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Abstract—This paper is concerned with the fault detection
problem for a class of networked fuzzy systems with multiplica-
tive noises on both system states and measurement outputs. In
view of the limited communication capacity, a periodical com-
munication protocol (i.e. the Round-Robin protocol) is adopted
to undertake the transmission task between the sensors and
the fault detection filter, which leads to periodical delays in
the overall system. A Takagi-Sugeno (T-S) fuzzy- model-based
fault detection filter is constructed to produce the residual signal
and an auxiliary error system is established to facilitate the
stability analysis of the error dynamics. With the aid of Lyapunov
stability theory, sufficient conditions are obtained that ensure
the exponentially mean-square stability of the error dynamics
with prescribed H∞ performance constraint. The desired fault
detection filter is designed by solving a convex optimization
problem via the semi-definite programme method. A finite-time
evaluation function and an adjustable threshold are introduced in
order to detect the possible faults effectively. The effectiveness of
the proposed fault detection scheme is validated by a numerical
simulation example.

Index Terms—Networked system, fuzzy model, multiplicative
noises, Round-Robin protocol, periodical communication,fault
detection, residual evaluation function, adjustable threshold.

I. I NTRODUCTION

In the past two decades, networked control systems (NCSs)
have become more and more popular in industrial applications
due to their distinct advantages such as flexible structure,
far transfer distance, decentralization function, and simple
installation. Accordingly, a rich body of literature has been
available on various network-induced phenomena including
packet dropouts, communication delays, signal quantizations
and network congestions, see e.g. [2], [7], [15], [17], [21],
[27], [36], [40] and the references therein. A particular cause
of network-induced side effect of almost all NCSs is the lim-
ited network bandwidth which, to a great extent, prevents the
system components (e.g. sensors, actuators and receivers)from
hurdle-free communications. Accordingly, significant research
attention has been devoted to the investigation on NCSs under
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limited communication capacity, see e.g. [5], [6], [11], [30],
[38]. Among others, the so-called Round-Robin protocol has
been widely recognized as an effective means in tackling the
communication constraints. The main idea of the Round-Robin
scheduling is to assign the transmission opportunity to the
communication nodes in a periodic order, thereby dramatically
reducing the communication costs. Very recently, the Round-
Robin protocol in the network environment has generated
considerable research interest from both academy and industry.
For instance, a Round-Robin interconnection rule has been
designed for a class of distributed observer networks in [35].
In [18], [43], based upon the periodic scheduling mechanism,
analysis and synthesis issues of NCSs with Round-Robin
protocol have been thoroughly researched by using the time-
delay system approach.

As is well known, system faults may degrade the system
performance and even cause instability/oscillations leading to
cascaded disasters, and fault detection (FD) has proven to be
an important area of research with successful applicationsin
a variety of engineering practice [41], [45], [46]. Generally
speaking, the first step of model-based FD to design a FD
filter to produce a valuable residual signal, and then the second
step is to formulate a residual evaluation function to compare
with a prescribed threshold. In the past decades, a multitude
of FD techniques have been developed and a great number
of FD results have been available, see e.g. [20], [24], [25],
[44]. In the context of networked systems (e.g. distributedcon-
trol systems, unattended monitoring systems, remote medical
platforms), the FD problem becomes even more critical since
the faults might occur more frequently in NCS and seriously
jeopardize the system reliability of systems [13]. In [39],
the fault detection filtering has been investigated for complex
systems with nonhomogeneous Markovian parameters, where
the malicious packet losses over communication networks have
been considered. On the other hand, an appropriate use of the
threshold plays a key role in determining the detection rate
and the false alarm rate. Traditionally, the threshold has been
chosen as the supremum of the evaluation function in the fault-
free case. Such threshold is typically a constant that does not
allow adjustment to adapt the changing environment. Recently,
the design problem of adaptive thresholds has started to draw
some initial research attention. For example, in [1], [20],an
adaptive threshold has been studied for the health monitoring
of offshore wind-farms and nonlinear systems, respectively.

On another research frontier, for decades, the control and
filtering problems for fuzzy systems have been attracting an
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ever-increasing research interest. The fuzzy-logic theory has
demonstrated its great superiority in the research of nonlinear
systems since Zadeh first proposed the fuzzy set theory. A-
mong various fuzzy approximation models, the Takagi-Sugeno
(T-S) fuzzy model is one of the most widely used approaches
for studying analysis and synthesis problems of affine non-
linear systems [4]. Under the framework of T-S fuzzy model,
the nonlinear plant can be approximated by a set of linear
model through local linearization method, where these linear
subsystems are smoothly connected by some nonlinear fuzzy
membership functions. After tens of years’ advances, a large
amount of literature have appeared on the analysis/synthesis
problems for various nonlinear systems by using the T-S
fuzzy model, see e.g. [10], [16], [26], [28], [29], [34], [40]
for some representative works. Due to its advantages such
as simple installation and maintenance, reduced weight and
power requirements, high reliability, etc., the fuzzy networked
nonlinear systems have gained many research attention in
recent years, see e.g. [10], [27]. When it comes to the fault
detection problem, the fuzzy-logic-based approach gives rise
to the adaptive nature of the fault detection process [31], [32].
The design of the T-S fuzzy model based fault detector can
be easily retrieved in the literature, see e.g. [8], [19], [48].

Summarizing the discussions made so far, it can be conclud-
ed that 1) the design of NCSs has become a research focus
and the periodical communication protocol (i.e. the Round-
Robin protocol) has made it possible to reduce communication
burden when the network resource is a concern; 2) the FD
problem for NCSs has been well studied and the adaptive
threshold selection issue remains open especially in a net-
worked environment; and 3) the fuzzy-model-based analysis
approach has proven to be a popular tool in handling nonlinear
systems. To this end, a seemingly natural research problem is
whether/how we can deal with the FD problem for NCSs under
periodical communication protocol. Obviously, such a problem
is of both the theoretical importance and practical significance.
A thorough literature review reveals that, so far, there have
been very few research results on the fault detection problem
for networked systems under communication protocols, not
to mention the case where the T-S fuzzy model is used as
an approximation of certain nonlinear systems as well as the
case where the underlying system is subject to multiplicative
noises that occur frequently in practice [22]. It is, therefore,
the main purpose of this paper to shorten such a gap.

