TR/05/94 April 1994

ALGORITHMS FOR NETWORK PIECEWISE-LINEAR
PROGRAMS

F.A.S. Marins
A. Machado
C. Perin

XB 2347268 5

L

ALGORITHMS FOR NETWORK PIECEWISE_LINEAR PROGRAMS

F.A.S. MARINS", A. MACHADO’ andC. PERIN’
fernando.marins@brunel.ac.uk clovis@ime.unicamp.br

ABSTRACT

In this paper a subarea of Piecewise-Linear Programming named

network Piecewise-Linear Programming (NPLP) is discussed.
Initially the problem formulation, main definitions and related
Concepts are presented. In the sequence of the paper, four

specialized algorithms for NPLP, as well as the results of a
preliminary computational study, are presented.

1. INTRODUCTION

An important area of the Mathematical Programming is the
Piecewise-Linear Programming (PLP), which is related with the
minimization of a convex separable piecewise-linear objective
function, subject to linear constraints. The relevance of this
topic is Jjustified by its many theoretical and practical
applications in L, estimation, determination of initial feasible
solution for linear programs, as well as in Goal, Nonlinear or
Interval Programming, for instance (see [1]).

In this paper a subarea of PLP named Network Piecewise-
Linear Programming NPLP) 1is explored. Several Real-World
applications of NPLP are found in Telephone Network Expansion,
Power Distribution Networks and in Planning Operation of Water
Multireservoir Systems (see [2]).

The approach adopted by the authors has been to propose and
to implemented specialized algorithms for solving NPL Programs
directly, so the wuse of transformations (see [6]) from NPL
programs to equivalent LP programs are not necessary. Here are
presented four algorithms for NPLP: Primal (Strongly Feasible)
Simplex, Dual-Method, Out-Of-Kilter, and Cost-Scaling (Strongly
Polynomial) .

UNIVERSIDACE ESTADUAL PAULISTA-CAMPUS TE GUARATINGOETA-DEPARTAVENTO [E PRODUCAO-CEP 12500-000-GUARATINGUETA-SP-BRAZIL.

“BRUNEL UNIVERSITY-DEPARTMENT OF MATHEMATICS & STATISTICS. UXBRIDGE - MIDDLESEX, UB8 3PH - ENGLAND, UK.

“UNIVERSIDADE ESTADUAL DE CAMPIMAS — INSTITUIO LE MATEMATICA, ESTATISTICA E CIENCIA DA COMPUTAO. CEP 13061-970
CAMPIMAS - SP - BRAZIL

mailto:fernando.marins@brunel.ac.uk

The final intent of this research is to study the relative
effectiveness of these algorithms. Here are only presented
preliminary results of algorithms' performance.

2. PROBLEM STATEMENT, DEFINITIONS AND CONCEPTS

In this section, we introduce the Network Piecewise-Linear
Programs formulation, relevant definitions and related concepts
necessary to algorithms' presentation (see [2], [31, [4], [5],
and [6], for details).

Let G = (N,E) be a direct network with |N| = n nodes and
|[E] = m arcs. The vector b = (b;) denotes the nodes demands
satisfying }»; b = 0, and A = (aij) 1s the node-arc incidence
matrix, defined by a¢5,5 = -1, anj,5 = +1 and a;,5 = 0 1f 1 # ty, hjy,

where t;, and hjy are the tail and the head of the arc j € E,
respectively.

For each arc j is associated a nonnegative variable flow x
as well as a sequence of juxtaposed intervals [dﬂ ’ d%ﬂj] , see
figure 1, corresponding to a sequence of increasing cost
coefficients cf. When x; € [d7; , d'Y], where f; is named the
current interval of the arc j, the value of the piecewise-linear
function Cy (Xj) 1s given by:

Cj(Xj) = Zj [ckj(dkﬂj_dkj) k= 1__fj - 1] +Cﬁj(Xj—dﬁj),

A Network Piecewise-Linear Program is related to find an arc
flow vector x = (X,) in G, optimal solution to MIN {C(x): Ax = Db,

J
x 2 0}, where C(x) = X, C; (x;) 1s a convex separable piecewise-

linear objective function.

