domain knowledge.

Determination of timelines driven by RFID event
graphical deductionmodel

The most important two Classes in Process-Workpiece-
Centric schema isMachiningProcessFactor andWorkpiece-
Factor, which needs to be determined first. In intelligent
machining, smartworkpieceswill be delivered to themachin-
ing workshop after the order was placed. Then, the Gantt
Chart will be generated and dispatched as machining plan-
ning. At this point, the binding between workpieces (Work-
pieceFactor) and processes (MachiningProcessFactor) has
accomplished.

In order to find the specific starting and ending time in
a machining process, the events graphical deduction model
(Wang et al. 2018) is employed for monitoring the real-time
machining. Some definitions are defined as follows:

Definition 1 Timelines are defined as a series of virtual
baselines with the same timestamp while machining. Some
specific timelines were selected as the machining events,
which are the actions that happen on processes, such as
machining starting event, machining ending event. Timelines
are determined by both the RFID readers/antennas config-
ured in the processes and the RFID tags inside workpieces,

which shown in Fig. 6. These timelines, or the machining
event, can be formalized by the following equation

t xP (x � s, si , ei , sp, ep, so, eo, e) (3)

where t sP—ArrivingTimeline from the last process to the cur-
rent process (in RFID antenna 1). t siP —Starting Timeline of
loading workpiece to machine tool table (out RFID antenna
1). teiP —Ending Timeline of loading workpiece in machine
tool table (inRFID antenna 2). t spP —StartingTimeline of pro-
cessing workpiece (starting of machine tool). tepP —Ending
Timeline of processing workpiece (ending of machine tool).
t soP —Starting Timeline of putting workpiece off machine
tool table (out RFID antenna 2). teoP —Ending Timeline of
putting workpiece off machine tool table (in RFID antenna
3). teP—LeavingTimeline from the current process (outRFID
antenna 3).

Definition 2 Machining states are defined as the contin-
uous status between two consecutive machining events,
such as workpiece-in-in-buffer, workpiece-in-machining,
workpiece-in-inspecting, workpiece-in-out-buffer. Usually,
a machining event would trigger the transition from one
machining state to another. The machining state can be for-
malized by

T x
P (x � in-bu f f er ,mounting, processing, dismounting, out-bu f f er )

(4)
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Fig. 6 The RFID event graphical deduction model of the workpiece in one process

where
T processing
P �

{
Tmachining
P ||T inspecting

P ||T heat0treating
P ||

T benching
P ||T sur f ace0treating

P ||. . .
}
.

Pre-processing of disparate data silos

As mentioned in “Distributed data storage in digital layer
based on process-workpiece-centric schema” section, the
sensors will continuously generate data in different formats
and form several data silos. These data silos need to be pre-
processed to pick out the useful data that can characterize
the machining process in IDMW. The Timelines that deter-
mined by the RFID event graphical deduction model provide
a reference time scale for pre-processing these data silos. The
loose data in the data silos can be pre-processed as needed to
data fragments that reflect machining processes.

As Fig. 7 shows, timelines provide benchmarks for trun-
cating time-series data. Specific to each kind of data silos, the
continuous signal such as vibration or energy consumption
will be truncated from .mat file within [t spP ,tepP ], the continu-
ous sampling data such as temperature will be obtained from
.sql according to SQL, the vision data will be edited from
.mp4, and the photo data such as the latest tool wear will be
picked from .jpg at a certain moment. It should be pointed
out that only the data silos related to the machining process
will be pre-processed, and which data silos will be selected
are determined by the Process-Workpiece-Centric schema
mentioned in “Process-Workpiece-Centric relation schema
description in IDMW ” section.

Reuse of domain knowledge

The goal of IDMW is to realize the application of domain
knowledge in the MOC. Therefore, it is necessary to ana-

lyze the interaction among various resource entities during
the runtime of IDMW to illustrate how domain knowledge
is expressed and applied. Figure 8 shows the interaction of
several resource entities during the runtime of IDMWwith a
multi-role swim lane diagram. The interaction-based instruc-
tions are detailly illustrated in Table 1.