In this paper, we are interested in the fault detection
problem for a class of fuzzy networked systems where the
desired fault detection filter is implemented under a kind of
periodical communication protocol. The contributions of this
paper are highlighted as follows:1) a periodical Round-Robin
protocol is introduced to tackle the communication constraints,
under which the sensor measurement at the receiving end is
presented; 2) the multiplicative noises on both the system
states and the measurement outputs are taken into account
to describe the interference from a non-ideal environment;3)
an H∞ fault detection filter is constructed on the basis of
the T-S fuzzy model such that the detection error dynamics is
exponentially stable in the mean square sense; 4) the difficulty
(mainly periodic time-delays) resulting from the combinational

use of Round-Robin protocol and zero-order-holders (ZOHs)is
effectively overcome by developing the block matrix technique;
and 5) an adjustable threshold is suggested that provides more
flexibility for the detector design as compared to the traditional
case of constant threshold.

Notation. In this paper,Rn, Rn×m andZ (Z+,Z−) denote,
respectively, then-dimensional Euclidean space, the set of all
n × m real matrices and the set of all integers (nonnegative
integers, negative integers).‖ · ‖ refers to the Euclidean norm
in Rn. In represents the identity matrix of dimensionn× n,
and I is the identity matrix of compatible dimension. The
notationX ≥ Y (respectively,X > Y ), whereX andY are
symmetric matrices, means thatX−Y is positive semi-definite
(respectively, positive definite). For a matrixM ,MT andM−1

represent its transpose and inverse, respectively. The shorthand
diag{M1, M2, . . . , Mn} denotes a block diagonal matrix
with diagonal blocks being the matricesM1, M2, . . . , Mn.
In symmetric block matrices, the symbol ‘∗’ is used as an
ellipsis for terms induced by symmetry.λmax(·) is the maxi-
mum eigenvalue.mod(a, b) represents the unique nonnegative
remainder on division of the integera by the positive integer
b. For integersa, b with a ≤ b, N[a, b] denotes the discrete
interval given byN[a, b] = [a, a+1, · · · , b−1, b]. Matrices, if
they are not explicitly stated, are assumed to have compatible
dimensions.

II. PROBLEM FORMULATION

Consider the following discrete networked fuzzy systems
with multiplicative noises:

Plant Rule i:
IF θ1(k) is Fi1, · · · , θj(k) is Fij , · · · andθp(k) is Fip,
THEN





x(k + 1) =
(
Ai + ζ(k)Di

)
x(k) +Biu(k)

+ Eiω(k) + Fif(k),

y(k) =
(
Ci + ξ(k)Gi

)
x(k) +Hiω(k), i ∈ U

x(k) =φ(k), ∀ k ∈ Z
−

(1)

wherek ∈ Z+, U = {1, 2, · · · , r} with r being the number
of IF-THEN rules; θ(k) = [θ1(k), θ2(k) · · · , θp(k)] is the
premise variable vector;Fij (j = 1, 2, · · · , p) is the fuzzy
set;x(k) ∈ Rn is the state vector;u(k) ∈ Rnu is the control
input vector;y(k) = [y1(k), y2(k), · · · , yl(k), · · · , ys(k)]

T is
the measured output vector withyl(k) ∈ R being thelth sensor
measurement(l ∈ S = {1, 2, · · · , s}); φ(k) is the initial state;
ζ(k) ∈ R and ξ(k) ∈ R are the zero-mean multiplicative
noises satisfyingE{ζ2(k)} = σ2

ζ and E{ξ2(k)} = σ2
ξ ,

respectively;ω(k) ∈ R
nω is the unknown disturbance input

which belongs tol2[0, N)
(
the space of square summable

sequences with the norm of‖ω‖2[0,N ] = E
{∑N

k=0 ‖ω(k)‖
2
}

[33]
)
; f(k) ∈ R

nf is the possible fault signal to be detected;
andAi, Di, Bi, Ei, Fi, Ci, Gi andHi are constant matrices
with appropriate dimensions.

Remark 1. As is well known, the system model (1) is actually
the local linear models that can be used to approximate a
nonlinear plant at any precision through the nonlinear fuzzy
membership functions. On the other hand, the multiplicative
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noises not only enter the system states but also appear in the
measured outputs. Therefore, the concerned model is closed
to engineering practice [42]. In this paper, for simplicity, the
second-order statistics of the multiplicative noises is assumed
to be known, andζ(k) and ξ(k) are uncorrelated with each
other.

In this paper, we assume that the sensors are distributed
in different locations from the target networked fuzzy system,
and the communication is conducted through shared networks.
In order to mitigate the negative influence from the limit-
ed communication capacity of the communication network,
the Round-Robin protocol is utilized as the communication
protocol to schedule the sensors. The so-called Round-Robin
protocol can be described by the following rules:

i) all sensors are pre-arranged in a round sequence as the
communication nodes;

ii) all communication nodes are orderly allowed to access
the channel at a time instantk;

iii) each communication node can only take one unit time
of the indexk for one communication link.

For illustration purpose, the channel access order of sen-
sors under the Round-Robin protocol is shown in Fig. 1, in
which the channel accesses of each sensor node are divided
into different round. From the mechanism of Round-Robin
scheduling, it can be known that thelth sensor measurement
yl(k) can only be transmitted at the time instantk = sj + l

(j ∈ Z+). Therefore, a sensor’s access to the channel is peri-
odic. On the other hand, in order to maximize the utilization
of the received measurements, a set of ZOHs are adopted to
store the received sensor measurements, where the data will
not be updated until the next renewed measurement arrives.

Denoting~yl(k) as thelth sensor measurement at the receiv-
ing end, it is verified that

~yl(k) =

{
yl(k − ℵl

k), k − l ≥ 0

0, k − l < 0
(2)

where ℵl
k = mod(k − l, s) is the time-delay induced by

the adopted communication protocol and ZOHs. It is obvious
that the delayℵl

k ∈ Π0 appears periodically, whereΠ0 ={
0, 1, , 2, · · · , s− 1

}
.

