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Multiparty Session Types (MPST) is a typing discipline for communication protocols, which ensures
communication safety and deadlock-freedom for more than two participants. This paper reports our
on-going research project, implementing multiparty session types in Rust. Current Rust implemen-
tations of session types are limited to binary (two party communications) and introduce errors due
to a gap between affinity in Rust and linearity in the session types discipline. To achieve our goal
by overcoming these limitations, we extend an existing library for the binary session types to MPST.
We created an environment involving a server and clients, communicating through a MQTT (MQ
Telemetry Transport) broker with protocols that have been checked by our library.

1 Introduction

In the last decade, the software industry has seen a shift towards programming languages that promote
the coordination of concurrent and/or distributed software components through the exchange of messages
over communication channels. Languages with native message-passing primitives (e.g., Go, Elixir and
Rust) are becoming increasingly popular. In particular, Rust has been named the most loved program-
ming language in the annual Stack Overflow survey for four consecutive years (2016-19)1.

The advantages of message-passing concurrency are well-understood, i.e it allows cheap horizon-
tal scalability at a time when technology providers have to adapt and scale their tools and applications
to various devices and platforms. Message-passing based software, however, is as liable to errors as
other concurrent programming techniques [12]. Much academic research has been done to develop rig-
orous theoretical frameworks for verification of message-passing programs. One such type of theoretical
framework is multiparty session types (MPST) [4] – a type-based discipline that ensures that concurrent
and distributed systems are safe by design. It guarantees that message-passing processes following a
predefined communication protocol, are free from communication errors and deadlocks.

Rust is a particularly appealing language for the practical embedding of session types. Its affine type
system allows for static typing of linear resources – an essential requirement for the safety of session type
systems. Rust combines efficiency with message-passing abstractions, thread and memory safety [8], and
has been used for the implementation of large-scale concurrent applications such as the Mozilla browser,
Firefox, and the Facebook blockchain platform, Libra. Despite the interest in the Rust community for
verification techniques handling multiple communicating processes2, the existing Rust implementations
[7, 9] are limited to binary, i.e., two party session types.

In this paper, we give an overview of the state-of-the-art Rust implementations, discuss the chal-
lenges of scaling the implemented libraries to multiparty protocols, and present our preliminary design
for multiparty session types in Rust. Our design follows a state-of-the-art encoding of multiparty into
binary session types [11]. We propose to generate local APIs in Rust, utilising the Scribble toolchains.
The generated APIs can be built on top of an existing binary session types library by applying only a

1https://insights.stackoverflow.com/survey/2019
2https://users.rust-lang.org/t/anybody-working-on-multiparty-session-types-for-rust/10610
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minor modification to the type signatures of the underlying primitives. Differently from other MPST
implementations that check at runtime the linear usage of channels (e.g. [11, 5]), we rely on the Rust
affine type system to type-check MPST programs.

In addition, since we generate the local types from a readable global specification, errors caused by
an affine (and not linear) usage of channels, a well-known limitation of the previous libraries, are easily
avoided.

This paper is organised as follows. We first detail the different existing solutions, and their limitations
in § 2. In § 3 we present the real case scenario which pushed us to work on multiparty session types in
Rust. Finally, § 4 illustrates our preliminary design. § 5 concludes with related and future work.

2 Limitations of Existing Implementations

We first summarise two implementations of session types in Rust – Session Types for Rust by Munksgaard
et al [7], and Rusty Variation, Deadlock-free Sessions with Failure in Rust by Kokke [9].

The library presented in [7] implements binary session types, following [3]. It checks at compile-
time that the behaviours of two endpoint processes are dual, i.e the processes are compatible. The library
in [9], based on the formal EGV calculus by Fowler et al [2], allows to write and check session typed
communications, and additionally support exception handling constructs. Both libraries include the four
basic communication primitives: send, receive, and internal and external choice. Rust originally did not
support recursive types so that the work [7] had to uses de Bruijn indices to encode recursive session
types, while the work [9] uses Rust’s native recursive types. Although both libraries share the same goal,
the underpinning implementations differ significantly.

