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A B S T R A C T   

The presence of non-steroidal anti-inflammatory drugs (NSAIDs) in the aquatic environment has raised concern 
that chronic exposure to these compounds may cause adverse effects in wild fish populations. This potential 
scenario has led some stakeholders to advocate a stricter regulation of NSAIDs, especially diclofenac. Considering 
their global clinical importance for the management of pain and inflammation, any regulation that may affect 
patient access to NSAIDs will have considerable implications for public health. The current environmental risk 
assessment of NSAIDs is driven by the results of a limited number of standard toxicity tests and does not take into 
account mechanistic and pharmacological considerations. Here we present a pharmacology-informed framework 
that enables the prediction of the risk posed to fish by 25 different NSAIDs and their dynamic mixtures. Using 
network pharmacology approaches, we demonstrated that these 25 NSAIDs display a significant mechanistic 
promiscuity that could enhance the risk of target-mediated mixture effects near environmentally relevant con
centrations. Integrating NSAIDs pharmacokinetic and pharmacodynamic features, we provide highly specific 
predictions of the adverse phenotypes associated with exposure to NSAIDs, and we developed a visual multi-scale 
model to guide the interpretation of the toxicological relevance of any given set of NSAIDs exposure data. Our 
analysis demonstrated a non-negligible risk posed to fish by NSAID mixtures in situations of high drug use and 
low dilution of waste-water treatment plant effluents. We anticipate that this predictive framework will support 
the future regulatory environmental risk assessment of NSAIDs and increase the effectiveness of ecopharmaco
vigilance strategies. Moreover, it can facilitate the prediction of the toxicological risk posed by mixtures via the 
implementation of mechanistic considerations and could be readily extended to other classes of chemicals.   

1. Introduction 

Millions of people worldwide use non-steroidal anti-inflammatory 
drugs (NSAIDs) to treat a wide variety of health conditions involving 
inflammation and pain (Gunaydin and Bilge, 2018). One of the conse
quences of such widespread therapeutic use is that subsequent to 
excretion from the human body, NSAIDs and their metabolites enter the 
domestic waste-waters and can reach the aquatic environment where 
they are detected at low concentrations (Aus der Beek et al., 2016; 
Lonappan et al., 2016). Administration of NSAIDs to humans, especially 
when long-term, is associated with an increased risk of adverse events in 
multiple organs/systems, including gastrointestinal and cardiovascular 
systems (Conaghan, 2012; Fanelli et al., 2017). These safety concerns 
led to various regulatory actions during the last twenty years in both 
North America and Europe, which required drug manufacturers to 

update product labels with explicit warnings that NSAIDs may increase 
the risk of serious adverse events (e.g. UK Medicines and Healthcare 
products Regulatory Agency, 2007, 2012; US Food and Drug Adminis
tration, 2015). In parallel with the clinical safety considerations, the 
presence of low, but sustained, concentrations of NSAIDs in the aquatic 
environment has raised the concern that chronic exposure to these 
compounds may also cause adverse effects in wild fish populations. In 
2015, this concern triggered regulatory action and one specific NSAID, 
diclofenac, was included in the European Union (EU) Watch List of 
emerging pollutants under the European Water Framework Directive 
(European Commission, 2015). Diclofenac was subsequently removed 
from the Watch List in 2018 (European Commission, 2018) once a larger 
volume of high-quality monitoring data was gathered to allow a refined 
risk assessment. However, the regulatory and academic discussions 
concerning the environmental risk assessment (ERA) of NSAIDs 
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continued and have reached the point that some stakeholders are 
advocating a stricter regulation of over-the-counter NSAIDs, such as 
diclofenac, and even the substitution with compounds associated with a 
lower environmental risk (OECD, 2019). 

Considering the global clinical importance of NSAIDs for the man
agement of pain and inflammation, any regulation that may affect pa
tient access to NSAIDs will have considerable implications for public 
health. Thus, it is of paramount importance that all relevant scientific 
evidence, beyond the boundaries of ecotoxicology, is used to inform 
regulatory decision-making. The inclusion of diclofenac in the EU Watch 
List highlighted three potential limitations of the current risk assessment 
of NSAIDs. Firstly, from a toxicological perspective, the original decision 
to include diclofenac in the list was driven by a relatively small set of 
experimental data (e.g. Hoeger et al., 2005; Mehinto et al., 2010; 
Schwaiger et al., 2004; Triebskorn et al., 2004) concerning chronic ef
fects in fish species, which were subsequently the object of scientific 
debate (Memmert et al., 2013). The reasons underlying the debate were 
not related to the widely accepted notion that diclofenac may trigger 
adverse effects in fish (hazard assessment), but rather to the degree of 
reproducibility of the experiments that characterised those effects, and 
to the range of environmental concentrations that may trigger them (risk 
assessment). Secondly, the current ERA of diclofenac (and any other 
pharmaceutical) does not incorporate mechanistic and mode-of-action 
considerations, limiting the potential to implement predictive toxi
cology approaches to support decision-making. Finally, more than 20 
different NSAIDs are currently available on the market, and all of them 
exert their pharmacological effects by inhibiting one or both isoforms of 
the enzyme cyclooxygenase (COX-1 and COX-2). This pharmacological 
aspect implies that diclofenac may not be the only NSAID of concern, 
and that mixture effects might occur. 

To overcome these challenges, we developed a novel pharmacology- 
informed framework that enables the prediction of the risk posed to fish 
by NSAIDs and their mixtures under realistic exposure scenarios. Our 
framework is centred on the integration of two mechanistic perspec
tives, network-centred and target-centred, and on the consideration of 
drug concentrations inside the organism (rather than in the surrounding 
water) as an essential parameter for the generation of accurate and 
realistic risk predictions. This research aims at providing a valuable tool 
that can facilitate the implementation of mechanistic considerations into 
the future regulatory environmental risk assessment of NSAIDs and 
ecopharmacovigilance strategies. 

2. Methods 

2.1. Compound identification 

To identify the NSAIDs currently present on the market, we screened 
the database DrugBank (www.drugbank.ca; Wishart et al., 2018) and 
selected all pharmaceuticals labelled as ”COX-inhibitor” or “NSAID”. 
The physico-chemical properties of each compound – including LogKOW 
and LogD7.4 - were retrieved from the database ChemSpider (www. 
chemspider.com). 

2.2. Prediction of blood concentrations of NSAIDs in wild fish 

Measured surface water concentrations for each compound were 
retrieved from a database curated by the German Environment Agency 
(Umweltbundesamt – UBA) (https://www.umweltbundesamt. 
de/en/database-pharmaceuticals-in-the-environment-0). At the date of 
access (November 2019), the database contained environmental con
centrations of human and veterinary pharmaceutical residues in 53 
environmental matrices from 75 countries, extracted from 1519 publi
cations, and 240 review articles (Eike et al., 2019). Measured concen
trations in UK freshwaters were used as an example of environmentally 
realistic exposure scenario. Specifically, we used the highest average 
measured concentrations in treated waste-water treatment plant 

(WWTP) effluents and surface waters (i.e. freshwaters). These water 
concentrations were subsequently used to predict the concentration of 
each compound in the blood of wild fish by applying the Fish Plasma 
Model, as described by Margiotta-Casaluci et al. (2014) and Margiotta- 
Casaluci et al. (2016) (Supplementary Table 1). 

2.3. Network-centred approach 

The network-centred approach was driven by the hypothesis that 
NSAID-mediated adverse effects are induced through the perturbation of 
a network of drug targets (i.e. drug polypharmacology and bioactivity 
profile). 

2.4. Extraction of drug-target interaction and in vitro bioactivity profiling 
data 

In vitro bioactivity profiling data for 25 different NSAIDs was 
extracted from two sources: 1) the ‘US Environmental Protection Agency 
(US EPA) Toxicity Forecaster (ToxCast) database (U.S. EPA. 2015. 
ToxCast & Tox21 Summary Files from invitrodb_v3.2. Retrieved from 
https://www.epa. 
gov/chemical-research/toxicity-forecaster-toxcasttm-data between May 
2019 and October 2019. Data released May 2018) (Williams et al., 
2017), and 2) the European Bioinformatics institute (EBI) ChEMBL 
database (http://www.ebi.ac.uk/chembl; Gaulton et al., 2017). The 
data extracted from ToxCast included drug target identifier and drug 
concentration at 50% maximum activity (AC50). Data extraction was 
limited to the interactions labelled as ‘active’, hence, those labelled as 
‘inactive’ were excluded from the analysis. On the other hand, the data 
extracted from ChEMBL included drug target identifier and half- 
maximum inhibitory concentrations (IC50). Similarly, in this case, 
data extraction was limited to the interactions labelled as ‘active’, 
whereas those labelled as ‘not active’ or ‘not determined’ were excluded 
from the analysis. The bioactivity profiling data used in this study is 
available in Supplementary File 1. 