Ca(:jl

.
-

%)

|
!
i
|
i
ar

~
[- %
-

-

-

—
T
[N
A

Figure 1: A typical convex piecewise-linear function
associated with arc j € E.
The Dual Program related to this NPL Program is to find a

node price vector y = (y;) and an arc current cost vector z = (z;)

optimal solution to the problem

MAX (yb - D(z): y"-z<o, z' >c|, jeE},
where D(z) = Zj[Y”ZQ, and

D' (z)=3, [0 - c*) k= L, — 1] + d%(z, - cD).
Observe that fj is the current interval of z,; and satisfies

Zﬂ;kﬁj,cmﬁ] with f; ¢ {l1.. m; }, where m;is the total number
of juxtaposed intervals related to arc j.
Everybasisof the NPL Program is associated with a spanning

tree T and an arc current interval vector f = (fj).

Consider a distinguished and fixed node to be the root of
T. For each node 1 there is a unique path p,, in T that connects

node 1 to the root. A basic arc jJ ¢ T is said to be down (up) if
it is directed away (to) the root in T.
The addition of a nonbasic arc s creates, in T U {s}, a

cycle Q, = Q) U Q, defined by Q! = {j € Q,: j, s have the same

direction in Q,} andQ, = Q0 \Q;.
The removal of a basic arc r creates a subtree that defines

a node partition (S,, N \ S,), where S, = {1 € N: r ¢ P,}.
The cut-set K, = K'y U K., associated with the basic arc r,
is defined by the subsets of arcs K', = {71 € Eltjsgﬁhje N \

Sr} andK—r:{j€E| tjEN\Srl hjESr}-

Given a spanning tree T and an arc current interval vector

£f = (f;), the wunique associated Dbasic solution (x,y,2z),

consisting of an arc flow vector x = (X;), a node price vector y

= (Yj), and a current interval vector z = (Zj),is computed as

follows:

Y, = 0 if 1 is the root,

Y, = Z”ﬁ?:je T is an up arc in P] - X mﬁzj € T is a down
arc in P,] 1if 1 # root,

—~ i :
z, =cjj it J € T,

z; =max {Y, - Y, , c'i} if 3 € E \ T,

X, = d? if 3 € E\ T, and

Xj jJ € T are computed by back substitution in Ax = b.

NOTES: (a) There is no need to consider other dual wvariables
besides Y in order to work with the dual method;
(b) A vector x'is a primal feasible flow if Ax' = b, and
x'>2 0;

(c) Aprimal feasible flow x is optimal to the NPL Program

if C(x) £ C(x'") for every primal feasible flow x'.
For each j € E define the left and the right reduced costs
as below:

for j € T, let ¢'i = c¢'i = 0,

for j € E\ T, let c;=cmﬁ—ym+yw and ¢/ = dﬂ—ym+yq.

It is possible to show that a basic solution is dual
feasible when ¢;< 0 and ¢ 2 0 for j € E.
A basic dual feasible solution is called optimal if for

. fj fj+1 fj-1 fj-1
every arc j € T, x; € [d] , d;+], assume c/7 =d/] = - o, and

c ?4 = d?4= ©, if they are not defined.

Some specific definitions wuseful to the Out-of-Kilter
algorithm description are presented in the section 3.3.

Finally, additional concepts (generalizations of the
concepts introduced in [7]) are necessary due to Cost-Scaling
algorithm presentation in section 3.4.

Let a primal feasible flow x such that x; e [d?, d ?W.

Given a > 0, x is called o-optimal if it satisfies:
¢ <-a = X, =df,

d?<Xﬁ< dleb a<c<+a,

¢’ >+a = X, =d",

jroand c'y = ck ;T Yyt Yy

A pseudo flow 1s an arc flow vector x that does not
necessarily satisfy Ax = b. It is said to be o-optimal when it
satisfies the above conditions.

For a given pseudo flow x define the node flow excess

vector e = (e;), withe; =b; - }; [x;: t; =1] +%; [x ;: h; = 1i].