The main difference in the implementation of the two libraries is the treatment of failure handling
when protocols are closed prematurely. This is also one of the main technical challenges when imple-
menting session types in an affine language. An affine type system stipulates that a resource (a value)
is used at most once, while a linear type system, such as the type system of session types, requires that
a value is used exactly once. A naive implementation of session types in Rust may allow for channel
values to be dropped at any time, i.e before the protocol has been completed. To prevent dropping a
channel prematurely, [7] utilises a succession of destructor bombs and std::mem::forget3 to ensure
that a channel value is never dropped. As a result, if a channel is dropped, the library panics, causing
a segmentation fault. A disadvantage of this approach is that it leads to a memory leak. The second
library [9] prevents this behaviour by customising the native destructor Drop in Rust. When a session’s
destructor is called, the session is first disconnected, dropping every channel value used in the session,
then the memory is deallocated.

Another minor implementation difference between [7] and [9] is the management of external and
internal choice. In [7], different choice branches are encoded as numbers, which is error-prone. Kokke’s
library [9] suggests a more usable solution, where choice branches are distinguished based on label types.
More precisely, the work [9] implements the sum type Either, and the macros choose and offer which
generalises binary choice using Either to a choice on any enum.

Finally, both libraries suffer from a well-known limitation of binary session types4. Notably, since
deadlock-freedom is ensured only inside a session, a Rust endpoint process, that communicates with
more than one other process, is prone to deadlocks and communication errors. MPST solves that limita-
tion by expanding the scope of a session to multiple participants. In the rest of the paper, we present our

3https://doc.rust-lang.org/1.35.0/std/mem/fn.forget.html
4https://github.com/Munksgaard/session-types/commit/0f25ccb7c3bc9f65fa8eaf538233e8fe344a189a
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preliminary design of MPST in Rust. We build on top of the library in [9] since, as already explained, it
offers several improvements in comparison to [7].

3 Use case: Amazon Prime Video Protocol in MPST

The Amazon Prime Video streaming service is a use case which can take full advantage of multiparty
session types. Each streaming application connects to servers, and possibly other devices, in order to
access services, and follows some specific protocol.

Client Authenticator Server

ID

Accepted

alt
RequestVideo

RequestVideo

SendVideo

SendVideo

Close

Close

Figure 1: Workflow for Amazon Prime Video Use-
case

To present our design, we follow a simplified
version of the protocol, illustrated in the diagram
in Figure 1. The protocol involves three services –
an Authenticator service, a Server and a Client.
At first, Client connects to Authenticator by pro-
viding an identifying ID. If the ID is accepted, the
session continues with a choice on Client to either
request a video or end the session. The first branch
is, a priori, the main service provided by Amazon
Prime Video. Client cannot directly request videos
from Server, and has to go through Authenticator

instead. On the diagram, the choice is denoted as
the frame alt and the choices are separated with
the horizontal dotted line. The protocol is recursive,
and Client can request new videos as many times
as needed. The arrow going back on Client side in
Figure 1 represents this recursive behaviour. To end
the session, Client should first send Close mes-
sage to Authenticator, which then subsequently
sends a Close message to Server.

4 Methodology and Design: Multiparty Session Types in Rust
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Figure 2: Multiparty Session Types Methodology

The top-down methodology of mul-
tiparty session types, is illustrated
in Figure 2. It follows three main
steps [13, 4]. First, a global type,
also called a global protocol, is de-
fined as a shared contract between
communicating endpoint processes.
Scribble (a protocol description lan-
guage for multiparty session types)
[14] provides facilities for writing
and verifying global protocols. A
global protocol is then projected to
each endpoint process, resulting in a
local type. A local type involves only
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1 module BasicProtocol; // Name of the module

