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Tissue-Specific Alteration of Metabolic Pathways Influences Glycemic 1 

Regulation 2 

 3 

Highlights 4 

 5 

 23 novel coding variant associations (single-point and gene-based) for glycemic traits 6 

 51 effector transcripts highlighted different pathway/tissue signatures for each trait 7 

 The exocrine pancreas and gut influence fasting and 2h glucose, respectively 8 

 Multiple variants in liver-enriched G6PC and islet-specific G6PC2 influence glycemia 9 

 10 

Summary 11 

 12 

Metabolic dysregulation in multiple tissues alters glucose homeostasis and influences risk for type 2 13 

diabetes (T2D). To identify pathways and tissues influencing T2D-relevant glycemic traits (fasting glucose 14 

[FG], fasting insulin [FI], two-hour glucose [2hGlu] and glycated hemoglobin [HbA1c]), we investigated 15 

associations of exome-array variants in up to 144,060 individuals without diabetes of multiple 16 

ancestries. Single-variant analyses identified novel associations at 21 coding variants in 18 novel loci, 17 

whilst gene-based tests revealed signals at two genes, TF (HbA1c) and G6PC (FG, FI). Pathway and tissue 18 

enrichment analyses of trait-associated transcripts confirmed the importance of liver and kidney for FI 19 

and pancreatic islets for FG regulation, implicated adipose tissue in FI and the gut in 2hGlu, and 20 

suggested a role for the non-endocrine pancreas in glucose homeostasis. Functional studies 21 

demonstrated that a novel FG/FI association at the liver-enriched G6PC transcript was driven by multiple 22 

rare loss-of-function variants. The FG/HbA1c-associated, islet-specific G6PC2 transcript also contained 23 

multiple rare functional variants, including two alleles within the same codon with divergent effects on 24 

glucose levels. Our findings highlight the value of integrating genomic and functional data to maximize 25 

biological inference.  26 
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Introduction 27 

 28 

It has long been recognized that rare and penetrant disease-causing mutations can pinpoint key proteins 29 

and pathways involved in human metabolism (Froguel et al., 1992; Gloyn et al., 2004; Montague et al., 30 

1997). Type 2 diabetes (T2D) results from an inability of the pancreatic islet beta cells to produce and 31 

secrete sufficient insulin, compounded by the failure of metabolic tissues to respond to insulin and store 32 

glucose appropriately. Blood glucose levels are regulated by the co-ordination of homeostatic pathways 33 

operating across multiple tissues that control metabolism, therefore a clearer understanding of their 34 

relative roles is critical in guiding efforts to modulate them pharmacologically to treat T2D and pre-35 

diabetes. In recent years, technological advances have made it possible to assay genetic variation 36 

genome-wide and at scale. These provide tremendous opportunities to understand metabolic 37 

differences within the physiological range through the study of quantitative fasting and post-challenge 38 

glycemic measures (Mahajan et al., 2015; Scott et al., 2012; Wessel et al., 2015; Wheeler et al., 2017a). 39 

These measures can influence the risk of developing pathophysiological conditions such as T2D and 40 

cardiovascular disease. However, as in all genome-wide association studies (GWAS), it has proven 41 

challenging to translate the associated genetic signals into biological pathways, as the vast majority of 42 

association signals lie within non-coding regions, and connecting them to their respective effector genes 43 

is less straightforward. There are to date over 97 loci reported to be associated with glycemic traits, 44 

across different genetic approaches (Wheeler et al., 2017b). One approach to facilitate identification of 45 

likely causal variants and transcripts is to focus on coding variation, whose effects on protein sequence 46 

can be predicted and functionally tested, facilitating identification of likely causal genes and the ensuing 47 

biological insights. This strategy has been successfully used to establish not only the effector genes but 48 

also the direction of effect of T2D risk alleles on protein function such as in the case of SLC30A8 49 

(Flannick et al., 2014) and PAM (Steinthorsdottir et al., 2014; Thomsen et al., 2018). 50 

 51 

Here, we describe the largest exome-array study to date across four commonly-used glycemic traits 52 

(fasting glucose [FG], fasting insulin [FI], glycated hemoglobin [HbA1c], and two-hour glucose [2hGlu]) in 53 

up to 144,060 non-diabetic individuals from multiple ancestries, to discover variants and loci influencing 54 

these traits within the physiological range. We sought to identify causal variants and putative effector 55 

transcripts in known and novel loci, and subsequently highlight pathways and tissues that are enriched 56 

for these glycemic trait associations. We further complemented our analyses with functional validation 57 

of selected effector transcripts, focusing on novel FG/FI locus G6PC and FG/HbA1c locus G6PC2, to 58 
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establish functional links between the associated rare coding variants in those loci and glucose 59 

regulation through different metabolic tissues. Together, our findings provide valuable insight into the 60 

biology underlying glycemic traits, and build on the knowledge required for validating candidate genes 61 

for therapeutic targeting in diabetes. 62 

 63 

Results 64 

 65 

Identification of coding variant and gene-based glycemic trait associations 66 

We focused on coding variants on the exome chip as these could point more directly to their potential 67 

effector transcripts (i.e. likely causal gene[s]). Single-variant and gene-based association analyses with 68 

FG, FI, HbA1c, and 2hGlu levels were performed on exome-array coding variants in up to 144,060 69 

individuals without diabetes of European (85%), African-American (6%), South Asian (5%), East Asian 70 

(2%), and Hispanic (2%) ancestry from up to 64 cohorts (Table S1, Methods).  71 

We performed single-variant analyses in each individual cohort using a linear mixed model and 72 

combined results by fixed-effect meta-analyses within and across ancestries. As body mass index (BMI) 73 

is a major risk factor for T2D and is correlated with glycemic traits, all analyses were adjusted for BMI 74 

(Methods) to identify loci influencing glycemia independently from their effects on overall adiposity. We 75 

used distance-based clumping and considered signals to be novel, if they were located more than 500 kb 76 

from a variant with an established association with any of the glycemic traits or T2D at the time of the 77 

study (Methods). 78 

 79 

Based on the above definition, we found 21 coding variants (in 18 genes) which were not previously 80 

associated with any other glycemic trait or T2D risk, that are now associated at exome-wide significance 81 

(defined as P<2.2 × 10-7) (Mahajan et al., 2018b; Sveinbjornsson et al., 2016) with their respective 82 

glycemic trait(s) (Table 1, Methods). Among these novel loci were a missense (p.E1365D) and splice 83 

region variant in OBSL1 associated with FI, another missense variant (p.L300P) in RAPGEF3 associated 84 

with FI, a missense variant (p.S439N) in SPTB associated with HbA1c, and missense variants p.R187Q in 85 

ANKH and p.R456Q in STEAP2 that are associated with FG (Table 1). OBSL1 encodes a cytoskeletal 86 

protein related to obscurin, mutations in which have been shown to lead to an autosomal recessive 87 

primordial growth disorder (OMIM: 612921). Loss of OBSL1 leads to downregulation of CUL7, a protein 88 

known to interact with IRS-1, downstream of the insulin receptor signaling pathway (Hanson et al., 89 
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2009). RAPGEF3 encodes a cAMP-regulated guanine nucleotide exchange factor and is part of a cAMP-90 

responsive signalling complex. The gene has been shown to be involved in cAMP-dependent 91 

adipogenesis (Jia et al., 2012), and investigation of associations in other related traits showed that the 92 

same RAPGEF3 variant is also associated with BMI, waist-hip ratio and height (all P<1 × 10-4; Tables 1 93 

and S2). This suggests that its role in adiposity and obesity is likely to link it to FI regulation. Since the 94 

directions of effect of the variant are opposite for FI and BMI, the observed association could however 95 

be due to collider bias and should thus be interpreted with caution. SPTB encodes the protein spectrin 96 

beta, which is a major constituent of the cytoskeletal network underlying the erythrocyte plasma 97 

membrane. Mutations in this gene underlie a range of hematological disorders such as hemolytic 98 

anemias (OMIM: 617948, 616649). Given that red blood cell disorders can interfere with HbA1c levels 99 

(Wheeler et al., 2017a), this missense variant identifies SPTB as the likely effector transcript at this locus. 100 

ANKH encodes a transmembrane protein likely acting as a transporter. Recently, the FG-lowering allele 101 

reported here was shown to associate with decreased T2D risk in Europeans (OR=0.78 [0.69-0.87], 102 

PEUR=2.0 × 10-7), and had a >97% posterior probability of being causal, suggesting that this gene is the 103 

effector transcript at this locus (Mahajan et al., 2018b). In the final example, STEAP2 encodes a six 104 

transmembrane protein localized both intracellularly and on the plasma membrane, and is suggested to 105 

have roles in the regulation of iron transport (Sikkeland et al., 2016). A closely-related member of the 106 

STEAP family, STEAP4, has been reported to mediate cellular response to inflammatory stress through 107 

its role as a metalloreductase mediating iron and copper homeostasis (Scarl et al., 2017). Though little is 108 

known about STEAP2 function, in the recent T2D analysis, the FG-associated variant in STEAP2 was also 109 

found to be nominally associated with T2D risk (P<1 × 10-4) (Mahajan et al., 2018b) (Tables 1 and S2). In 110 

addition to the novel loci, 53 other significant coding variant associations (in 40 genes) were detected 111 

that were within 500 kb of an established glycemic GWAS locus. These were of interest as they could 112 

point to a causal gene (Tables 1 and S3). 113 

 114 

To increase power to detect rare variant associations, we additionally performed gene-burden and 115 

sequence kernel association (SKAT) tests for gene-level analyses (Methods). We identified six genes with 116 

significant evidence of association (P<2.5 × 10-6), of which two – G6PC (for FG and FI) and TF (for HbA1c) 117 

– represented novel associations (Tables 2 and S4). 118 

 119 

Identification of effector transcripts 120 
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To establish whether the associated coding variants (both novel and those at established loci) were 121 

likely to be causal, and/or likely to pinpoint an effector transcript, we first integrated these results with 122 

published data with higher density GWAS coverage (Manning et al., 2012; Wheeler et al., 2017a). This is 123 

important because coding variants can sometimes erroneously point to the wrong effector transcript, as 124 

they can “piggy-back” on non-coding alleles that drive the association, and by virtue of having a 125 

predicted effect on protein sequence they may falsely implicate the gene in which they reside as the 126 

causal one. For example, the coding variant rs56200889 (p.Q802E) at ARAP1 is strongly associated with 127 

FG (=-0.016, P=1.8 × 10-14, Table 1), and when considered in isolation might have suggested ARAP1 as 128 

the effector transcript. However, T2D fine-mapping efforts showed this association to be secondary to a 129 

much stronger non-coding signal (Mahajan et al., 2018b), and recent data integrating human islet and 130 

mouse knockout information has established neighbouring gene STARD10 as the most likely gene 131 

mediating the GWAS signal at this locus (Carrat et al., 2017). Therefore, we conditioned the coding 132 

variants identified here on existing non-coding GWAS index variants at established loci from two 133 

previously published GWAS datasets (Manning et al., 2012; Wheeler et al., 2017a), and also performed 134 

the reciprocal analysis (Table S3, Methods). At novel loci, we also assessed whether the coding variant 135 

identified here was being driven by association of a sub-threshold (i.e. non genome-wide significant in 136 

smaller sample size) non-coding variant based on published GWAS results with higher density coverage 137 

(Manning et al., 2012; Wheeler et al., 2017a) (Methods). As reciprocal conditional analysis was not 138 

always possible, or was not informative, we also used additional published data, including fine-mapping 139 

results from comparable T2D efforts (Mahajan et al., 2018b), results for associations with blood cell 140 

traits (Astle et al., 2016; Soranzo et al., 2010) (Table S5), as well as a body of literature establishing the 141 

role of certain genes (mapping within our loci) in glucose metabolism, or red blood cell biology (for 142 

HbA1c) to inform effector transcript classification. We further considered significant gene-based 143 

associations driven by multiple coding variants within a single gene as strong evidence for the 144 

determination of effector transcripts (Methods). 145 

 146 

Combining the above approaches, we curated the 74 coding variant associations (in 58 genes) displayed 147 

in Table 1, and where possible identified and classified effector transcripts into “gold”, “silver” and 148 

“bronze” categories, depending on the strength of evidence (Table S6, Methods). Loci with strong 149 

evidence from reciprocal conditional analysis or from published data that supported the relevance of 150 

the identified effector transcript to the glycemic trait were labelled “gold” (e.g. GLP1R, SLC30A8, G6PD, 151 

PPARG, ANK1); those where an effector transcript could not be defined by conditional analysis (either 152 
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because it was inconclusive or due to lack of data) but where there was strong biological plausibility for 153 

a given gene at the locus were labelled “silver” (e.g. MADD, MLXIPL, FN3K/FN3KRP, HK1, VPS13C); those 154 

where we had some evidence but that was not as strong as “silver” were labelled “bronze” (e.g. DCAF12, 155 

OBSL1, STEAP2, RAPGEF3); the remaining were left with an undetermined effector transcript (Figure 1, 156 

Table S6). Effector transcript classification into the three categories was undertaken independently by 157 

four of the authors and the consensus was used as the final classification for effector transcripts. From 158 

74 single variant and six gene-based signals, we identified 51 unique effector transcripts (24 gold, 11 159 

silver, 16 bronze), with many of them shared across traits (Figure 1). One case in point pertains to 160 

VPS13C, which harboured a missense variant (p.R974K) associated with 2hGlu (labelled “bronze”) at 161 

exome-wide significance (=-0.069, P=6.4 × 10-10; Table 1), and also exhibited a significant gene-based 162 

association with FG (labelled “silver”; PSKAT=3.7 × 10-7; Table S4). VPS13C belongs to the previously-163 

established VPS13C/C2CD4A/C2CD4B glycemic trait and T2D risk locus, and recent follow-up studies 164 

have with varying levels of evidence suggested C2CD4A, encoding a calcium-dependent nuclear protein, 165 

as the causal gene for T2D through its potential role in the pancreatic islets (Kycia et al., 2018; Mehta et 166 

al., 2016; O'Hare et al., 2016). In our data, it is however not possible to rule out VPS13C as a potential 167 

effector transcript at this locus, warranting further functional studies for VPS13C, which encodes a 168 

protein reported to be necessary for proper mitochondrial function (Lesage et al., 2016).  169 

 170 

Pathway analyses identifies relevant gene sets regulating glycemia  171 

To identify pathways enriched for glycemic trait associations, and to subsequently determine the extent 172 

to which associations within the same trait implicate the same or similar pathways (as indicated by the 173 

functional connectivity of the network), we used GeneMANIA network analysis (Franz et al., 2018). 174 

GeneMANIA takes a query list of genes and finds functionally-similar genes based on large, publicly-175 

available biological datasets. We analysed all loci harbouring non-synonymous variants that reached P<1 176 

× 10-5 for any of the four glycemic traits in our study (totaling 121 associations). A high degree of 177 

connectivity was observed within the HbA1c network, with enrichment of processes related to blood cell 178 

biology such as porphyrin metabolism, erythrocyte homeostasis and iron transport (Figures 2 and S1, 179 