Observe that if e = (e;) = 0 then the pseudo flow x 1is a primal

where k = £

feasible flow.

In the next section we described the four implemented
algorithms, Primal Simplex, Dual Method, Out-of-Kilter and Cost-
Scaling, with its main operational characteristics.

3. ALGORITHMS FOR NETWORK PIECEWISE-LINEAR PROGRAMS

Now let us introduce each one of the specialized developed
algorithms for solving NPL Programs.

3.1 PRIMAL SIMPLEX ALGORITHM

For this study a network specialization of a well-known
simplex method for PLP (see [1l]) was implemented.

Denote:
C,=c/ifc; <0, C,=c; if ¢, >0, C,= 0 otherwise.

The basic steps of the algorithm may be written as below.
0. Let T, £ = (f;) be, respectively, a spanning tree and an arc

current interval vector associated with a basic primal
feasible solution (x,V).

1. Select an entering nonbasic arc s ¢ T such that C, # 0.
If there is no such an arc then STOP:CURRENT SOLUTI ONOPTIMAL.
Otherwise set s, = s and compute the cycle Q = Q" U Q formed
in T U { s,}.

2. Perform the ratio test on the cycle Q
If €, < 0 then

fi+l .
compute &, = ars - af, 5, = min {d ° X J e Q" \ {s,}},
and 5, = min {x; - dﬁj: J e 0\ {s,}}.
else
compute &, = d®%-d"®', 5 = min {x; - a9 e 0"\ {so}},

and &; = min { d"j-X;: J £Q\ {s,}}.

Let 8 = min { &, , &, , &2 }.

Select a leaving arc r € Q that minimizes 9.

If there is no such an arc then STOP:NO FINITE SOLUTION.
Otherwise if C, < 0 set £, = £, - 1.

S
Update the flow vector x (arcs in Q).

Update the price vector y (in the subtree T U {s,} \ {r}).
If the new C, # 0 then set s = r and GO TO 2.

If r # s, then update the spanning tree T = T U {r} \ {s,}.
GO TO 1.

In order to obtain an initial arc flow basic vector x, it
is enough to consider any spanning tree and additional intervals
with values d= - =, ¢c= - « for each basic arc with negative
flow. Therefore, phase I of the Simplex Method does notneed to
be considered as a separated phase.

In NPL Programs we performed a Pivot operation each time
that it is updated the flow vector x, and we performed an
Iteration when it is chosen a nonbasic entering arc. The main
characteristic of the last pivot of an iteration is that the
leaving arc 1is not a candidate to enter in the Dbasis
(immediately) .

Note that all pivoting associated to a same iteration have
entering and leaving arcs that belong to the same cycle Q. In
order to be efficient, the algorithm is implemented with just one
update of the spanning tree and nodes price per iteration.

In fact, the implemented algorithm has the property of

avoiding both Cycling (cyclic degenerate pivot sequence) and
Stalling (exponentially long degenerate pivot sequence)
phenomena.

This is possible by starting the algorithm with a Strongly
Feasible Basic Flow vector x, with a modified ratio test (which

breaks ties adequately) maintaining Strong Feasibility of all
basis, and using a smart selection of the entering arc in each
iteration. For details see reference [8], here we present the

main related ideas.

A basic flow vector x is called strongly feasible if every

degenerate basic arc J € T with x; = a™; is up in T, and every

degenerate basic arc J € T with x; = dﬁj is down in T. This is an
extension of the concept of strongly feasible spanning trees
introduced by Cunningham ([9]) and Barr, Glover and Klingman

([10]) for Linear Networks.

An initial strongly feasible Dbasic flow vector x, and an
associated current interval arc vector f, can be obtained from
any feasible spanning tree by increasing or decreasing by 1

(which is adequate) the current interval fj associated each

Degenerate basic arc j that do not satisfy the strong feasibility
property.