2.5. Data harmonisation and processing 

The data extracted from ToxCast and ChEMBL were manually 
harmonised to ensure inter-database comparability and maximise data 
usability. AC50 and IC50 values were converted to, and uniformly 
expressed as, ng/mL. When data from multiple species were available, 
human data was used as the first choice; if unavailable, rodent data was 
used instead. When multiple datapoints were available for the same 
target, the lowest AC50 (or IC50) value was selected for the final anal
ysis. ToxCast and ChEMBL use different target annotation strategies, 
hence all drug target identifiers were converted into human gene sym
bols to ensure target specificity and allow dataset merging. The gene 
symbol nomenclature was harmonised using GeneCards as the reference 
source (GeneCards.org; Stelzer et al., 2016). The harmonised datasets 
from ToxCast and ChEMBL were finally combined to assess the database- 
specific bioactivity coverage (i.e. degree of overlap between ToxCast 
and ChEMBL interactions), after which duplicate interactions were 
removed. As before, the lowest AC50 (or IC50) value for each target was 
retained for the final analysis. This process led to the generation of 
combined ToxCast/ChEMBL drug-target interaction profiles (Supple
mentary File 1), which were used in the subsequent network analyses. 

2.6. Generation of hazard-based and risk-based drug-target interaction 
networks 

Drug-target interaction networks were generated using the Cyto
scape software (Shannon et al., 2003). The initial network included all 
the drug-target interactions present in our database, irrespective of any 
effect concentration data. For this reason, this network represented a 
hazard bioactivity network, which was used as the point of departure for 
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the subsequent analyses. To determine the meaningfulness of the 
network under realistic exposure scenarios, each drug-target interaction 
node was filtered using the drug concentrations predicted to be present 
in the blood of wild fish in the UK (i.e. using the highest average 
measured concentrations in treated WWTP effluents). Using this 
approach, the refined network contained only those interactions that 
occur at concentrations equal to, or lower than, the exposure levels of 
interest. To evaluate the impact of integrating exposure data within the 
network, we simulated three different exposure scenarios: highest 
average measured concentrations in UK effluents, as well as 10-fold and 
100-fold above those concentrations. 

2.7. Target-to-phenotype analysis 

To predict the phenotypic meaning of the risk-based drug-target 
interaction network (i.e. the one occurring at realistic exposure scenario 
only), we first identified the gene involved in each interaction (e.g. 
cyclooxygenase 1 inhibition → PTGS1 gene), and subsequently we 
performed a gene-phenotype anchoring analysis using the Monarch 
Initiative platform (www.monarchinitiative.org). The latter is a 
“collaborative, open science effort that aims to semantically integrate geno
type–phenotype data from many species and sources in order to support 
precision medicine, disease modelling, and mechanistic exploration” (Mun
gall et al., 2017). Using Monarch, we extracted all the available 
zebrafish-specific phenotypic data associated with alterations of the 
target genes (e.g. mutations, variants, artificial alterations such as knock 
out or knock down). This analysis generated an array of phenotypes that 
might potentially occur in wild fish under the considered exposure 
scenario (i.e. highest average measured concentrations in treated WWTP 
effluents in the UK). 

2.8. Target-centred approach 

The target-centred approach was driven by the hypothesis that 
NSAID-mediated adverse effects are induced by the inhibition of COX-1 
and COX-2, which are the primary targets of NSAIDs. 

2.9. Literature review and data extraction 

To identify all the relevant effects caused by NSAIDs in fish, we 
performed a literature review to identify relevant medium-to-long term 
in vivo freshwater ecotoxicity studies (4-days or longer). The literature 
search was conducted via PubMed and Google Scholar using a combi
nation of keywords (e.g. drug name, endpoint name, species, toxicity) 
and was restricted to English language publications only. Statistically 
significant effect data was extracted from each paper. Whenever avail
able, we also extracted the average value for each parameter and the 
relative uncertainty measure (e.g. standard deviation) to calculate the 
effect size reported in each study. For the studies that reported multiple 
concentration and/or time responses, each dose and/or time point was 
considered as an independent data point in the database. Other extrac
ted information included exposure concentrations, duration of exposure, 
fish species, life stage, and effect direction (increase or decrease). A 
quality assessment of all extracted data and relative database was per
formed by two different operators to evaluate the consistency between 
extracted data and original values. Considering the highly variable vo
cabulary used in different papers (e.g. same endpoint defined using 
different terms), we carried out a harmonisation process to ensure data 
comparability. 

2.10. Prediction of internal effect concentrations and equivalence 
calculation 

To account for the different uptake profile of each drug, we trans
formed water exposure concentrations for all the identified drug-effect 
combinations into predicted effect plasma concentrations using the 

Fish Plasma Model as described by Margiotta-Casaluci et al. (2014) and 
Margiotta-Casaluci et al. (2016). Considering the hypothesis that 
NSAID-induced effects are mediated by COX-1 and COX-2 inhibition, 
and that all NSAIDs act via inhibiting COX-1 and/or COX-2, we 
expressed each drug plasma concentration as equivalent to a reference 
NSAID (i.e. diclofenac). To do so, we considered the COX-1 inhibition 
IC50 of diclofenac as the reference value (=1); successively, we calcu
lated a “diclofenac-equivalence conversion factor” for every other 
NSAID using the formula “COX-1-inhibition IC50(diclofenac) / COX-1- 
inhibiton IC50(other NSAID)”. The resulting conversion factor was used 
to express all NSAIDs plasma concentrations as “diclofenac-equivalent 
plasma concentrations”. The focus on COX-1 rather than COX-2 was 
justified by two observations: a) all NSAIDs tested in vivo were dual COX 
inhibitors; b) in human pharmacology, COX-1 inhibition is considered to 
be the main driver of NSAIDs-mediated side effects, as COX-2 is gener
ally expressed at low levels, and is only induced when the organism is 
experiencing an ongoing inflammation (Rouzer and Marnett, 2009). 

2.11. Generation of a multi-scale COX-1-centred model to predict the risk 
of in vivo chronic effects 

The data described above was integrated to generate a multi-scale 
model displaying the range of NSAID plasma concentrations 
(expressed as diclofenac-equivalents calculated using “diclofenac 
human COX-1 IC50” as the reference value), associated with mode-of- 
action-relevant adverse effects, under medium/long-term exposure 
scenarios. To facilitate the interpretation of the model and its relevance 
for the ERA process, we incorporated three threshold levels. Two of 
these thresholds represent the concentration of the NSAIDs mixture 
predicted to occur in the plasma of wild fish in a) UK WWTP effluents, 
and b) UK surface waters. The third threshold level represents the range 
of predicted NSAIDs plasma concentrations that are likely to induce 
mortality. 