Remark 2. The Round-Robin protocol serves as an effective
method to alleviate the communication burden in network
communications with a limited transmission rate. Because of
its economic utilization of network bandwidth, the Round-
Robin protocol has found wide applications in networked
control systems. Moreover, as pointed out in [11], the periodic
scheduling method plays an important role in distributed
systems (e.g. the microactuator arrays) since the simultane-
ous communication with multiple subsystems can hardly be
achieved. It should be noticed that the preserved measurements
in the ZOHs can provide the fault detection filter with full sen-
sor measurements, which are actually the measurement vector
~y(k). Unfortunately, the combinational use of the Round-Robin
protocol and the ZOHs would inevitably introduce certain
time-varying periodic delays to the received measurements,
which will certainly increase the complexity of the design

process. Such kind of periodic delays, if not properly handled,
would degrade the performance of the fault detector to some
extent [12].

For generating the residual to detect the possible fault in
the networked systems, we construct a fuzzy fault detection
filter of the following type (which is also called the residual
generating system):

Fault detection filter i:
IF θ1 is Fi1, · · · , θj is Fij , · · · andθp is Fip,
THEN





x̂(k + 1) = Âix̂(k) + B̂i~y(k),

ŷ(k) = Ĉix̂(k) + D̂i~y(k),

r(k) = ŷ(k)− f(k),

(3)

where x̂(k) ∈ Rn is the state of the fault detection filter;
ŷ(k) ∈ Rnf is the output of the residual generating system;
r(k) is the so-called the residual signal; and̂Ai, B̂i, Ĉi and
D̂i are the gain parameters of the concerned fault detection
filter to be designed.

For brevity, in what follows, we denotehi = hi(k) and

r∑

i1,i2,··· ,is=1

hi1hi2 · · ·his

=

r∑

i1=1

hi1

r∑

i2=1

hi2 · · ·

r∑

is=1

his for s ∈ Z
+.

Define the normalized membership function (also called the
fuzzy basis function) as

hi(k) =
Ψi(k)
r∑

j=1

Ψj(k)
,

(4)

whereΨi(k) =
p∏

j=1

Fij(θj(k)) andFij(θj(k)) > 0 is the grade

of membership ofθj(k) in Fij . Apparently, we have

0 ≤ hi(k) ≤ 1,
r∑

i=1

hi(k) = 1, ∀ k ∈ Z
+.

Consequently, the defuzzified output of the networked T-S
fuzzy model (1) can be presented as




x(k + 1) =
r∑

i=1

hi(k)
[(
Ai + ζ(k)Di

)
x(k) +Biu(k)

+ Eiω(k) + Fif(k)
]
, i ∈ U.

y(k) =

r∑

i=1

hi(k)
[(
Ci + ξ(k)Gi

)
x(k) +Hiω(k)

]
,

(5)

By denoting B̂i =
[
B̂i�1 B̂i�2 · · · B̂i�s

]
, D̂i =[

D̂i�1 D̂i�2 · · · D̂i�s

]
,

Ci =




Ci◦1

Ci◦2

. . .

Ci◦s


 , Gi =




Gi◦1

Gi◦2

. . .

Gi◦s


 , Hi =




Hi◦1

Hi◦2

. . .

Hi◦s


 , (6)
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Fig. 1: Access order of sensors under Round-Robin protocol

the fault detection filter (3) can be described by





x̂(k + 1) =
1

s

r∑

i,j=1

hihj

s∑

l=1

[
Âix̂(k)

+ s
(
B̂i�lCj◦lx(k − ℵl

k)

+ B̂i�lGj◦lξ(k − ℵl
k)x(k − ℵl

k)

+ B̂i�lHj◦lω(k − ℵl
k)
)]
,

ŷ(k) =
1

s

r∑

i,j=1

hihj

s∑

l=1

[
Ĉix̂(k)

+ s
(
D̂i�lCj◦lx(k − ℵl

k)

+ D̂i�lGj◦lξ(k − ℵl
k)x(k − ℵl

k)

+ D̂i�lHj◦lω(k − ℵl
k)
)]
.

(7)

Denotingx̃(k) = x̂T (k) − xT (k), θ(k) =
[
xT (k) x̃(k)

]T

andνT (k) =
[
ωT (k) fT (k) uT (k)

]
, we immediately obtain

the following augmented error dynamics of the fault detection
filter:





θ(k + 1) =
1

s

r∑

i,j,t=1

hihjht

s∑

l=1

[
Āijtθ(k)

+ ζ(k)B̄jtθ(k) + C̄ijlθ(k − ℵl
k)

+ ξ(k − ℵl
k)D̄ijlθ(k − ℵl

k)

+ Ējtν(k) + F̄ijlν(k − ℵl
k)
]
,

r(k) =
1

s

r∑

i,j,t=1

hihjht

s∑

l=1

[
Ḡiθ(k)

+ H̄ijlθ(k − ℵl
k)

+ ξ(k − ℵl
k)J̄ijlθ(k − ℵl

k)

+Kν(k) + L̄ijlν(k − ℵl
k)
]
,

(8)

whereK =
[
0 −Inf

]
,

Āijt =

[
At 0

Âi −Aj Âi

]
, C̄ijl =

[
0 0

sB̂i�lCj◦l 0

]
,

B̄jt =

[
Dt 0
−Dj 0

]
, Ējt =

[
Et Ft Bt

−Ej −Fj −Bj

]
,

D̄ijl =

[
0 0

sB̂i�lGj◦l 0

]
, F̄ijl =

[
0 0

sB̂i�lHj◦l 0

]
,

Ḡi =
[
Ĉi Ĉi

]
, H̄ijl =

[
sD̂i�lCj◦l 0

]
,

J̄ijl
[
sD̂i�lGj◦l 0

]
, L̄ijl =

[
sD̂i�lHj◦l 0

]
.

Definition 1. The augmented error dynamics (8) withν(k) ≡
0 is said to be exponentially mean-square stable if there exist
two constantsα > 0 and ǫ ∈ (0, 1) such that

E
{
‖θ(k)‖2

}
≤ αǫk sup

i∈Π0

E
{
‖θ(i)‖2

}
, k ∈ Z

+.

Definition 2. Under the zero initial condition, if the following
disturbance attenuation constraint

min γ s.t.