The rule to maintain strong feasibility throughout the
algorithm is as follows: Let s be the entering arc and let w be
the last common node of the paths in T from the root to the end

nodes of arc s, t, and n,. Consider the cycle Q formed in

S
T U {s}. Traverse this cycle starting at node w with the same
direction of s if € < 0, or with the opposite direction of s if

Cs > 0. Choose as the 1leaving arc r the first one of the cycle
that satisfies the ratio test.

With these two modifications the proposed algorithm avoid
cycling. Furthermore, if is adopted a refinement in the selection
of the entering arc stalling does not occur. There is several
entering rules (see [8]) with this characteristics.

We have implemented the rule known by Least Recently
Considered (LRC) Rule: Let 1..m be any fixed ordering of the arcs
and suppose that 1in the last iteration arc j was the entering
arc. So, in the next iteration should be select the arc s as the
entering one the first arc of the sequence j+1, j+2,..., m,
m+l,...,J which is a candidate (Cs # 0).

3.2. DUAL ALGORITHM

The second optimizer code, utilized in this research, is
based on the dual method on a graph proposed by Ali, Padman and
Thiagarajan (see [11]), and its description is given below.

0. Let T, £ = (fy) be a spanning tree and an arc current nterval
vector associated with a basic dual feasible solution x,Vy).

1. Select a leaving basic arc r € T such that:
X, < dff. or x, > 4,

If there is no such an arc then STOP:CURRENT SOLUTION OPTIMAL.
Otherwise compute the cut-set K, = k', U K, associated with r.

2. Perform the ratio test on the cut-set K.

If x, > dfF't,

then set &y = cf”’lr - Vnr t Ver and £ = r = £, + 1.

fr-1 +

else set &y = ¢ r — Vhr Vir -
If (x, > d™*", and r is up) or (x, < d*; and r down)
then [case 1]
compute &, = min { + (c™5 - yus + vyes):3 €K'},
5 = min { - (¢ = yny + ye3) 13 €Ki}
else [case 2]
compute & = min { - (c77Y - yu5 + ye5) 1] €KL},
5, = min { + (c™3 - yny + ves) i) €K},

Compute & = min { &y , &1 , 02 }.
Select an entering arc s € K, that minimizes d.

If there is no such an arc then STOP:PRIMAL IS INFEASIBLE.
Otherwise if (s €K', in case 1) or (s € K'y in case 2)
then set fs= £ - 1.

Update the flow x5 in the arcs j in the cycle T U {s}.
Update the nodes prices y: in the subtree T \ {r}.

If r # s then update the spanning tree T U {s} \ {r}.
If (xs < d, or x. > d"™.) then set r = s and GO TO 2.
GO TO 1.

Observe that an initial basic dual feasible solution can be
obtained by introducing an artificial root node 0 with demand
bo = 0 and n artificial arcs from the root to every other node
with a unique feasible interval [0,0] with cost 0.

The starting solution can be obtained by setting the price
vector y = 0. The flow vector x and the current interval vector
f are set to x; = d™;, in such a way that ¢ < 0 < c¢™; for all
jJ € E and then the artificial arc flows are computed by solving

the system of constraints by back substitution.

In order to reduce the computational effort, we force the
leaving arc r to be the previous entering arc s whenever such an
arc is candidate to leave the spanning tree. In this way the cut-
set and the spanning tree do not have to be update for one or
more iterations. We <call a pivoting every time that the ratio
test is executed and we call an iteration every time the cut-set
is determined.

An efficient data structure to maintain the spanning tree
and the cut-set 1is wused, and consist of four node vectors,
predecessor, thread, reverse thread and node partition indices,
and one arc vector to store the cut-set.

3.3. OUT-OF-KILTER ALGORITHM

The next implemented algorithm is a specialized version for
NPL Programs of the Out-of-Kilter method for Network Linear
Programs presented in reference [12].

Before to exhibit the algorithm, let us to introduce useful
specific concepts and notations to this approach.

From the general theory of Linear Programming is possible
(see [2]) to write the Complementary Slackness Conditions (CSC)
associated with the Primal and Dual NPL Programs as below, where
X, y, z as defined before:

£ £fy+1 £3
dfjél < xy < dTy . = Yny T Yt3 = ij.j'
C J 5 < th — ytj < C jj = X] = d jj'
1
(and zy = max {Ccy , ¥n3 — V&5 }).

