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A Bayesian Rate Ratio Effect Size to Quantify Intervention Effects for Count Data in Single 

Case Experimental Research 

Abstract 

Single case experimental design (SCED) is an indispensable methodology when evaluating 

intervention efficacy. Despite longstanding success with using visual analyses to evaluate SCED 

data, this method has limited utility for conducting meta-analyses. This is critical because meta-

analyses should drive practice and policy in behavioral disorders, more than evidence derived 

from individual SCEDs. Even when analyzing data from individual studies, there is merit to 

using multiple analytic methods since statistical analyses in SCED can be challenging given 

small sample sizes and autocorrelated data. These complexities are exacerbated when using 

count data, which are common in SCEDs. Bayesian methods can be used to develop new 

statistical procedures that may address these challenges. The purpose of the present study was to 

formulate a within-subject Bayesian rate ratio effect size (BRR) for autocorrelated count data 

which obviates the need for small sample corrections. This effect size is the first step towards 

building a between-subject rate ratio that can be used for meta-analyses. We illustrate this 

within-subject effect size using real data for an ABAB design and provide codes for practitioners 

who may want to compute BRR. 

Keywords: single case experimental design; visual analysis; Bayesian; rate ratio; effect 

size; interrupted time-series  
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A Bayesian Rate Ratio Effect Size to Quantify Intervention Effects for Count Data in Single 

Case Experimental Research 

The generation of evidence-based practices (EBPs) for students for whom typical 

instruction may not be effective must rely on research that meets strong methodological 

standards (e.g., Odom, Brantlinger, Gersten, Horner, Thompson, & Harris, 2005). One class of 

methods that can meet strong standards when evaluating intervention efficacy is the single-case 

experimental design (SCED). SCEDs can yield solid causal inference about treatment impacts 

and are of interest to federal agencies such as the Institute of Education Sciences (IES) (e.g., 

Kratochwill, Hitchcock, Horner, Levin, Odom, Rindskopf, & Shadish, 2010, 2013) and the 

National Institutes of Health (NIH) for n-of-1 designs which are a special case of SCEDs 

(Gabler, Duan, Vohra, & Kravitz, 2011). The What Works Clearinghouse (WWC), for example, 

now offers reports on special education interventions that are largely informed by SCED work 

(e.g., WWC, 2016) and IES funds SCED research to advance development of EBPs. The 

development of EBPs can be further advanced by systematically synthesizing SCED evidence, 

which represents a critical facet of behavioral disorders literature (cf. Briesch & Briesch, 2016; 

Chaffee, Briesch, Johnson, & Volpe, 2017; Dart, Collins, Klingbeil, McKinley, & 

VanDerHeyden, 2014; Kilgus, Riley-Tillman, & Kratochwill, 2016; Maggin, O’Keefe, & 

Johnson, 2011; Maggin, Chafouleas, Goddard, & Johnson, 2011; Soares, Harrison, Vannest, & 

McClelland , 2016). In principle, syntheses could be expanded by combining SCED effect sizes 

with impact estimates generated from other design types, such as randomized controlled trials 

and quasi-experiments (e.g., Hitchcock, Horner, Kratochwill, Levin, Odom, Rindskopf, & 

Shadish, 2014). Hence, EBP generation and evaluation is inextricably linked to SCED work and, 

as demonstrated later in this article, there is an ongoing need for methodological refinement to 
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related statistical analyses. We argue that expansion of analytic options could in turn, support 

behavioral analysis praxis, which entails combining research and practice (see for e.g., Nastasi & 

Hitchcock, 2016) and, more distally, practice via corresponding improvements in our 

understanding of evidence.  

So what is the basis for arguing that there is need to refine statistical analyses of SCED 

data? In this article we focus on effect size estimation to address this question. Of course, several 

SCED effect size procedures exist, such as those based on percent of non-overlap data points 

between the baseline and intervention phases (Parker, Vannest & Davis, 2011) and standardized 

between-subject mean difference corrected for small sample sizes (Hedges, Pustejovsky, & 

Shadish, 2012, 2013). However, the former set of indices is problematic because they do not well 

account for outliers (Harrington & Velicer, 2015), cannot account for trend, and only measure 

non-overlap but not an actual effect size. The latter set of indices are a significant innovation in 

SCED analyses because they are between-subject effect sizes that can correct for small sample 

sizes assuming that data are intervally-scaled. However, it is more common in SCEDs to use 

count (e.g., the number of times some discrete behavior occurred) or proportion data (e.g., the 

percentage of time a student has appeared to be attentive in a classroom) (Rindskopf, 2014). 

Moreover, SCED data are often autocorrelated which means the error at a given time-point (say 

t) is systematically correlated with the error at a different time-point (say t + l). This is referred 

to as a l-lag autocorrelation (e.g. 1-lag, 2-lag, etc). This autocorrelation is the antithesis of the 

independence of observation assumption that is the basic tenet of all general linear models such 

as ANOVA and regression.  Unfortunately, other commonly used effect sizes in behavioral 

research such as R-squared (Cohen, 1988) do not account for autocorrelations. Therefore, there is 

a need for new effect size procedures that do not necessarily replace existing approaches but can 



BAYESIAN EFFECT SIZE FOR COUNT DATA IN SCEDs 4 

 

at least be used in a supplementary fashion with existing procedures such as visual analyses so 

that SCED researchers can draw yet more information from their studies.  