∞∑

k=0

E
{
‖r(k)‖2

}
≤ γ2

∞∑

k=0

E

{
‖υ(k)‖

2
}

(9)

is met for all nonzero sequences{υ(·)}, whereγ > 0 and
υ(k) = [νT (k) νT (k − ℵ1

k) · · · ν
T (k − ℵl

k) · · · ν
T (k − ℵs

k)]
T ,

then the fuzzy residual generating system (3) is regarded as
an H∞ fault detection filter.

In this paper, our main purpose is to obtain anH∞ fuzzy
fault detection filter in the form of (3) such that the augmented
error dynamics (8) isexponentially mean-square stable. After-
wards, based on the residual signal generated by the fuzzy fault
detection filter (3), a finite-time residual evaluation function
J(k) is established as follows:

J(k) = E





(
L∑

ι=0

‖r(k − ι)‖

) 1
2



 , (10)

whereL ∈ Z+ is the length of the evaluating time horizon. In
order to determine the time to alarm, a trigger point (i.e. the
thresholdJth) needs to be determined. Among various forms
of thresholds in specific implementation, a common choice for
the threshold is the supremum of the evaluation function in the
fault-free case [14], namely,

J̄th = sup
k∈Z

+,ξ(k) 6=0,ζ(k) 6=0,ω(k)∈l2,u(k) 6=0,f(k)=0

E {J(k)} . (11)

However, it is well known that the above threshold inevitably
results in a fixed trigger point, and thus cannot be dynamically
adjusted. To solve this problem, we adopt a dynamic threshold
as follows:

Jth = Jth,ω + Jth,u, (12)

where

Jth,ω = sup
k∈Z+,ξ(k) 6=0,ζ(k) 6=0,ω(k)∈l2,u(k)=0,f(k)=0

E {J(k)} ,

Jth,u = sup
k∈Z+,ξ(k) 6=0,ζ(k) 6=0,ω(k)=0,u(k) 6=0,f(k)=0

E {J(k)} .

As pointed out in [47], the constantJth,ω can be determined
off-line, but Jth,u can be adjusted on-line by dynamically
changing the control inputu(k) [47]. Since the residual
evaluation functionJ(k) is influenced by the fault in the target
system, the occurred fault can be detected if the value of the
finite-time residual evaluation function exceeds the obtained
threshold. More specifically, the triggering mechanism of
alarm can be described by the following rule:

J(k) > Jth =⇒ Alarm : fault

J(k) ≤ Jth =⇒ No alarm: fault free.
(13)
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Fig. 2: Fuzzy fault detection system under Round-Robin
protocol

For a better illustration, the flowchart of the fault detection
procedure under the Round-Robin protocol is shown in Fig. 2.

III. M AIN RESULTS

The following lemmas will be used in the proofs of our
main results.

Lemma 1. (Schur Complement) [3] Let the constant matrices
Σ1, Σ2, Σ3 be given whereΣ1 = ΣT

1 and 0 < Σ2 = ΣT
2 .

Then,Σ1 − ΣT
3 Σ

−1
2 Σ3 ≥ 0 if and only if

[
Σ1 ΣT

3

Σ3 Σ2

]
≥ 0 or

[
Σ2 Σ3

ΣT
3 Σ1

]
≥ 0.

Lemma 2. Let R ∈ R2n×2n be a positive definite matrix.
For any real vectorsXijtl ∈ R2n and Xabcd ∈ R2n with
i, j, t, a, b, c ∈ U and l, d ∈ S, we have

1

s

r∑

i,j,t,a,b,c=1

hihjhthahbhc

s∑

l=1

s∑

d=1

XT
ijtlRXabcd

≤
r∑

i,j,t=1

hihjht

s∑

l=1

XT
ijtlRXijtl, (14)

wherehz ≥ 0 and
r∑

z=1
hz = 1 with z ∈ U.

Proof: Similar to the proof of Lemma 2 in [9], let us
recall the well-known inequality

2XTRY ≤ XTRX + Y TRY,

whereX and Y are any vectors belonging toR2n. Then, it

follows that one easily has

2

s

r∑

i,j,t,a,b,c=1

hihjhthahbhc

s∑

l=1

s∑

d=1

XT
ijtlRXabcd

≤
1

s

r∑

i,j,t,a,b,c=1

hihjhthahbhc

s∑

l=1

s∑

d=1

(
XT

ijtlRXijtl

+XT
abcdRXabcd

)

=2
r∑

i,j,t=1

hihjht

s∑

l=1

XT
ijtlRXijtl,

which completes the proof.
For the fault detection problem, it is always a prerequisiteto

generate the residual signal in order to establish the residual e-
valuation function latter. In what follows, we shall concentrate
upon the analysis and synthesis of the proposed fuzzy fault
detection filter, where the exponentially mean-square stability
of the augmented error dynamics and theH∞ disturbance
attenuation performance will be simultaneously addressed.

A. Stability andH∞ performance analysis

Theorem 1. Let the parameters (i.e.,̂Ai, B̂i, Ĉi and D̂i) of
the fault detection filter be given. The error dynamics (8) is
exponentially mean-square stable and the residual-generating
system (3) is anH∞ fault detection filter under the Round-
Robin scheduling if there exist two positive definite matricesP
andQ such that the following semi-definite problem is feasible

min γ s.t. Ω̄ijtl < 0, i, j, t ∈ U and l ∈ S (15)

whereΩ̄ijtl
3 = diag{−Q−1, −Inf

, −Q−1, −Inf
},

Ω̄ijtl =

[
Ω̄ijtl

1 ∗

Ω̄ijtl
2 Ω̄ijtl

3

]
, Λ1 = Q− sP − σ2

ζ B̄
T
jtQB̄jt,

Ω̄ijtl
1 = diag{−Λ1, −sP, −γ2I(nω+nf ), −sγ2I(nω+nf )},

Ω̄ijtl
2 =




0 σξD̄ijl 0 0
0 σξJ̄ijl 0 0

Āijt C̄ijl Ējt F̄ijl

Ḡi H̄ijl K L̄ijl


 .