Given an arc j € E , 1f the CSC are satisfied then j is said
to be In Kilter (IK), otherwise j is Out-of-Kilter (OK). The
Kilter Number (NK 2 0) associated withthe arc j is how much the
flow x may be alter in order to put (or to remain, if arc j is
IK yet) the arc j in IK status.

So for each solution (x,y,z) 1s possible to associate a
Solution Kilter Number (NK), computed by NK = z:jNK, J € E.

Now, to find the current interval f; € {l..my}, where mj is
the total number of juxtaposed intervals related to arc j, 1in
order to satisfy c™; < 7y < c"y , for each arc j € E. It is

possible to demonstrate (see [4], [8], and [12]) that:

if ¢y < z3 < Py then NKy = |x5 - d75 |, .

if zy = ijj = VYnj — Yt3 then NK; = dfjj - X3 .fO]f Xy < dfjj.,
NKj = 0 for dfjj < X4 < dfj+lj ’
NK; = Xj - df:ﬁlj for df:ﬁlj < Xy,

if zZy = Clj > VYny — Ytj then NKy = x5 — dlj.

Besides this, define cy" by:

. £ fi+1 - ~fi, _
if dy < x5+ dly then cy" = ¢y Yhi t Ves.
if x5=d% with k € {1..m5} then c;" = c - z; for 7y < cfy,
cs" =0 for cf < zy < Yy,
_ k1 k+1 .
cy'"= ¢ty Z5 for ¢y < zy,

0.

1.

2.

Now we are able to describe the algorithm's phases.

X 2 O, Zj = max {Clj Ynj — Ytj and ijj < Z4 < ij+1j with
fj S {1. .mj}.

Compute NK associated with the current solution.

If NK = 0 then STOP:CURRENT SOLUTION OPTIMAL.
Otherwise let s € E be an arc with NKg > 0.

Let T = @ and A, = 0, for each i € N.
Compute c"s.

If ¢ > 0 then let V = {hs and A, = NK;.
else let V = {ts} and A, = NK;.

If ¥,U¥,U¥,U¥,= g then GO TO 3.
Let re¥,U¥,U ¥, UY,.

Case reV¥,:

letA, =min{A_ ,d": =X, },V=VU{t }andT=TU {r}.
Case re V¥, :

letA, =min{A,, ,d" —X,},V=VU{t,}andT=TU {r}.

Case re¥;:
letA, =min{A_ ,d": =X.},V=VU¢{h }andT= TU {r}.
Case re¥;:
letA, =min{A, ,d" —X,},V=VU{h }andT=TU {r}.
1f {t,,h,}¢ V then GO TO 2.

Let (x,y,z) be a solution to a NPL Program satisfying Ax =

et ;= {r # s, c," < 0, t, ¢ V, h, € V and x, < d,},
v, = {r # s, c," =0, t, € V, hy € V and x, < dfrr},
¥, = {r # s, c," >0, t, € V, hy ¢ V and x. < d,}, and
v, = {r # s, ¢c." =0, ty,€,V, h, ¢ V and x, > dfr_lr}.

b,

Increase by min {Am,AB} the flow in the arcs of the cycle Q
formed in the subgraph (V,T).

GO TO 1.
3. Let y,= {r:hr eV,t, ¢ Vand ¢, > 0},
v, = {r:hr ¢V,t, e Vand ¢, < 0}, and
0 =min {‘cr"‘:re\ylu\pz}
If © = o then STOP:NO FINITE SOLUTION.
Otherwise update yizyf+6andzj:nmx{ﬁ,ym—yﬁk for
all ieN and j € E.

GO TO 2.