2

3 type <Rust> "Id" from "port::Id" as Id; // Definition of the Id type in Rust

4 type <Rust> "Answer" from "port::answer" as Answer; // Definition of the Answer type in Rust

5 type <Rust> "Video" from "port::videos" as Video; // Definition of the Video type in Rust

6 type <Rust> "String" from "std::string::String" as string; // Definition of the String type in Rust

7

8 global protocol VideoStreamingProtocol(role Auth, role Client, role Server) {

9 Declare(Id) from Client to Auth; // Sends a message labelled Declare with a payload Id

10 Accept(Answer) from Auth to Client; // The Auth role replies with an Accept message

11 do VideoRequestProtocol(Auth, Client, Server); // Call the VideoRequestProtocol

12 rec Loop {

13 choice at Client { // Client makes a choice

14 RequestVideo(string) from Client to Auth; // Client sends a request for a video, giving its name

15 RequestVideo(string) from Auth to Server; // Auth forwards the request

16 SendVideo(Video) from Server to Auth; // Server sends the video file to the Auth

17 SendVideo(Video) from Auth to Client; // Auth sends the video file to the client

18 continue Loop; // A Recursive call

19 } or {

20 Close() from Client to Auth; // Close the session between Client and Auth

21 Close() from Auth to Server; // Close the session between Server and Auth

22 }

23 }

Listing 1: Main Body of the Scribble Protocol.

the interactions specific to a given endpoint. Finally, each endpoint process is type-checked against its
projected local type. Type-checking is done either statically, dynamically or a mixture of both (called
hybrid in [5]). In this section, we explain how the framework of MPST can be applied to Rust.

4.1 Global Protocol with Scribble

Scribble is a protocol language for describing global protocols, which can also validate their well-
formedness [14]. The global protocol of our running example written in Scribble is presented in Listing 1.

Scribble protocols are organised into modules, divided in the declaration of message payload types,
and one or more global protocol definitions. Here, our module is called BasicProtocol, declared at
line 1 using the keyword module. The different message payload types are declared on lines 3 –5 and
corresponds to the types Id (line 3), Answer (line 4) and Video (line 5). Note that these declarations point
to the actual type declaration in Rust. The global protocol, VideoStreamingProtoco, is parameterised
on three roles, related to the three processes involved in our use case. In Scribble, the syntax for peer-
to-peer message exchange is written as Label(payload) from A to B where Label is an identifying
label for the message, and the payload is a list of the types of the payloads of the message, A is a sending
role and B is a receiving role. For instance, at line 9, Client role sends a message labelled Declare

containing the payload Id to Authenticator role. As we already explained, each payload type is
mapped to an actual Rust type. At line 12, the statement rec Loop denotes the start of a recursive block.

4.2 From Binary to Multiparty Session Types

We extend the library for binary session types to handle multiparty communication. Following the
methodology in Figure 2, our global protocol is projected into the three local types given in Listing 2.
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local protocol VideoProt at A(...)

{ Declare(Id) from C;

Accept(Answer) to C;

rec Loop {

choice at Client {

RequestVideo(string) from C;

RequestVideo(string) to S;

SendVideo(Video) from S;

SendVideo(Video) to C;

continue Loop;

} or {

Close() from C;

Close() to S;

}}

local protocol VideoProt at C(...)

{ Declare(Id) to A;

Accept(Answer) from A;

rec Loop {

choice at Client {

RequestVideo(string) to A;

SendVideo(Video) from S;

continue Loop;

} or {

Close() to A;

}}

local protocol VideoProt at S(...)