Table S7). In comparison, the network generated from FG-associated genes captured several processes 180 

known to contribute to glucose regulation and islet function, including insulin secretion, zinc transport 181 

and fatty acid metabolism (Figure 2, Table S7). The FG network further revealed linking nodes (that are 182 

not among the association signals) with known links to glucose homeostasis and diabetes, such as GCK 183 

(encoding the beta cell glucose sensor glucokinase), GCG (encoding the peptide hormone glucagon 184 
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secreted by the alpha cells of the pancreas) and GIP (encoding the incretin hormone gastric inhibitory 185 

polypeptide). One gene within the FG cluster for lipid-related pathways is CERS2, which encodes 186 

ceramide synthase 2, an enzyme known to be associated with the sphingolipid biosynthetic process 187 

(Figure 2, Table S7). Although CERS2 is only nominally associated with FG and is significantly associated 188 

with HbA1c, it does not cluster together with any HbA1c-enriched pathway, suggesting that CERS2 is 189 

regulating FG and HbA1c indirectly through its role in lipid metabolism. Given that there were fewer 190 

genes associated with FI and 2hGlu, we were less powered to draw meaningful insights from the 191 

enriched pathways in those traits (Figure S1, Table S7). 192 

 193 

We also performed gene set enrichment analysis (GSEA) using EC-DEPICT (Marouli et al., 2017; Turcot et 194 

al., 2018) (Methods). The primary innovation of EC-DEPICT is the use of 14,462 gene sets extended 195 

based on large-scale co-expression data (Fehrmann et al., 2015; Pers et al., 2015). These gene sets take 196 

the form of z-scores, where higher z-scores indicate a stronger prediction that a given gene is a member 197 

of a gene set. To reduce some of the redundancy in the gene sets (many of which are strongly correlated 198 

with one another), we clustered them into 1,396 “meta-gene sets” using affinity propagation clustering 199 

(Frey and Dueck, 2007). These meta-gene sets are used to simplify visualizations and aid interpretation 200 

of results. Here, we combined and analyzed all variants that reached P<1 × 10-5 for any of the four 201 

glycemic traits (Methods). We found 234 significant gene sets in 86 meta-gene sets with false discovery 202 

rate (FDR) of <0.05 (Table S8). As expected, we observed a strong enrichment of insulin- and glucose-203 

related gene sets, as well as exocytosis biology (in keeping with insulin vesicle release). In agreement 204 

with the GeneMANIA network analyses, we also noted a strong enrichment for blood-related pathways, 205 

which was primarily driven by HbA1c-associated variants. This was likely because HbA1c levels are 206 

influenced not only by glycation but also by blood cell turnover rate (Cohen et al., 2008; Wheeler et al., 207 

2017a). To disentangle blood cell turnover from effects due to glycation, we repeated the analysis 208 

excluding variants that were significantly associated with HbA1c only and found 128 significant gene sets 209 

in 53 meta-gene sets (FDR <0.05) (Table S8). We also analyzed each of the four traits separately (Table 210 

S8, Methods). 211 

To identify additional candidate genes, we then performed heat map visualization with unsupervised 212 

clustering of the membership predictions (z-scores) of trait-associated genes for each significant gene 213 

set (Figures 2, S2 and S3). This strategy has previously been effective for gene prioritization for 214 

downstream analyses (Marouli et al., 2017; Turcot et al., 2018), as it becomes visually apparent which 215 
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genes are the strongest drivers of the significant gene sets and thus are natural targets for follow-up. 216 

This can be particularly helpful for prioritizing genes that are not well-characterized, as it leverages 217 

DEPICT’s prediction of gene function. For the analysis of all traits except HbA1c, one cluster showed 218 

particularly strong predicted membership for highly relevant gene sets, including “abnormal glucose 219 

homeostasis”, “peptide hormone secretion”, “Maturity Onset Diabetes of the Young”, and multiple 220 

pathways involved in the regulation of glycogen, incretin, and carbohydrate metabolism (Figure 2C). 221 

Strikingly, this cluster of six genes (PCSK1, GLP1R, GIPR, G6PC2, SLC30A8 and CTRB2) contained five of 222 

the genes that had independently been assigned to “gold” status during effector transcript identification 223 

(Table S6). Therefore, the sixth gene, CTRB2, represents a novel gene for prioritization, since it showed 224 

strong similarity to other genes for which there was already substantial biological evidence. CTRB2 225 

encodes chymotrypsinogen B2, a digestive enzyme that is expressed in the exocrine pancreas, and 226 

subsequently secreted into the gut. The gene contains a  borderline significant variant for 2hGlu 227 

(rs147238447; p.L6V; P=1.9 × 10-6). Another variant at this locus, rs7202877 (6.2kb downstream of 228 

CTRB2, r2=0.0006, D’=1 with rs147238447 in European populations), has previously been shown to be an 229 

eQTL for CTRB1 and CTRB2, with the minor G allele (MAF=11%) associated with increased expression (t 230 

Hart et al., 2013). In the same study, the rs7202877-G allele was associated with increased glucagon-like 231 

peptide 1 (GLP-1)-stimulated insulin secretion (P=8.8 × 10-7, N=196). In our data, rs7202877-G was 232 

nominally associated with lower 2hGlu (P=6.3 × 10-3) and lower FG (P=2.8 × 10-3) levels. Multiple distinct 233 

signals in this region (previously referred to as the BCAR1 locus) have also been associated with T2D risk, 234 

including rs7202877 (where the G allele is protective), rs72802342 (r2=0.65 with rs7202877 in European 235 

populations) and rs3115960, although the coding variant rs147238447 described here is not (Mahajan et 236 

al., 2018a; Mahajan et al., 2018b; Morris et al., 2012; Zhao et al., 2017). This can potentially be 237 

explained by limited power to identify a significant association given the low MAF (~0.5%) of the coding 238 

variant. In contrast to its effect on T2D, the rs7202877-G allele has been associated with increased risk 239 

of type 1 diabetes (OR=1.28, P=3.1 × 10−15, N=21,293) (Barrett et al., 2009). Other variants at this locus 240 

are associated with risk of chronic pancreatitis (rs8055167, r2=0.0021 with rs147238447 and r2=0.12 241 

with rs7202877 in European populations, in LD with an inversion that changes the expression ratio of 242 

CTRB1 and CTRB2 isoforms) (Rosendahl et al., 2017) and pancreatic cancer (rs7190458, r2=0.0002 with 243 

rs147238447 and r2=0.31 with rs7202877 in European populations) (Wolpin et al., 2014). The 244 

prioritization of CTRB2 is intriguing as it supports an emerging hypothesis that the exocrine pancreas 245 

contributes to complex mechanisms influencing 2hGlu levels and diabetes risk (Esteghamat et al., 2019; 246 

Hart et al., 2018; Woodmansey et al., 2017). Given the earlier associations with GLP-1 stimulated insulin 247 
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secretion, we investigated whether this effect could be mediated by incretin levels. However, we found 248 

no associations at rs147238447 for GLP-1 levels in the largest available dataset (fasting GLP-1, N=4170: 249 

MAF=0.00457, P=0.495; 2h GLP-1, N=3839: MAF=0.00464, P=0.076) (Almgren et al., 2017), though this 250 

might again be explained by limited power. Although additional validation of the rare coding variant 251 

rs147238447 (p.L6V) as a potential causal variant is required given the absence of clear associations with 252 

T2D risk and other glycemic traits, the results discussed above suggest a role of CTRB2 in glycemic 253 

regulation. 254 

We also noted a small but distinct cluster in the FG-only analysis indicating the role of the 255 

cilium/axoneme, pointing to novel biology relating to sensing and signaling in response to the 256 

extracellular environment (Figure 2D). Two genes were the main drivers of this association: WDR78 and 257 

AGBL2. These represent potentially interesting candidates for follow-up, although we note that the 258 

AGBL2 signal may be driven through effects of the nearby MADD gene, which harbors a FG-associated 259 

coding variant in our study and is labelled “silver” in our effector transcript classification (Tables 1 and 260 

S6). Overall, our network and pathway analyses highlighted several trait-associated genes that do not 261 

reach exome-wide significance in conventional single variant or gene-based tests, but show evidence of 262 

contribution to glycemic regulation. 263 

 264 

Tissue enrichment analysis reveals shared roles of key tissues in the regulation of glycemic 265 

traits 266 

In addition to identifying key metabolic pathways involved in glucose regulation, we sought to establish 267 

the relative importance of particular tissues in the regulation of the different glycemic phenotypes. This 268 

time, we assessed the tissues that are most highly enriched for the expression of the 51 effector 269 

transcripts we have curated at the associated loci identified in this study, to highlight specific tissues 270 

that contribute critically to the regulation of each glycemic trait. Using publicly-available tissue 271 

expression data from GTEx (Battle et al., 2017) and human islets (van de Bunt et al., 2015), we noted 272 

clear differences in tissue enrichment patterns as well as tissues shared between traits (Figure 3). 273 

Comparisons between analyses of FG- and FI-associated effector transcripts underscored the relative 274 

roles of the liver in both traits (P<0.05), whereas pancreatic islets were enriched in associations for FG 275 

(P=9.99 × 10-5) but not FI (P=0.75). In contrast, adipose (P=0.01) and kidney tissues (P=0.01) were 276 

enriched in FI but not FG (P>0.05). These results not only highlight the established role of pancreatic 277 

islets in influencing FG levels, but also the under-appreciated role of insulin clearance in the kidney and 278 
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likely the liver, in addition to insulin action in liver and adipose tissue, in influencing FI levels (Goodarzi 279 

et al., 2011). Consistent with the EC-DEPICT GSEA, there was also support for the role of the exocrine 280 

pancreas (which typically represents >95% of whole pancreas tissue) in addition to the endocrine 281 

pancreas (islets) in FG (P=9.99 × 10-5) and 2hGlu (P=2.99 × 10-4) associations. We also observed 282 

enrichment for genes expressed in stomach for 2hGlu (P=1.99 × 10-4) but not for FG (P=0.16). HbA1c 283 

analysis revealed enrichment in “metabolic” tissues reflecting insulin secretion (islets, P=1.59 × 10-2 and 284 

pancreas, P=0.01), insulin action (muscle, P=1.50 × 10-2), insulin clearance (liver, P=0.03), as well as 285 

strong enrichment for whole blood (P=3.99× 10-3). These indicate key factors relating to hemoglobin 286 

glycation and blood cell function in influencing overall HbA1c levels (Figure 3). 287 

 288 

Our results from the pathway and tissue enrichment analyses demonstrate the role of specific tissues 289 

with known functions in blood glucose regulation in particular glycemic traits. These observations add 290 

further support to emerging reports of an underappreciated role for the exocrine pancreas in FG and 291 

2hGlu regulation, the stomach-incretin axis in 2hGlu, and the importance of insulin clearance through 292 

the kidney and liver in FI. 293 

 294 

Novel glycemic trait associations in liver-enriched G6PC are driven by functional coding 295 

variants 296 

To delve deeper into tissue-specific gene effects, we focused on two homologues, G6PC and G6PC2, 297 

with constrasting tissue expression profiles where we identified gene-based association signals for FG/FI 298 

and FG/HbA1c, respectively (Tables 2 and S4). Both genes encode gluconeogenic enzymes that catalyze 299 

the same biochemical pathway but are known to have distinct tissue expression profiles. G6PC2 is 300 

largely expressed in pancreatic islets whereas G6PC is highly expressed in the liver, kidney, and small 301 

intestine (Foster et al., 1997; Mithieux, 1997). Our gene-based analyses highlighted G6PC through novel 302 

associations with FG and FI, driven primarily by rare missense variants p.A204S (rs201961848) and 303 

p.R83C (rs1801175), and protein-truncating variant (PTV) p.Q347X (rs80356487), none of which 304 

achieved exome-wide significance at single-variant level (Table S4). Homozygous inactivating alleles in 305 

G6PC, which include both p.R83C and p.Q347X, are known to give rise to glycogen storage disease type 306 

Ia (GSD1a), a rare autosomal recessive metabolic disorder (Chou and Mansfield, 2008; Lei et al., 1995), 307 

but this is the first time that rare coding variants in G6PC have been shown to influence FG and FI levels 308 

in normoglycemic individuals.  309 

 310 
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Given the well-known role of G6PC in hepatic glucose homeostasis, we were interested in elucidating 311 

the molecular impact of rare heterozygous G6PC coding variants highlighted in our exome-array 312 

analysis, in particular novel variant p.A204S, one of the statistical drivers of the gene-based G6PC signal 313 

(Table S4). In transient protein overexpression assays, p.R83C and p.A204S resulted in significantly 314 

reduced protein levels compared to wild type (WT) G6PC in both Huh7 (human hepatoma) and HEK293 315 

(human embryonic kidney) cell lines (Figure 4A-D). The PTV p.Q347X, which in our in vitro system 316 

generated a smaller molecular weight protein, exhibited markedly lower protein expression levels in 317 

Huh7 cells but not HEK293 cells. However, in both cell types, the cellular localization pattern of p.Q347X 318 

appears to be largely diffuse and did not co-localize with the Golgi apparatus, which is important for 319 

post-translational modification of G6PC protein (Figures 4E and S4A). Further functional characterization 320 

of  glucose-6-phosphatase (G6Pase) activity revealed that both p.R83C and p.Q347X  variants lead to 321 

proteins lacking any detectable phosphatase activity (Figure S4B-C), consistent with previous 322 

observations of several GSD1a-causing coding variants (Shieh et al., 2002). As we observed that the 323 

p.R83C variant resulted in complete loss of glycosylation, we determined if glycosylation is essential for 324 

G6Pase activity by treating cells with tunicamycin to inhibit N-linked glycosylation. The ability of 325 

unglycosylated G6PC to catalyze glucose-6-phosphate (G6P) was found to be downregulated by up to 326 

14%, although this difference was not statistically significant (Figure 4F). We therefore concluded that 327 

whilst glycosylation contributes to overall functional activity, it may not be a requisite for G6P 328 

hydrolysis. Finally, we were unable to accurately assess p.A204S-G6PC phosphatase activity as the level 329 

of expression in the microsomes was reduced by 41% relative to WT, supporting the hypothesis that 330 

p.A204S-G6PC exhibits partial loss-of-function (LOF) most likely due to loss of protein expression. 331 

 332 

Together, our functional studies support p.A204S, p.R83C, and p.Q347X as functional LOF variants due 333 

to loss of G6Pase protein expression and/or activity. This results in a reduced potential to hydrolyze G6P 334 

to glucose in gluconeogenic tissues (such as in the liver and kidney), thus directly reducing FG levels and 335 

consequently lowering circulating FI levels in the plasma. Our data suggest that rare inactivating 336 

mutations in G6PC (such as p.R83C and p.Q347X) that cause the autosomal recessive disorder GSD1a 337 

can also modulate fasting glycemic traits within a normoglycemic range in asymptomatic heterozygous 338 

variant carriers.  339 

 340 

G6PC2 alleles influence protein function by multiple mechanisms  341 
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G6PC2, a gene homolog of G6PC, is an established effector transcript at a GWAS locus which contains 342 

multiple coding variants known to influence FG and HbA1c but not FI levels (Bouatia-Naji et al., 2008; 343 