3. Results 

3.1. NSAIDs selection and environmental occurrence 

25 NSAIDs were identified in the DrugBank database: amfenac, 
aspirin, carprofen, celecoxib, diclofenac, etodolac, etoricoxib, flufe
namic acid, flurbiprofen, ibuprofen, indomethacin, ketoprofen, ketor
olac, mefenamic acid, meloxicam, naproxen, niflumic acid, nimesulide, 
oxaprozin, piroxicam, rofecoxib, sulindac, tenoxicam, tolfenamic acid, 
valdecoxib. Four of these compounds were classified as COX-2-selective 
inhibitors (celecoxib, etoricoxib, rofecoxib, and valdecoxib), whereas 21 
compounds were classified as non-selective COX inhibitors. According 
to the UBA database of pharmaceuticals in the environment, 19 out of 25 
NSAIDs were detected in the aquatic environment, in 66 different 
countries around the world, supporting our hypothesis that the overall 
environmental risk of NSAIDs should be addressed from a mixture 
perspective. This data mining exercise revealed a wide range of con
centrations detected worldwide in surface waters and waste-water 
treatment plant (WWTP) effluents (Supplementary Figure 1); however, 
when multiple measurements for the same compounds were available, 
the observed median value was generally below 1 µg/L. Carrying out a 
detailed analysis of the environmental levels of NSAIDs is beyond the 
scope of the present work. Hence, for the next steps of our analysis we 
only considered the concentrations of NSAIDs measured in UK surface 
waters and WWTP effluents as the default exposure scenario for our 
toxicity predictions (Supplementary Table 1). Specifically, 7 out of 25 
NSAIDs were detected in UK WWTP effluents, and 6 in surface waters. 
These numbers are in line with the number of NSAIDs detected in other 
countries characterised by intensive environmental monitoring activity 
(e.g. Canada, USA, Germany, Sweden, Japan). It is important to note 
that the exposure concentrations were selected to represent a worst-case 
scenario in the UK. For example, based on the data generated from two 
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large UK-wide waste-water treatment plant monitoring programmes, 
Comber et al. (2018) estimated a diclofenac median effluent concen
tration equal to 0.33 µg/L, whereas the 95th percentile is 0.5 µg/L. As a 
term of comparison, the effluent concentration of diclofenac used in our 
simulation was 0.42 µg/L, indicating a good degree of agreement with 
other worst-case scenarios estimated in other studies. 

3.2. Analysis of the primary pharmacological activity of NSAIDs 

The inhibition of COXs is the primary mechanism of action of 
NSAIDs. The analysis of COXs-inhibitory activity of the 25 compounds 
revealed a wide range of pharmacological potencies (Fig. 1). IC50 values 
for COX-1 inhibition ranged from 2 to 3 nM (i.e. indomethacin, keto
profen, diclofenac) to over 25,000 nM (i.e. valdecoxib) (Fig. 1A). 
Similarly, IC50 values for COX-2 inhibition ranged from 1 to 2 nM (i.e. 
rofecoxib, celecoxib) to over 89,000 nM (i.e. piroxicam) (Fig. 1B). The 

analysis of the ratio between COX-1 and COX-2 inhibition IC50s 
revealed the selectivity of each compound for the two isoforms of the 
enzyme (Fig. 1C). Unsurprisingly, COX-2 selective inhibitors such as 
rofecoxib, valdecoxib, and etoricoxib displayed the highest selectivity 
for COX-2. These compounds have been specifically developed to 
display such a pharmacological feature. However, non-selective NSAIDs 
- such as carprofen, flufenamic acid, nimesulide, and meloxicam – also 
showed considerable COX-2 selectivity. Piroxicam was the NSAID with 
the highest COX-1 selectivity, followed by naproxen and ketoprofen 
(Fig. 1C). 

The AC50 and IC50 values used in this study were retrieved with the 
explicit intention to simulate a worst-case scenario (i.e. when multiple 
values were available, the lowest value was selected for the final anal
ysis). However, it is important to consider that the inter-experiment 
variability in IC50 values can be considerable. To assess such vari
ability, we compared the ToxCast/ChEMBL data used in our model with 

Fig. 1. Pharmacological activity of NSAIDs on the primary targets COX-1 and COX-2. A) Lowest COX-1 IC50 values retrieved from ToxCast/ChEMBL. B) Lowest 
COX-2 IC50 values retrieved from ToxCast/ChEMBL. C) Ratio of COX-1/COX-2 IC50s, indicating the selectivity of each compound towards either COX-1 or COX2. 
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two additional IC50 values retrieved from the literature (Supplementary 
Figure 2). The comparative analysis of COX-1 IC50s confirmed that our 
data were at the bottom of the variability range, except for flurbiprofen. 
The analysis of COX-2 IC50 values revealed a less consistent scenario, 
where ToxCast/ChEMBL values were at the bottom of the variability 
range in only 7 out of 25 cases. In some cases, the gap between the 
ToxCast/ChEMBL values and the literature values was considerable (e.g. 
rofecoxib COX-2 IC50s: 1, 340, 510 nM). Notably, we also observed a 

surprising variability between the two alternative IC50 values retrieved 
from Reinsford (2004). It is important to note that those values were 
generated using different test systems. A similar degree of variability 
was also observed in the COX-1/COX-2 IC50 ratios, influencing the 
interpretation of the selectivity of the compound for either COX-1 or 
COX-2. 

PTGS2PTGS1

Amfenac

Celecoxib Indomethacin

Tenoxicam

SELP

SERPINE1

PLAT

RORC

SLC5A5

SELE

PLAU

SAA1

ADRB1

CCL26

ADORA3

TSPO
ADRB3

TRHR

VCAM1
ADRA2B

FOS

RARB

POU2F1

RORA
MAPK14

SLC47A1

CISD1

SREBF1

ABCB11

ABCC4

ABCC3

PPARG

Diclofenac

CD38

CD40

CD69

CXCL9

CYP2C9

DIO1

EPHX1

RARA
CYP19A1

SLC6A2
TNFCSF1

HLA-DRA

THBD
IL1A

CXCL10 TGFB1

SLCO2B1

PTGDR PLA2G4C

SLCO1B1

SLCO1B3

TBXAS1

NOS2

PLA2G1B

NFKB1

PDPK1

PDE4A LDLR
FOS|JUN

F3

DRD1

CASP8CACNA1C

ABCB1
KCNH2

CXCR1

SLC18A2

EPH1

HSF1

Sulindac
PAX6

PTEN

NR1I3

SCN1A

IRF1

Rofecoxib

Nimesulide

APH1A

PGR

NR1I2

THRB

SLC22A6

Flurbiprofen

LTA4H

Aspirin

SMAD1

Flufenamic
acid

XBP1

TFAP2A

NRF1

ABCC2

Mefenamic
acid

ESR1

Ibuprofen

ESR2

NFE2L2

ESRRA

RXRB

NR4A2

CSF1R

NR1H2

NPY1RTNFA

GGT1

ITGA2B

ITGB3

RORB

VDR

AKR1C3

CYP2J2

ALOX5

Naproxen

LIPE

PTGDS

AHR

USF1

SLC6A3

Piroxicam

Tolfenamic
acid

ATG4B

ICAM1

ABCC1

FAAH

CCL2

MMP1

IL6

CA9

CA2

Carprofen
EGR1

PLAUR

TCF7

Etoricoxib

ASIC1

MDH1

DHRS9

ASIC3

RXRA
PTGER2

HIF1A
EGFR

Valdecoxib

AR

PPARA

TP53

AKR1B1

Niflumic
acid

GPR35

UGT1A1DHODH

Etodolac

TTR

AKR1B10

COL3A1

CYP3A4

PPARD

MPO

TRPM2

APP

Ketoprofen

Oxaprozin

Meloxicam

NR1H3

NR1H4

MTF1

CA1

CXCL8

PTGES

RAC1

CDC42

Ketorolac

AKR1C1
AKR1C4

AKR1C2
NR3C1

PAK1

Fig. 2. Drug-target interaction network for a mixture of 25 NSAIDs. The green octagons indicate the single drugs. The nodes on the external layer indicate the 
drug-target interactions that are unique for each compound. The nodes in the inner area indicate the drug-target interactions shared by at least two different NSAIDs. 
The larger the size of the inner nodes, the higher the number of NSAIDs that interact with that target. The different colours of the inner nodes indicate a different 
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legend, the reader is referred to the web version of this article.) 
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3.3. Hazard-based bioactivity networks of NSAIDs mixtures 

Understanding the secondary mechanisms of action of drugs can 
significantly enhance the prediction of their toxicity profile. To explore 
the mechanisms of action of NSAIDs beyond COX inhibition, we lever
aged the ToxCast and ChEMBL platforms to generate a bioactivity 
network for the mixture of 25 NSAIDs (Fig. 2). The combination of the 
ToxCast and ChEMBL databases was aimed at expanding the biological 
space covered in our analysis. To evaluate this aspect, we analysed the 
gain in biological space due to the merging exercise (Supplementary 
Figure 3). The analysis revealed that the degree of overlap between 
ToxCast and ChEMBL data was minimal (i.e. zero shared interactions for 
21 NSAIDs out of 25). The combination of the two data sources allowed 
us to expand the biological space, while increasing the relevance of the 
pharmacological network. 