Proof: DefineΨt(k) =
{
θ(k), θ(k − 1), · · · , θ(k − t)

}

and ~(k) =
∞⋃
t=1

Ψt(k). Choose a Lyapunov-Krasovskii func-

tion candidate as follows

V (k) =

2∑

i=1

Vi(k), (16)

where

V1(k) = θT (k)Qθ(k),

V2(k) =

s∑

l=1

−1∑

τ(k)=−ℵl
k

θT (k + τ(k))Pθ(k + τ(k)).

Letting ν(k) = 0, we compute the difference ofV (k) along
the trajectory of the error dynamics (8) as follows:

E
{
V (k + 1)− V (k)

∣∣~(k)
}
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=
1

s2

r∑

i,j,t,a,b,c=1

hihjhthahbhc

s∑

l=1

s∑

d=1

×E

{[
Āijtθ(k) + ζ(k)B̄jtθ(k) + C̄ijlθ(k − ℵl

k)

+ξ(k − ℵl
k)D̄ijlθ(k − ℵl

k)
]T

Q

×
[
Āabθ(k) + ζ(k)B̄bθ(k) + C̄abdθ(k − ℵc

k)

+ξ(k − ℵc
k)D̄abdθ(k − ℵc

k)
]
− θT (k)Qθ(k)

}

+
s∑

l=1

E

{
θT (k)Pθ(k) − θT (k − ℵl

k)Pθ(k − ℵl
k)
}

=
1

s2

r∑

i,j,t,a,b,c=1

hihjhthahbhc

s∑

l=1

s∑

d=1

×E

{[
Āijtθ(k) + ζ(k)B̄jtθ(k) + C̄ijlθ(k − ℵl

k)

+ξ(k − ℵl
k)D̄ijlθ(k − ℵl

k)
]T

Q
[
Āabθ(k)

+ζ(k)B̄bθ(k) + C̄abdθ(k − ℵc
k)

+ξ(k − ℵc
k)D̄abdθ(k − ℵc

k)
]
− θT (k)(Q − sP )θ(k)

−sθT (k − ℵl
k)Pθ(k − ℵl

k)
}
. (17)

It follows from Lemma 2 that

E
{
V (k + 1)− V (k)

∣∣~(k)
}

≤
1

s

r∑

i,j,t=1

hihjht

s∑

l=1

E

{[
Āijtθ(k) + ζ(k)B̄jtθ(k)

+C̄ijlθ(k − ℵl
k) + ξ(k − ℵl

k)D̄ijlθ(k − ℵl
k)
]T

Q

×
[
Āijtθ(k) + ζ(k)B̄jtθ(k) + C̄ijlθ(k − ℵl

k)

+ξ(k − ℵl
k)D̄ijlθ(k − ℵl

k)
]
− θT (k)(Q − sP )θ(k)

−sθT (k − ℵl
k)Pθ(k − ℵl

k)
}
. (18)

By notingE{ζ2(k)} = σ2
ζ andE{ξ2(k)} = σ2

ξ , we obtain

E
{
V (k + 1)− V (k)

∣∣~(k)
}

≤
1

s

r∑

i,j,t=1

hihjht

s∑

l=1

E

{[
Āijtθ(k) + C̄ijlθ(k − ℵl

k)
]T

×Q
[
Āijtθ(k) + C̄ijlθ(k − ℵl

k)
]

−θT (k)(Q − sP − σ2
ζ B̄

T
jtQB̄jt)θ(k)

−sθT (k − ℵl
k)Pθ(k − ℵl

k)

+σ2
ξθ

T (k − ℵl
k)D̄

T
ijlQD̄ijlθ

T (k − ℵl
k)
}

≤
1

s

r∑

i,j,t=1

hihjht

s∑

l=1

E
{
θ̃T (k)Ω̃ijtl

0 θ̃(k)
}
, (19)

whereθ̃(k) =
[
θT (k) θT (k − ℵl

k)
]T

,

Λ̃1 = −ĀT
ijtQĀijt +Q− sP − σ2

ζ B̄
T
jtQB̄jt,

Λ̃2 = sP − σ2
ξ D̄

T
ijlQD̄ijl − C̄T

ijlQC̄ijl,

Ω̃ijtl
0 =

[
−Λ̃1 ∗

C̄T
ijlQC̄ijl −Λ̃2

]
.

Denoting

Ω̄ijtl
0 =




−Λ1 ∗ ∗ ∗
0 −sP ∗ ∗
0 σξD̄ijl −Q−1 ∗

Āijt C̄ijl 0 −Q−1


 , (20)

it can be found that̄Ωijtl
0 is a principal submatrix of̄Ωijtl.

Subsequently,̄Ωijtl
0 < 0 can be inferred bȳΩijtl < 0 in (15)

which, according to the Schur Complement (Lemma 1), further
implies Ω̃ijtl

0 < 0. Therefore, one has

E
{
V (k + 1)− V (k)

∣∣~(k)
}

≤
1

s

r∑

i,j,t=1

hihjht

s∑

l=1

E
{
θ̃T (k)Ω̃ijtl

0 θ̃(k)
}

≤ λmax(Ω̃
ijtl
0 )E

{∥∥x̃(k)
∥∥2}

< 0. (21)

According to the definition ofV (k) in (16), we obtain

λmin(Q)E
{∥∥x̃(k)

∥∥2} ≤ E
{
V (k)

}

≤ λmax(Q)E
{∥∥x̃(k)

∥∥2}

+sλmax(P )E
{ −1∑

τ=−s+1

∥∥x̃(k + τ)
∥∥2}. (22)

For any given scalarµ > 1 and a sufficiently largek, it
follows from (21) and (22) that

E
{
µkV (k)

}

=E

{
V (0) +

k−1∑

i=0

(
µi+1(V (i+ 1)− V (i))

+ µi(µ− 1)V (i)
)}

≤λmax(Q)E
{∥∥x̃(0)

∥∥2}+ sλmax(P )E
{ −1∑

τ=−s+1

∥∥x̃(τ)
∥∥2}

+
(
µλmax(Ω̃

ijtl
0 ) + (µ− 1)λmax(Q)

) k−1∑

i=0

µi
E
{∥∥x̃(i)

∥∥2}

+ (µ− 1)sλmax(P )

k−1∑

i=0

−1∑

j=−s+1

µi
E
{∥∥x̃(i+ j)