Chen et al., 2008; Mahajan et al., 2015; Soranzo et al., 2010; Wessel et al., 2015). In this current study, 344 

gene-based association signals for both FG and HbA1c were observed at the G6PC2 locus, primarily 345 

driven by multiple coding variants (p.H177Y, p.Y207S, p.R283X, and p.S324P) (Table S4). We aimed to 346 

extend the investigation of coding variation in this gene, which is likely to harbor a series of functional 347 

alleles, by characterizing the four G6PC2 coding variants above and six others, across the allelic 348 

frequency spectrum (all with single-variant P<0.05 for FG or HbA1c in our analyses) (Table S4; Figure 349 

S5A). Protein overexpression studies in the rat insulinoma cell line INS-1 832/13 and HEK293 cells 350 

revealed that seven of the G6PC2 variants characterized (including PTV p.R283X) resulted in significantly 351 

reduced protein levels (Figures 5A and S5B-C). In INS-1 832/13 cells, this effect was largely due to partial 352 

or total loss of the glycosylated form of the protein. In HEK293 cells, the reduction in total protein levels 353 

could be rescued when the proteasomal pathway (but not the lysosomal pathway) was inhibited, 354 

consistent with an earlier study involving a smaller subset of variants (Mahajan et al., 2015), confirming 355 

proteasome-mediated protein turnover. 356 

 357 

As three variants (p.I171T, p.I171V, and p.F256L) appeared to be stably expressed and processed like WT 358 

G6PC2 protein, we hypothesized that these alleles could be influencing glycemic levels through effects 359 

on protein activity. As there is a high level of conservation between the catalytic domains in G6PC and 360 

G6PC2, we adapted the G6Pase assay used earlier, to indirectly analyse the effect of the G6PC2 variants 361 

on G6Pase enzymatic activity. We assumed that the G6PC2 alleles of interest, which mapped to the 362 

conserved regions, will give rise to the same consequence in the G6PC backbone due to the strong 363 

homology and preserved topology of both proteins. The adaptation was necessary as we were unable to 364 

detect G6PC2 activity using the same experimental conditions. First, we generated variants that mapped 365 

to equivalent sites within the G6PC protein (G6PC-p.L173T, p.L173V, and p.F258L correspond to G6PC2-366 

p.I171T, p.I171V, and p.F256L, respectively), and then performed the enzymatic studies. Two alleles, 367 

p.L173T, p.L173V, affected the same codon and were each genetically associated with FG levels but with 368 

opposite directions of effect (Table S4). We found that G6PC-p.L173T exhibited ~20% decreased activity 369 

compared to WT based on assessment of Vmax (maximal rate of reaction), a measure of enzymatic 370 

activity (Figure 5B). In contrast, G6PC-p.L173V had enhanced activity through both increased Vmax and 371 

lowered Km (Michaelis constant, whereby a lower Km indicates higher substrate affinity) (Figure 5B). 372 

Importantly, our in vitro observations mirrored the genetic effects on FG (βI171T=-0.084 mmol/l; 373 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2019. ; https://doi.org/10.1101/790618doi: bioRxiv preprint 

https://doi.org/10.1101/790618
http://creativecommons.org/licenses/by/4.0/


13 
 

βI171V=+0.131 mmol/l) and HbA1c levels (βI171T=-0.007%; βI171V=+0.093%) (Table S4). The G6PC-p.F258L 374 

variant also displayed impaired phosphatase activity due to reduced Vmax and a tendency towards higher 375 

Km relative to WT (Figure 5C), consistent with the observed glucose-lowering effects of G6PC2-p.F256L. 376 

To ensure that the observed effects of the rare variants on FG were not influenced by the common 377 

G6PC2 variant rs560887, as was the case for a common variant V219L shown in an earlier study 378 

(Mahajan et al., 2015) which we confirm here, conditional analyses were performed conditioning on 379 

rs560887 (Table S9). Conditional results for p.I171T, p.I171V and p.F256L confirmed that the directions 380 

of effect for the variants remain unchanged, making it unlikely that the regulatory variant rs560887 is 381 

regulating these effects (Table S9). These results provided the first example of an activating allele in 382 

G6PC2 (p.I171V) and highlighted the unique protein changes at a single codon that can give rise to a 383 

corresponding loss or gain of functional activity. These data therefore show that variations in G6PC2 384 

may influence FG levels through their impact on protein expression or activity. 385 

 386 

To further characterize these variants, we set out to determine the effect of the G6PC2 LOF variants on 387 

ER integrity, given that G6PC2 is an ER-resident protein and that beta cells, which are highly-specialized 388 

secretory cells, are highly sensitive to ER stress. Specifically, we evaluated the expression of G6PC2 389 

variant proteins on the canonical ER stress response (ERSE) and unfolded protein response (UPRE) 390 

pathways. The three G6PC2 variants which displayed relatively severe effects on protein stability 391 

(p.H177Y, p.Y207S, p.S324P) in our study were found to activate ERSE and UPRE reporter activities by 392 

~3-fold, in contrast to the variants p.I171T and p.F256L which exert their effects primarily on enzymatic 393 

function (Figure 5D). The common p.V219L variant, which reduces protein expression by approximately 394 

50%, displayed an intermediary effect (Figure 5D). These results suggest that G6PC2 variant proteins, 395 

especially those that result in severe LOF due to protein instability, may also influence beta cell ER 396 

homeostasis.  397 

 398 

In previous studies, the G6PC2-p.R283X variant has shown inconsistencies in terms of their associations 399 

with FG levels (Mahajan et al., 2015; Wessel et al., 2015). With a larger dataset we have now confirmed 400 

that this variant influences both FG and HbA1c levels (Tables 1 and S3). As the nonsense p.283X allele is 401 

located in the last exon of the gene and may evade NMD, we queried RNA sequencing data from human 402 

islets and observed an allelic balance in heterozygous carriers, indicating that variant transcripts are 403 

indeed likely to escape NMD and be translated (Figure S6A). Based on our pipeline of in vitro assays, we 404 
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confirmed G6PC2-p.R283X loss-of-function due to reduced protein expression, failure to localize to the 405 

Golgi network, and a high likelihood of complete loss of phosphatase activity (Figures 5A and S5D).  406 

 407 

In contrast to the mechanisms in play for the coding variants in G6PC2, the non-coding GWAS index 408 

variant at the G6PC2 locus (rs560887) is suggested to influence expression of G6PC2 splice variants 409 

based on previous minigene analyses in HeLa cells (Baerenwald et al., 2013; Bouatia-Naji et al., 2010). To 410 

establish whether this variant indeed influences G6PC2 regulation in human islets, we determined its 411 

effect on G6PC2 isoform expression. We found that in human islets, the presence of the rs560887-G 412 

allele is associated with increased expression of the full-length G6PC2 isoform as compared with the 413 

shorter isoform lacking exon 4 (Figure S6B). This observation supports the hypothesis that rs560887 may 414 

alter splicing and is consistent with the association between rs560887-G and elevated FG and HbA1c 415 

levels due to increased G6PC2 function. As the phenotypic consequence of rare coding variants can be 416 

influenced by regulatory variants on the same haplotype, we therefore performed conditional analyses 417 

to explore the relationship between rs560887 and the rare coding variants. We showed that the 418 

direction of effects of all the rare alleles in our study remained the same after conditioning on rs560887, 419 

though it is notable that the variants p.Y207S and p.R283X showed some reduction in strength of 420 

association after conditioning (Table S9). 421 

 422 

Functional assessment of G6PC2 variants improves gene-based association analysis  423 

We next evaluated the utility of our functional data to enhance gene-based association analyses. We 424 

showed that the gene-based signals were strengthened when the tests were informed by in vitro 425 

functional validation of the variants (as determined in this study) as opposed to the predictive in silico 426 

annotations based on the NSbroad and NSstrict masks (Table S9, Methods). In fact, in line with 427 

expectation, flipping the alleles in the gain-of-function variant p.I171V (which we now know acts in the 428 

opposite direction compared to other rare variants in the test), to align all alleles with the same 429 

direction of effect, augmented the strength of association for both FG (from P=4.34 × 10-71 to P=6.47 × 430 

10-78)and HbA1c (P= 6.37 × 10-30 to P=6.37 × 10-33) in the gene burden test (Table S9). Improved methods 431 

of filtering variants will enhance the performance of gene-based tests and increase the likelihood of 432 

identifying true association signals, especially for those that are of borderline significance or that initially 433 

fall below the significance threshold. 434 

 435 

G6PC2 regulates basal insulin secretion in human beta cells  436 
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Although G6PC2 is known to be specifically enriched in pancreatic islet beta cells, its role in the 437 

regulation of human beta cell function has not been shown. Using gene knockdown studies in the 438 

human EndoC-βH1 beta cell line, we found that G6PC2-deficient cells exhibited significantly (but 439 

modestly) increased insulin secretion at low glucose (1 mM) and a trend towards increased insulin 440 

secretion at sub-maximal glucose (6 mM) levels (Figures 5F and S5E). When expressed as a fraction of 441 

insulin content (Figure 5F), insulin secretion was significantly increased across multiple glucose 442 

conditions, although this was primarily driven by reduced total insulin content in G6PC2-deficient cells 443 

by ~15%. Overall, G6PC2 knockdown increases glucose responsiveness at sub-threshold levels of glucose 444 

but not at maximal glucose concentration in EndoC-βH1 cells, suggesting enhancement of basal glucose 445 

sensitivity by promoting glycolytic flux at sub-stimulatory glucose concentrations, and warranting more 446 

in-depth characterization experiments.  447 
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Discussion 448 

We have identified novel coding variant associations with FG, FI, 2hGlu and HbA1c, across the allele 449 

frequency spectrum, and assigned these variants to their effector transcripts using available genetic and 450 

biological evidence. We further pinpointed novel loci and effector transcripts that have now been 451 

associated with T2D and other related metabolic traits since the time of our analysis. Our results 452 

revealed that 15 out of 58 glycemic trait-associated loci have evidence of association with T2D risk 453 

(Table S2) (Hara et al., 2014; Mahajan et al., 2018b; Williams et al., 2014). For instance, FG-associated 454 

loci ANKH and STEAP2, and HbA1c-associated DCAF12 all associate with T2D risk (Table S2), providing 455 

opportunities to investigate the mechanisms through which associated variants influence both glycemic 456 

regulation within the physiological range as well as T2D pathophysiology. The FI-associated RAPGEF3 457 

locus is also associated with various obesity-related measures including BMI and WHR, potentially 458 

supporting our tissue enrichment analyses linking FI with adiposity. 459 

We used this work to explore the pathways and metabolic tissues through which the associated genes 460 

influence variation in glycemic traits and highlighted those with key roles in glucose regulation and traits 461 

that act through multiple metabolic tissues, including islets, liver, fat, and in addition, exocrine pancreas, 462 

gut and kidney. Our GSEA enabled us to identify additional genes (e.g. CTRB2) within these tissues and 463 

pathways which were below the threshold for statistical significance in our initial discovery effort and 464 

that merit follow-up. We report an emerging role for the gut and exocrine pancreas for 2hGlu levels and 465 

potentially T2D risk through multiple analyses, consistent with current understanding that both incretins 466 

and digestive enzymes are important in controlling postprandial glucose levels (Esteghamat et al., 2019; 467 

Hart et al., 2018; Woodmansey et al., 2017). We also show that different traits are influenced by 468 

pathways operating in distinct tissues: FG is almost exclusively influenced by pathways in the endocrine 469 

and exocrine pancreas and liver, whilst FI is mediated by the insulin-sensitive tissues such as liver, 470 

kidney, and adipose tissue, indicating the importance of both insulin action and insulin clearance 471 

mechanisms. Genes expressed in muscle, also an insulin-sensitive tissue, were enriched in HbA1c-472 

associated effector loci but not FI, though this could be due to differences in power between the two 473 

analyses. We see evidence of multiple metabolic tissues being important for HbA1c regulation, and note 474 

that the HbA1c-associated set of effector transcripts appear enriched for those that influence blood cell 475 

biology. 476 

We have also shown for the first time that genetic variation in G6PC, a gene implicated in GSD1a, 477 

influences glycemic traits within the normal physiological range in heterozygote carriers. In vitro follow-478 
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up of the variants driving the gene-based association – p.A204S, p.R83C, and p.Q347X – confirmed that 479 

these were indeed causal LOF variants at this locus that contribute to modulation of FG and FI levels. We 480 

then reported novel rare coding variant associations for FG and HbA1c within a member of the same 481 

gene family, G6PC2, and expanded the allelic spectrum of reported variants to include variants affecting 482 

the same codon with both loss and gain of function alleles. Our comprehensive analysis of this locus 483 

demonstrates multiple molecular mechanisms by which variants influence protein function, including 484 

evidence from human islets that the common regulatory variant rs560887 influences G6PC2 isoform 485 

expression, and that a rare PTV (p.R283X) evades NMD and results in a catalytically-null enzyme. Given 486 

the possiblility that the effects of any coding variants in exon 4 which are carried in cis with the 487 

rs560887-A allele could potentially be “diluted” due to the splicing effect, we checked whether the 488 

observed rare variant effects could be driven by rs560887 in LD by repeating the single-variant 489 

association tests with conditional analyses (Table S9). In our analysis, the directions of effect of the rare 490 

coding alleles do not appear to be influenced by the non-coding regulatory allele. We then used our in 491 

vitro data to refine existing methods for gene-based association analysis to demonstrate the value of 492 

functional data in improving their sensitivity. New developments in high-throughput functional 493 

annotation that can overcome the time-consuming nature of functional experiments will greatly 494 

facilitate such efforts (Liu et al., 2017; Tewhey et al., 2016; Ulirsch et al., 2016). Finally, to understand 495 

how loss of G6PC2 influences FG levels, we silenced it in a human beta cell model and demonstrated 496 

increased insulin secretion at low glucose levels, in line with the genetic observations.  497 

 498 

It has long been suspected that particular metabolic tissues are key to governing specific processes of 499 

glucose metabolism. Using human genetics, our study has explored this within an unbiased approach 500 

and has illustrated the impact of altered glycolysis in multiple metabolic tissues on various glycemic 501 

phenotypes. Uniquely, our parallel studies of G6PC and G6PC2 highlighted two homologous proteins 502 

that act through different tissues to influence glycemic traits. As G6PC is involved in hepatic glucose 503 

production it influences both FG and FI levels. Previous studies have also established a potential role for 504 

G6PC in influencing lipid and urate levels (Dewey et al., 2016; Sever et al., 2012). In contrast, due to its 505 

restricted expression in the islet beta cell, variants in G6PC2 only influence FG and HbA1c due to a beta 506 

cell-driven effect. There are also notable differences in the molecular mechanisms underlying protein 507 

dysfunction: for G6PC variants the effect is primarily on enzymatic activity, whilst G6PC2 variants largely 508 

cause protein instability. 509 
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 510 