The mechanistic analysis revealed that the 25 NSAIDs have a wide 
range of mechanisms of action beyond COXs inhibition. The number of 
recorded interactions ranged from 3 to 74 (Fig. 2). The compound with 
the highest number of interactions was celecoxib (n = 74), followed by 
indomethacin (n = 47) and diclofenac (n = 40). On the other hand, the 
compounds with the lowest number of recorded interactions were eto
dolac (n = 6), tenoxicam (n = 6), and amfenac (n = 3). In total, the 
mixture of 25 NSAIDs was associated with 507 interactions, involving 
157 distinct targets; 83 of these targets were shared by at least 2 NSAIDs, 
whereas 74 targets were modulated only by individual drugs. PTGS1 and 
PTGS2 (corresponding to COX-1 and COX-2) were the targets with the 
highest levels of promiscuity, and were shared by 23 and 22 NSAIDs, 
respectively. Notably, both ToxCast and ChEMBL did not contain any 
information concerning the COXs inhibitory activity for two NSAIDs, 
sulindac and tolfenamic acid, despite the known COX-inhibitory activity 
of these compounds. After PTGS1 and PTGS2, the targets with the 
highest levels of promiscuity were the bile salt export pump (ABCB11; 
shared by 19 NSAIDs) and the peroxisome proliferator-activated re
ceptor gamma (PPARγ; shared by 17 NSAIDs). Other targets shared by 
10 or more NSAIDs were the transporters ABCC4 (n = 15), ABCC3 (n =
15) and ABCC2 (n = 13), the estrogen receptors ESR1 (n = 11) and ESR2 
(n = 10), and the nuclear factor erythroid 2-related factor 2 (NFE2L2, n 
= 10). A detailed list of interactions for each target and for each drug is 
available in Supplementary File 1 whilst the full drug-target interaction 
network is represented in Fig. 2. Of the 25 NSAIDs, 14 interacted with 
unique targets that were not shared by any other compound. The drug 
with the highest number of unique interactions was celecoxib (n = 28), 
followed by indomethacin (n = 11), and aspirin (n = 9) (Fig. 2). It is 
important to note that the bioactivity network described above does not 
include any information about the concentration of the drug needed to 
modulate each target, hence it should be considered as a hazard 
network. 

3.4. Risk-based bioactivity networks of NSAIDs mixtures 

To interpret the environmental relevance of the hazard bioactivity 
network, we filtered each drug-target interaction using the concentra
tions of NSAIDs predicted to be present in the blood of wild fish in the 
UK. The resulting network displays only the drug-target interactions 
predicted to occur at the defined exposure scenario (i.e. highest average 
measured concentrations in UK WWTP treated effluents) (Fig. 3) and can 
be considered as a risk-based network. In the specific example used here, 
the refined network suggests that only 8 targets are likely to be modu
lated in wild fish exposed to those effluent concentrations: C-C motif 
chemokine 2 (CCL2), interleukin-8 (CXCL8), C-X-C chemokine receptor 
type 1 (CXCR1), estrogen receptor 1 (ESR1), progesterone receptor 
(PGR), interstitial collagenase (MMP1), prostaglandin G/H synthase 1 
(PTGS1), and prostaglandin G/H synthase 2 (PTGS2) (note that the 
latter two targets correspond to COX-1 and COX-2). Three out of 8 tar
gets are shared by multiple NSAIDs, whereas the other five targets are 
only modulated by single drugs. To identify the drivers of the risk within 

the interaction network, we calculated the ratio between predicted 
blood concentrations and the AC50 (or IC50) values associated with 
each drug-target interaction. The analysis showed that the targets with 
the highest risk are the two steroid receptors PGR and ESR1, as blood 
concentrations of naproxen and diclofenac were predicted to be 15,375- 
fold and 321-fold higher than the drug-specific AC50 values. These high 
values were driven by the low ToxCast AC50s reported for naproxen- 
induced PGR modulation and diclofenac-induced ESR1 modulation, 
which were 0.007 nM and 0.5 nM, respectively. The data for PGR was 
generated employing a GAL4 β-lactamase reporter gene technology 
using PR-UAS-bla HEK 293 T cells, whereas the data for ESR1 was 
generated with a luciferase-coupled ATP quantitation technology using 
human breast tissue cells. Diclofenac was also the driver of the risk for 
modulation of PTGS1 (ratio = 57), PTGS2 (ratio = 34), CXCL8 (ratio =
21), and CXCR1 (ratio = 14). 

3.5. Phenotypic anchoring of the risk-based bioactivity network 

To elucidate the phenotypic relevance of the targets displayed in the 
risk-based network (Fig. 3), we performed a gene-phenotype association 
analysis by data-mining available databases. The analysis generated a 
list of highly specific zebrafish phenotypes that may be observed 
following perturbation of the 8 targets of interest (Table 1). These 
phenotypes indicate that the risk-based NSAIDs bioactivity network may 
lead to profound effects on general development; the cardiovascular and 
immune systems; the liver, pancreas, and kidneys; growth and repro
duction. It is important to note that the effects on development, growth, 
and reproduction have high regulatory relevance as they are considered 
as apical endpoints that, in turn, may perturbate population dynamics. 
From a risk-assessment perspective, this analysis cannot provide quan
titative indications on the likelihood that each phenotype may occur. 
However, it provides a highly granular prediction of the endpoints that 
could be used for a potential experimental assessment of the case- 

Fig. 3. Drug-target interaction network, for a mixture of 25 NSAIDs, 
predicted to occur at a worst-case exposure scenario (UK highest average 
measured concentration in wastewater treatment plants effluents). The 
green octagons indicate the single drugs. Drug targets are represented by color- 
coded nodes. Each colour indicates the different number of drugs that act on the 
associated target (PTGS1: 3 drugs, PTGS2: 2 drugs, CXCL8: 2 drugs, CCL2: 1 
drug, CXCR1: 1 drug, ESR1: 1 drug, MMP1: 1 drug, PGR: 1 drug). The numbers 
indicated next to each drug-target connection represent the ratio between the 
ToxCast/ChEMBL AC50 (or IC50) value and the drug concentration predicted to 
be present in the blood of wild fish in the UK, under the considered exposure 
scenario. For example, the concentration of diclofenac present in the blood of 
wild fish is predicted to be 256-times above the considered IC50 for PTGS1. 
Abbreviations: CCL2: C-C Motif Chemokine Ligand 2; CXCL8: C-X-C Motif 
Chemokine Ligand 8; CXCR1: C-X-C Motif Chemokine Receptor 1; ESR1: Es
trogen Receptor 1; MMP1: Matrix Metallopeptidase 1; PGR: Progesterone Re
ceptor; PTGS1: Prostaglandin-Endoperoxide Synthase 1; PTGS2: Prostaglandin- 
Endoperoxide Synthase 2. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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specific risk. 

3.6. Multi-scale COX-1-centred model to predict the risk of in vivo chronic 
effects 

The gene-phenotype association analysis, described above, provides 
a solely qualitative result. To overcome this challenge and provide a 