To be considered as a contribution to research and later practice, any new effect size 

estimation procedure should: (a) account for both autocorrelations and the scale of the data 

commonly used in SCEDs; (b) deal with small sample sizes, and (c) produce reliable interval 

estimates of uncertainty. To our knowledge the effect size we propose here, the Bayesian rate 

ratio (BRR) effect size, is the first to meet these needs. To demonstrate the BRR, in this article 

we use data from a published study of an ABAB design that was used to reduce disruptive 

behaviors of students in an urban fourth grade Math classroom (Lambert, Cartledge, Heward, & 

Lo, 2006). We apply the BRR to show how Bayesian statistical significance testing can be 

conducted using SCED count data, and we assess the degree to which visual analyses, the 

nonoverlap of all pairs (NAP) effect size, and the BRR produce both complementary and 

contradictory information about the intervention effect. Before these demonstrations are 

presented, we offer an overview of how Bayesian estimation can contribute to the analyses of 

SCED data.  This is because understanding the potential contribution of the BRR to SCED work 

first requires a review of the challenges that come with analyzing SCED data.  

Challenges in analyzing SCED data  

One of the main reasons for use of SCEDs is the need to document a functional relation 

between specified independent and dependent variables. Essentially each person (or case) serves 

as the unit of analysis and his/her own control to generate strong causal evidence about 

intervention effects. Evidence of intervention efficacy is documented primarily through visual 

analyses that focus on changes from baseline to intervention in the level, trend, variability, 

immediacy of effect, data overlap, and consistency in the behavioral pattern for similar phases 
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(Gast & Ledford, 2014; Horner & Kratochwill, 2012). There is some, but not complete 

consensus among expert researchers on the decision-rules for making judgments regarding 

intervention effectiveness (e.g., Kratochwill et al., 2013), but the rules for visual analyses are not 

applied uniformly by behavioral and educational researchers (Horner, Swaminathan, Sugai, & 

Smolkowski, 2012). Furthermore, not all treatments exhibit immediacy effect and some 

treatment effects may not be visually striking, even though the overall data may show clinical 

and statistical effectiveness (Meadan, Snodgrass, Meyer, Fisher, Chung, & Halle, 2016). 

Therefore, although some researchers believe that visual analysis can be based on objective 

criteria (Horner, Carr, Halle, McGee, Odom, & Wolery, 2005; Roane, Rihgdahl, Kelley, & 

Glover, 2011), others see a need for quantitative methods to document intervention effects (e.g., 

Maggin, Chafouleas, Goddard, & Johnson, 2011; Parker et al., 2011).  

We argue that, in principle, there is a need for both statistical and visual analysis to 

evaluate the causal validity of SCED findings via transparent, objective, and replicable 

procedures. Visual analysis primarily addresses the question of evidence of a functional relation 

between independent and dependent variables and statistical analysis quantifies the magnitude of 

the effect. We agree with authors who see visual analysis as an effective analytic approach but 

more information can be drawn from using multiple analytic methods and visual analyses do 

come with drawbacks.  

Autocorrelation. A primary drawback from using visual analysis alone is based on the 

problem of autocorrelated errors (Harrington & Velicer, 2015), which is typical of SCED data 

given the need for repeated measures. Autocorrelation can contribute to decreased interrater 

reliability during visual analyses (Brossart, Parker, Olson, & Mahadevan, 2006) and increase in 
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Type I errors (Horner & Kratochwill, 2012; Lenovaz & Rapp, 2015; Maggin & Chafouleas, 

2013).  

If visual analyses were imperfect with respect to distinguishing autocorrelation from true 

performance change, one would hope to use statistical analyses to offer complimentary 

procedures so that researchers are better able to understand treatment effects. However, regularly 

used statistical methods of analyses such as ANOVA and regression are poorly suited for most 

SCED studies. To begin, ANOVA/regression-based (i.e., Ordinary Least Squares [OLS]) 

methods a) entail assuming that observations are independent (i.e., the antithesis of 

autocorrelation) and b) related analyses should be expected to contend with higher rates of Type 

II errors because SCEDs typically entail use of small sample sizes (Gresham, Sugai, & Horner, 

2001).  

On the other hand, OLS procedures can be used to detect the presence of autocorrelation. 

However, confidence intervals (CI) of autocorrelation estimates, which are needed to help us 

understand whether we can rule out autocorrelation, tend to be inaccurate because they tend to 

have undercoverage. Undercoverage means that CIs are narrower than they should be (Shadish, 

Rindskopf, Hedges, & Sullivan, 2013) and thereby makes it difficult to assess if autocorrelation 

is a concern. A subtler issue is that the challenges of inadequate autocorrelation diagnostics and 

small sample sizes interact. Autocorrelation estimates are often negatively biased and are 

accompanied by larger sampling errors because SCEDs typically have a small number of 

observations per participant in a study.  Huitema and McKean (1994) and McKnight, McKean, 

and Huitema (2000) state that 50 observations per participant are about the minimum threshold 

needed to address these sampling error concerns. In contrast, a review of 809 SCEDs published 

in 113 studies in the year 2008 in 21 journals, studies typically had only 4-6 observations per 
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phase (Shadish & Sullivan, 2011). This is important because OLS confidence intervals have 

undercoverage, meaning fewer than expected autocorrelation confidence intervals contain the 

true value (Shadish, Rindskopf, Hedges, & Sullivan, 2013). This concern is exacerbated when 

there are a minimal number of data points per phase. In short, OLS procedures for assessing the 

presence of autocorrelation in SCED data may lead analysts to proceed with false confidence.  