∥∥2}

≤λmax(Q)E
{∥∥x̃(0)

∥∥2}+ sλmax(P )E
{ −1∑

τ=−s+1

∥∥x̃(τ)
∥∥2}

+
(
µλmax(Ω̃

ijtl
0 ) + (µ− 1)λmax(Q)

) k−1∑

i=0

µi
E
{∥∥x̃(i)

∥∥2}

+ (µ− 1)sλmax(P )

(
(s− 1)µs−1

−1∑

j=−s+1

E
{∥∥x̃(j)

∥∥2}

+

(
k−s∑

j=0

s−1∑

t=1

+

k−1∑

j=k−s+1

k−j∑

t=1

)
µjµt

E
{∥∥x̃(j)

∥∥2}
)

≤λmax(Q)E
{∥∥x̃(0)

∥∥2}+ sλmax(P )E
{ −1∑

τ=−s+1

∥∥x̃(τ)
∥∥2}
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+
(
µλmax(Ω̃

ijtl
0 ) + (µ− 1)λmax(Q)

) k−1∑

i=0

µi
E
{∥∥x̃(i)

∥∥2}

+ (µ− 1)sλmax(P )

×

(
(s− 1)2µs−1 sup

j∈N[−s+1, 0]

E
{∥∥x̃(j)

∥∥2}

+ (s− 1)µs−1
k−1∑

j=0

µj
E
{∥∥x̃(j)

∥∥2}
)

≤a1(µ) sup
j∈N[−s+1, 0]

E
{∥∥x̃(j)

∥∥2}

+ a2(µ)

k∑

j=0

µj
E
{∥∥x̃(j)

∥∥2}, (23)

where

a1(µ) = λmax(Q) + sλmax(P )(s− 1)

+(µ− 1)sλmax(P )(s− 1)2µs−1,

a2(µ) = µλmax(Ω̃
ijtl
0 ) + (µ− 1)λmax(Q)

+(µ− 1)sλmax(P )(s− 1)µs−1.

Moreover, it is not difficult to see thata1(1) > 0 anda2(1) <
0. Becausea1(µ) and a2(µ) are continuous functions ofµ,
we can infer that there must exist a scalarz > 1 such that

a1(z) > 0, a2(z) < 0. (24)

Subsequently, the following inequality is true

E
{∥∥x̃(k)

∥∥2}

≤

k∑

j=0

µj−k
E
{∥∥x̃(j)

∥∥2}

≤µ−k a1(z)

−a2(z)

(
sup

j∈N[−s+1, 0]

E
{∥∥x̃(j)

∥∥2}− E
{
zkV (k)

})

≤
a1(z)

−a2(z)
µ−k sup

j∈N[−s+1, 0]

E
{∥∥x̃(j)

∥∥2}. (25)

By Definition 1, the augmented error dynamics (8) isexpo-
nentially stablein the mean square sense, and the proof is
completed.

Now, we will show theH∞ disturbance attenuation per-
formance (9) under the zero initial condition for all nonzero
sequences{ν(·)}. It follows from the augmented error dynam-
ics (8) that

E
{
V (k + 1)− V (k) + ‖r(k)‖2 − γ2‖υ(k)‖2

∣∣~(k)
}

=
1

s2

r∑

i,j,t,a,b,c=1

hihjhthahbhc

s∑

l=1

s∑

d=1

× E

{[
Āijtθ(k) + ζ(k)B̄jtθ(k) + C̄ijlθ(k − ℵl

k)

+ ξ(k − ℵl
k)D̄ijlθ(k − ℵl

k) + Ējtν(k) + F̄ijlν(k − ℵl
k)
]T

×Q
[
Āabθ(k) + ζ(k)B̄bθ(k) + C̄abdθ(k − ℵl

k)

+ ξ(k − ℵc
k)D̄abdθ(k − ℵl

k) + Ēbν(k) + F̄abdν(k − ℵc
k)
]

− θT (k)(Q− sP )θ(k) − sθT (k − ℵl
k)Pθ(k − ℵl

k)

+
[
Ḡiθ(k) + H̄ijlθ(k − ℵl

k) + ξ(k − ℵl
k)J̄ijlθ(k − ℵl

k)

+Kν(k) + L̄ijlν(k − ℵl
k)
]T [

Ḡaθ(k) + H̄abdθ(k − ℵc
k)

+ ξ(k − ℵc
k)J̄abdθ(k − ℵc

k) +Kν(k) + L̄abdν(k − ℵc
k)
]

− γ2νT (k)ν(k) − sγ2νT (k − ℵl
k)ν(k − ℵl

k)
}

≤
1

s

r∑

i,j,t=1

hihjht

s∑

l=1

E

{[
Āijtθ(k) + C̄ijlθ(k − ℵl

k)

+ Ējtν(k) + F̄ijlν(k − ℵl
k)
]T

Q
[
Āijtθ(k) + C̄ijlθ(k − ℵl

k)

+ Ējtν(k) + F̄ijlν(k − ℵl
k)
]
+
[
Ḡiθ(k) + H̄ijlθ(k − ℵl

k)

+Kν(k) + L̄ijlν(k − ℵl
k)
]T [

Ḡiθ(k) + H̄ijlθ(k − ℵl
k)

+Kν(k) + L̄ijlν(k − ℵl
k)
]
− sθT (k − ℵl

k)Pθ(k − ℵl
k)

+ σ2
ξθ

T (k − ℵl
k)D̄

T
ijlQD̄ijlθ(k − ℵl

k)

+ σ2
ξθ

T (k − ℵl
k)J̄

T
ijlJ̄ijlθ(k − ℵl

k)

− θT (k)(Q − sP − σ2
ζ B̄

T
jtQB̄jt)θ(k)

− γ2νT (k)ν(k) − sγ2νT (k − ℵl
k)ν(k − ℵl

k)
}
. (26)

Taking advantage of the Schur Complement (Lemma 1)
again, it can be seen from the matrix inequalities (15) that

E
{
V (k + 1)− V (k) + ‖r(k)‖2 − γ2‖υ(k)‖2

∣∣~(k)
}

≤
1

s

r∑

i,j,t=1

hihjht

s∑

l=1

E
{
θ̃T (k)Ω̄ijtl θ̃(k)

}

< 0, (27)

where θ̃(k) =
[
θT (k) θT (k − ℵl

k) ν(k) ν(k − ℵl
k)
]T

. By
further taking the zero initial condition andV (k) ≥ 0 into
account, summing up both sides of the inequality (27) from0
to ∞ yields

∞∑

k=0

E
{
‖r(k)‖2

}
≤ γ2

∞∑

k=0

E

{
‖υ(k)‖

2
}
. (28)

According to Definition 2, the residual-generating system (3)
is anH∞ fault detection filter, which completes the proof.