quantitative estimation of the toxicological risk, we generated a multi- 
scale model portraying the range of blood concentrations of NSAIDs 
(expressed as diclofenac-equivalents, ng/mL - calculated using “diclo
fenac human COX-1 IC50” as the reference value) associated with sta
tistically significant adverse phenotypes; under conditions of medium- 
to-long term exposure (longer than 4 days) (Fig. 4). The model was 
based on 151 data points generated in 26 in vivo studies, carried out 
using 10 different fish species (Bhandari and Venables 2011; Bickley 
et al. 2017; Collard et al. 2013; Flippin et al. 2007; Ghelfi et al. 2016; 
Gröner et al., 2017; Han et al. 2010; Hoeger et al. 2005; Ji et al. 2013; 
Lister and Van Der Kraak, 2008; Mathias et al. 2018; Mehinto et al. 
2010; Memmert et al. 2013; Morthorst et al. 2013; Morthorst et al. 2018; 
Näslund et al., 2017; Pandey et al. 2017; Patel et al. 2016; Praskova et al. 
2014; Ribas et al. 2017; Saravanan et al. 2012; Schwaiger et al. 2004; 
Stancova et al. 2015; Triebskorn et al 2004; Yokota et al. 2016; Yokota 
et al. 2017). The data included 9 different types of in vivo effect, at 
various level of biological organisation, such as: prostaglandin levels, 
male and female testosterone, immunomodulation, liver damage, gill 
damage, kidney damage, reproduction, and growth. To facilitate the 
interpretation of the data, we incorporated three different reference 
concentrations (threshold levels) into the model: 1) The lethal range of 
blood concentrations starting at 388,105 ng/mL diclofenac-equivalents; 
2) the predicted plasma levels of the mixture of 7 NSAIDs, detected in UK 
WWTP effluents, corresponding to 54 ng/mL diclofenac-equivalents; 3) 
the plasma levels of the mixture of 7 NSAIDs, detected in UK surface 
waters (i.e. freshwaters), corresponding to 5.2 ng/mL diclofenac- 
equivalents. A total of 46 out of 152 effect data points corresponded 
to plasma concentrations lower than 54 ng/mL diclofenac-equivalents 
(exposure scenario considering UK WWTP effluents); whereas only 14 
out of 152 data points corresponded to plasma concentrations lower 
than 5.2 ng/mL diclofenac-equivalents (exposure scenario considering 
UK surface waters). The conversion factors used to convert all relevant 
NSAIDs into diclofenac-equivalents are provided in Supplementary File 
1. 

The analyses provided here were based on the assumption that the 
Fish Plasma Model represents a reliable tool to predict the plasma 
concentration of drugs in adult fish. To validate this assumption, we 
screened the literature to identify a set of experimentally determined 
plasma bioaccumulation factors (plasma BCF) for diclofenac and 
ibuprofen (Bickley et al., 2017; Brown et al., 2007; Cucklev et al., 2011; 
Lahti et al., 2011). The comparison of this data with the plasma BCFs 
predicted by the Fish Plasma Model revealed that the experimental 
values were always within the range of concentrations predicted by the 
model (Fig. 5). The use of LogKOW as the input parameter of the Fish 
Plasma Model tended to overestimate the plasma BCF of the two com
pounds; whereas the use of LogD7.4 tended to underestimate it. The 
predictions generated in this work were based on the use of LogKOW; 
hence, it is plausible that our analysis overestimated the plasma con
centrations of NSAIDs in fish. Nonetheless, this overestimation is in 
agreement with the precautionary principle that was applied throughout 
the workflow. The predictive model described here does not currently 
consider drug metabolism in fish, mainly due to the existing knowledge 
gaps in this field. Some studies have demonstrated that NSAIDs reactive 
metabolites may play a role in the manifestation of organ toxicity in 
mammalian models (Oda et al., 2017). However, the ecotoxicological 
relevance of those findings is currently unknown. 

The interpretation of mode-of-action driven effects can be strength
ened by the analysis of effect direction and magnitude. To assess this 
aspect, we retrospectively analysed those parameters for one of the 
endpoints with the highest regulatory importance, egg production 
(Fig. 6). Out of 13 experimental cases (retrieved from Flippin, Huggett 
and Foran, 2007; Han et al., 2010; Ji et al., 2013; Lister and Van Der 
Kraak, 2008; Yokota et al., 2017; Yokota et al., 2015), NSAIDs (i.e. 
diclofenac, ibuprofen, indomethacin) induced a decrease in egg pro
duction in 10 cases, and an increase in 3 cases. Notably, the observed 
discrepancy was related to ibuprofen, with 3 cases of decrease and 3 

Table 1 
Zebrafish-specific phenotypes associated with the perturbation of the NSAIDs- 
targets predicted to be modulated at environmentally relevant exposure sce
narios (i.e. UK). (Targets: CXCL8, CXCR1, ESR1, MMP1, PGR, PTGS1, PTGS2 (no 
data available for CCL2)).  

Target Function/system/ 
organ 

Phenotype Phenotype 
ID 

PTGS1 Development Abnormal otolith in otic 
vesicle 

ZP_0003813 

ESR1 Development Altered sex ratio ZP_0103077 
MMP1 Development Curled notochord ZP_0005644 
PTGS1, 

PTGS2 
Development Disrupted cilium 

development 
ZP_0018462 

PTGS1 Development Disrupted gastrulation ZP_0000567 
ESR1 Development Disrupted neuromast 

development 
ZP_0001566 

PTGS1 Development Disrupted skeletal muscle 
plasticity 

ZP_0100172 

PTGS1, 
PTGS2 

Development Hydrocephalus ZP_0018285 

MMP1 Development Hyperplastic epithelium ZP_0005645 
CXCL8 Development Increased progenitor cells ZP_0022176 
MMP1 Development Kinked post-vent region ZP_0001145 
MMP1 Development Malformed caudal fin 

actinotrichia 
ZP_0005646 

MMP1, 
PTGS1 

Development Ventrally curved trunk ZP_0000636 

MMP1 Development Yolk sac oedema ZP_0002060 
PTGS1 Cardiovascular 

system 
Abnormal heart symmetry ZP_0002925 

MMP1 Cardiovascular 
system 

Decreased blood flow ZP_0003573 

PTGS1, 
PTGS2 

Cardiovascular 
system 

Decreased hematopoietic 
stem cells 

ZP_0000022 

PTGS1 Cardiovascular 
system 

Disrupted heart looping ZP_0002506 

CXCL8 Cardiovascular 
system 

Disrupted vasculogenesis GO_0001570 

CXCL8 Cardiovascular 
system 

Increased hematopoietic 
stem cells 

ZP_0021393 

MMP1 Cardiovascular 
system 

Pericardial oedema ZP_0000038 

PTGS1 Reproduction Decreased egg viability ZP_0000212 
ESR1 Reproduction Decreased testis size ZP_0019448 
PGR Reproduction Disrupted ovulation ZP_0017606 
PGR Reproduction Disrupted reproduction ZP_0017607 
PGR Reproduction Increased ovary size ZP_0019913 
PGR Reproduction Sterile female ZP_0004113 
CXCL8, 

CXCLR1 
Immune system Abnormal leukocyte 

migration 
GO_0002523 

MMP1 Immune system Abnormal macrophage 
chemotaxis 

GO_0048246 

CXCL8, 
CXCLR1 

Immune system Abnormal response to 
bacteria 

GO_0009617 

CXCL8, 
CXCLR1 

Immune system Abnormal response to 
wounding 

GO_0009611 

CXCR1 Immune system Decreased neutrophil 
number 

ZP_0011617 

MMP1 Growth Decreased trunk size ZP_0000027 
PGR Growth Increased trunk size ZP_0014050 
PGR Growth Increased weight ZP_0015745 
PTGS1 Liver Abnormal liver ZP_0018785 
PTGS1, 

PTGS2 
Liver Decreased liver size ZP_0000720 

PTGS1, 
PTGS2 

Pancreas Decreased exocrine 
pancreas size 

ZP_0002701 

PTGS1 Kidney Abnormal pronephric 
distal late tubule 

ZP_0019006  
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cases of increase. The effect magnitude was 60% or lower in the cases of 
decreased egg production, and up to 200% in the cases of increased egg 
production. It is currently unknown if the observed discrepancy across 
the literature has a genuine biological explanation, or if it may be due to 
methodological artefacts. 