A limitation of the present study is that we were not able to fine-map association signals, being 511 

restricted to variants captured on the exome array, leaving many associated loci with unknown effector 512 

transcripts. Additional large-scale studies, with higher density GWAS arrays and imputation to dense 513 

reference panels, will be required for fine-mapping and further effector transcript identification.  514 

 515 

In conclusion, we have combined human genetic discovery with pathway analysis and functional studies 516 

to uncover tissue-specific effects in common pathways that influence glycemic traits. Our findings will 517 

inform efforts to target these pathways therapeutically to modulate metabolic function.  518 
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Figure Legends 519 

 520 

Figure 1. Effector transcript classification into “gold”, “silver” and “bronze” categories based on 521 

strength of genetic and biological evidence. A total of 51 effector transcripts from 74 single variant and 522 

six gene-based signals were identified, with many of them shared across traits. The classification was 523 

undertaken independently by four of the authors and the consensus was used as the final classification 524 

for effector transcripts (see Methods). *Asterisk indicates “silver” for FG, “bronze” for 2hGlu. 525 

 526 

Figure 2. Network and pathway analyses identify relevant gene sets regulating glycemia using two 527 

different methods for variant associations with P<1 × 10-5. (A-B) The networks represent composite 528 

networks for (A) HbA1c and (B) FG, from the GeneMANIA analysis using genes with variant associations 529 

at P<1 × 10-5 for each trait as input. Nodes outlined in red correspond to genes from the input list. Other 530 

nodes correspond to related genes based on 50 default databases. Based on the network, GO terms and 531 

Reactome pathways that were significantly enriched are depicted. To summarize these results, the most 532 

significant term of all calculated terms within the same group is represented. Barplots with the 533 

Bonferroni-adjusted -log10(p-values) of the most significant terms within each group are are shown. 534 

Each group was assigned a specific color; if a gene is present in more than one term, it is displayed in 535 

more than one color.  536 

(C-D) Heatmaps showing EC-DEPICT results from analysis of (C) all traits except HbA1c and (D) FG. The 537 

columns represent the input genes for the analysis. In (C), these are genes with variant associations of 538 

P<1 × 10-5 for FG, FI, and/or 2hGlu, and in (D) these are genes with variant associations of P<1 × 10-5 for 539 

FG. Rows in the heatmap represent significant meta-gene sets (FDR <0.05). The color of each square 540 

indicates DEPICT’s z-score for membership of that gene in that gene set, where dark red means “very 541 

likely a member” and dark blue means “very unlikely a member.” The gene set annotations indicate 542 

whether that meta-gene set was significant at FDR <0.05 or not significant (n.s.) for each of the other EC-543 

DEPICT analyses. For heatmap intensity and EC-DEPICT P-values, the meta-gene set values are taken 544 

from the most significantly enriched member gene set. The gene variant annotations are as follows: (1) 545 

the European minor allele frequency (MAF) of the input variant, where rare is MAF <1%, low-frequency 546 

is MAF 1-5%, and common is MAF >5%, (2) whether the gene has an Online Mendelian Inheritance in 547 

Man (OMIM) annotation as causal for a diabetes/glycemic-relevant syndrome or blood disorder, (3) the 548 

effector transcript classification for that variant: gold, silver, bronze, or NA (note that only array-wide 549 

significant variants were classified, so suggestively-significant variants are by default classified as “NA”), 550 
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(4-7) whether each variant was significant (P<2 × 10-7), suggestively significant (P<1 × 10-5), or not 551 

significant in Europeans for each of the four traits, and (8) whether each variant was included in the 552 

analysis or excluded by filters (see Methods). AWS: array-wide significant. Related to Figures S1 to S3. 553 

 554 

Figure 3. Tissue enrichment analysis reveals the key tissues involved in the regulation of glycemic 555 

traits. The figures display expression enrichment of genes from all of the golden, silver, and bronze gene 556 

set lists for (A) HbA1c, (B) FG, (C) FI and (D) 2hGlu in GTEx tissue samples plus islet data. Enrichment P-557 

values were assessed empirically for each tissue using a permutation procedure (10,000 iterations), and 558 

the red vertical line shows the significance threshold (empirical P<0.05). 559 

 560 

Figure 4. Functional characterisation of G6PC variant proteins. Related to Figure S4. 561 

(A) Protein expression levels of missense G6PC variants were determined in Huh7 cells (n=4-5) and (B) 562 

HEK293 cells (n=5) by western blot densitometric analysis of FLAG-tagged G6PC constructs relative to 563 

tubulin control, with representative blots shown.  564 

(C) Protein expression levels of PTV Q347X were determined in Huh7 cells (n=3) and (D) HEK293 cells 565 

(n=4) by western blot densitometric analysis of V5-tagged G6PC constructs relative to tubulin control, 566 

with representative blots shown. Bars in red indicate variants that are statistical drivers of the gene-567 

based signal.  568 

(E) Cellular localisation of V5-tagged G6PC-Q347X was assessed in Huh7 cells and overlaid with markers 569 

for the ER (calreticulin) and the trans-Golgi network (TGN46). White arrows point to positions of the 570 

Golgi apparatus. Scale bar indicates 10μm.  571 

(F) Glucose-6-phosphatase activity of unglycosylated WT G6PC protein obtained from tunicamycin-572 

treated (Tuni) HEK293 microsomes (n=2), with representative western blot of microsomal protein 573 

shown. All data presented as mean ± SEM. * p=0.01-0.05; ** p=0.001-0.01; *** p<0.001. 574 

 575 

Figure 5. Functional characterisation of G6PC2 variant proteins and the role of G6PC2 in human beta 576 

cells. Related to Figure S5. 577 

(A) Expression levels of the glycosylated forms (upper bands only) of G6PC2 variant proteins were 578 

determined in INS-1 832/13 cells by western blot densitometric analysis of Myc-tagged G6PC2 579 

constructs relative to tubulin control (n=5). Representative blots are shown for untreated cells together 580 

with cells treated with proteasomal inhibitor MG-132 or lysosomal inhibitor chloroquine.  581 
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(B) Glucose-6-phosphatase activity of L173T and L173V variants in G6PC (proxy for I171T and I171V in 582 

G6PC2 respectively) in HEK293 against increasing glucose-6-phosphate concentrations (n=4), with mean 583 

Vmax ± SEM and Km ± SEM values shown for WT and each variant.  584 

(C) Glucose-6-phosphatase activity of F258L variant in G6PC (proxy for F256L in G6PC2) in HEK293 585 

against increasing glucose-6-phosphate concentrations (n=3), with mean Vmax ± SEM and Km ± SEM 586 

values shown. Vmax and Km results were computed based on the Michaelis-Menten kinetic model.  587 

(D) Effect of G6PC2 WT and variant protein expression on luciferase activity driven by ER stress response 588 

elements in HEK293 cells. Relative luciferase units corrected for background activity were normalised to 589 

WT for each reporter, from n=6 across two independent experiments (except for F256L, n=3 in one 590 

experiment) using two-way ANOVA with Fisher’s LSD test comparing each variant to WT.  591 

(E) Cellular localisation of R283X in EndoC-βH1 overlaid with markers for the ER (calreticulin) and the 592 

trans-Golgi network (TGN46). White arrows point to positions of the Golgi apparatus. Scale bar indicates 593 

10μm.  594 

(F) Insulin secretion normalised to total content at basal and high glucose conditions (with and without 595 

drug treatments) following 96-120h G6PC2 knockdown in EndoC-βH1. Unpaired two-tailed Students’ t 596 

tests were used to compare G6PC2 knockdown to control for each condition, from n=16 across 4 597 

independent experiments. Tol: tolbutamide; Diaz: diazoxide. All data presented as mean ± SEM. * 598 

p=0.01-0.05; ** p=0.001-0.01; *** p<0.001.  599 

 600 

  601 
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Table Legends 602 

 603 

Table 1. Single-point coding variant associations meeting the significant threshold for coding variants 604 

of P<2.2 × 10-7. This table includes all novel coding variants meeting this threshold, irrespective of 605 

whether they fall in completely new loci or in previously-established loci, provided that the association 606 

at the established locus was not shown to be due to a non-coding variant (Table S3) or another coding 607 

variant at the same locus. Novel loci are highlighted in bold. HbA1c: glycated haemoglobin; FG: fasting 608 

glucose; FI: fasting insulin; 2hGlu: 2h glucose; Alleles E/O: effect allele/other allele; Freq. Effect Allele: 609 

frequency of effect allele; Effect (SE): effect size (standard error); P: p-value; N: number of samples in 610 

the analysis; Novel/previous glycemic trait association: Novel corresponds to a new association result; 611 

Locus name of previous association – name used for previously-reported locus. 1Significant in the 612 

European-only analysis in our study. 2Genome-wide significant association with T2D since date of 613 

analysis (Mahajan et al., 2018b). 3Association with T2D at P<1x10-4 since date of analysis (Mahajan et al., 614 

2018b). 4T2D locus identified in Japanese (Hara et al.,2014) and Mexican (Williams et al., 2014) 615 

populations only. The date of our exomes analysis is May 2015. Related to Table S3. 616 

 617 

Table 2. Gene-based results from broad (NSbroad mask) and strict (NSstrict mask) analyses. Genes in 618 

bold are newly discovered from this effort. N var: total number of variants in that gene-based analysis; 619 

Pburden: p-value from burden test which assumes all variants have the same direction of effect; PSKAT: p-620 

value from SKAT test which allows for different directions of effect between variants. The lowest p-value 621 

is highlighted in bold. Related to Table S4.  622 
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Methods 623 

 624 

LEAD CONTACT AND MATERIALS AVAILABILITY 625 

 626 

Further information and requests for resources and reagents should be directed to and will be fulfilled 627 

by the Lead Contacts, Inês Barroso (ines.barroso@mrc-epid.cam.ac.uk) and Anna L Gloyn 628 

(anna.gloyn@drl.ox.ac.uk). 629 

 630 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 631 

 632 

Studies in humans 633 

MAGIC (Meta-Analysis of Glucose and Insulin-related traits Consortium) was established to focus on the 634 

genetic analysis of glycemic traits in individuals without diabetes. In this MAGIC effort, non-diabetic 635 

individuals of European (85%), African-American (6%), South Asian (5%), East Asian (2%) and Hispanic 636 

(2%) ancestry from up to 64 cohorts participated. Sample sizes were up to 144,060 for HbA1c, 129,665 637 

for FG, 104,140 for FI and 57,878 for 2hGlu. Participating cohorts and their characteristics are detailed in 638 

Table S1.  639 

 640 

Studies in cellular models 641 

HEK293 cells were cultured in Dulbecco's Modified Eagle’s Medium (DMEM) (D6429, Sigma Aldrich), 642 

10% (v/v) foetal bovine serum (FBS) (10500-064, Life Technologies), 100 U/ml penicillin and 100 µg/ml 643 

streptomycin (15140122, Life Technologies). Huh7 cells were cultured in DMEM (31885, Life 644 

Technologies), 10% (v/v) FBS, 100 U/ml penicillin and 100 µg/ml streptomycin. INS-1 832/13 cells were 645 

cultured in Roswell Park Memorial Institute-1640 (RPMI-1640) media (R0883, Sigma Aldrich), 10% (v/v) 646 

FBS, 100 U/ml penicillin and 100 µg/ml streptomycin, 2 mM L-glutamine (25030081, Life Technologies), 647 

1 mM sodium pyruvate (S8636, Sigma Aldrich), 10 mM HEPES (H3537, Sigma Aldrich), 50 µM 2-648 

mercaptoethanol (Life Technologies). EndoC-βH1 cells were cultured in DMEM (31885, Life 649 

Technologies), Bovine Serum Albumin (BSA) fraction V (10775835001, Roche), 100 U/ml penicillin and 650 

100 µg/ml streptomycin, 2 mM L-glutamine, 50 µM 2-mercaptoethanol, 10 mM nicotinamide (Sigma 651 

Aldrich), 5.5 µg/ml transferrin (Sigma Aldrich) and 6.6 ng/ml, sodium selenite (Sigma Aldrich). All cell 652 
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lines were tested negative for mycoplasma contamination using the MycoAlert Assay kit (Lonza). Cells 653 

were maintained at 37°C and 5% CO2. 654 

METHOD DETAILS 655 

 656 

Studies in humans 657 

Phenotypes 658 

Studied outcomes were FG (mmol/L), Ln-transformed FI (pmol/L), 2hGlu (mmol/L) and HbA1c (% of 659 

hemoglobin).  Glycemic measurements are described in detail for each contributing cohort in Table S1. 660 

Individuals with diagnosed or treated diabetes, or those with diabetes on the basis of FG (≥ 7 mmol/L), 661 

2hGlu ((≥ 11.1 mmol/L) and/or HbA1c (≥ 6.5%) were excluded from analyses. 662 

 663 

Genotyping and QC 664 

The Illumina HumanExome BeadChip is a genotyping array containing variants that have been observed 665 

in sequencing data of ~12,000 individuals. Non-synonymous variants seen at least three times across at 666 

least two datasets were included on the exome chip. More lenient criteria were used for splice and 667 

nonsense variants. Besides the core content of protein-altering variants, the exome chip contains 668 

additional variants including common variants identified in GWAS, ancestry informative markers, 669 

mitochondrial variants, randomly selected synonymous variants, HLA tag variants and Y chromosome 670 

variants. In this study we analysed association with glycemic traits of 247,470 autosomal and X 671 

chromosome variants present on the exome chip. Genotype calling and quality control were performed 672 

following protocols developed by the UK Exome Chip or CHARGE consortium (Grove et al., 2013). The 673 

exact genotyping array, calling algorithm and QC procedure used by each cohort are depicted in Table 674 

S1.  675 

 676 

Annotation and functional prediction of variants 677 

Annotation of the exome chip variants was performed using the Ensembl Variant Effect Predictor v78. In 678 

silico functional prediction from SIFT, Polyphen HumDiv, Polyphen HumVar, LRT and MutationTaster was 679 

added using dbNSFP v2.9 (Liu et al., 2013; Yourshaw et al., 2015). 680 

 681 

Statistical analyses 682 

Single variant analyses 683 
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Individual cohorts ran linear mixed models using the raremetalworker (v 4.13.2) or rvtests (v20140723) 684 

software (Table S1). For each glycemic outcome, analyses were performed using an additive model for 685 

the raw and the inverse normal transformed trait. In the manuscript and in all tables and figures effect 686 

estimates and standard errors are for the raw trait, while the p-values are from the inverse normal 687 

transformed trait analyses. Analyses were adjusted for age, sex, BMI, study-specific number of PCs and 688 

other study-specific covariates (Table S1). Raremetal (v4.13.7 or higher) was used to combine results by 689 

fixed-effect meta-analyses. Variants with P < 10-4 for deviation from Hardy-Weinberg equilibrium or with 690 

call rate < 0.99 in individual cohorts were excluded from meta-analyses. In single variant analyses, the 691 

threshold for significance was P < 2.2×10-7 for coding variants (stop-gained, stop lost, frameshift, splice 692 

donor, splice acceptor, initiator codon, missense, in-frame indel and splice region variants). These P-693 

value thresholds were based on a Bonferroni correction weighted by the enrichment for complex trait 694 

associations among the different functional annotation categories (Mahajan et al., 2018b; 695 