The domain knowledge here is mainly reflected in two
aspects, namely the machining pattern determination in s03
and the implementation algorithm application in s033. The
machining pattern is stored in the Application Layer, which
can be used to determine which kinds of domain knowledge
to be used. The implementation algorithms are composed of
data analyzing models, such as the support vector machine
model and the correlation analysis model, which can be used
for the MOC process.

Industrial case studies

This section reports two real-world industrial cases on
IDMW based MOC in machining workshops. The first case
is from a landing gear manufacturer whose production is
small-batch and multi-process, and the goal is to evaluate the
stability of the machining process using the IDMW. The sec-
ond one comes from a precision machining workshop whose
aim is achieving reliable quality prediction of precision CNC
with the help of the IDMW. In these two cases, the simpler
and small data are marked as data properties of Individuals
in the schema while the numerous data are stored in separate
data silos. The schema is centralized while the data silos ack
as decentralized nodes. The architecture of Schema Central-
ized–Data Distributed helps to realize the better performance
on efficiency and safety.
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Fig. 7 Pre-processing of disparate data silos within a machining process

Fig. 8 The interaction of several resource entities during the runtime of IDMW with a multi-role swim lane diagram

Case study I: UsingMEPN knowledge in IDMW
to evaluate themachining stability

The products are Landing Gear Main Cylinder (lgr_0245),
which has five-stage deep-hole machining processes. As
“Construction of the IDMW ” section mentions, Process-
Workpiece-Centric schema for the whole workshop needs
to be modeled firstly, and then use the domain knowl-

edge (MEPN and stability evaluation model) to evaluate the
machining stability.

Modelling of the IDMW

Aircraft trial Workpiece lgr_0245 has 40 machining pro-
cesses, and it is one-of-a-kind production. Thus, a total of 41
individuals are extracted as main entities, including 40 indi-
viduals of MachiningProcessFactor (mp_xxx_of_lgr_0245)
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Table 1 The detail interaction-based instructions during the runtime of the IDMW

No. Description Results Memo

s00 Start s01

s01 Request machining relations r01 and s02 Traverse all relations

r01 Relation of entities and process info s03

s02 Activate related physical entities s021 and s022 and s023 and s024 Start machining

s021 Monitor r021

r021 Save the timelines Store as property of instance

s022 Monitor r022

r022 Save the monitoring data Generate data silos

s023 Machine and cut and fix

s024 Inspect r024 Generate quality data

r024 Save the quality data

s03 Select machining pattern s031 and s032 and s033 Multistage machining processes for
one workpiece, One process for
Multi workpiece, One process for
one workpiece, …

s031 Request quality relation r031

r031 Relation of quality s033 For algorithms

s0321 Request t spP , tepP r0322

r0322 Return Tmachining
P s032

s032 Request distributed and decentralized
data when Tmachining

P

r032

r032 Data fragments from all related
workpieces while machining

s033 For algorithms

s033 Algorithm running r03 Use domain knowledge

r03 Results

s10 End

and an individual of WorkpieceFactor. After associating
with all the related Individuals of MachineTools, Cutting-
Tools, Fixtures, Workers, MeasuringTools, MachiningMeth-
ods, and MachiningProcessStatus, the MEPN is used to
identify the key process that affects the final quality most
(Li and Jiang 2019). Result shows that the individual
mp_280_of_wp_lgr_0245 is the key process, and individ-
uals mp_050_of_wp_lgr_0245, mp_120_of_wp_lgr_0245
and mp_270_of_wp_lgr_0245 are three processes that affect
the key process. Subsequently, the stability evaluation model
is employed to figure out the status of the key process.

Operation of stability evaluation model in IDMW

The main Process-Workpiece-Centric schema is shown in
Fig. 9, where the colored blocks are the individuals, the white
blocks are data properties of individuals.