4. Discussion 

Implementing pharmacological and mechanistic considerations into 
the environmental risk assessment of pharmaceuticals can facilitate the 

interpretation of the risk and enable the application of modern predic
tive toxicology approaches. In the last decade, a number of experts have 
called for such implementation (e.g. Ågerstrand et al., 2015; Caldwell 
et al., 2014; Gunnarsson et al. 2019; Rand-Weaver et al., 2013; Winter 
et al., 2010). Several studies have experimentally demonstrated the 
positive impact of this approach (e.g. Margiotta-Casaluci et al., 2014; 
Margiotta-Casaluci et al., 2016; Valenti et al., 2012), and dedicated 
comparative pharmacology tools have been developed to facilitate the 
process (e.g. ECOdrug, Verbruggen et al., 2018; SeqPASS, LaLone et al., 
2016). Despite these efforts, the current ERA process remains 

Fig. 4. Predicted NSAID plasma concentrations associated with the manifestation of adverse phenotypes at multiple levels of biological organisation. 
NSAID plasma concentrations are expressed as ‘Diclofenac-equivalents(COX-1inhibition) (ng/mL)’. Each violin displays the distribution of plasma concentrations that 
caused a statistically significant effect in in vivo studies that involved the exposure of fish species to NSAIDs, for a minimum of 4 days and a maximum of 132 days. 
The 151 experimental data points portrayed in the graph were retrieved from 26 studies published between 2004 and 2018. The dotted line on the right represents 
the plasma concentration of ‘diclofenac-equivalents’ associated with mortality. The dotted vertical lines on the left indicate the environmental levels of the mixture of 
NSAIDs detected in the UK (i.e. the highest measured average concentrations in surface waters, and waste-water treatment plant effluents). These lines can be used to 
interpret the environmental relevance of the effect data and the related risk. This exposure scenario should only be used as example to demonstrate the application of 
the model for risk assessment. A more detailed analysis of the environmental levels of NSAIDs should be carried out to conduct a formal risk assessment. 
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mechanistically agnostic and solidly centred on traditional fate/expo
sure predictions, with toxicity levels of individual compounds experi
mentally determined using simple tests focused on apical endpoints (Lee 
and Choi, 2019). This limitation acquires even more significance when 
mixtures of drugs are considered. In this case, the lack of mechanistic 
rationale behind the ERA of the individual components prevent the 
application of predictive approaches for the assessment of potential 
mixture effects. Moreover, the virtually endless number of exposure 
scenarios that may occur globally implies that the experimental deter
mination of the risk is impossible to achieve, hence predictive ap
proaches are vital to reach the desired future protection goals. The 
present work - focused on NSAIDs - paves the way for the development 
of an innovative pharmacology-informed ERA of drug mixtures by 
proposing a predictive framework that integrates both drug pharmaco
kinetic and pharmacodynamic features. 

In Europe, the regulatory concern about NSAIDs has until now been 
focused on diclofenac and its effects on fish (European Commission, 
2015; 2018; Loos et al., 2018). A few academic studies have started to 
explore the potential effects of mixtures of NSAIDs, using a limited set of 
compounds - such as diclofenac, ibuprofen, naproxen, and aspirin - 
mostly using invertebrates (Cleuvers, 2004; Parolini and Binelli, 2012) 
or, when using fish, in combination with other chemicals (Parrott and 
Bennie, 2009; Stancova et al., 2014; Schmitz et al., 2018). Our analyses 
suggest that the problem of NSAIDs mixtures may be more significant 
than initially thought, as 19 out of 25 NSAIDs considered in the present 

study were detected in the aquatic environment worldwide. What is 
currently unknown is the level of co-occurrence of all these compounds 
in the same water body, as only a few of them are targeted in water 
monitoring programmes (Comber et al., 2018). Considering the impos
sibility of determining an average exposure scenario, in the present work 
we considered the mechanistic hazard of all 25 NSAIDs. The risk 
assessment, however, was performed using measured NSAIDs concen
trations in the UK as the reference exposure scenario. This choice was 
justified by several factors. Firstly, the UK is characterised by a high 
market penetration of NSAIDs (McGettigan and Henry, 2013); secondly, 
the UK has one of the lowest average WWTP effluent dilution factors in 
the world (Keller et al., 2014); and thirdly, the UK carries out intensive 
environmental monitoring programmes that target pharmaceuticals 
(Comber et al., 2018). Nonetheless, the model presented here can be 
adapted to interpret the risk of any exposure scenario, once the con
centrations of each component of the mixture are provided. 

From a mechanistic standpoint, in a clinical context, the primary 
target of pharmaceuticals is generally involved in the disease patho
physiology, thus its modulation is aimed at achieving the desired ther
apeutic effect. Sometimes the interaction with the primary target is also 
the cause of adverse drug reactions. This is the case with NSAID- 
mediated COX-inhibition, which is considered the driving mechanism 
underlying many important side effects associated with NSAIDs treat
ment in patients (Grosser et al., 2017; Ricciotti and Fitzgerald, 2011). 
However, in many other cases adverse drug reactions are driven by the 
unintended interaction of pharmaceuticals with secondary targets 
(Lounkine et al., 2012). From an ERA perspective, the exposure to 
pharmaceuticals is always unintended, thus the distinction between 
primary and secondary targets does not apply, and all drug-target in
teractions should be considered relevant for the mechanistic hazard 
assessment. This consideration led us to generate a bioactivity hazard 
network that captures the mechanistic promiscuity for a mixture of 25 
NSAIDs, which was indeed significant in demonstrating that NSAIDs can 
act on many different targets beyond COXs (Fig. 2). 

As expected, the complexity of the mechanistic network was drasti
cally reduced when realistic internal exposure scenarios were consid
ered (Fig. 3). Whereas some of the risk-based drug-target interactions 
were highly predictable (i.e. effects on COXs and interleukins) others 
were, to some extent, surprising. Specifically, the perturbation of es
trogen and progesterone receptors (ESR1 and PGR) at concentrations of 
NSAIDs, respectively, hundreds and thousands of times lower than those 
predicted to occur in the plasma of wild fish in the UK. Previous research 
carried out on mammalian models has demonstrated that NSAIDs- 
mediated reduction of prostaglandin levels can lead to the down- 
regulation of the aromatase pathway and, in turn, decreased estrogen 
biosynthesis (Zhao et al., 1996). Diclofenac displayed anti-estrogenic 
activity at receptor level in vitro (Klopčič et al., 2018), whereas a 
study conducted on post-menopausal women also demonstrated that 
NSAID users had significantly lower serum estradiol concentrations than 
non-users (Hudson et al., 2008). On the other hand, the evidence of a 
direct link between NSAIDs and the progesterone receptor are scarcer. 
NSAIDs administration and NSAID-mediated prostaglandin decrease has 
been associated with the inhibition of ovulation in both pre-clinical 
mammalian species and humans (Gaytán et al., 2006; Stone et al., 
2002), although the direct involvement of the progesterone receptor 
remains unclear. These considerations are relevant to the ERA of 
NSAIDs, as these compounds can also inhibit reproductive activity in 
female fish (Lister and Van Der Kraak, 2008; Yokota et al., 2016). 

The AC50 value associated with the naproxen-mediated modulation 
of the PGR and the diclofenac-mediated modulation of the ESR1 were 
much lower than those associated with the inhibition of the drugs pri
mary targets (COX-1 and COX-2). To facilitate the interpretation of their 
in vivo relevance, we compared those values with those associated with 
other potent pharmaceuticals that have the PGR and ESR as the primary 
targets. Runnalls et al. (2015) tested the effects of the synthetic pro
gestin levonorgestrel (PGR agonist) and the synthetic estrogen 

Fig. 5. Predicted versus measured plasma BCF. The range of predicted 
values were generated by considering both Log KOW and Log D7.4 as the input 
parameters of the fish plasma model. Measured BCF values were retrieved from 
four in vivo studies published in the literature (Bickley et al., 2017; Brown et al., 
2007; Cuklev et al., 2011; Lahti et al., 2011). 

Fig. 6. Effect of NSAIDs on fish reproduction. The figure displays effect 
magnitude and direction for the endpoint “egg production”. The data were 
retrieved from 6 studies published in the literature (1,2,4,5: Yokota et al., 2017; 
3: Yokota et al., 2016; 6,8: Ji et al., 2013; 7,9,10: Han et al., 2010; 11: Flippin, 
Huggett and Foran, 2007; 12, 13: Lister and Van Der Kraak, 2008). 
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ethinylestradiol (ESR agonist) on fish reproduction under chronic 
exposure conditions. Using these two compounds as the benchmark, it is 
possible to estimate the difference between the lowest ToxCast AC50 for 
the molecular initiating event and the drug plasma concentration that 
caused the statistically significant inhibition of egg production (effect 
size 30–40%). The latter was 3-fold higher for the levonorgestrel-PGR 
combination, and 10-fold higher for the ethinylestradiol-ESR combina
tion. Based on these pharmacodynamic considerations, the reported 
ToxCast data for the interactions between naproxen-PGR and 
diclofenac-ESR would suggest that these compounds could cause PGR- 
and ESR-mediated reproductive effects at plasma concentrations of 5 
ng/mL and 1,500 ng/mL, respectively. No reproductive toxicity studies 
have been carried for naproxen so far, but a few studies have been 
carried out with diclofenac. For example, Yokota et al. (2017) reported a 
water LOEC for reproductive effects of 37 µg/L diclofenac, corre
sponding to a predicted plasma concentration of 4500 ng/mL (predic
tion based on LogKow), which is only 3-fold higher than the above- 
mentioned prediction. 