Sveinbjornsson et al., 2016). Significant association signals located more than 500 kb from any variant 696 

already known to be associated with the trait  at the time of analysis (May 2015) were considered novel 697 

for the trait. 698 

 699 

Gene-based analyses 700 

In addition, raremetal was used to perform gene-based burden and sequence kernel association (SKAT) 701 

tests. For both burden and SKAT tests, two in silico masks for inclusion of variants in the test were used: 702 

NSstrict and NSbroad. The NSstrict mask includes PTVs (splice donor, splice acceptor, stop gained, 703 

frameshift, stop lost or initiator codon variant) OR variants that are missense and predicted to be 704 

damaging by five prediction algorithms (SIFT, Polyphen HumDiv, Polyphen HumVar, LRT, 705 

MutationTaster). The NSbroad mask additionally includes missense variants predicted to be damaging 706 

by at least one of the five prediction algorithms AND that have a MAF<1% in each ancestry group. These 707 

MAFs were derived from our single variant HbA1c meta-analyses results (N up to 144,060). For G6PC2, 708 

we also used masks filtering on functional variants that have been determined in vitro to influence 709 

protein expression or function. The P-value threshold for significance in gene-based analyses was 710 

2.5x10-6 (Bonferroni correction for 20,000 genes). 711 

 712 

Conditional analyses 713 

Approximate conditional analyses were performed using Raremetal v 4.13.8. At known glycemic trait 714 

loci, if previously known GWAS index variants (or good proxies) were present on the exome chip, 715 
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significant lead coding variants were conditioned on these known index variants and vice versa to 716 

identify distinct coding variant signals. At novel loci, to identify additional distinct associated variants, 717 

analyses were performed conditioning on the most significant variant at the locus. These analyses were 718 

repeated by including the next most significant and distinct associated variant until no exome- or 719 

genome-wide significantly-associated variants were left at the locus. For gene-based signals, to identify 720 

the variants driving the signal, analyses were performed conditioning on the variant with the most 721 

significant p-value that was included in the mask. These analyses were repeated including the next most 722 

significant variant until association at the gene was attenuated (P > 0.05). If there were both gene-level 723 

and known or novel single variant associations at the same locus (within 500 kb), we additionally 724 

conditioned on the associated single variant to assess whether the gene-based association was distinct 725 

from the single variant association. 726 

 727 

Putative effector transcript identification 728 

To identify putative effector transcripts, at known glycemic trait loci we considered the transcript a 729 

putative effector transcript if there was a distinct coding variant signal (still meeting the threshold for 730 

significance of P < 2.2×10-7 after conditioning on the non-coding GWAS index variant, for details on 731 

these conditional analyses methods refer to the conditional analyses methods section above). Coding 732 

variant associations at novel loci were followed up on in published GWAS results with higher density 733 

coverage (Manning et al., 2012; Wheeler et al., 2017a). If the coding variant was present in the GWAS 734 

results, approximate conditional analyses were performed using GCTA (Yang et al., 2012). If the GWAS 735 

index variant signal was abolished by conditioning on the coding variant, we considered this as evidence 736 

supporting the transcript as a putative effector transcript. If the both the GWAS index variant and the 737 

coding variant signals were attenuated, the results were considered uninformative and we considered 738 

the transcript in light of other data. We additionally utilized published data to classify effector 739 

transcripts, including (1) fine-mapping results from comparable T2D efforts (Mahajan et al., 2018b) and 740 

(2) a body of literature establishing a role in glucose metabolism or red blood cell biology (for HbA1c) for 741 

certain genes that mapped within our loci. Significant gene-based associations driven by multiple coding 742 

variants within a single gene, in particular where an impact on protein expression or function could be 743 

demonstrated, were considered strong evidence for the determination of effector transcripts. 744 

Combining these approaches, we attempted to identify effector transcripts at each locus, and we 745 

classified their likelihood of being correct depending on the strength of the evidence. Those effector 746 

transcripts where there was strong evidence from reciprocal conditional analysis or support from 747 
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published data for the relevant glycemic trait or phenotype were labelled “gold”; those where the 748 

effector transcript could not be defined by conditional analysis (either because it was inconclusive or 749 

due to lack of data) but where there was strong biological plausibility for a given gene at the locus were 750 

labelled “silver”; those where we had some tentative evidence but that was not strong enough to 751 

warrant a “silver” classification were labelled “bronze”, and the remainder were left with an unknown 752 

effector transcript.  Effector transcript classification into “gold”, “silver” and “bronze” was undertaken 753 

independently by four of the authors and the highly concordant consensus score was given (Table S6). 754 

 755 

GeneMANIA network analysis 756 

For network analyses, we used GeneMANIA (v3.5.1), a network approach that searches many large, 757 

publicly-available biological datasets to find related genes. These include protein-protein, protein-DNA 758 

and genetic interactions, pathways, reactions, gene and protein expression data, protein domains and 759 

phenotypic screening profiles. Briefly, GeneMANIA uses a label propagation algorithm for predicting 760 

gene function given the composite functional association network (calculated from the databases 761 

selected). The weights needed for the label propagation method to work are selected at the beginning 762 

of the process. In our case, and according to the defaults, we weighted the network using linear 763 

regression, to make genes in the input list interact as much as possible with each other. We analyzed all 764 

non-synonymous variants for each locus with a cut-off of association P<1x10-5 with any trait (input 765 

genes). We performed four network analyses: (1) HbA1c-associated variants only, (2) FI-associated 766 

variants only, (3) FG-associated variants only, and (4) 2hGlu-associated variants only.  767 

We selected the 50 default databases to create the composite network, and we allowed the method to 768 

find at most 50 genes that are related to our query input list. The resultant networks were investigated 769 

to find enriched Gene Ontology (GO) terms and Reactome Pathways. Gene Set Enrichment (GSE) of 770 

networks and sub-networks were assessed with ClueGO (Bindea et al., 2009) using GO terms and 771 

Reactome gene sets (Croft et al., 2014). The enrichment results were grouped using a Cohen’s Kappa 772 

score of 0.4, and terms were considered significant with a Bonferroni-adjusted p-value<0.05, provided 773 

that there was an overlap of at least three network genes in the relevant GO gene set when calculating 774 

GO enrichment. For the pathway selection (Reactome), we set a threshold that the network genes 775 

should represent at least 4% of the pathway. These values were applied given the recommended 776 

defaults when running ClueGO (Bindea et al., 2009). Cohen’s Kappa statistic was used to measure the 777 

gene-set similarity of GO terms and Reactome pathways and allowed us to group enriched terms into 778 
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functional groups to improve visualization of enriched pathways. We used all genes with GO annotations 779 

and at least one interaction in our network database as the background set. 780 

 781 

Gene set enrichment analysis (GSEA) 782 

For GSEA, we used EC-DEPICT, an extension of the GWAS GSEA method DEPICT (Pers et al., 2015). EC-783 

DEPICT has been described elsewhere (Marouli et al., 2017; Turcot et al., 2018). Briefly, the key feature 784 

of EC-DEPICT is the use of “reconstituted” gene sets, which are gene sets collected from many different 785 

databases (e.g. canonical pathways, protein-protein interaction networks, and mouse phenotypes) that 786 

have been extended based on large-scale microarray co-expression data (Fehrmann et al., 2015; Pers et 787 

al., 2015). 788 

Six groups of variants were analyzed: (1) HbA1c-associated variants only, (2) FI-associated variants only, 789 

(3) FG-associated variants only, (4) 2hGlu-associated variants only, (5) all trait-associated variants, and 790 

(6) all trait-associated variants except for HbA1c (see Methods). For each trait, we clumped the 791 

European summary statistics (+/- 500 kb on either side). Then, the most significant nonsynonymous 792 

variant for each locus was included in the analysis, with a cut-off of P<10-5. Annotations from the 793 

CHARGE consortium were used to assign variants to genes (see URL). After GSEA, highly correlated gene 794 

sets were grouped by affinity propagation clustering of all 14,462 gene sets (Frey and Dueck, 2007) into 795 

“meta-gene sets” using SciKitLearn.clustering.AffinityPropagation version 0.17 (Abraham et al., 2014). 796 

For all visualizations, the gene set within a meta-gene set with the best enrichment P-value was used; 797 

heat maps were created with the ComplexHeatmap package in R (Gu et al., 2016). 798 

URL: CHARGE Consortium ExomeChip annotation file (v6): 799 

http://www.chargeconsortium.com/main/exomechip/ 800 

 801 

Method and choice of data for permutations: We performed the EC-DEPICT analysis as described 802 

elsewhere (Marouli et al., 2017; Turcot et al., 2018). All analyses are based on a group of 14,462 803 

“reconstituted” gene sets, which contains a z-score for probability of gene set membership for each 804 

gene (for details, see (Fehrmann et al., 2015; Pers et al., 2015)).  805 

Briefly, the basic EC-DEPICT method is as follows. We first obtain a list of significant input variants (the 806 

most significant nonsynonymous variant per locus) and then map variants to genes based on 807 

annotations from the CHARGE consortium (see URL). For each gene set, we obtain the gene set 808 
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membership z-scores for all trait-associated input genes and sum them to generate a test statistic. We 809 

then take 2,000 permuted ExomeChip association studies (described in more detail below) and calculate 810 

the average permuted test statistic for that gene set, as well as the permuted standard deviation. For 811 

each permutation, the number of top genes we take as “input genes” is matched to the actual observed 812 

number of input genes. We then calculate (observed test statistic – average permuted test 813 

statistic)/(permuted standard deviation) to generate a z-score, which is converted to a p-value via the 814 

normal distribution. False discovery rates were calculated by comparing the observed p-values to a 815 

permuted P-value distribution generated with an additional set of 50 permuted association studies. 816 

The permuted ExomeChip association studies are conducted by (1) generating 2,200 sets of normally 817 

distributed phenotypes and (2) using these randomly generated phenotypes to conduct 2,200 818 

association studies with real ExomeChip data. Using these permutations to adjust the observed test 819 

statistics corrects for any inherent structure in the data (e.g. that pathways made up of longer genes 820 

may be more likely to come up as significant by chance).  821 

For these analyses, we first generated permutations based on ExomeChip data we had used previously 822 

for this purpose: 11,899 samples drawn from three cohorts (Malmö Diet and Cancer [MDC], All New 823 

Diabetics in Scania [ANDIS], and Scania Diabetes Registry [SDR]). For simplicity, we refer to these cohorts 824 

as the “Swedish permutations.”  825 

As part of our GSEA pipeline, we remove input trait-associated variants that are not present in the 826 

permuted data to ensure that all variants are appropriately modeled. When using the Swedish 827 

permutations, this generally results in removing a substantial fraction of the variants, especially of the 828 

very rarest variants (due to the smaller sample size of the Swedish data relative to the data being 829 

analyzed). We have previously observed that this filtering can actually improve the GSEA signal, possibly 830 

due to more heterogeneous biology or a higher false-positive rate in these very rare variants (Turcot et 831 

al., 2018). However, in this case, we observed that in performing this filtering, we excluded variants in 832 

several known monogenic disease genes, such as HNF1A and SLC2A2. Therefore, we wished to repeat 833 

the analysis with a set of permutations which would allow us to retain these variants. We thus repeated 834 

the analysis with a second set of permutations consisting of 152,249 samples from the UK Biobank 835 

(referred to as the “UKBB permutations”). The larger sample size in the UKBB permutations means more 836 

variants are present and can therefore be included in the analysis. 837 

Concordance of results from two different sets of permuted distributions across phenotypes: For 838 
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completeness, we report the results from the use of both sets of permutations. We note that the results 839 

are strongly concordant. The larger number of significant gene sets reported based on the UK Biobank 840 

permutations is generally a combination of 1) overall improved power (i.e. more variants are included) 841 

and 2) the inclusion of variants in key driver genes absent in the Swedish permutations, encompassing 842 

both the monogenic genes mentioned above (e.g. SLC2A2) and additional genes with clearly relevant 843 

biology (e.g. CTRB2, SLC30A8). The results from both sets of permutations are summarized below. For all 844 

analyses, “significance” refers to a false discovery rate of <0.05.  845 

All-trait analysis: After filtering, 78 input genes were included for the analysis with the UKBB 846 

permutations and 60 for the analysis with the Swedish permutations. (Note that the difference in the 847 

number of input genes is due to the presence of a larger number of input variants in the UKBB 848 

permutations – see above).  We found 234 significant gene sets in 86 meta-gene sets based on the UKBB 849 

permutations (Figure S2) and 133 gene sets in 51 meta-gene sets based on the Swedish permutations 850 

(Figure S3). The correlation between the UKBB and Swedish analyses was r = 0.902, P< 10-300.  851 

 852 

All-traits-except-HbA1c analysis: After filtering, 45 input genes were included for the analysis with the 853 

UKBB permutations and 33 for the analysis with the Swedish permutations. We found 128 significant 854 

gene sets in 53 meta-gene sets based on the UKBB permutations (Figure S2) and 45 significant gene sets 855 

in 18 meta-gene sets based on the Swedish permutations (Figure S3). The correlation between the UKBB 856 

and Swedish analyses was r = 0.882, P< 10-300.  857 

 858 

HbA1c-only analysis: After filtering, 41 input genes were included for the analysis with the UKBB 859 

permutations and 33 for the analysis with the Swedish permutations. We found 191 significant gene sets 860 

in 73 meta-gene sets based on the UKBB permutations (Figure S2) and 120 gene sets in 41 meta-gene 861 

sets based on the Swedish permutations. (Figure S3). The correlation between the UKBB and Swedish 862 

analyses was r = 0.936, P< 10-300. 863 

FG-only analysis: After filtering, 26 input genes were included for the analysis with the UKBB 864 

permutations and 22 for the analysis with the Swedish permutations. We found 106 significant gene sets 865 

in 39 meta-gene sets based on the UKBB permutations (Figure S2) and 48 significant gene sets in 15 866 

meta-gene sets based on the Swedish permutations (Figure S3). The correlation between the UKBB and 867 

Swedish analyses was r = 0.939, P< 10-300. 868 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2019. ; https://doi.org/10.1101/790618doi: bioRxiv preprint 

https://doi.org/10.1101/790618
http://creativecommons.org/licenses/by/4.0/


31 
 

 2hGlu-only analysis: After filtering, 12 input genes were included for the analysis with the UKBB 869 

permutations and 7 for the analysis based on the Swedish permutations. We found 56 significant gene 870 

sets in 17 meta-gene sets based on the UKBB permutations (Figure S2), with no significant gene sets 871 

based on the Swedish permutations. The correlation between the UKBB and Swedish analyses was r = 872 

0.787, P< 10-300. 873 

FI-only analysis: After filtering, 11 input genes were included for the analysis with the UKBB 874 

permutations and 8 for the analysis with the Swedish permutations. There were no significant gene sets 875 

from either analysis. The correlation between the UKBB and Swedish analyses was r = 0.860, P< 10-300. 876 