Instructions s00, s01, r01 are executed when constructing
the IDMW while s02 activates related resources entities.
Specifically, s021 actives the one rfid_reader and three
corresponding rfid_ALIENs to monitor the key process,

while r021 returns with six timelines and saves them in
the schema. Then, s022 actives mts_acc_BEETECH-
A302EX_002 to monitor ct_28 and ft_0203, and
drive mts_temperature_WF7002, mts_acc_BEETECH-
A302EX_001, mts_energy_LCDG-DG113-50 to monitor
mt_KCV -150/1. The collected raw data in different formats
are stored separately in r022. Similarly, s024/r024 get qual-
ity data, which are stored in the schema as data properties
directly.

s03 is for selecting the machining pattern, which is
multistage machining processes for one workpiece. Then,
s031/r031 helps to find out the related decentralized data
silos while s0321/r0322 will pre-process them to data frag-
ments with definite timelines. All the retrieved data are fed
to the stability evaluation model, in which the stability index
can be calculated.
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Fig. 9 Using IDMW to evaluate the machining stability of One-of-a-kind production

Case study II: Using the correlation analysis
knowledge to predict the precision CNCmachining
quality of multiple workpieces

Case I focused on the application flow of IDMW, while Case
II pays attention to the handling and reuse of domain knowl-
edge.

The wear of tools, ambient temperature, and energy con-
sumption will affect the final machining quality performance
when precision machining. Thus, a series of machining
experiments have been conducted to find mathematical
linking in the Brunel University London Advanced Man-
ufacturing Laboratory, which can be viewed as a precision
machining workshop (Katchasuwanmanee et al. 2015). Then
IDMW is used for data collection, data analysis, knowledge
storage, and knowledge reuse.

Construction of the IDMW

IDMWinCase II ismainly for the efficient storageofmachin-
ing in-process data, information, and knowledge. Thus, it is
needed to model the relations of resource entities first and
foremost.

Forty aluminum tests were performed on a CNC machine
at different periods during the days in order to obtain
different ambient temperatures of the workshop. All the
relations and machining in-process data will be collected
and stored in IDMW, which can be seen in Fig. 10.
There are forty Individuals ofWorkpieceFactor, symbolized
from mp_end-mill_of_wp_1 to mp_end-mill_of_wp_40, and
each of them corresponds to two Individuals of Machin-
ingProcessFactor, i.e.,mp_end-mill-roughing_of_wp_x, and
mp_end-mill-finishing_of_wp_x. The IDMW can document
all the machining data from sensors.

Reuse of domain knowledge stored in IDMW

Supposing that there comes a new workpiece mp_end-
mill_of_wp_test to be machined. It has two machin-
ing processes that are mp_end-mill-roughing_of_wp_test
with cutting tool ct_SGS-roughing-Tool, and mp_end-mill-
finishing_of_wp_test with cutting tool ct_SGS-finishing-
Tool. The machine tool mt_cnc_KERN-5-Axis-HSPC-2216
and machining method mm_machining_parameters are also
given.

In the beginning, a relational query is executed to retrieve
all similar historical individuals of MachiningProcessFac-
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Fig. 10 Using IDMW to predict precision machining quality of multiple workpieces

tor (with the same Individuals ofMachineTool, CuttingTool,
Fixture). The SPARQLQuery Language is shown as follows.

PREFIX :  <http://www.idmw.org/bulaml/2015#> 
 
SELECT ?n  
FROM    <idmwforbul.rdf> 
WHERE { 
    ?use    :mt_URI 'mt_cnc_KERN-5-Axis-HSPC-2216'. 
    ?use    :ct_URI 'ct_SGS-finishing-Tool' 
    ?use    :ft_URI 'ft_spray_nozzle_coolant_SD18' 
    ?has    :mm_machining_parameters    ?o. 
    FILTER  spindle_speed(?o) = 12,000_rev/min 
            depth_of_cut_roughing(?o) = 1mm 
            depth_of_cut_finishing(?o) = 0.1mm 
            feed_speed(?o) = 12000_rev/min 
            cutting_speed(?o) = 226.29_m/min 
            feed_per_tooth(?o) = 0.025_mm/tooth 
            ft_spray_nozzle_coolant_SD18_viscosity(?o) = 100_kPa 
            ft_spray_nozzle_coolant_SD18_temperature(?o) = 20_°C 
    } 

With that, all the previous 40 workpieces (Individuals)
can be found out, and the timelines of these 40 workpieces
are also separately requested. Then, the relevant data can be
taken out from distributed data silos, which shows in Table 2.