Collectively, this set of evidence indicate that pharmacodynamics- 
driven predictions may provide a valuable strategy to interpret the 
risk of mechanistic profiling data, although the inter-assay variability 
may represent a major confounding factor. For example, the ToxCast 
database contains 18 different assays which are able to the detect the 
perturbation of the PGR. Naproxen was only tested in 1 of those assays, 
in which it displayed positive activity. Similarly, 31 assays are available 
in the ToxCast database to detect the perturbation of the ESR1. Diclo
fenac was tested in 17 of those assays, displaying activity in 3, and 
inactivity in 14. In addition to the inter-assay variability issue, some 
authors have also raised concerns about the reliability of the nuclear 
receptor assays used in the ToxCast programme, and in turn, the reli
ability of their associated AC50 values. For example, Janesick et al. 
(2016) identified a high percentage of false positives among chemicals 
classified as PPARγ agonists in ToxCast. These considerations, together 
with the high inter-study variability observed for COXs IC50s (Supple
mentary Figure 2), reinforce the hypothesis that data generated from 
large-scale mechanistic profiling programmes are extremely valuable for 
generating testable hypotheses; whereas their direct application to drive 
the risk assessment process requires caution due to the high inter-assay 
variability of AC50s and IC50s. 

Interpreting the in vivo relevance of the aforementioned in vitro 
mechanistic profiling data remains a major challenge in the field of 
toxicology. Corsi et al. (2019) tried to overcome this challenge by 
linking the ToxCast-informed bioactivity profile of a mixture of chem
icals detected in the US Great Lakes with existing Adverse Outcome 
Pathways (AOPs). Furthermore, the ToxCast website itself links bioac
tivity data to existing AOPs whenever possible. In the present work, we 
observed that only a limited number of targets in our network was 
associated with AOPs in the AOPWiki. Although this approach may be a 
valuable strategy in the future, we concluded that the development stage 
of the AOPWiki is currently too preliminary to generate reliable in vivo 
predictions when applied to complex networks, such as the one gener
ated for the 25 NSAIDs considered here. To overcome this challenge, we 
applied a different strategy by carrying out a zebrafish-specific target-to- 
phenotype association analysis for all those targets modulated at envi
ronmentally relevant concentrations of NSAIDs. This approach gener
ated highly granular phenotypic predictions that could be used, for 
example, to guide the development of tailored in vivo experimental 
strategies. 

Despite the successful application of the network pharmacology 
approach described here, there are some caveats that should be taken 
into consideration. Firstly, the NSAIDs bioactivity networks generated in 
this study are based on mammalian (largely human) data. Fish and 
human drug targets may display a different sensitivity to the same 
pharmaceutical compound. From a precautionary principle perspective, 
this factor may represent an issue only if the AC50s (or IC50s) for fish 
targets are significantly lower than the human ones; however, to our 

knowledge there is no evidence to support this hypothesis. A second 
limitation is that the target-to-phenotype association analysis is focused 
on zebrafish larvae and generates only qualitative predictions of the 
potential drug-induced phenotypes. These qualitative predictions 
cannot be used to infer effect magnitude, limiting the ability to directly 
inform the risk assessment process. 

To overcome the latter limitation and provide a quantitative pre
dictive model of NSAIDs-mediated effects in fish, we adopted a com
plementary predictive strategy centred on the primary targets of 
NSAIDs, rather than on their entire bioactivity network. In humans, 
NSAIDs exert their therapeutic action by inhibiting the enzymes COX-1 
and/or COX-2, which are involved in the biotransformation of arach
idonic acid into prostanoids. The biology of COXs and prostanoids has 
been extensively reviewed by many authors (e.g. Grosser et al., 2017; 
Ricciotti and Fitzgerald, 2011), and it will not be discussed here. How
ever, a basic comparative description of COXs functions in humans and 
fish is essential to appreciate the implications for the ERA of NSAIDs. 
COX-1 is constitutively expressed in most tissues and is involved in basal 
production of prostanoids. The latter play important physiological 
functions, including gastric epithelial cytoprotection (Grosser et al., 
2017). The perturbation of these physiological functions by non- 
selective NSAIDs may increase the risk of developing serious adverse 
effects, including gastrointestinal complications which are considered 
the most common NSAIDs-related adverse effects (Coxib and traditional 
NSAID Trialists’ (CNT) Collaboration, 2013). On the other hand, COX-2 
is generally not expressed under basal conditions, but it is rapidly 
upregulated in response to inflammation, and its products (e.g. prosta
glandin E2) potentiate the acute inflammatory response (Grosser et al., 
2017). This mechanistic observation justified the development of COX-2 
selective inhibitors (Fitzgerald and Patrono, 2001). Acting only (or 
mainly) on the inducible COX-2, this sub-class of NSAIDs is indeed 
associated with a lower risk of gastrointestinal toxicity in the majority of 
studies (Conaghan, 2012; García Rodríguez and Barreales Tolosa, 2007). 
However, after clinical approval, it rapidly emerged that COX-2 selec
tive inhibitors were also associated with higher incidence of cardio
vascular adverse events (Mukherjee et al., 2001). This unexpected 
scenario led to the withdrawal of rofecoxib and valdecoxib from the 
market in 2004 and 2005, respectively (Cotter and Wooltorton, 2005; 
Dieppe et al., 2004). However, other COX-2 selective inhibitors (e.g. 
celecoxib) continue to be used in the clinic. Follow-up research 
demonstrated that COX-2 is not only upregulated during inflammation 
but is also involved in the production of prostanoids with homeostatic 
functions under basal conditions. For example, gastrointestinal mucosa, 
vasculature, and brain tissue have all been show to express COX-2 in 
absence of inflammation (Grosser et al., 2017; Wallace and Devchand, 
2005). COX-2-derived prostaglandin I2 and E2 are involved in the 
regulation of renal perfusion and blood pressure (Qi et al., 2002), and 
prostaglandin I2 is also involved in the antithrombotic mechanisms of 
the vessel wall (Grosser et al., 2006). These functions mechanistically 
explain the increased risk of cardiovascular adverse effects (Grosser 
et al., 2006). The review of the safety profile of NSAIDs has become the 
object of regulatory attention and frequent updates (for a review see 
Fanelli et al., 2017). For example, the US Food and Drug Administration 
requested a boxed warning concerning the cardiovascular risk of NSAIDs 
in 2005; this warning was strengthened in 2015 to highlight that all non- 
aspirin NSAIDs (both COX-2 selective and non-selective) can increase 
the risk of heart attack and stroke (US Food and Drug Administration, 
2018). 

The lesson learnt from the human safety assessment of NSAIDs sug
gests that any attempt to define clear-cut safe exposure levels of these 
compounds for fish, with the currently available relatively small body of 
evidence, may be over-ambitious. COX-1 and COX-2 are also expressed 
in the zebrafish, and COX inhibitors suppress the formation of prosta
glandins in vivo (Grosser et al., 2002; Patel et al., 2016). However, the 
interpretation of the phenotypic relevance of COX inhibition in fish is 
complicated by the whole-genome duplication that occurred in the 
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teleost lineage after its divergence from the tetrapod lineage (Taylor 
et al., 2003). Ishikawa et al. (2007) demonstrated that the genome of 
zebrafish contains two functional inducible isoforms of COX-2 genes, 
and that other fish species also contain alternate duplication and 
retention of COX-1 and COX-2. It is currently unknown if these dupli
cation events also influence the species-specific pharmacological profile 
of NSAIDs. On the other hand, it is known that prostaglandins are 
involved in the regulation of regulatory-relevant phenotypes in teleost 
fish species, including development (Cha et al., 2006; Grosser et al., 
2002) and reproduction (Stacey and Goetz, 1982; Takahashi et al., 
2018), but also immunity (Gómez-Abellán and Sepulcre, 2016), kidney 
function, and gill function (Choe et al., 2006). Overall, this set of 
comparative pharmacological considerations justified the use of COX-1 
inhibition as the key mechanistic parameter to interpret NSAIDs- 
mediated effects in our target-centred model. 