Effect sizes. Concerns with the use of standard statistical approaches move beyond 

autocorrelation, Type I, and Type II errors. Effect size estimates are also problematic because of 

the reasons discussed below. Standardized mean difference type effect sizes obtained from 

SCEDs require correction for small samples and require distributional assumptions that might 

not fit with typical analytic scenarios (Hedges, Pustejovsky, & Shadish, 2012, 2013). Of course, 

non-overlap indices represent a good option because they are free of distributional assumptions 

and can be applied to count data (Parker et al., 2011); there is reason after all for their 

longstanding use. However, NAP indices do not help researchers account for the distance 

between data points and consider only their non-overlap. This renders non-overlap between two 

closely spaced points the same as non-overlap between two widely spaced points. By logic, 

however, we expect the effect size of the former case should be greater than the effect size of the 

latter. Moreover, the standard errors proposed for NAP are not free of distributional assumptions 

and may be biased in the presence of autocorrelation. Due to space restrictions, we do not review 

all non-overlap SCED effect sizes options (see instead Parker et al., 2011). Furthermore, 

computing p-values and CIs for non-overlap metrics entail complex procedures (Parker et al., 

2011). For all of these reasons, there is a need for different quantitative analytic solutions (e.g., 

Shadish et al., 2013). We argue that Bayesian methods can yield a viable solution that can 

overcome these challenges.  
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Bayesian Methods and SCEDs 

A fundamental reason for why a Bayesian approach can be of use in the examination of 

SCED data is that it does not depend on large sample or asymptotic theory (Ansari & Jedidi, 

2000; Ansari, Jedidi, & Jagpal, 2000). Bayesian methods also allow more direct probabilistic 

interpretation of parameters than do frequentist methods, which generally use OLS and the sort 

of null hypothesis testing procedures that are based on Fisher’s work (Cohen, 1994). Bayesian 

estimation entails examining the posterior distributions of parameters such as intercepts, slopes, 

and effect sizes, and provides the probability (or credibility value) of each value an estimated 

parameter can take (Kruschke, 2013). Unfortunately, most applied researchers are not trained in 

Bayesian estimation (Natesan, Boedeker, & Onwuegbuzie, 2018).  Perhaps as a result, Bayesian 

methods are not typically used in SCED work. Consider, for example, that of the 239 SCED 

articles published in the first half of 2018, only four mention the word Bayesian; of these four, 

none were empirical works (Natesan, 2019).   

Fortunately, statistical methodologists have started to work out how Bayesian methods can 

be deployed to overcome various analytical challenges presented by SCED data. For instance, 

Moeyaert, Rindskopf, Onghena, & Van den Noortgate (2017) compared maximum likelihood 

and Bayesian estimation of multilevel modeling of SCED data. Natesan and Hedges (2017) 

proposed a Bayesian unknown change-point model that overcomes the small data and 

autocorrelation challenges of SCEDs by using Bayesian methodology. Natesan, Minka, & 

Hedges (In Press) extended this work further to include multiple phases such as the ABAB 

design. These works do not however address count data because such data require making 

different distributional assumptions, and as mentioned above, count data are more common in 

SCED work than interval data. Therefore, the present article describes how to use within-subject 
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Bayesian effect sizes and in particular addresses statistical complexities that arise from using 

count data (the Bayesian rate ratio or the BRR). It is of import to note that the BRR we present is 

a within-subject effect size and cannot be directly used in meta-analyses unlike the one proposed 

by Hedges et al. (2012). Nonetheless, we see this proposed BRR as the first step to build an 

equivalent between-subject effect size for count data that can be used for meta-analyses. 

Importantly, the programs used to compute the indices for ABAB designs are available to 

download for free from github (https://github.com/prathiba-stat/Bayesian-rate-ratio) along with 

annotations so that researchers can modify and input data for their own research. By 

demonstrating this method, discussing its advantages, and making the software codes accessible, 

this article can help researchers compute the BRR. In addition, since SCED researchers 

commonly use visual analyses, we show how to visually examine posterior density plots and 

regions of practical equivalence (ROPE), which we consider to be a part of the BRR process. 

With that background, there are three fundamental reasons for why a Bayesian approach should 

be considered when analyzing SCED data. We present these issues and then describe BRR.  

Use of Bayesian Estimation: An Overview of Three Fundamental Issues 

In Bayesian methods, each parameter estimate (an outcome that is calculated) represents a 

distribution of values; in contrast, when using frequentist methods one calculates a point estimate 

and applies a null hypothesis test. A Bayesian parameter can be of greater utility than a null 

hypothesis significance testing, and associated CI, derived from frequentist statistics. This is 

because a) a frequentist CI is often misunderstood in practice, and b) by itself does not support 

replication research, representing two fundamental issues that warrant use of Bayesian 

estimation. As for the first issue, unless the interpreter of frequentist results is well acclimated to 

how the process works, it can be easy to misconstrue a finding. To explain, when a frequentist 
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95% CI (or 68%, etc.) is constructed around a point estimate, such as a standardized mean 

difference effect size (SMD), this does not mean that there is a 95% chance that the observed 

difference is a true representation of a population difference (Gelman, Carlin, Stern, Dunson, 

Vehtari, & Rubin, 2013). Yet according to Cohen (1994) this is the incorrect interpretation many 

will make.  

To explain, consider 10,000 samples. If one were to obtain CIs from these 10,000 samples 

then a 95% CI means that 95% of these CIs would contain the true value. In sum, constructing 

the frequentist CI entails using normal curve theory to provide a sense of how many of some 

number of (theoretical) sample draws contain the null value, and thereby gives a researcher a 

basis on which to consider whether to reject a null hypothesis. With that background, the 

frequentist CI is often misinterpreted as representing the probability that the point estimate (in 

this example, the observed SMD) is the population parameter, or close to the population 

parameter (again, see Cohen, 1994). But to be clear, one might be highly confident in rejecting a 

null hypothesis using frequentist methods but still have limited capacity in guessing the actual 

value of population parameter. In contrast, in Bayesian estimation the probability that a statistical 

estimate falls in the 95% credibility interval is much more straightforward. The chances that the 

observed SMD reflects the actual population value is, well, to be interpreted as 95% (Kruschke, 

2015).  