Visualization: As in previous work (Marouli et al., 2017; Turcot et al., 2018), we have included all trait-877 

associated variants in the heat maps, even if they were excluded from the analysis (e.g. because they 878 

were absent in the permutations or did not have a nonsynonymous annotation in the CHARGE 879 

annotation file). This is because we assume that if the genes harboring those variants have strong 880 

predicted membership in significantly trait-associated gene sets, they are still good candidates for 881 

prioritization. In fact, this may be even stronger evidence in favor of these genes because they did not 882 

contribute to the enrichment analysis and therefore their prioritization is independently derived (and 883 

provides even more support to the implicated biology). 884 

 885 

Tissue enrichment analysis 886 

We analysed identified genes (all 51 effector transcripts) for tissue enrichment using publicly available 887 

expression data from the GTEx project, version 7 and publicly-available islet expression data (van de 888 

Bunt et al., 2015). We use transcripts per million (TPM) values for gene level analyses. We have excluded 889 

genes from non-coding proteins and only used those with unique HGCN IDs (n = 20,160). We ranked all 890 

genes by median TPM across all samples, and generated 10,000 permutations of each gene set list 891 

(golden, silver, and bronze) by selecting a random gene for each entry in the gene set within ± 150 ranks 892 

of the transcript for that gene. For each sample in GTEx tissues, the TPM values were converted into 893 

ranks for that gene, and sums of ranks within each tissue were computed for each gene. We calculated 894 

enrichment p-values for each tissue by taking the total number of instances when the gene list of 895 

interest had a lower sum of ranks than the permuted sum of ranks (divided by the total number of 896 

permutations). To check that our results were not driven by sample size differences in each of the 45 897 

analyzed GTEx tissues and islet tissue, we applied a ‘downsampling’ strategy. We performed 3 different 898 
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downsampling analyses with 100, 150 and 175 samples chosen at random from each of the selected 899 

GTEx tissues and compared them to the results obtained with the whole dataset. During each 900 

downsampling round, we only used those tissues with at least the target number of samples (100, 150 901 

or 175) because the random selection was performed under a no-replacement condition. Our results 902 

were robust to sample size differences and the trends observed were not driven by differences in 903 

sample sizes across tissues. 904 

 905 

RNA-sequencing of human islets 906 

RNA from human islet samples (n=150) was sequenced on Illumina HiSeq2000 as previously described 907 

(van de Bunt et al., 2015). Allele-specific expression was assessed using MAMBA (Pirinen et al., 2015). 908 

For the isoform effects, all protein-coding and lincRNA transcripts from GRCh37 (Ensembl release 75) 909 

were quantified using Salmon v0.8.1 (Patro et al., 2017). Isoform ratios were calculated by dividing each 910 

transcript’s expression by the total expression of that gene. For the QTL analysis, all isoforms with 911 

expression in < 50% or all samples, with no variance between samples, only 0 or 1 fractions across 912 

samples, or those originating from non-autosomal chromosomes were removed. Ratios of the remaining 913 

transcripts were rank-transformed to normality. Subsequently, 30 PEER factors to account for potential 914 

sources of non-genetic noise were derived from the normalized isoform ratios, and, together with three 915 

genotype principal components and a sex covariate, were used in the QTL analysis using FastQTL (Ongen 916 

et al., 2016). Finally, the resulting beta-approximated p-values were adjusted for multiple testing across 917 

all tested transcripts using the Benjamini-Hochberg procedure. 918 

 919 

Studies in cellular models 920 

 921 

Site directed mutagenesis. Human G6PC (NM_000151.3) and G6PC2 cDNA (NM_021176.2) within a 922 

pCMV6-Entry vector (with a C-terminal Myc-FLAG-tag) was purchased from OriGene (RC215623 and 923 

RC211146 respectively). For the study of PTVs, an N-terminal V5 tag sequence (5’-924 

GGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCTACG-3’) was cloned into the OriGene vectors. Single 925 

nucleotide substitutions were generated in the G6PC or G6PC2 coding sequence using Quikchange II 926 

Site-Directed Mutagenesis (Agilent). All mutations were verified by Sanger sequencing and in each case, 927 

only the desired nucleotide changes were introduced. 928 
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Western blot analyses. Western blots were performed on total protein lysates collected from human 929 

HEK293 and Huh7 cells and rat INS-1 832/13 cells transfected with each wild type or mutant 930 

G6PC/G6PC2 construct using Lipofectamine 2000 (Invitrogen) according to manufacturer’s instructions. 931 

All cell lines were tested negative for mycoplasma contamination. For the inhibition of cell proteolysis, 932 

cells were treated with 10μM MG-132 (Calchembio) or 100μM chloroquine (Sigma) for 15h. For 933 

inhibition of N-linked glycosylation, cells were treated with 1µg/ml tunicamycin (Sigma) for 15h. Cells 934 

were collected 36-48h after transfection and homogenized in lysis buffer. Cell lysates were separated by 935 

4–12% SDS-PAGE (Bio-Rad/Invitrogen). The antibodies used for determining recombinant G6PC/G6PC2 936 

expression were: anti-FLAG M2 (Sigma, F1804), anti-V5 (Invitrogen, 46-0705) or anti-myc 4A6 (Millipore, 937 

05-724). A β-tubulin antibody (Santa Cruz, sc-9104) was used as a loading control. Secondary antibodies 938 

specific to mouse or rabbit IgG were purchased from Thermo Fisher Scientific. Protein bands were 939 

detected using the western enhanced chemiluminescence substrate (BioRad). 940 

Immunofluorescence microscopy. Human HEK293, Huh7 and EndoC-βH1 cells were transfected using 941 

FuGene 6 transfection reagent (Promega) according to manufacturer’s instructions, in 4-well chamber 942 

slides (BD Biosciences). After 48h, cells were fixed with 4% paraformaldehyde in PBS, permeabilized with 943 

0.05% Triton X-100 in PBS and blocked with 10% BSA in PBS-Tween 20. Double immunostaining of cells 944 

was carried out using anti-FLAG M2 (Sigma, F1804) or anti-V5 (Invitrogen, 46-0705), together with anti-945 

calreticulin (Thermo, PA3-900) or anti-TGN46 (Sigma, T7576) primary antibodies. The secondary 946 

antibodies used were anti-mouse Alexa Fluor 488 and anti-rabbit Alexa Fluor 568, both from Life 947 

Technologies. DRAQ5 fluorescent probe (Thermo Fisher Scientific) was applied at 20μM as a far-red 948 

nuclear stain. Finally, slides were mounted with ProLong Gold antifade reagent (Life Technologies) and 949 

visualized on a BioRad Radiance 2100 confocal microscope with a 60X 1.0 N.A. objective. Images were 950 

acquired with different laser settings that were optimized for each sample and therefore fluorescent 951 

intensities are not comparable across samples. 952 

Glucose-6-phosphatase activity of microsomal samples. For the collection of microsomes, HEK293 cells 953 

were transfected with 12.5 µg of wild type or mutant G6PC construct in 10 cm dishes using 954 

Lipofectamine 2000 (Invitrogen). For the study of G6PC2 variant activity, site directed mutagenesis was 955 

carried out within the conserved sequence regions on the G6PC background. Cells were cultured in 956 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum, 100 U/ml 957 

penicillin, and 100 µg/ml streptomycin. At least two dishes of cells per condition were harvested 48h 958 

after transfection and scraped into 0.25M sucrose-5 mM HEPES buffer (SH) followed by several rinses in 959 
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SH. Cells were mechanically homogenized using a Potter-Elvehjem glass tissue grinder and Teflon pestle, 960 

followed by 12 passes through a 27-gauge syringe needle. The homogenate was subjected to 961 

centrifugation at 10,000 g for 10 min and the supernatant (post-nuclear fraction) was further 962 

centrifuged at 100,000 g for 1h in a TLA 100.4 rotor in an Optima TLX ultracentrifuge (Beckman Coulter). 963 

A pellet containing the microsomal fraction was obtained and resuspended in SH. An aliquot of each 964 

microsomal sample was lysed in lysis buffer for protein quantification using the Bradford reagent (Bio-965 

Rad) and analysed by western blot (BioRad) to determine the relative levels of recombinant G6PC WT 966 

and variant expression. For glucose-6-phosphatase assays, matched amounts of G6PC WT or variant 967 

protein (approximately 1-5µg of microsomal protein) were each incubated in a 200 µl reaction mix 968 

containing 100 mM MES pH 6.5, and 0 to 20 mM G6P at 37°C for 8 min. The reaction was terminated by 969 

addition of 20% trichloroacetic acid and centrifuged at 4,000 rpm for 10 min in a microcentrifuge. The 970 

supernatant was mixed in equal parts with a Taussky-Shorr colour reagent (1% ammonium molybdate, 971 

5% iron(II) sulphate heptahydrate in 0.5M H2SO4) for 7.5 min before measuring absorbance at 660 nm 972 

on a spectrophotometer (Molecular Devices Ltd). The amount of phosphates detected was calculated 973 

using a KH2PO4 standard curve. Results were expressed as mean normalised activity (nmol/mg/min) 974 

relative to the activity of wild type at 20 mM G6P for every experiment. Finally, Michaelis-Menten 975 

enzyme kinetic analysis and paired t tests of determined kinetic constants were carried out on GraphPad 976 

Prism 6.0. 977 

ER stress response reporter assays. HEK293 cells were co-transfected with G6PC2 WT or variant 978 

constructs and pGL3-Promoter constructs containing ER stress response elements (ERSE-I and ERSE-II) or 979 

UPR elements (UPRE-P and UPRE-W) using the FuGene 6 transfection reagent (Promega). A Renilla 980 

luciferase gene-containing pRL-CMV was also co-transfected as an internal transfection control. Cells 981 

were lysed in passive lysis buffer (Promega) and assayed using the Dual Luciferase Assay System 982 

(Promega). 983 

Insulin secretion analysis in EndoC-βH1 cells. Gene knockdown was carried out on EndoC-βH1 cells 984 

using ON-TARGETplus siRNA (Dharmacon, GE Healthcare) and Lipofectamine RNAiMAX (Life 985 

Technologies) at a final concentration of 25 nmol/L siRNA. For static incubation experiments, cells were 986 

placed in 2.8 mM glucose DMEM (11966, Gibco by Life Technologies) overnight. Cells were starved in 0 987 

mM glucose medium for 1h the following day, then stimulated in DMEM containing 1 mM glucose, 6 988 

mM glucose, 20 mM glucose, 20 mM glucose with 100 µM tolbutamide (Sigma Aldrich) or 20 mM 989 

glucose with 100 µM diazoxide (Sigma Aldrich) at 37°C for 1h. Each condition was carried out in triplicate 990 
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or quadruplicate wells within each experiment. Viable cell count was measured using the CyQUANT 991 

Direct Cell Proliferation Assay kit (C35012, Thermo Scientific). All cell count values were expressed as 992 

fluorescent units normalised to mean cell count at 1 mM glucose. Cells were extracted for analysis of 993 

insulin content with cold HCl-ethanol (Sigma Aldrich). Insulin levels were measured using the human 994 

insulin AlphaLISA detection kit (AL204C, Perkin Elmer). 995 

 996 

QUANTIFICATION AND STATISTICAL ANALYSIS 997 

 998 

Western blot bands for protein expression studies were quantified by densitometry analysis using 999 

ImageJ and densitometric data between G6PC/G6PC2 WT and each variant from 3-5 independent 1000 

experiments were compared using two-tailed paired Students’ t tests. For enzymatic assays, mean 1001 

differences in activity between G6Pase WT protein and each variant protein for the substrate G6P were 1002 

compared using two-tailed unpaired Students’ t tests of the determined kinetic constants Vmax and Km. 1003 

For the analysis of ER stress luciferase activity data, a two-way analysis of variance (ANOVA) was applied 1004 

to compare mean fold difference in reporter activity between G6PC WT and variant. For gene expression 1005 

analyses, G6PC2 KO and control cells were analysed using two-tailed unpaired Students’ t tests. For the 1006 

analysis of insulin secretion data, mean differences between G6PC2 KO cells and control cells for each 1007 

condition or time point were compared using two-tailed unpaired Students’ t tests. Plotting of graphs 1008 

and statistical analyses were carried out on GraphPad Prism 6.0 or 7.0. A P value <0.05 was considered 1009 

significant. 1010 
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Supplementary Figure Legends 1039 

 1040 

Figure S1. GeneMANIA network analysis identifies relevant pathways regulating glycemia. The 1041 

networks represent composite networks for (A) FI and (B) 2hGlu, from the GeneMANIA analysis using 1042 

genes with variant associations at P<1 × 10-5 for each trait as input. Nodes outlined in red correspond to 1043 

genes from the input list. Other nodes correspond to related genes based on 50 default databases. 1044 

Based on the network, GO terms and Reactome pathways that were significantly enriched are depicted. 1045 

To summarize these results, the most significant term of all calculated terms within the same group 1046 

(using the Kappa method, see Methods) was represented. Each group was assigned a specific color; if a 1047 

gene is present in more than one term, it will be displayed in more than one color. Barplots with the 1048 

Bonferroni-adjusted -log10(p-values) of the most significant terms within each group are are shown. 1049 

Each group was assigned a specific color; if a gene is present in more than one term, it is displayed in 1050 

more than one color. Details of the networks are summarized in (C). Related to Figure 2 and Table S7. 1051 

 1052 

Figure S2. Pathway analysis identifies relevant gene sets regulating glycemia. EC-DEPICT analysis with 1053 

heatmap visualization (UK Biobank permutations) is shown for a. all traits combined; b. HbA1c only; c. all 1054 

traits except HbA1c combined; d. FG only; e. 2hGlu only. The columns represent the input genes for the 1055 

analysis.  We used affinity propagation clustering to define a representative “meta-gene set” for groups 1056 

of highly correlated gene sets (see Methods); the rows in the heat map represent significant meta-gene 1057 

sets (FDR <0.05). The color of each square indicates DEPICT’s z-score for membership of that gene in 1058 

that gene set, where dark red means “very likely a member” and dark blue means “very unlikely a 1059 

member”. The gene set annotations indicate whether that meta-gene set was significant at FDR <0.05 or 1060 

not significant (n.s.) for each of the other EC-DEPICT analyses using the UK Biobank permutations (all 1061 

traits together, HbA1c only, FG only, 2hGlu only, and all-except-HbA1c). For heatmap intensity and EC-1062 

DEPICT P-values, the meta-gene set values are taken from the most significantly enriched member gene 1063 

set. The gene variant annotations are as follows: (1) the European minor allele frequency (MAF) of the 1064 

input variant, where rare is MAF <1%, low-frequency is MAF 1-5%, and common is MAF > 5%, (2) 1065 

whether the gene has an Online Mendelian Inheritance in Man (OMIM) annotation as causal for a 1066 

diabetes/glycemic-relevant syndrome or blood disorder, (3) the effector transcript classification for that 1067 

variant: gold, silver, bronze, or NA (note that only array-wide significant variants were classified, so 1068 

suggestively-significant variants are by default classified as “NA”), (4-7) whether each variant was 1069 
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significant (P<2 × 10-7), suggestively significant (P<10-5), or not significant in Europeans for each of the 1070 

four traits, and (8) whether each variant was classified in the analysis (with UK Biobank permutations) or 1071 

excluded by filters (see Methods). AWS: array-wide significant. Related to Figure 2 and Table S8. 1072 