Up to now, theexponentially mean-square stabilityof the
augmented error dynamics (8) and theH∞ performance have
been thoroughly discussed. Nevertheless, the nonlinear term
Q−1 in Ω̄ijtl brings great difficulties to the semi-definite prob-
lem in Theorem 1. For this issue, we shall turn to a traceable
algorithm for designing the desired fault detection filter by
introducing a slack matrix variable in the next subsection.

B. Synthesis of fuzzy fault detection filter

Theorem 2. For the given structure of the fault detection
filter (3), assume that there exist invertible matrixS =
diag{S1, S2}, matrices Âi, B̂i�l, Ĉi, D̂i�l, and matrices
P > 0 and Q > 0 such that the following semi-definite
problem is feasible

min γ s.t. Ωijtl < 0 i, j, t ∈ U and l ∈ S (29)

whereΛ5 = −Q+ ST + S,

Ωijtl =

[
Ω̄ijtl

1 ∗

Ωijtl
2 Ωijtl

3

]
, Ējt =

[
S1Et S1FtS1B

−S2Ej −S2FjS2B

]
,
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Ωijtl
2 =




0 σξD̄ijl 0 0
0 σξJ̄ijl 0 0

Āijt C̄ijl Ējt F̄ijl

Ḡi H̄ijl K L̄ijl


 ,

Ωijtl
3 = diag{−Λ5, −Inf

, −Λ5, −Inf
},

Āijt =

[
S1At 0

Âi − S2Aj Âi

]
, C̄ijl =

[
0 0

sB̂i�lCj◦l 0

]
,

D̄ijl =

[
0 0

sB̂i�lGj◦l 0

]
, F̄ijl =

[
0 0

sB̂i�lHj◦l 0

]
.

Then, under the Round-Robin scheduling, the augmented error
dynamics (8) is exponentially mean-square stable and the
disturbance attenuation constraint (9) is also met. Moreover,
the other gain parameters of the concernedH∞ fault detection
filter Âj , B̂i, and D̂i are characterized by

B̂i =
[
S−1
2 B̂i�1 S−1

2 B̂i�2 · · ·S
−1
2 B̂i�s

]
,

Âi = S−1
2 Âi, D̂i =

[
D̂i�1 D̂i�2 · · · D̂i�s

]
.

(30)

Proof: Noticing the relationship (30), pre- and post-
multiplying both sides ofΩijtl < 0 with diag{I2n, I2n,

Inf+nω+nu
, Is(nf+nω+nu), S−1, I2n, S−1, Inf

} and its
transpose yield

[
Ω̄ijtl

1 ∗

Ω̃ijtl
2 Ω̃ijtl

3

]
< 0, (31)

where Qs = −S−1QS−T + S−1 + S−T , Ω̃ijtl
3 =

diag{−Qs, −Inf
, −Qs, −Inf

} and

Ω̃ijtl
2 =




0 σξD̄ijl 0 0
0 σξJ̄ijl 0 0

Āijt C̄ijl Ējt F̄ijl

Ḡi H̄ijl K L̄ijl


 .

On the other hand, one can infer fromQ > 0 that

Q−1 −Qs = Q−1 + S−1QS−T − S−T − S−1

= [S−1 −Q−1]QS−T − [S−1 −Q−1]

= [S−T −Q−1]TQ[S−T −Q−1]

≥ 0, (32)

which means̄Ωijtl < Ωijtl < 0, and the proof is complete.
So far, theH∞ fuzzy fault detection filter has been designed

to generate the desired residual signal.

Remark 3. Theorem 1 provides the sufficient conditions for
the existence of the concerned fuzzy fault detection filter
such that the exponentially mean-square stability of the error
dynamics (8) and the optimalH∞ disturbance attenuation
performance are met simultaneously. It should be noticed
that the effects of both the multiplicative noises and the
periodic communication Round-Robin protocol are reflected
in the main results, and the complexity induced by the Round-
Robin protocol is effectively reduced by developing a so-
called block matrix method. The derivation of the desired
fault detection filter is addressed in Theorem 2, where the
established conditions can be verified readily by using the
numerically efficient LMI toolbox in Matlab software. The
residual generated by the desired fault detection filter canbe
used as the evaluation function (10), and the threshold (12)

can be determined accordingly. Thereafter, the possible fault
in the networked fuzzy system can be detected according to the
rule (13). On the other hand, it can be seen from (2) and (3)
that the time-varying delayℵl

k is a key factor to influence the
performance of the fault detection filter. Therefore, we know
from ℵl

k = mod(k − l, s) that the dimension of the measured
output vectory(k) and the measurement vector~y(k) can
greatly affect fault detection result. As discussed previously,
the designed adaptive threshold is superior to the traditional
constant one since the current threshold can be adjusted by
shifting the control input vectoru(k).

IV. I LLUSTRATIVE EXAMPLE

In this section, we present a numerical example to demon-
strate the feasibility of the proposed algorithm. Considera
discrete-time networked fuzzy system (1) with three measure-
ment sensors (i.e.s = 3). Take the number of IF-THEN rules
r = 2 and the other parameters as follows:

A1 =

[
−0.4223 −0.1022
−0.0235 −0.1002

]
, D2 =

[
0.3841 0.2671
0.0323 0.0154

]
,

E1 =

[
−0.4102
−0.3205

]
, F1 =

[
−0.4036
−0.0085

]
, B1 =

[
0.6231
−0.3251

]
,

A2 =

[
0.3125 0.1035
0.3231 0.1705

]
, D1 =

[
−0.2334 −0.1253
−0.4869 −0.0254

]
,

E2 =

[
0.0065
−0.4008

]
, F2 =

[
−0.5045
0.1007

]
, B2 =

[
−06423
−0.3251

]
,

C1 =




−0.3152 −0.4523
−0.0561 −0.1357
−0.0025 0.0058



 , H1 =




−0.0254
−0.3251
−0.0005



 ,

G1 =



−0.4058 0.0169
0.2363 −0.2895
0.1004 0.1710


 , H2 =



0.2854
0.0304
0.3588


 ,

C2 =




0.0085 −0.1006
−0.1036 −0.0025
0.0552 0.1035


 , G2 =



0.2221 0.4016
0.0059 0.0336
0.1235 0.0410


 .