{

rec Loop {

choice at C {

RequestVideo(string) from A;

SendVideo(Video) to C;

continue Loop;

} or {

Close() from A;

}}

Listing 2: Local Protocols

To extend binary session types to multiparty protocols, we introduce the notion of a role. In binary
session types, roles are optional as there are only one sender and one receiver involved in the same
session. In multiparty session types, it is necessary to distinguish the different processes involved in the
same session. Roles abstract the low-level representation of the communication channels. Hence, roles
are mapped to channels corresponding to the underlying transport, for example, they can be mapped to
a TCP socket, a shared memory cell, an MQTT socket, etc. Taking the new Role types into account, we
have modified the basic communication primitives of the session type API presented in [9]. The updated
MPST API is given below.

pub struct Role { name: string, }

pub struct Send<T, R: Role, S: Session> { ... }

pub struct Recv<T, R: Role, S: Session> { ... }

pub struct End<> { ... }

pub fn send(x: T, r: Role, s: Send<T, R, S>) -> S

pub fn recv(r:Role, s: Recv<T, R, S>) -> Option<(T, S)>

pub fn close(s: End) -> Option<()>

Listing 3: MPST Rust API

We can generate the specific API for each endpoint process from a global protocol given in Scribble,
utilising the MPST communication primitives defined in Listing 3. Listing 7 shows the syntax of the
(generated) local types for the global protocol in Listing 1. The types are defined as the bottom up,
i.e., the type corresponding to the last protocol interaction is defined first. For example, the type for the
server role is defined by first specifying the last operation, Send the video to role A, then the previous
operation, i.e., Recv a request video from the A, is defined. The Authenticator and the Client’s local types
are defined similarly, with the addition of the offer type, declared as enum.

// Declaration of the roles

const A = Role::new("Authenticator");

const C = Role::new("Client");

const S = Role::new("Server");

// Server’s local type

type SendVideoS= Send<string, A, End<>>;

type RequestVideoS= Recv<string, A, SendVideoS>;

// Client’s local type

type SendVideoA= Recv<string, A, ClientOffer>;

type RequestVideoA= Send<string, A, SendVideoA>;

type EndC= End<>;

type CloseC= Send<string, A, EndC>;

enum ClientOffer { RVC(A, RequestVideoA), CAC(A, CloseC)};

type ClientAccept= Recv<string, A, ClientOffer>;

type ClientConnection= Send<string, A, ClientAccept>;

Listing 4: Roles and Local Types in Rust (generated from Scribble)



6 Implementing Multiparty Session Types in Rust

fn server(s: RequestVideoS) -> Option<()> {

let (id, s) = recv(A, s)?;

let s = send("video", A, s);

close(s);

}}}

fn client(c: ClientConnection) -> Option<()> {

let c= send("id", A, c);

let (answer, c) = recv(A, c)?;

choiceClient(c);

}

fn choiceClient(c: ClientAccept) -> Option<()> {

choose!(c, {ClientOffer::RVC(A, c) => {

let a = send(title, A, c);

let (video, a) = recv(A, c)?;

choiceClient(a);

}, ClientOffer::CAC(A, c) => {

close(c);

}}}

Listing 5: Server and Client Endpoint

fn authenticator(a: AuthConnection) -> Option<()> {

let (id, a) = recv(C, a)?;

let a = send("accepted", C, a);

choiceAuthenticator(a);

}

fn offerAuthenticator(a: AuthAccept) -> Option<()> {

offer!(a, {AuthenticatorOffer::RVC(C, a) => {

let (title, a) = recv(C, a)?;

let a = send(title, S, a);

let (video, a) = recv(S, a)?;

let a = send(video, C, a);

offerAuthenticator(a);

}, AuthenticatorOffer::CAC(C, a) => {

close(a);

}}}

Listing 6: Authenticator Endpoint

// Authenticator’s local type

// build from the bottom up

type SendVideoC = Send<string, C, AuthOffer>;

type SendVideotS = Recv<string, S, SendVideoC>;

type RequestVideoS = Send<string, S, SendVideoS>;

type RequestVideoC = Recv<string, C, RequestVideoS>;

type EndAuthConnection = End<>;

type CloseA = Recv<string, C, EndAuthConnection>;

enum AuthOffer {

RVC(C, RequestVideoC), CAC(C, CloseA)};

type AuthAccept = Send<string, C, AuthOffer>;

type AuthConnection = Recv<string, C, AuthAccept>;