This connects to the second fundamental issue. This form of interpretation supports 

replication research, which has become an important topic in special education (e.g., Cook, 

2014). This is because researchers should be using prior information to hypothesize (and 

empirically test) the size of a plausible treatment impacts on some outcome measure. As more 

information is gathered, the hypothesis becomes more refined. Hence, having a Bayesian 
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mindset entails continued thought about replication. If researchers are working with distributions 

of plausible treatment values, they will be in a stronger position to specify the strength of an 

intervention in advance of a study.  

A third big picture issue is that Bayesian methods can more easily accommodate model 

complexities and several data types in a way that addresses the numerous concerns described 

earlier in this article. These methods can handle proportion and count data, which are common in 

SCED work (e.g., Rindskopf, 2014), and Shadish et al. (2013) found that Bayesian estimates of 

autocorrelation were more accurate than frequentist estimates. In all, we are not advocating that 

frequentist methods be discontinued in SCED research but we do argue that they are often poorly 

suited to SCED data analysis so should be used more sparingly. In contrast, Bayesian approaches 

do not entail the same drawbacks and they can complement visual analyses.  With that 

background, we turn to BRR details.  

Applying the BRR to SCED Count Data 

The Bayesian model used to analyze SCEDs in the present study is based on an 

interrupted time-series design that entails Bayesian estimation (Natesan, 2019; Natesan & 

Hedges, 2017, 2019; Natesan, Minka, & Hedges, 2019). As the name implies, an interrupted 

time-series design is a longitudinal design with time as the independent variable and has an 

outcome variable of interest tracked across time. A sudden introduction or withdrawal of a 

stimulus at a certain time-point causes an interruption in the pattern obtained until this time-

point. Following this interruption, the outcome variable may follow a different pattern. This is 

the typical setup of an interrupted time-series design. Thus, SCEDs are variants of these designs. 

In fact, in the ABAB design that we will illustrate, there are three interruptions – baseline to 

intervention, removal of baseline from intervention, and reintroduction of intervention. We refer 
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to the Bayesian estimation of an interrupted time-series design as a Bayesian interrupted time-

series (BITS) design. In our conceptualization of BITS, intercepts vary by phase (as in AB 

phases used in most SCEDs). We assume use of count data and in this approach the dependent 

variable is modelled using Poisson regression. We do not assume trend in the data that may 

appear due to anything other than autocorrelation because research has shown that BITS CIs of 

SCED data with autocorrelation and trend due to source other than autocorrelation severely 

underperform (Natesan & Hedges, 2019). In fact, the model confounds the patterns due to two 

sources of trend, that is, autocorrelation and trend from other sources such as a growth or decline 

in the outcome variable, that it is impossible to separate the variance that can be attributed to 

trend and the variance that can be attributed to autocorrelation. Natesan and Hedges (2019) 

recommend that for SCEDs, models that estimate only autocorrelation or trend due to other 

sources be estimated and not both in the same model. Therefore, only the simplest model, that is, 

the model with intercepts and autocorrelations alone is considered in the present study. The 

observed value at the first time point (!!") in Phase " follows a Poisson distribution with mean 

!#!" where !#!"is the probability of obtaining a given response on the given model. The rest of the 

time series follows a Poisson procedure with 1-lag autocorrelated errors (e.g. Harrop & Velicer, 

1985; Velicer & Molenaar, 2013). The predicted values in the rest of the time series are 

distributed as: 

 !!#|%!#$", Θ	~	*+,!#!#|(!#$")-.  (1) 

In Equation 1, %!#$" is the past history, Θ is the vector of parameters, and *+ refers to Poisson 

distribution. Essentially, what Equation 1 demonstrates is that the predicted value of the 

dependent variable at Time . in Phase " is Poisson-distributed as the probability of the predicted 
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value of the current data point given the past history, or the value of the previous data point. The 

generalized linear model and the serial dependency of the residual (/#) can be expressed as, 

 
!#!# = 1

exp	(6(" + /!#$"), 9:	. ≤ .)
exp	(6(* + /!#$"), +.ℎ/=>9?/

 and 
(2) 

 /!#$" = @/!#$* + A. (3) 

In Equation 2, !#!# is the probability of the predicted value of the dependent variable at Time . in 

phase ";  6(" and 6(*	are the means or intercepts of Phase 1 and Phase 2, respectively; /!# is the 

error at Time . in Phase "; @ is the autocorrelation coefficient; and A is the independently 

distributed error. In Equation 3, / is white noise created by a combination of random error (A) 

and autocorrelation between adjacent time-points (@). Their standard deviations are derived from 

Equation 4.  

 D+ =
,!

-"$." . 
(4) 

Consider a design with only two phases: baseline and treatment. Let the time-points in the 

baseline phase be 1, 2, … , .) and in the treatment phase be .)/", … , .0. Then the intercept 6(!	can 

be modeled as: 

 6(! =	 1
6(", 9:	. ≤ .)
6(*, +.ℎ/=>9?/

. 
(5) 

The intercepts are drawn from normal distributions with hyperpriors (i.e., prior on a prior) in 

order to reduce the impact of prior specification on the estimates (Natesan, Nandakumar, Minka, 

& Rubright, 2016). The means of these normal distributions (F(!) are independently drawn from 

normal distributions with standard deviations for each phase independently drawn from gamma 

distributions.  