From a mixture perspective, all NSAIDs act on COX-1 and COX-2, 
hence the most obvious approach was to consider the cumulative inhi
bition of the primary targets, especially COX-1, as the key event driving 
the toxicological risk. To do so, we expressed all NSAIDs in units of 
diclofenac-equivalents, using the diclofenac COX-1 IC50 as the reference 
value for the equivalence calculation. This approach is conceptually 
similar to the calculation of estrogenic equivalents to express mixtures of 
estrogenic chemicals (i.e. using the potency of 17-beta estradiol as the 
reference value; Safe, 1998). Brian et al. (2005) were the first to 
demonstrate that the estrogenic equivalence model can predict the 
response of fish to estrogenic chemicals. Our work advances this concept 
one-step forward by explicitly considering the drug concentrations in 
the fish plasma, rather than in the surrounding water. This shift from 
external to internal concentrations is essential to enhance the predictive 
power of the model, as previous studies have demonstrated that phar
maceuticals with comparable in vitro potency can lead to very different 
in vivo risk, based on their specific uptake and PK profile (Margiotta- 
Casaluci et al., 2016). 

Integrating NSAIDs pharmacokinetic and pharmacodynamic con
siderations with the concept of pharmacological equivalence, we 
generated a powerful visual tool that summarises all the existing in vivo 
data concerning the chronic toxicity of NSAIDs in fish, as one single 
graph (Fig. 4). This analysis revealed that 30% of effect data points 
retrieved from the scientific literature were predicted to occur at con
centrations lower than the worst-case exposure scenario in the UK 
(highest average measured NSAIDs concentrations in WWTP effluents), 
whereas this percentage dropped to 9% when a more realistic exposure 
scenario is considered (i.e. measured NSAIDs concentrations in surface 
waters). The latter sub-set of data was originated from 4 out of 26 in vivo 
studies considered in the present work (Ji et al., 2013; Mathias et al., 
2018; Morthorst et al., 2018; Stancova et al., 2015). It is important to 
note that the proposed framework is a dynamic model that can be 
updated as and when additional biological data becomes available. 
Another key feature of the model is the potential to adapt the environ
mental exposure threshold to other exposure scenarios of interest, once 
the concentrations of the individual components of the NSAIDs mixture 
are known. This flexible approach can facilitate the region-specific 
interpretation of the toxicological risk posed to fish by NSAIDs locally, 
and effectively support regulatory decision-making. 

The robustness of ERA is directly affected by the quality of the un
derlying data. In recent years, a growing number of authors have 
expressed concern about the degree of quality and reproducibility of 
ecotoxicology studies (Harris and Sumpter, 2015; Martin et al., 2019; 
Mebane et al., 2019). NSAIDs – specifically diclofenac – have been the 
object of intense debate due to discrepancies in toxicological and his
topathological findings, observed between academic studies (Hoeger 
et al., 2005; Mehinto et al., 2010; Schwaiger et al., 2004; Triebskorn et 
al, 2004) and industry studies (Memmert et al., 2013). The controversy 
surrounding these discrepancies was fuelled by the fact that the out
comes of the four academic studies were used to justify the decision 
concerning diclofenac in Europe (i.e. its inclusion in the Watch List of 

emerging pollutants in 2015). A pathology working group was succes
sively set up to independently review the histological sections from 
three of the studies that investigated the effects of diclofenac in trout 
(Hoeger et al., 2005; Mehinto et al., 2010; Memmert et al., 2013; Wolf 
et al., 2014). The pathology working group revealed that while some of 
the observed inter-study discrepancies were potentially due to the 
different experimental designs used in each study; the majority of inter- 
study variation was driven by issues of diagnostic interpretation (Wolf 
et al., 2014). Some discrepancies have also been observed for ibuprofen. 
In this case, its impact on fish reproduction has been highlighted as of 
concern, with a lowest observed effect concentrations (LOEC) (i.e. for 
zebrafish) as low as 1 µg/L (Ji et al. 2013). On the other hand, Morthorst 
et al. (2013) observed no effects on zebrafish egg production up to 506 
µg/L (Morthorst et al., 2013), whereas a recent zebrafish short-term 
reproduction test set the LOEC, for the same endpoint, at 266 µg/L 
(Constantine et al., 2020). Overall, the discrepancies discussed above 
represent a challenge for regulatory decision-making. Our model does 
not contain a quality assessment of each study included in the analysis, 
however, this assessment could be carried out retrospectively by the 
end-user. This decision was justified by several reasons including the 
difficulty to set a univocal definition of ‘quality’ applicable to any 
context (e.g. academic vs industry, exploratory vs regulatory toxicology, 
etc.), and the risk of introducing undesired bias into the dataset. To 
demonstrate the positive value of retrospective analysis of specific data 
points in the model, we focused on one of the endpoints with the highest 
regulatory importance - egg production. We evaluated two important 
quantitative parameters: effect magnitude and effect direction. This 
analysis revealed a certain degree of inconsistency in the effects induced 
by ibuprofen, which sometimes caused a decrease in egg production and 
other times an increase. It is currently unknown if the observed 
discrepancy has a genuine biological explanation, or if it may be due to 
methodological artefacts. In any case, it suggests that this type of eval
uation should be taken into consideration during the risk assessment 
process. 

It is important to consider that the human safety assessment of 
NSAIDs so far has been based on the results of hundreds of studies. For 
example, the meta-analysis published by the Coxib and traditional 
NSAID Trialists’ (CNT) in 2013 identified 754 randomised trials 
involving more than 350,000 patients. Despite these numbers, the 
interpretation of the risk remains complex and the discussion remains 
open (Coxib and traditional NSAID Trialists’ (CNT) Collaboration, 
2013). As a term of comparison, our COX-1-centred model portrays 
almost all existing data (to our knowledge) concerning the medium-to- 
long term effects of NSAIDs on fish. The model is based on 26 inde
pendent studies involving approximately 6,000 fish of several species at 
various life stages (mostly at early life stage). This number of animals 
already used to investigate the risk posed by NSAIDs in the aquatic 
environment is not negligible and raises the question whether additional 
in vivo ecotoxicity testing is needed. Our approach maximises the value 
of each in vivo study by integrating all data within a coherent predictive 
toxicology framework. For example, a very recent zebrafish short-term 
reproduction test involving 280 adult animals was carried out by Con
stantine et al. (2020). This study was not included in our dataset and it 
was used to test the degree of concordance with the model displayed in 
Fig. 4. Constantine et al. (2020) showed that 55 and 266 μg/L of 
ibuprofen caused 38% and 96% decrease of cumulative egg production, 
respectively (note: the effects at 55 μg/L were not statistically signifi
cant). Those exposure concentrations correspond to a plasma diclofenac- 
equivalents concentration of 53 and 258 ng/mL, which fall within the 
30th percentile of the range of internal effect concentrations identified 
in our analysis (Fig. 4). This agreement highlights the high predictive 
value of our model and its potential to support weight-of-evidence 
driven regulatory decision making. 
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5. Conclusions 

In the present study we provide a pharmacology-informed workflow 
able to guide the incorporation of pharmacokinetics and pharmacody
namic considerations into the environmental risk assessment of NSAIDs 
and aid the implementation of predictive toxicology strategies, without 
the immediate need of performing additional animal testing. Our ana
lyses highlighted that 19 out of 25 NSAIDs have been detected in the 
aquatic environment globally, and demonstrated that the risk posed to 
fish by NSAIDs mixtures may not be negligible in situations of high 
population density (corresponding to high levels of drug consumption) 
and low dilution of WWTP effluents. Using the concept of pharmaco
logical equivalence, we generated a multi-scale model able to guide the 
interpretation of the toxicological relevance of any given set of envi
ronmental concentrations of NSAIDs. We anticipate that this model 
could facilitate the interpretation of complex data and guide the regu
latory decision-making process to better address the issue of both single 
NSAID and NSAIDs mixtures in the environment. On the other hand, the 
mechanistic, pharmacological, and biological complexity brought to 
light by the present work suggests that the clinical substitution of one 
NSAID with another - on the basis of the potential environmental risk - is 
far from simple and could have negative clinical implications, for 
example, by limiting the range of therapeutic options available to pa
tients for the treatment of pain and inflammation. 
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