 1073 

Figure S3. Pathway analysis identifies relevant gene sets regulating glycemia. EC-DEPICT analysis with 1074 

heatmap visualization (Swedish permutations) is shown for a. all traits combined; b. HbA1c only; c. all 1075 

traits except HbA1c combined; d. FG only. (With these permutations, there was no significance for 2hGlu 1076 

only). We used affinity propagation clustering to define a representative “meta-gene set” for groups of 1077 

highly-correlated gene sets (see Methods); the rows in the heat map represent significant meta-gene 1078 

sets (FDR <0.05). The color of each square indicates DEPICT’s z-score for membership of that gene in 1079 

that gene set, where dark red means “very likely a member” and dark blue means “very unlikely a 1080 

member”. The gene set annotations indicate whether that meta-gene set was significant at FDR <0.05 or 1081 

not significant (n.s.) for each of the other EC-DEPICT analyses using the Swedish permutations (all traits 1082 

together, HbA1c only, FG only, and all-except-HbA1c). For heatmap intensity and EC-DEPICT P-values, 1083 

the meta-gene set values are taken from the most significantly enriched member gene set. The gene 1084 

variant annotations are as follows: (1) the European minor allele frequency (MAF) of the input variant, 1085 

where rare is MAF <1%, low-frequency is MAF 1-5%, and common is MAF >5%, (2) whether the gene has 1086 

an Online Mendelian Inheritance in Man (OMIM) annotation as causal for a diabetes/glycemic-relevant 1087 

syndrome or blood disorder, (3) the effector transcript classification for that variant: gold, silver, bronze, 1088 

or NA (note that only array-wide significant variants were classified, so suggestively-significant variants 1089 

are by default classified as “NA”), (4-7) whether each variant was significant (P<2 × 10-7), suggestively 1090 

significant (P<10-5), or not significant in Europeans for each of the four traits, and (8) whether each 1091 

variant was included in the analysis (with Swedish permutations) or excluded by filters (see 1092 

Methods). AWS: array-wide significant. Related to Figure 2 and Table S8. 1093 

 1094 

Figure S4. Functional characterisation of G6PC variants. Related to Figure 4. 1095 

(A) Cellular localisation of Q347X was assessed in HEK293 cells and overlaid with a marker for the ER, 1096 

calreticulin, (left) or the trans-golgi network, TGN46 (right). White arrows point to positions of the golgi 1097 

apparatus. Scale bar indicates 10μm. (B) Glucose-6-phosphatase activity of G6PC-R83C (n=3), with 1098 

representative western blot of microsomal protein isolated from HEK293 shown. (C) Glucose-6-1099 
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phosphatase activity of G6PC-Q347X (n=2), with representative western blot of microsomal protein 1100 

isolated from HEK293 shown. (D) Protein expression levels of G6PC-A204S in microsomal protein 1101 

extracted from HEK293 cells was found to be downregulated by 41% compared to WT based on 1102 

densitometric analysis (n=4), with representative western blot shown. Data presented as mean ± SEM 1103 

and analysed using paired Students’ t test. * p=0.01. Unt: Untransfected; WT: Wild type. 1104 

 1105 

Figure S5. Functional characterisation of G6PC2 variants and the effect of G6PC2 knockdown on insulin 1106 

content and secretion in EndoC-βH1 cells. Related to Figure 5. 1107 

(A) Variants prioritised for functional study in the context of the predicted G6PC2 protein structure 1108 

(RefSeq NP_066999.1) in the ER membrane. Amino acid residues are coloured as described in the 1109 

legend. Variants selected for functional study, in green, are labelled. The N-terminal V5 and C-terminal 1110 

Myc-FLAG tags present in the expression constructs are indicated. (B) Quantification of total G6PC2 1111 

variant protein expression (both upper and lower bands of representative western blot in Figure 5) in 1112 

INS-1 832/13 cells based on western blot densitometric analysis of Myc-tagged G6PC2 constructs 1113 

relative to tubulin control (n=5). (C) Expression levels of G6PC2 variant proteins in HEK293 by western 1114 

blot densitometric analysis of FLAG-tagged G6PC2 constructs or V5-tagged G6PC2-R283X relative to 1115 

tubulin control (n=4). Representative blots are shown for untreated cells and cells treated with 1116 

proteasomal inhibitor MG-132 or lysosomal inhibitor chloroquine. (D) Glucose-6-phosphatase activity of 1117 

the R281X variant in G6PC (proxy for R283X in G6PC2) in HEK293 (n=2), with representative western blot 1118 

of microsomal protein shown. (E) Total insulin secretion and insulin content were assessed at basal and 1119 

high glucose conditions (with and without drug treatment) following 96-120h G6PC2 knockdown in 1120 

EndoC-βH1. Unpaired two-tailed Students’ t tests were used to compare G6PC2 knockdown to control 1121 

for each condition, from n=16 across 4 independent experiments. Tol: tolbutamide; Diaz: diazoxide. All 1122 

data presented as mean ± SEM. * p=0.01-0.05; ** p=0.001-0.01; *** p<0.001. 1123 

 1124 

Figure S6. G6PC2 expression in RNA-Seq data from 150 human islet donor samples. (A) Allelic balance 1125 

was observed for G6PC2 rs146779637 (p.R283X) in two heterozygote human islet samples. (B) The 1126 

glucose-raising rs560887-G allele associates significantly (q-value<0.01) with increased expression of the 1127 

long G6PC2 isoform (purple) and reduced expression of the short G6PC2 isoform lacking exon 4 (brown). 1128 
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 1129 

Supplementary Table Legends 1130 

 1131 

Table S1. Cohort characteristics, genotyping and quality control (QC), glucose, insulin, 2hGlu and 1132 

HbA1c analyses and covariates. 1133 

 1134 

Table S2. Association of identified lead coding variants with T2D and anthropometric traits (height, 1135 

BMI and WHR) from publicly-available association results. Alleles E/O: effect allele/other allele; EAF: 1136 

effect allele frequency; Neff: Number of samples in the analysis; BETA: effect size; SE: standard error. 1137 

Related to Table 1 and Table S3. 1138 

 1139 

Table S3. Coding variant associations in known glycemic trait loci with conditional results on 1140 

established signals where available. Related to Table 1. 1141 

 1142 

Table S4. Full gene-based results including all variants included in the masks, for both novel and 1143 

previously-established genes. Related to Table S9. 1144 

 1145 

Table S5. HbA1c-associated loci lookup results for blood cell traits. Related to Table 1. 1146 

 1147 

Table S6. Annotation and classification of effector transcripts into “gold”, “silver” and “bronze” 1148 

categories. Related to Tables 1 and 2 and Figure 1. 1149 

 1150 

Table S7. Gene Set Enrichment Analysis by GeneMANIA network analysis showing enriched GO terms 1151 

and Reactome pathways in the network for (A) HbA1c; (B) FG; (C) FI; (D) 2hGlu. GOID: Gene Ontology 1152 

ID; GOTerm: Gene Ontology Term. Gene Set Enrichment (GSE) of networks was performed with ClueGO 1153 

using GO terms and REACTOME gene sets. The enrichment results were considered significant when 1154 

Bonferroni-adjusted p-value < 0.05 and at least 3% of the genes contained in the tested gene set is 1155 

included in the network. Gene sets were also grouped using kappa score into functional groups to 1156 

improve visualization of enriched pathways. Related to Figures 2 and S1. 1157 

 1158 
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Table S8. (A-E) EC-DEPICT results (UK Biobank permutations) for (A) all traits combined; (B) all traits 1159 

except HbA1c combined; (C) HbA1c only; (D) FG only and (E) 2hGlu only. (F-I) EC-DEPICT results 1160 

(Swedish permutations) for (F) all traits combined; (G) all traits except HbA1c combined; (H) HbA1c 1161 

only and (I) FG only. Related to Figures 2, S2 and S3. 1162 

 1163 

Table S9. Full G6PC2 gene-based results and conditional analyses for FG and HbA1c. Related to Tables 1164 

2 and S4.  1165 
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Figure 1 

Figure 1. Effector transcript classification into “gold”, “silver” and “bronze” categories based on strength of genetic and biological 

evidence. A total of 51 effector transcripts from 74 single variant and six gene-based signals were identified, with many of them shared across 

traits. The classification was undertaken independently by four of the authors and the consensus was used as the final classification for effector 

transcripts (see Methods). *Asterisk indicates “silver” for FG, “bronze” for 2hGlu. 
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Figure 2. Network and pathway analyses identify relevant gene sets regulating glycemia using two different methods for variant associations with P<1 × 10-5. (A-B) The networks represent composite networks for (A) HbA1c and (B) FG, 
from the GeneMANIA analysis using genes with variant associations at P<1 × 10-5 for each trait as input. Nodes outlined in red correspond to genes from the input list. Other nodes correspond to related genes based on 50 default databases. 
Based on the network, GO terms and Reactome pathways that were significantly enriched are depicted.Based on the network, GO terms and Reactome pathways that were significantly enriched are depicted. To summarize these results, the most significant term of all calculated terms within the same group is represented. Barplots with the Bonferro-
ni-adjusted -log10(p-values) of the most significant terms within each group are are shown. Each group was assigned a specific color; if a gene is present in more than one term, it is displayed in more than one color. 
(C-D) Heatmaps showing EC-DEPICT results from analysis of (C) all traits except HbA1c and (D) FG. The columns represent the input genes for the analysis. In (C), these are genes with variant associations of P<1 × 10-5 for FG, FI, and/or 2hGlu, 
and in (D) these are genes with variant associations of P<1 × 10-5 for FG. Rows in the heatmap represent significant meta-gene sets (FDR <0.05). The color of each square indicates DEPICT’s z-score for membership of that gene in that gene set, 
where dark red means “very likely a member” and dark blue means “very unlikely a membewhere dark red means “very likely a member” and dark blue means “very unlikely a member.” The gene set annotations indicate whether that meta-gene set was significant at FDR <0.05 or not significant (n.s.) for each of the other EC-DEPICT 
analyses. For heatmap intensity and EC-DEPICT P-values, the meta-gene set values are taken from the most significantly enriched member gene set. The gene variant annotations are as follows: (1) the European minor allele frequency (MAF) of 
the input variant, where rare is MAF <1%, low-frequency is MAF 1-5%, and common is MAF >5%, (2) whether the gene has an Online Mendelian Inheritance in Man (OMIM) annotation as causal for a diabetes/glycemic-relevant syndrome or blood the input variant, where rare is MAF <1%, low-frequency is MAF 1-5%, and common is MAF >5%, (2) whether the gene has an Online Mendelian Inheritance in Man (OMIM) annotation as causal for a diabetes/glycemic-relevant syndrome or blood 
disorder, (3) the effector transcript classification for that variant: gold, silver, bronze, or NA (note that only array-wide significant variants were classified, so suggestively-significant variants are by default classified as “NA”), (4-7) whether each variant 
was significant (P<2 × 10-7), suggestively significant (P<1 × 10-5), or not significant in Europeans for each of the four traits, and (8) whether each variant was included in the analysis or excluded by filters (see Methods).was significant (P<2 × 10-7), suggestively significant (P<1 × 10-5), or not significant in Europeans for each of the four traits, and (8) whether each variant was included in the analysis or excluded by filters (see Methods). AWS: array-wide significant. 
Related to Figures S1 to S3.
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A All HbA1c B All FG

C All FI D All 2hGlu

Figure 3 

Figure 3. Tissue enrichment analysis reveals the key tissues involved in the regulation of glycemic traits. The figures display expression 

enrichment of genes from all of the golden, silver, and bronze gene set lists for (A) HbA1c, (B) FG, (C) FI and (D) 2hGlu in GTEx tissue samples 

plus islet data. Enrichment P-values were assessed empirically for each tissue using a permutation procedure (10,000 iterations), and the red 

vertical line shows the significance threshold (empirical P<0.05).
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Figure 4. Functional characterisation of G6PC variant proteins. Related to Figure S4. 

(A) Protein expression levels of missense G6PC variants were determined in Huh7 cells 

(n=4-5) and (B) HEK293 cells (n=5) by western blot densitometric analysis of FLAG-tagged 

G6PC constructs relative to tubulin control, with representative blots shown.  

(C) Protein expression levels of PTV Q347X were determined in Huh7 cells (n=3) and (D) 

HEK293 cells (n=4) by western blot densitometric analysis of V5-tagged G6PC constructs 

relative to tubulin control, with representative blots shown. Bars in red indicate variants that 

are statistical drivers of the gene-based signal.  

(E) Cellular localisation of V5-tagged G6PC-Q347X was assessed in Huh7 cells and overlaid 

with markers for the ER (calreticulin) and the trans-golgi network (TGN46). White arrows 

point to positions of the Golgi apparatus. Scale bar indicates 10μm.  

(F) Glucose-6-phosphatase activity of unglycosylated WT G6PC protein obtained from 

tunicamycin-treated (Tuni) HEK293 microsomes (n=2), with representative western blot of 

microsomal protein shown. All data presented as mean ± SEM. * p=0.01-0.05; ** p=0.001-

0.01; *** p<0.001. 
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Figure 5. Functional characterisation of G6PC2 variant proteins and the role of G6PC2 

in human beta cells. Related to Figure S5. 

(A) Expression levels of the glycosylated forms (upper bands only) of G6PC2 variant proteins 

were determined in INS-1 832/13 cells by western blot densitometric analysis of Myc-tagged 

G6PC2 constructs relative to tubulin control (n=5). Representative blots are shown for 

untreated cells together with cells treated with proteasomal inhibitor MG-132 or lysosomal 

inhibitor chloroquine.  

(B) Glucose-6-phosphatase activity of L173T and L173V variants in G6PC (proxy for I171T 

and I171V in G6PC2 respectively) in HEK293 against increasing glucose-6-phosphate 

concentrations (n=4), with mean Vmax ± SEM and Km ± SEM values shown for WT and each 

variant.  

(C) Glucose-6-phosphatase activity of F258L variant in G6PC (proxy for F256L in G6PC2) in 

HEK293 against increasing glucose-6-phosphate concentrations (n=3), with mean Vmax ± 

SEM and Km ± SEM values shown. Vmax and Km results were computed based on the 

Michaelis-Menten kinetic model.  

(D) Effect of G6PC2 WT and variant protein expression on luciferase activity driven by ER 

stress response elements in HEK293 cells. Relative luciferase units corrected for background 

activity were normalised to WT for each reporter, from n=6 across two independent 

experiments (except for F256L, n=3 in one experiment) using two-way ANOVA with Fisher’s 

LSD test comparing each variant to WT.  

(E) Cellular localisation of R283X in EndoC-βH1 overlaid with markers for the ER (calreticulin) 

and the trans-golgi network (TGN46). White arrows point to positions of the Golgi apparatus. 

Scale bar indicates 10μm.  