At this point, an algorithm of linear regression analy-
sis was performed in the Application Layer. Results show
that the quality of the workpiece is degraded as the tem-
perature increases, and a negative correlation can be found
between ambient temperature and energy consumption. The
three-dimensional correlation of quality error (%), total

energy consumption (kWh) and ambient temperature (°C)
is described with

z � 0.014x − 0.031y + 0.164 (5)

where z is the quality error; x is the ambient temperature,
and y is the total energy consumption. Results indicate that
the ambient temperature should be monitored and controlled
accordingly to achieve product quality standards and also to
reduce energy usage. Additionally, the quality of the current
workpiece can be predicted by the fitted regression equation.
Moreover, the processing data of the new workpiece will be
also stored in the IDMW.
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Table 2 Relevant data of previous 40 workpieces taken from IDMW

Wp (no.) Ambient
temperature
(°C)

Total energy
consumption
(kWh)

Quality error
(%)

Tool
wear-roughing
(µm)

Tool cutting
edge
radius-roughing
(µm)

Tool
wear-finishing
(µm)

Tool cutting
edge
radius-finishing
(µm)

1 23.6 11.02 0.1452 9 4.5332 4 4.3844

2 25.3 10.85 0.1698 15 6

3 26.1 10.76 0.1778 19 8

4 25.5 10.73 0.1836 25 7.6343 9 4.8228

5 23.7 11.13 0.1491 30 11

6 24.3 10.93 0.1467 33 12

7 26.2 10.79 0.1907 37 13

8 25.2 10.94 0.1730 39 8.9646 15 5.2087

9 23.9 11.05 0.1349 42 16

10 24.7 10.92 0.1636 46 18

11 26.5 10.69 0.1971 49 19

12 25.9 10.79 0.1828 53 9.4382 21 5.5889

13 23.3 11.32 0.1466 56 23

14 25.7 10.86 0.1746 58 24

15 26.3 10.75 0.1960 60 25

16 26.6 10.67 0.1990 61 10.1692 26 6.3713

17 23.8 11.24 0.1475 63 27

18 25.0 10.99 0.1617 66 28

19 25.6 10.86 0.1860 68 30

20 25.8 10.74 0.1723 71 11.9811 31 6.4988

21 23.4 11.27 0.1476 73 33

22 26.5 10.57 0.2122 75 34

23 25.8 10.66 0.2072 76 36

24 25.7 10.81 0.1894 78 13.4812 37 7.2136

25 23.8 11.12 0.1391 79 39

26 25.4 10.80 0.1762 81 40

27 26.3 10.67 0.1923 84 41

28 25.4 10.92 0.1877 86 14.6927 43 8.3678

29 23.9 11.21 0.1494 88 45

30 25.8 10.84 0.1792 91 46

31 26.1 10.71 0.2060 93 47

32 26.8 10.57 0.2060 96 15.9731 48 9.6230

33 24.1 11.20 0.1516 98 49

34 25.3 10.74 0.1880 101 51

35 25.3 10.97 0.1681 103 52

36 25.9 10.67 0.2057 105 18.8214 53 10.7778

37 24.3 11.02 0.1580 108 55

38 25.6 10.89 0.1762 111 56

39 25.4 10.93 0.1729 112 57

40 26.7 10.64 0.2027 114 20.8330 58 12.8108
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Further discussions

IDMW is designed for collecting all kinds of machining in-
process data, managing them with domain knowledge, and
enabling them in MOC. This paper attempts to construct a
primary-level IDMW and applies it in some industrial prac-
tices. Contributions, technical advantages, and prospects of
the proposed IDMW are described separately below.