Listing 7: Authenticator Types

Listing 6 shows the endpoint process implementation for the Authenticator role. The endpoint pro-
cess is type-checked against the local types, given in Listing 7. The process is checked at compile-time
and the detected errors, if any, will be displayed directly in the Cargo console (the editor for Rust pro-
gramming). The above implementation, although intuitive, does not resolve the inherent conflict between
Rust, which is affine, and session types, which is linear. The implementation suffers from the same draw-
back as the binary session types API in [9]. However, the MPST methodology is a step forward to w.r.t
usability. Differently than the Rust local types which can get convoluted, the syntax of global protocols
is user-friendly and readable. Developers can use the global protocol as a guidance, and hence avoid
errors such as prematurely ending of a session. Moreover, as observed in [9], most of the errors are
caused by misuse of methods and functions. Since we are code-generating the local types, the chance of
misspelling is significantly reduced. Another option to ensure that a protocol is fully implemented is to
utilise Rust’s type inference and to compare if the inferred channel type is compatible with the generated
one. Note that this approach cannot work with the types presented in Listing 7; it requires the generation
of chained APIs, as in [5].

4.3 Distributed Execution Environment

To test our simple example in a more realistic environment, we have explicitly created devices on Rust,
connected through MQTT (MQ Telemetry Transport) [6]. MQTT is a messaging middleware for ex-
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changing messages between devices, predominantly used in IoT networks. It is lightweight and incurs
no significant bandwidth overhead, which makes it an ideal transport for the execution of highly dis-
tributed protocols between multiple devices. We have configures the MQTT protocol to run over TCP/IP,
with an MQTT server, called MQTT broker, hosted on https://www.cloudmqtt.com/. At the start
of the protocol, each device connects to a public MQTT channel, and a session is established. Once
a session is established, the channel id of the connected device is mapped to the role of the endpoint
process. Therefore, in a distributed case running over MQTT transport, each role is mapped to an MQTT
channel.

5 Conclusion and Related and Future Work

We have shown our plan to implement multiparty session types in Rust. We gave an overview of the
existing binary session type implementations in Rust, notably [7] and [9]. We plan to extend [9] to
implement our new MPST library and Scribble toolchain. We proposed a simplified protocol based on a
real case scenario, use it as a running example and discussed its execution in a distributed environment.

Our proposed design follows the methodology given by [5], which generates Java communicating
APIs from Scribble. This, and other multiparty session types implementations, exploit the equivalence
between local session types and communicating automata to generate session types APIs for mainstream
programming languages (e.g., Java [5, 10], Go [1], F# [11]). Each state from state automata is imple-
mented as a class, or in the case of [10], as a type state. To ensure safety, state automata have to be
derived from the same global specification. All of the works in this category use the Scribble toolchain
to generate the state classes from a global specification. All of these implementations detect linearity
violations at runtime and offer no static alternative.

This paper proposes the generation of protocol-specific APIs, which promotes type checking of pro-
tocols at compile-time. This is done by projecting the endpoints’ state space in those protocols to groups
of channel types in the desired language. The resulting hybrid verification guarantees the compliance of
the protocol at compile-time. This protocol is used in a distributed system built over MQTT transport.
We also gave an overview of the multiparty session types, syntax and semantics we plan to implement.

Until PLACES’2020, we plan to finish the first version of the prototype for the API generation from
Scribble, finalising the design of MPST local protocols and Rust APIs. In the presentation, we plan to
explain how a subtle interplay between affinity in Rust and linearity of the session types discipline reflects
our design decision and how our MPST methodology is useful to reduce this gap to foster discussions at
the workshop. We also plan to include a demo in the presentation. At the same time, we will extend our
running protocol more usable for the real use case and our live system to integrate with authentication
mechanisms.
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