Note that this algorithm can be initialized with any
solution (x,vy,z) that satisfies Ax = b, x 2 0, and for j € E

. 1
Z7] = max kjgmj—yqy
3.4. COST-SCALING ALGORITHM
In this section is presented a extension of the Minimum Cost

Flow Circulation Algorithm proposed by Goldberg and Tarjan (see
[7]) to solve NPL Programs with integer data. It is possible to

prove that this specialized algorithm (see [5] and [6]) 1is a
strongly polynomial one, and runs in O(n.m'.log n.min(log nC ,
m' .log n)) time, where n is the number of nodes, m' is the total

number of intervals, and C is the largest integer arc cost.

The implemented algorithm is described below, and it
utilizes a cost scaling technique and a maximum flow routine to
solve the subproblems generated by the scaling.

Denote: d]:d?,dﬁ:d@%,c;:c&ﬂ——ym+-yw and

+ . _ A+
Cj=C" _ym+yg-

0. Let x,y be the starting feasible flow and prices vector,
respectively. Let o = max %fh} all k = 1..mjand j € E.
1. set o =20

While o 2 1 do
For j € E do

while c¢';>+a do f;=f ~1,and x; =d";.
while c¢';<—a do f;=f;+1],and x;=d";.
For (i € E and ¢,>0) do

Repeat
If exists j such that &jziandxj<dﬂ) then x;=d";.

If exists j such that (hj=iandxj>dfﬂthmlxj=d_y
If exists j such that &j=i,xj=djmwcj>—a)
then f;,=f, 1.
If exists J such that ﬁj:i,xj:d+jandc+j<4-a)
then f;=f +1.

If none of the above then y, =y, +a.
Until e, =0.
Set a=o/2.

This algorithm can be written as a strongly polynomial
one, see reference [6] for details.

The idea is to start with any 2 a-optimal feasible flow for
some o equal to a power of two, then this flow is transformed
into a pseudo flow that is a-optimal, by increasing or decreasing
the flow through the arcs that do not satisfy the oa-optimality
conditions (see section 2).

Such an operation creates some node excess flows. With a
sequence of pushing and relabelling operations that reduce the
excess flow |e;| of each node, this oa-optimal pseudo flow is
transformed into an o-optimal feasible flow. The process is
repeated until o < 1.

If no feasible flow 1s known at start, it is possible to
begin with x = 0 and y = 0, however a check for feasibility in
the first iteration should be introduced in order to detect
infeasible problems.

4. SOME COMMENTS AND PRELIMINARY COMPUTATIONAL RESULTS

In order to obtain initial exploratory data about the
relative performance of the four presented algorithms, some
experiments were run with PASCAL implementations of these

algorithms on an IBM compatible 386 microcomputer.

These experiments were performed by solving randomly
generated NPL Programs (details of this generator in [8]), with
up to 1200 nodes, 32000 arcs, and 9 intervals per arc, and the
CPU time (excluding Input/Output times) spent by each algorithm
for solving these problems was observed.

In figures 2, 3 and 4 are presented the CPU times - mean of
10 randomly generated NPL problems - for the three best detected
algorithms. It is possible to observed the influence of the
number of nodes, number of arcs, and number of intervals per arc,
respectively, 1in algorithms' performance, for the generated
problems. The results of the Dual Algorithm are not presented
because it was the worst algorithm every time.

It is interesting to note the good performance of the Out-
of-Kilter relative to CPU times spent by the Simplex, practically

these algorithms had identical behaviour, and both shown great
superiority over the Dual and Cost-Scaling algorithms, for
solving the generated NPL Programs.

The main objective of this research 1s to develop a
statistically designed experiments for studying the relative
effectiveness of these four algorithms, and for identifying the
effect on solution time when are changed (singly or in
combinations) the two factors: problem class and problem size.

Thework's idea is based on the paper published by Amini and
Barr (see [13]), where the authors employed rigorous statistical
procedure in order to compare the three best-known network
reoptimization algorithms.

Therefore, at the moment, it is being deviseda statistical
experimental design to evaluate the relative efficiencies of the
four algorithms in question, and a NPL optimization testing
system to generate the data for the statistical proposed study.