Contributions of the IDMW

IDMW mainly has three advance technological contribu-
tions.

(1) Accessible for heterogeneous in-process data The novel
Schema Centralized–Data Distributed architecture in
the Digital Layer makes all in-process data easy to
access. IDMW is compatible with all data types, includ-
ing the multimedia data and sensor data with a variety
of formats. Any kind of data can be put into the Digital
Layer of IDMW via CPS as long as can be recorded.

(2) Interconnectable of disparate data silos driven by the
knowledge schema The knowledge schema in IDMW
has the Process-Workpiece-Centric architecture that all
the non-core Classes can be linked to either Machin-
ingProcessFactor orWorkpieceFactor. The RFID event
graphical deductionmodel is used to determine the time-
lines, which can pre-process the disparate data silos,
thereby driving the heterogeneous data interconnected.

(3) Flexible storage of domain knowledge The storage of
complex machining knowledge in no longer relying on
a unified description template. Knowledge in IDMW is
represented as relations of resources entities in knowl-
edge schema, and they will not be summarised and
represented until needed. InCase II, the knowledge itself
(formula z � 0.014x − 0.031y + 0.164) is not stored in
IDMW but solved by APP in Application Layer when
there is a need for quality prediction of a newworkpiece.

Technical advantages of the IDMW

IDMW shows several significant differences comparing to
databases, data warehouses, knowledge bases, knowledge
spaces, and knowledge graph.

(1) The architecture of Schema Centralized–Data Dis-
tributed allows numerous data to be stored as data silos
in edge nodes to avoid frequent transmission, which
gains the safety of critical data and reduces the band-
width load of transmission.

(2) The mode of Dynamic-Knowledge solves the problem
that knowledge is challenging to represent and reuse.
IDMW combines domain knowledge and schema to

subvert the traditional knowledge representing ways,
which can be further used for the knowledge automation
in advanced machining.

Additionally, there are some apparent differences between
industrial dataspace and knowledge engineering, such as the
knowledge graph. IDMW is defined in the context of data
engineering,whichmainly focuses on discovering the hidden
relations of different data silos. While the knowledge graph
of knowledge engineering, usually pays more intentions to
represent explicit knowledge, which is intended for complex
reasoning mainly.

Prospects of the IDMW

It is believed that the IDMW can achieve more profound
and broader applications in the future. On the one hand, the
latest graph technologies can be employed to discover more
implied relations of the different data silos. For example, it is
possible to reveal the relations of different workpieces with
the same features but different machining techniques. On
the other hand, an intelligent question-answering system can
also be implemented in the Application Layer, by developing
the machine-readable and machine-operable APPs, thereby
realizing the Industry 4.0 oriented IDMW.

Conclusions

This paper presents an innovative conception of indus-
trial dataspace together with its implementation framework
against the workshop-level MOC. The architecture of the
IDMW and its construction process have been discussed in
detail.

The novel IDMW contributes to dealing with the chal-
lenging issues, particularly in managing heterogeneous data,
interconnecting the resource entities, and handling domain
knowledge within a machining workshop. Besides, this
study shows how to construct the Process-Workpiece-Centric
knowledge schema in IDMW and illustrates how it works by
introducing framework construction, relation modeling, data
storage, timelines determination, data silos pre-processing
and domain knowledge reuse. Furthermore, through two
industrial case studies, it is found that IDMW has effects
on managing heterogeneous data, interconnecting resource
entities and handling in-process knowledge.

Knowledge contributions of this research work lie in
three aspects. The first is proposing modeling architecture of
SchemaCentralized–DataDistributed. The second is discov-
ering relations of data silos with the help of the RFID event
graphical deduction model. The last is realizing the univer-
sal storage and processing domain knowledge in machining,
even in the associated manufacturing process chain.
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