 6(!	~	G+=H(F(!, D!*) (6) 
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 F(!~	G+=H(0, 100); " = 1, 2 (7) 

 D!	~	KLHHL(1, 1). (8) 

Although the use of appropriate priors is very much a growing field and there is no generic 

guidance on whether there is a prior that works for all parameters (this is probably not possible), 

the general rule for use of priors is to use reasonable estimates with reasonable uncertainty 

specification. For instance, Natesan, Nandakumar, Minka, and Rubright (2016) conducted a 

study of prior comparisons that showed that using priors that matched the generating distribution 

produced comparably good estimates as hierarchical priors as used in the present study. 

However, using extremely less informative priors such as having a very large standard deviation 

led to improper posteriors. In general, when nothing is known about the estimates, a sensitivity 

analysis where different priors are tested to see how they affect the posterior distributions is 

recommended.  

An effect size estimate of the treatment can be obtained from the posterior distribution of 

the rate ratio of the mean of the distribution from which the intercepts are drawn as given in 

Equation 9.  

 F12#34 =	
/5"

/5#
 (9) 

The rate ratio can be interpreted as the ratio of the rate between the treatment and the baseline 

phases. Larger rate ratio values are desirable for positive outcome variables because this would 

indicate the effectiveness of the intervention in increasing the occurrence of positive outcome 

variables in the treatment phase compared to that of the baseline phase. In the ABAB design, 

there will be 3 rate ratio effect sizes that will measure intervention effect, removal of intervention 

effect, and reintroduction of intervention effect. 
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The details of the Gibbs sampler are given in Appendix A. We now demonstrate how 

these concepts can be applied to a real dataset obtained from a SCED that implemented a 

function-based comprehensive behavioral intervention. This intervention was implemented to 

decrease problem behavior and increase socially appropriate behavior of four children in an 

elementary school. 

ABAB Example 

In the study by Lambert, Cartledge, Heward, and Lo (2006), the effect of response cards on 

disruptive behavior of urban fourth-grade students during Math lessons was measured. The 

baseline phase was with a single-student responding and the treatment phase was where each 

student would write a response to a question posed by the teacher. Students with frequent 

disruptive behaviors in the classroom were selected to participate in the study. We chose this 

study’s data because it used ABAB design with count data, which was appropriate for 

demonstrating BRR for count data. The number of disruptive behaviors during single-student 

responding (SSR) and response card phase (RC) for the students was the outcome variable. The 

data are plotted in figure 1.    

INSERT FIGURE 1 ABOUT HERE 

Visual Analysis Results and Discussion 

Visual analysis is commonly used to determine the existence of a functional relation 

between the independent and dependent variables and to specifically determine the stability of 

the behavioral pattern, change in the level of performance, immediacy of effect, direction of the 

trend line, and consistency in data across similar phases.  In addition to visual analyses, the 

Nonoverlap of All Pairs (Parker et al., 2011) effect size was computed to determine the 

magnitude of effect. NAP is a non-parametric technique to measure overlap for two phases and 
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yields the percentage of improvement data across adjacent phases. It does not account for trend. 

Although Parker and Vannest (2009) claim that it is appropriate for nearly all data types and 

distributions, it cannot distinguish between various levels of non-overlap. For instance, a 100% 

non-overlap could be due to outliers or unusually big effects or very small effects.  

As shown in Figure 1 and noted by the authors, the mean and median for Group A across 

blocks of sessions during the first baseline was 7 instances of disruptive behaviors. The mean 

decreased to 0.5 during the first intervention phase (median = 0). Similarly, the mean increased 

to 7.875 (median = 8) during the second baseline and then decreased to 2 (median = 2) when 

intervention was reinstituted. Data show an immediate effect where the average of the last three 

baseline I data points show an average of 6.33 which decreased to 0.67 for the first three data 

points in intervention I. A similar pattern was noted following a reversal and reinstitution of 

intervention, going from an average of 0.9.33 in baseline II to 2.66 for the first three data points 

for intervention II. The trend is not clearly discernible from the figure. Finally, data also show 

consistency in the pattern across similar phases when the independent variable was manipulated 

to document replications of effect. Results for the NAP effect size are given in Table 1. The 

results show that there is no overlap between the phases. 

INSERT TABLE 1 ABOUT HERE 

Statistical Analyses 

JAGS 4.0.0 (Just another Gibbs sampler, Plummer, 2003) was used to fit the data. The R 

package runjags (Denwood, 2016) runs parallel chains and iterates the model estimates until 

convergence. Runjags checks convergence using two convergence diagnostics: the multivariate 

potential scale reduction factor (MPSRF, Brooks & Gelman, 1998) and Heidelberger and 

Welch’s convergence diagnostic (Heidelberger & Welch, 1983). Four chains were run. The 
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corresponding JAGS code is given in github. The estimates are shown in Table 2.   

INSERT TABLE 2 ABOUT HERE 

Level changes. The estimated levels of the outcome variable in both baseline and 

intervention phases are approximately equal to the means reported in the visual analysis section 

(6.45 and 0.5, respectively). Readers can compare the exponent of the 6(" (from equation 6) 

means and quantiles with the reported means. For instance, the mean in the first baseline phase 

was 7 and in the intervention phase was 0.5 in the visual analysis. The posterior mean of 6(" was 

6.45 [exp(1.86) 	= 	6.45]. The difference in the mean of the outcome variable of the Bayesian 

and visual analyses estimates was less than or equal to 1. The posterior means of autocorrelations 

of the data ranged from .04 to .28. The corresponding posterior standard deviations ranged from 

.18 to .27. The posterior standard deviations are rather small for all phases. The posterior means 

of autocorrelations are not negligible for two phases indicating that the results would be suspect 

if autocorrelations were not modeled. However, the autocorrelation was negligible for the third 

phase. 