Below are presented the preliminary computational results
observed for the Primal, the Out-of-Kilter, and the Cost-Scaling
algorithms to solve the randomly generated NPL problems
(transshipment networks). As mentioned above the cpu times
related to the Dual algorithm's performance were excluded,
because the values were very higher than that ones related to the
others three algorithms. In the next figures the CPU times are

given in seconds, and the algorithm identification is made using
the symbols:

0 o Primal, ¢ o Cost-Scaling, and A - Out-of-Kilter.

CPUO CPU
45000 160000
oene 1400.00
350.00
120000 4
30000
250.00 1000.00
1]
200.00 800.00
150.00 3
500,00
100,00
400,00
5000
00 200,00 —y—
40000 SO0O0 €00.00 000 83000 90000 100000 110G.00 +200.00 BOOCO0 12000.00 1600000 Z000O.00 2400000 ZB0CO00 32000.00
Number of Nodes Number of Arcs
Figure 2.CPU as a Function of Figure 2.CPU as a Function of

the number of Nodes the number of Arcs

HIDO B0

#00.00

Number of Intervals per Arc

Figure 4. CPU as a function of the Number of Intervals per Arc

5. REFERENCES

(1]

Fourer, R. (1985). A Simplex Method for Piecewise-Linear
Programming I: Derivation and Proof. Mathematical
Programming 13, 1-13.

Perin, C. and Marins, F.A.S. (1988). Strong Feasibility
in Network Piecewise-Linear Programs. In: Proceedings of
the IV Latin-Iberian-American Congress on Operations
Research and System Engineering,Rio de Janeiro-RJ, Brazil.

Perin, C. and Marins, F.A.S. (1991). Computational
Experience with Dual Simplex Algorithm for Network
Piecewise-Linear Programs. In: Proceedings of the XIIT
World Congress on Computation and Applied Mathematics,
Dublin, Ireland.

Perin, C. and Marins, F.A.S. (1989). An Out-of-Kilter
Algorithm for Network Piecewise-Linear Programs. In:
Proceedings of the XII National Congress on Computational
and Applied Mathematics, Sao Jose do Rio Preto-SP, Brazil.

Machado, A., Perin, C. and Marins, F.A.S. (1992). A
Strongly Polynomial Algorithm for Network Piecewise-
Linear Programs. In: Proceedings of the XXIV Brazilian
Symposium of Operations Research, Salvador-BA, Brazil.

Machado, A., Perin, C. and Marins, F.A.S. (1993). An
O(n.m'.log n.min(log nC , m'logn)) Algorithm for Network
Piecewise-Linear Programs. In: Proceedings of the XXV
Brazilian Symposium of Operations Research, Campinas-SP,
Brazil.

[7] Goldberg, A.V. and Tarjan, R. (1990). Finding Minimum -
Cost Circulations by Successive Approximation.
Mathematics of Operations Research 15:3 August, 430-466.

[8] Marins, F.A.S. (1987). Studies of Network Piecewise-
Linear Programs. Library of the IMECC-UNICAMP, Campinas-
SP, Brazil (PhD Dissertation, Electrical Engineering
College, State University of Campinas, Campinas-SP-Brazil).

[9] Cunningham, W.H. (1976). A Network Simplex Method.
Mathematical Programming 11, 105-116.

[10] Barr, R.S., Glover, F. and Klingman, D. (1977). The
Alternating Basis Algorithm for Assignment Problems.
Mathematical Programming 13, 1-13.

[11] Ali, A. , Padman, R. and Thiagarajan, H. (1989). Dual
Algorithm for Pure Network Problems. Operations Research
37:1, 159-171.

[12] Kennington, J.L. and Helgason, R.V. (1980). Algorithms
for Network Programming. John Wiley & Sons, New York.

[13] Amini, M.M. and Barr, R.S. (1993). Network Reoptimization
Algorithms: A Statistically Designed Comparison. ORSA
Journal on Computing 5:4.

Acknowledgements: This work was partially supported by FAPESP-
Fundacdo de Amparo a Pesquisa do Estado de S&o Paulo (Brazil)
and CNPg - Conselho Nacional de Desenvolvimento Cientifico e
Tecnolbgico (Brazil).

W9253286