The variances of the zero-mean multiplicative noisesζ(k) and
ξ(k) are set to beσζ = 1.1 andσξ = 1.4, respectively.

By resorting to the solver of mincx in LMI toolbox, the
convex optimization problem (29) is solved and theH∞

performance index is optimized asγmin = 1.1409, where the
feasible solutions of the positive definite matricesQ andP as
well as the invertible matricesS1 andS2 are listed below:

P =




0.03330 −0.00322 0 0
−0.00322 0.05446 0 0

0 0 0.00006 −0.00004
0 0 −0.00004 0.00013


 ,

Q =




0.33648 0.06371 −0.00411 0.00003
0.06371 0.23834 0.00003 −0.00124
−0.00411 0.00003 0.01148 0.00724
0.00003 −0.00124 0.00724 0.01809


 ,

S1 =

[
0.28780 0.04682
0.04683 0.17911

]
, S2 =

[
0.06347 0.14937
0.14937 0.41285

]
.
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Subsequently, the gain matrices of the concerned fault
detection filter are obtained as follows:

Â1 =

[
−0.2882 0.1503
−0.0590 −0.2604

]
, Â2 =

[
0.0557 0.2925
0.0080 −0.0742

]
,

B̂1 =

[
−0.0865 −0.1572 −0.2684
−0.1688 −0.3580 −0.6317

]
,

B̂2 =

[
0.0134 −0.1674 −0.1674
−0.2845 −0.3631 −0.3631

]
,

Ĉ1 =
[
0.0082 0.0060

]
, Ĉ2 =

[
0.01093 −0.0053

]
,

D̂1 =
[
−0.0477 −0.1354 −0.2734

]
,

D̂2 =
[
−0.0296 −0.1272 −0.1660

]
.

By now, anH∞ fault detection filter has been designed
under the framework of the T-S fuzzy model.

For simulation purpose, we adopt the normalized member-
ship functions as

h1 =
sin2(x1(k))

2 + cos(x1(k))
, h2 = 1−

sin2(x1(k))

2 + cos(x1(k))
.

The multiplicative noises are taken as

ζ(k) = −10−tg−1(k) sin(4k)
sin(k)

(
tg−1(k)

)2
ε(k)

with ε(k) being uniformly distributed over[0, 1], and
ξ(k) = tg−1(k)ζ(k). Let the control input beu(k) =

0.12esin(kctg−1(k))tg−1(kcos(k)), the disturbance input be
ω(k) = e−10k, the initial state beφ(k) = 0 (∀ k ∈ Z−),
the evaluating time horizon beL = 15, and the fault be

f(k) =

{
0.05ke

−k
80 , 30 ≤ k ≤ 120

0, else.

By using the designed fault detection filter (3), the residual
signal is steadily generated once the sensor measurements are
communicated to the fault detection filter. Fig. 3 shows the
evolutions of the residual with fault and fault free, which
indicates that the residual will appear even if the fault does
not occur. When the fault arises in the fuzzy system, the curve
of residual signal yields a surge, and it begins to flatten when
the fault disappeared. Evaluation of the residual is shown in
Fig. 4, where it can be seen that the growth of the residual
evaluation function starts to slacken when the fault disappears
in the target networked fuzzy systems.

With help of the designed residual evaluation function (10),
the threshold is determined asJth = 0.0636 after 100 runs
of Monte Carlo simulations. By checking the values of the
residual evaluation functionJ(k), we find thatJ(k) = 0.0666
exceeds the threshold at the time instantk = 37 for the
first time, and the alarm apparatus can thus be triggered,
which means that the fault in the target system is successfully
detected with only7 time instants behind. The evaluation of
the residual without fuzzy rules is shown in Fig. 5, from which
one knowsJ(k) = 0.0647 exceeds the threshold whenk = 61.
In other words, the non-fuzzy fault detection result largely
lags behind the fault occurrence, which thus demonstrates the
superiority of the studied scheme.

On the other hand, the measurement model (2) implies
that the time delays induced by the Round-Robin protocol
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Fig. 3: Residual signal
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Fig. 4: Residual evaluation
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Fig. 5: Residual evaluation without fuzzy rules

vary periodically. Trajectories of the residual with and without
the multiplicative noises and interference input are shownin
Fig. 6, from which we can see that the multiplicative noises
ζ(k) and ξ(k), the interferenceω(k) can all produce a dash
to the residual signal.
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Fig. 6: Impact of the multiplicative noises and disturbance
input to the residual

V. CONCLUSIONS

The fuzzy fault detection problem has been addressed for a
class of T-S fuzzy networked systems in this paper. A novel
communication scheduling solution has been used to deal with
the communication constraints and the ZOHs have been used
to improve the utilization of the received sensor measurements.
In the framework of T-S fuzzy model, the structure of an
H∞ fuzzy fault detection filter embedded in the concerned
fault detector has been suggested. The explicit expressionof
the desired fault detection filter has been characterized by
solutions to a set of LMI constraints. To efficiently detect
the fault occurred in the networked fuzzy systems, a finite-
time residual evaluation function and the threshold consisting
of constant and adjustable parts have been designed. On the
other hand, the low requirement on bandwidth under Round-
Robin protocol makes it can be widely used to some special
applications such as the fault detection of the underwater
power system, the forest fire monitoring and the remote
medical diagnosis, etc. Moreover, for energy saving purpose,
the event-triggered strategy can play an important role in the
low-power network communication, see. e.g. [23]. Therefore,
the above topics under Round-Robin protocol will constitute
our further research directions.
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