INSERT FIGURE 2 ABOUT HERE 

Rate ratio effect size. Posterior density plots of the rate ratio effect sizes are given in 

Figure 2. To recap, the rate ratio is interpreted as a reduction or increase in treatment compared 

to the baseline. Therefore, the decrease in the outcome variable was .06 times of what it was in 

baseline phase I. When considering 95% of the highest density interval (HDI) of the posterior 

density, the outcome variable in intervention phase I is .02 to .17 times of what it was in baseline 

phase I. This shows that disruptive behaviors in the first intervention phase were only 0.2 to 17% 

of what they were in the baseline phase. Similarly, the outcome variable in baseline phase II is 

2.9 to 23 times higher than it was in intervention phase I and the outcome variable in intervention 
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phase II is 0.144 to 0.38 times lower than in baseline phase II. The researcher is now free to 

choose a region of practical equivalence (ROPE, Kruschke, 2013) where the null hypothesis that 

there was no effect can be accepted based on what values the researcher deems to be negligibly 

different from the null. The posterior distribution of the rate ratio in Figure 2 gives both the 

probable values of the rate ratio and their corresponding probabilities (i.e., probability density). 

For instance, the effect size between baseline phase I and intervention phase I is peaked at .06 

(mode) and its probable values run from approximately .02 to .2 with 95% of the values lying 

between .02 and 0.17. This is the 95% highest density interval.  

Suppose we decide that a treatment is effective only if the outcome variable is decreased 

to not more than 40% of the original frequency of disruptive behaviors. We see that none of the 

posterior distributions for the phase changes between baseline I and intervention I, and baseline 

II and intervention II contain the value of .4. Similarly, the posterior between phase change from 

intervention I to baseline II does not contain the reciprocal of .4 which is 2.5. The null can be 

accepted for all phase changes because the probabilities of the rate ratio of outcome variable 

being less than .4 times for phase change between baseline and intervention and greater than 2.5 

times for phase change between intervention and baseline are 100% for all 3 phase changes as 

seen in Figure 2. The vertical lines at .4 and 2.5 in the figure show the hypothesized value chosen 

by the researcher and the percentage value in the figure represents the probability mass that falls 

on the right side of the hypothesized value for the first and the last phase changes. Obviously, 

this direction is reversed for the change in phases between intervention I and baseline II because 

here the researcher would be looking for an increase in the outcome variable to at least 2.5 times 

the value in the intervention I phase.  
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In sum, we can see that the results of the statistical analysis support the results of visual 

analysis with respect to the median and mean estimates of the outcome variable in each phase 

and the presence of immediacy effect. However, what BRR adds over the visual analysis is that it 

produces a statistically sound effect size with posterior distribution which can be used to make 

decisions about the statistical significance of the effect, and produces estimates of 

autocorrelation, and other statistics along with their respective posterior distributions. This is 

clearly an addition to the existing protocol that is generally used for analyzing count data in 

SCEDs.  

Limitations 

One key limitation of the BRR that we present, relative to synthesis work, is it is based on 

within-subject and not between subject contrasts. Hence, it is not (yet) appropriate for use in 

synthesizing effects size estimates derived from group-design studies like randomized controlled 

trials. Fundamentally, the variance properties in SCEDs and group-design studies tend to be very 

different, rendering different playing fields (see for e.g., Lipsey and Wilson, 2001).  We do 

anticipate that with extensive simulation work a procedure that allows for syntheses across effect 

sizes is possible, but for now BRR should be seen as a way to gain statistical insights into single 

studies and facilitate syntheses across multiple SCEDs.  There is a learning curve associated with 

implementing the codes that are attached to this article. But the rewards for computing BRR are 

well worth the effort as we have demonstrated in the previous sections. The appropriate use of 

priors needs to addressed at this juncture. Improper priors can lead to improper posteriors. 

Therefore, it is recommended that researchers try various prior specifications for their analyses 

and test if the posteriors are sensitive to prior specification. This type of sensitivity analysis can 

produce more confidence in the posterior estimates. Finally, the fact that this is a ratio presents 
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the researcher with a possible set of two problems: (1) when the denominator value is zero or 

very close to zero, (2) when the denominator value has a very large posterior standard deviation. 

Although one could logically truncate the posterior by removing the lowest and the highest, say 

1% of the posterior estimates to compute the rate ratio, this is a crude fix. Thus, this are remains 

an avenue for further research. 

Conclusion 

The main purpose of the present study was to present the BRR effect size for 

supplementary use in the analysis of SCED data. The model we presented estimates 

autocorrelation along with BRR. The estimates of the intercepts from both visual and statistical 

analysis were similar. The autocorrelation estimates could not be computed using visual analysis, 

but their rather high values from the statistical analysis shows that this statistic cannot be 

ignored. The BRR also produced plots that showed regions of practical equivalence which are a 

nice addition to the visual plots in SCED analysis. Researchers can visually detect the magnitude 

of the effect based on the posterior distributions of the rate ratio. However, we cannot altogether 

abandon visual analysis because of their simplicity and ease of use. As mentioned before, 

Bayesian estimation has a steep learning curve associated with it and many articles, workshops, 

and courses need to be made available to help applied researchers use this method. Shiny apps 

and easy to use software tools would also help improve the user-friendliness of the methodology.  