(F) Insulin secretion normalised to total content at basal and high glucose conditions (with and 

without drug treatments) following 96-120h G6PC2 knockdown in EndoC-βH1. Unpaired two-

tailed Students’ t tests were used to compare G6PC2 knockdown to control for each condition, 

from n=16 across 4 independent experiments. Tol: tolbutamide; Diaz: diazoxide. All data 

presented as mean ± SEM. * p=0.01-0.05; ** p=0.001-0.01; *** p<0.001.  
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Trait SNP Gene 
Protein 

Consequence 
Alleles 

E/O 

Freq. 
Effect 
Allele 

Effect (SE) P N 

Previous 
glycemic 

trait 
association 

(if any)  

Locus name 
of previous 
association 

FG rs1886686 WDR78 p.G12A G/C 0.739 0.014 (0.002) 2.24×10
-11

 123558 Novel   

HbA1c rs267738 CERS2 p.E106A G/T 0.186 -0.01 (0.002) 6.96×10
-10

 144043 HbA1c CERS2 

HbA1c rs863362 OR10X1 p.W66X T/C 0.465 0.011 (0.001) 6.76×10
-15

 114945 HbA1c SPTA1 

HbA1c rs857725 SPTA1 p.K1693Q G/T 0.262 0.022 (0.001) 1.56×10
-50

 143956 HbA1c SPTA1 

HbA1c rs11887523 MFSD2B p.A60T A/G 0.007 -0.072 (0.01) 1.44×10
-12

 122060 HbA1c ATAD2B 

FG rs1260326
2
 GCKR p.L446P C/T 0.631 0.029 (0.002) 6.36×10

-48
 129588 FG, FI, 2hGlu GCKR 

FI rs1260326
2
 GCKR p.L446P C/T 0.626 0.024 (0.002) 5.55×10

-32
 104076 FG, FI, 2hGlu GCKR 

2hGlu rs1260326
2
 GCKR p.L446P C/T 0.618 -0.069 (0.009) 4.48×10

-15
 57813 FG, FI, 2hGlu GCKR 

FG rs35720761
2
 THADA p.C845Y T/C 0.108 -0.018 (0.003) 4.35×10

-9
 129622 T2D THADA 

HbA1c rs35720761
2
 THADA p.C845Y C/T 0.113 0.014 (0.002) 2.58×10

-12
 144001 T2D THADA 

FG rs7578597 THADA p.T897A C/T 0.106 -0.019 (0.003) 1.99×10
-8

 113162 T2D THADA 

FI rs7607980
2
 COBLL1 p.N901D C/T 0.128 -0.032 (0.003) 1.30×10

-24
 97817 FI COBLL1 

FG rs2232323 G6PC2 p.Y207S C/A 0.006 -0.129 (0.012) 1.05×10
-28

 123981 FG, HbA1c G6PC2 

HbA1c rs2232323 G6PC2 p.Y207S C/A 0.007 -0.053 (0.007) 3.25×10
-13

 144038 FG, HbA1c G6PC2 

FG rs146779637 G6PC2 p.R283X T/C 0.002 -0.138 (0.02) 1.78×10
-12

 127278 FG, HbA1c G6PC2 

HbA1c rs146779637 G6PC2 p.R283X T/C 0.002 -0.074 (0.012) 4.58×10
-10

 141728 FG, HbA1c G6PC2 

FI rs1983210 OBSL1 p.E1365D G/C 0.729 0.016 (0.003) 8.48×10
-10

 79767 Novel   

FI rs3183099 OBSL1 
splice region 

variant 
A/G 0.226 -0.013 (0.002) 4.70×10

-8
 100713 Novel   

FI rs1801282
2
 PPARG p.P12A G/C 0.117 -0.031 (0.003) 3.50×10

-23
 98631 FI PPARG 

HbA1c rs35726701 RNF123 p.K596E G/A 0.019 0.025 (0.005) 4.19×10
-8

 131203 HbA1c USP4 

FG rs5400 SLC2A2 p.T110I A/G 0.161 -0.022 (0.003) 2.14×10
-17

 129591 FG, HbA1c SLC2A2 

HbA1c rs5400 SLC2A2 p.T110I A/G 0.153 -0.013 (0.002) 2.27×10
-13

 144012 FG, HbA1c SLC2A2 

HbA1c
1
 rs2237051 EGF p.M708I A/G 0.374 -0.007 (0.001) 2.11×10

-7
 121204 Novel   

HbA1c rs7683365 GYPB p.T48M A/G 0.312 0.012 (0.002) 1.61×10
-8

 45191 HbA1c FREM3 

FG rs146886108
2
 ANKH p.R187Q T/C 0.004 -0.088 (0.014) 5.67×10

-10
 129647 Novel   

HbA1c rs31244 SV2C p.D543N A/G 0.083 0.012 (0.002) 6.05×10
-8

 144000 Novel   

FG rs6235 PCSK1 p.S690T G/C 0.264 -0.022 (0.002) 9.22×10
-24

 123560 FG PCSK1 

2hGlu rs2549782 ERAP2 p.K392N T/G 0.519 -0.055 (0.009) 6.81×10
-10

 57836 2hGlu ERAP2 

HbA1c rs35742417
3
 RREB1 p.S1499Y A/C 0.173 -0.01 (0.002) 3.76×10

-9
 143967 FG, T2D RREB1 

FG rs35742417
3
 RREB1 p.S1499Y A/C 0.183 -0.019 (0.002) 1.27×10

-16
 129577 FG, T2D RREB1 

HbA1c rs1799945 HFE p.H63D G/C 0.129 -0.023 (0.002) 1.20×10
-30

 128354 HbA1c 
HFE, 

HIST1H4A 

HbA1c rs1800562 HFE p.C279Y A/G 0.051 -0.042 (0.003) 3.30×10
-47

 138093 HbA1c 
HFE, 

HIST1H4A 

FG rs10305492 GLP1R p.A316T A/G 0.014 -0.08 (0.008) 2.37×10
-25

 129601 FG GLP1R 

HbA1c rs35332062 MLXIPL p.A358V A/G 0.117 0.011 (0.002) 6.18×10
-9

 144042 Novel   

HbA1c rs3812316 MLXIPL p.Q241H G/C 0.112 0.012 (0.002) 2.15×10
-8

 108605 Novel   

FG rs194524
3
 STEAP2 p.R456Q A/G 0.523 0.01 (0.002) 7.65×10

-8
 129629 Novel   

HbA1c rs34664882 ANK1 p.A1503V A/G 0.026 -0.049 (0.004) 2.43×10
-39

 144034 HbA1c ANK1 

FG rs13266634
2
 SLC30A8 p.R276W T/C 0.305 -0.029 (0.002) 1.63×10

-46
 129614 

FG, HbA1c, 
T2D 

SLC30A8 

HbA1c rs13266634
2
 SLC30A8 p.R276W T/C 0.300 -0.015 (0.001) 8.50×10

-28
 143982 

FG, HbA1c, 
T2D 

SLC30A8 

HbA1c rs11557154 DCAF12 p.R113Q T/C 0.138 -0.009 (0.002) 1.70×10
-7

 144045 Novel   

FG rs17853166 IKBKAP p.S251G C/T 0.026 -0.037 (0.006) 4.82×10
-11

 129640 FG IKBKAP 

HbA1c rs60980157
2
 GPSM1 p.S391L T/C 0.246 -0.013 (0.002) 6.71×10

-17
 118824 FG, T2D GPSM1 
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FG rs60980157
2
 GPSM1 p.S391L T/C 0.254 -0.014 (0.002) 2.35×10

-9
 110915 FG, T2D GPSM1 

HbA1c rs906220 HK1 p.H7R G/A 0.916 0.025 (0.003) 2.16×10
-21

 94970 HbA1c HK1 

FG rs701865 PDE6C p.S270T A/T 0.366 -0.01 (0.002) 1.14×10
-7

 118580 Novel   

HbA1c rs61732434 OR51V1 p.S161N T/C 0.008 -0.052 (0.009) 1.75×10
-8

 127507 Novel   

HbA1c rs415895 SWAP70 p.Q447E G/C 0.641 -0.013 (0.001) 1.15×10
-21

 138028 Novel   

HbA1c rs117706710 AMPD3 p.V311L T/G 0.009 0.037 (0.006) 2.32×10
-10

 144048 Novel   

FG rs2167079 ACP2 p.R29Q T/C 0.340 0.016 (0.002) 7.99×10
-15

 129580 FG MADD 

HbA1c rs35233100 MADD p.R766X T/C 0.055 -0.015 (0.003) 1.13×10
-8

 144034 FG MADD 

FG rs35233100 MADD p.R766X T/C 0.054 -0.029 (0.004) 1.46×10
-12

 126231 FG MADD 

FG rs56200889
2
 ARAP1 p.Q802E C/G 0.270 -0.016 (0.002) 1.79×10

-14
 122674 FG ARAP1 

HbA1c rs643788 DPAGT1 p.I393V C/T 0.425 -0.006 (0.001) 1.77×10
-7

 144009 Novel   

FI
1
 rs145878042 RAPGEF3 p.L300P G/A 0.011 -0.054 (0.01) 1.15×10

-7
 91485 Novel   

HbA1c rs2732481 ZNF641 p.Q363P G/T 0.315 -0.009 (0.001) 2.07×10
-11

 142280 HbA1c SENP1 

HbA1c rs3184504 SH2B3 p.W262R C/T 0.567 0.007 (0.001) 5.98×10
-8

 138551 HbA1c ATXN2 

2hGlu rs1169288
2
 HNF1A p.I75L C/A 0.345 0.06 (0.011) 7.90×10

-9
 44278 T2D HNF1A 

HbA1c COSM147717 ATP11A p.M317V G/A 0.748 0.009 (0.001) 3.77×10
-12

 144022 HbA1c 
ATP11A,TUB

GCP3 

HbA1c rs229587 SPTB p.S439N T/C 0.357 0.007 (0.001) 2.60×10
-8

 134780 Novel   

HbA1c rs35097172 SLC25A47 
splice region 

variant, 5’ 
UTR variant 

T/C 0.216 -0.008 (0.002) 5.67×10
-8

 144028 FG SLC25A47 

2hGlu rs3784634 VPS13C p.R974K T/C 0.540 -0.069 (0.011) 6.40×10
-10

 37217 2hGlu 
VPS13C/ 
C2CD4A/ 
C2CD4B  

HbA1c
1
 rs3747481 PRR14 p.P359L T/C 0.261 0.009 (0.002) 3.30×10

-8
 103338 Novel   

HbA1c rs201226914 PIEZO1 p.L939M T/G 0.002 -0.159 (0.015) 4.42×10
-26

 144024 HbA1c CDT1,CYBA 

2hGlu rs72839768
4
 DVL2 p.T529I A/G 0.020 0.197 (0.03) 4.10×10

-11
 57866 T2D SLC16A13 

HbA1c rs2748427 TMC6 p.W125R G/A 0.233 0.027 (0.002) 8.56×10
-70

 132326 HbA1c TMC6 

HbA1c rs7225887 B3GNTL1 p.A163T T/C 0.211 -0.015 (0.002) 5.73×10
-22

 125749 HbA1c 
FN3KRP, 

FN3K 

HbA1c rs35413309 RGS9BP p.A223V T/C 0.030 -0.02 (0.004) 1.42×10
-8

 141598 Novel   

2hGlu rs1800437
2
 GIPR p.E318Q C/G 0.217 0.103 (0.011) 2.59×10

-23
 56252 2hGlu GIPR  

FG rs17265513
3
 ZHX3 p.N310S C/T 0.188 0.016 (0.002) 2.59×10

-10
 126253 FG ZHX3 

HbA1c rs855791 TMPRSS6  V727A G/A 0.577 -0.019 (0.001) 9.46×10
-51

 143907 HbA1c TMPRSS6 

FG rs15943 MAP3K15 p.Q1083E C/G 0.005 -0.084 (0.014) 2.83×10
-9

 67004 Novel   

FG rs56381411 MAP3K15 p.G670S T/C 0.005 -0.085 (0.013) 1.51×10
-11

 62319 Novel   

HbA1c rs2229241 RENBP 
splice 

acceptor 
variant 

C/T 0.012 -0.123 (0.007) 1.14×10
-62

 95622 HbA1c G6PD 

HbA1c rs1050828 G6PD p.V68M T/C 0.007 -0.334 (0.008) 7.41×10
-322

 112209 HbA1c G6PD 

 
Table 1. Single-point coding variant associations meeting the significant threshold for coding variants of 
P<2.2 x 10-7. This table includes all novel coding variants meeting this threshold, irrespective of whether 
they fall in completely new loci or in previously-established loci, provided that the association at the 
established locus was not shown to be due to a non-coding variant (Table S3) or another coding variant at 
the same locus. Novel loci are highlighted in bold. HbA1c: glycated haemoglobin; FG: fasting glucose; FI: 
fasting insulin; 2hGlu: 2h glucose; Alleles E/O: effect allele/other allele; Freq. Effect Allele: frequency of 
effect allele; Effect (SE): effect size (standard error); P: p-value; N: number of samples in the analysis; 
Novel/previous glycemic trait association: Novel corresponds to a new association result; Locus name of 
previous association – name used for previously-reported locus. 1Significant in the European-only analysis 
in our study. 2Genome-wide significant association with T2D since date of analysis (Mahajan et al., 2018b). 
3Association with T2D at P<1x10-4 since date of analysis (Mahajan et al., 2018b). 4T2D locus identified in 
Japanese (Hara et al.,2014) and Mexican (Williams et al., 2014) populations only. The date of our exomes 
analysis is May 2015. Related to Table S3. 
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NSbroad mask NSstrict mask 

Trait Gene N var Pburden PSKAT N var Pburden PSKAT 

FG G6PC 9 1.41x10-6 1.32x10-5 3 1.41x10-3 7.43x10-4 

FI G6PC 8 1.62x10-6 8.58x10-6 3 1.85x10-3 7.80x10-3 

HbA1c TF 10 2.15x10-6 5.98x10-3 3 5.48x10-2 5.48x10-2 

FG MAP3K15 18 1.86x10-25 1.07x10-18 7 1.34x10-14 4.01x10-11 

HbA1c MAP3K15 18 1.27x10-7 1.53x10-04 7 2.65x10-4 9.46x10-3 

FG G6PC2 18 4.09x10-67 5.38x10-58 7 7.8x10-69 3.83x10-56 

HbA1c G6PC2 18 6.18X10-30 4.65x10-27 7 1.04x10-31 1.92x10-26 

FG SLC30A8 13 5.69x10-4 6.42x10-11 7 6.55x10-11 3.74x10-10 

HbA1c SLC30A8 12 7.20x10-8 2.18x10-5 6 5.66x10-8 3.22x10-6 

FG VPS13C 52 9.66x10-6 3.73x10-7 26 1.27X10-5 1.44X10-5 

 

Table 2. Gene-based results from broad (NSbroad mask) and strict (NSstrict mask) analyses. Genes 
in bold are newly discovered from this effort. N var: total number of variants in that gene-based 
analysis; Pburden: p-value from burden test which assumes all variants have the same direction of 
effect; PSKAT: p-value from SKAT test which allows for different directions of effect between variants. 
The lowest p-value is highlighted in bold. Related to Table S4. 
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