BRR can (a) deal with count data, (b) handle small samples, (c) produce interval estimates 

of uncertainty, and (d) complement visual analyses via ROPE. In principle, BRR could also be 

used in SCED research syntheses (a point to be demonstrated in future work). Hence, BRR is a 

new and useful analytic tool for SCED analyses. We have shared the programs used to produce 

rate ratio effect size estimates and the ROPE comparisons.  
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The fact that the rate ratio estimation is made possible even for such short time-series is 

compelling evidence of the flexibility of Bayesian modeling.  To date, the model we presented is 

the only inferential statistical procedure that estimates intercepts and effect sizes, accounts for 

autocorrelations and small sample sizes, and works with count data. This form of estimation can 

thus yield better understanding of SCED data and could, in principle, support SCED research 

syntheses. However, recall the limitation that the effect size used here is still based on a within-

subjects design. Further work is needed to understand if and how Bayesian procedures might 

quantitatively synthesize within-subject and between-subject effects.  

We think that researchers who use SCEDs when combining research and practice (praxis) 

or researchers who engage in synthetic SCED work will be interested in use of the BRR as either 

an alternate or complementary analytic approach.  Furthermore, given the amount of SCED 

synthesis work conduced in the field, exploring the use of new effect sizes that account for 

several difficulties with OLS methods and can be used to complement visual analyses should 

provide a basis for the long-term viability of the BRR. The BRR will be of further utility within 

psychology research (and science-practitioners who conduct SCEDs) if user-friendly internet 

freeware can be developed and tested, which is a step that will be pursued in future work.      
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Appendix A 

Gibbs Sampler for the Bayesian Rate Ratio (BRR) 

Sampling Algorithm 

A posterior distribution is typically obtained from a sampling algorithm. The Gibbs 

sampler is one of the most frequently used Markov chain Monte Carlo (MCMC) methods in 

Bayesian estimation (Albert, 1992; Gelfand & Smith, 1990; Geman & Geman, 1984). Let us 

consider a time-series SCED data T = (!", !*, … , !0) such that the functional relationships 

between the dependent and the independent variables differ based on the phase, which is 

unknown. In Equation 9, U" = K(6(", 	D6 , @) and U* = K(6(*, D6 , @) where g is a function of the 

parameters within parentheses.   

 !# =	 1
U"	9:	.	 ≤ .) ,
U*	+.ℎ/=>9?/

 . 
(A1) 

Equation A1 is a different way of presenting the model in equations 1-8. In the parameter vector 

Θ = (6(", 6(*, D6 , @, .)), all parameters are independent a priori. The posterior distribution 

V(Θ|T) can be obtained using the Gibbs sampler. 

A generic Gibbs sampler follows an iterative process. Consider a simple bivariate normal 

distribution with parameter vector (W", W*). A set of starting values are assigned to the vector at 

step 0 of the iteration. The value of each parameter is updated iteratively holding all other values 

constant. The process is Markov chain because the value of parameter W" at the X.ℎ iteration 

depends only on the value of parameter W* at the (X − 1).ℎ iteration. Figure A1a shows this 

process. Note that in Figure A1a when each parameter is updated, it moves along the value of the 

other parameter and only along its own axis. That is, when W" is updated, the sampler moves 

along the W" direction. Similarly, when W* is updated, the sampler moves along the W* direction. 

The first few sampled values are allowed to burn-in in order to avoid the effect of the starting 
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values on the estimates. The rest of the sampled values form the posterior distribution of the 

parameter as shown in Figure A1b.  

INSERT FIGURES A1a AND A1b ABOUT HERE 

When we extend the Gibbs sampler from the bivariate case discussed above to a 

multivariate case for the model in equation 2, the parameter vector is (6(", 6(*, D6 , @, .)). We 

assign a set of starting values, Z to the vector at step 0 of the iteration. Let the iteration be 

indexed using the variable X and then the following eight-step process can be followed.  

Step 1: Set X	 = 	X	 + 	1 

Step 2: Sample (6("
7 [6(*

7$", D6
7$", .)

7$", @7$", T- 

Step 3: Sample (6(*
7 [6("

7 , D6
7$", .)

7$", @7$", T- 

Step 4: Sample (D6
7|6("

7 , 6(*
7 , 	.)

7$", @7$", T) 

Step 5: Sample (.)
7 |6("

7 , 	6(*
7 , D6

7 , @7$", T) 

Step 6: Sample (@7|6("
7 , 	6(*

7 , D6
7 , .)

7 , T) 

Step 7: Sample (T\7|6("
7 , 	6(*

7 , D6
7 , .)

7 , @7 , T), where T\7 is the vector of predicted values of T at the 

jth iteration 

Step 8: Return to Step 1 until desirable number of iterations is complete. 

For the current algorithm, Figure A1b would be expanded to multiple dimensions and is 

based on values from the posterior distributions, which are more informative than a frequentist 

point estimate and standard error, which do not treat the estimate as a parameter. This means the 

estimate has no shape in the frequentist framework. Because the posterior density is made up of 

the possible values the parameter can take and their associated probabilities, the posterior density 

is a probability density function and can be interpreted as such.  
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To summarize, the most pertinent issue to social scientists is the fact that the probability of the 

true parameter value lies within a 95% interval; representing a more straightforward 

interpretation compared to a CI from the frequentist framework (Gelman et al., 2013).  

 

Figure A1a: Gibbs sampler where W" and W* are updated at the jth and the (j+1)th iteration 

 
Figure A1b: Sampled values (joint posterior) of W" and W* 
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Table 1 

NAP Results 

Label S PAIRS NAP VARs SD Z P Value CI 85% 

A1 vs B1 -48 48 0 240 15.49 -3.1 0.002<>1 -1<>-.535 

B1 vs A2 48 48 1 240 15.49 3.1 0.002<>1 .535<>1 

A2 vs B2 -66 72 .0417 432 20.78 -3.2 0.001<>1 -1<>-.501 

Combined -66 336 0.3237 - 0.1576 0 0.071<>1 0.066<>0.582 

A1, B1, A2, and B2 refer to baseline I, intervention I, baseline II, and intervention II, 

respectively. 
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Table 2 

Parameter Estimates from BRR 

Parameter Lower95 Median Upper95 Mean SD 

Baseline I to Intervention I 

@ -0.05 0.30 0.58 0.28 0.18 

F" 1.53 1.87 2.19 1.86 0.17 

F* -1.77 -0.66 0.33 -0.69 0.54 

D" 0.36 1.20 4.45 1.84 16.44 

D* 0.36 1.19 4.46 1.75 2.42 

F12#34 0.03 0.08 0.19 0.09 0.04 

Intervention I to Baseline II 

@ -0.30 0.25 0.74 0.23 0.27 

F" -1.31 -0.33 0.69 -0.34 0.51 

F* 1.59 1.99 2.30 1.97 0.18 

D" 0.36 1.20 4.43 1.77 3.85 

D* 0.36 1.19 4.43 1.77 2.87 

F12#34 4.18 10.20 26.22 11.43 5.81 

Baseline II to Intervention II 

@ -0.36 0.05 0.41 0.04 0.20 

F" 1.75 2.02 2.28 2.02 0.14 

F* 0.16 0.66 1.12 0.65 0.24 

D" 0.37 1.20 4.43 1.79 3.65 

D* 0.38 1.20 4.44 1.76 3.17 

F12#34 0.17 0.26 0.40 0.26 0.06 
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Figure 1. Data Plot of Shih et al. (2015) 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Posterior density plots of the rate ratio of the intercepts 
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Appendix A 

Gibbs Sampler for the Bayesian Rate Ratio (BRR) 

Sampling Algorithm 

A posterior distribution is typically obtained from a sampling algorithm. The Gibbs sampler is one of the most frequently used 

Markov chain Monte Carlo (MCMC) methods in Bayesian estimation (Albert, 1992; Gelfand & Smith, 1990; Geman & Geman, 

1984). Let us consider a time-series SCED data ! = ($!, $", … , $#) such that the functional relationships between the dependent and 

the independent variables differ based on the phase, which is unknown. In Equation 9, (! = )(*$!, 	,% , -) and (" = )(*$", ,% , -) 

where g is a function of the parameters within parentheses.   

 $& =	 .
(!	/0	1	 ≤ 1' ,
("	31ℎ567/85 . (A1) 

Equation A1 is a different way of presenting the model in equations 1-8. In the parameter vector Θ = (*$!, *$", ,% , -, 1'), all 

parameters are independent a priori. The posterior distribution :(Θ|!) can be obtained using the Gibbs sampler. 

A generic Gibbs sampler follows an iterative process. Consider a simple bivariate normal distribution with parameter vector 

(<!, <"). A set of starting values are assigned to the vector at step 0 of the iteration. The value of each parameter is updated iteratively 

holding all other values constant. The process is Markov chain because the value of parameter <! at the =1ℎ iteration depends only on 

the value of parameter <" at the (= − 1)1ℎ iteration. Figure A1a shows this process. Note that in Figure A1a when each parameter is 

updated, it moves along the value of the other parameter and only along its own axis. That is, when <! is updated, the sampler moves 
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along the <! direction. Similarly, when <" is updated, the sampler moves along the <" direction. The first few sampled values are 

allowed to burn-in in order to avoid the effect of the starting values on the estimates. The rest of the sampled values form the posterior 

distribution of the parameter as shown in Figure A1b.  

INSERT FIGURES A1a AND A1b ABOUT HERE 

When we extend the Gibbs sampler from the bivariate case discussed above to a multivariate case for the model in equation 2, 

the parameter vector is (*$!, *$", ,% , -, 1'). We assign a set of starting values, @ to the vector at step 0 of the iteration. Let the 

iteration be indexed using the variable = and then the following eight-step process can be followed.  

Step 1: Set =	 = 	=	 + 	1 

Step 2: Sample (*$!( C*$"()!, ,%()!, 1'()!, -()!, !D 

Step 3: Sample (*$"( C*$!( , ,%()!, 1'()!, -()!, !D 

Step 4: Sample (,%(|*$!( , *$"( , 	1'()!, -()!, !) 

Step 5: Sample (1'( |*$!( , 	*$"( , ,%( , -()!, !) 

Step 6: Sample (-(|*$!( , 	*$"( , ,%( , 1'( , !) 

Step 7: Sample (!E(|*$!( , 	*$"( , ,%( , 1'( , -( , !), where !E( is the vector of predicted values of ! at the jth iteration 

Step 8: Return to Step 1 until desirable number of iterations is complete. 
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For the current algorithm, Figure A1b would be expanded to multiple dimensions and is based on values from the posterior 

distributions, which are more informative than a frequentist point estimate and standard error, which do not treat the estimate as a 

parameter. This means the estimate has no shape in the frequentist framework. Because the posterior density is made up of the 

possible values the parameter can take and their associated probabilities, the posterior density is a probability density function and can 

be interpreted as such.  

To summarize, the most pertinent issue to social scientists is the fact that the probability of the true parameter value lies within a 95% 

interval; representing a more straightforward interpretation compared to a CI from the frequentist framework (Gelman et al., 2013).  

 

 
Figure A1b: Sampled values (joint posterior) of <! and <" 
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