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Abstract: Accurate power system state estimation (SE) is essential for power system control, optimization, and security 
analyses. In this work, a model-free and fully data-driven approach was proposed for power system static SE based on 
conditional generative adversarial network (GAN). Comparing with the conventional SE approach, i.e., weighted least square 
(WLS) based methods, any appropriate knowledge of the system model is not required in the proposed method. Without 
knowing the specific model, GAN can learn the inherent physics of underlying state variables purely relying on historic 
samples. Once the model has been trained, it can estimate the corresponding system state accurately given the system raw 
measurements, which are sometimes characterized by incompletions and corruptions in addition to noises. Case studies on 
the IEEE 118-bus system and a 2746-bus Polish system validate the effectiveness of the proposed approach, and the mean 
absolute error is less than 1.2e-3 p.u. and 5.3e-3 rad for voltage magnitude and phase angle, respectively, which indicates a 
high potential for practical applications. 
 

1. Introduction 
In power systems, state estimation (SE) plays an 

important role in contemporary energy management systems 
(EMS) [1, 2]. The accurate SE is essential for power system 
control, optimization and security analysis. While the system 
observability is the prerequisite to traditional SE methods, the 
network is, however, not always fully observable due to e.g. 
malfunction of measurement devices, missing of 
measurement data or interference by malicious data attack [3].  

In the early years, SE is performed widely based on 
supervisory control and data acquisition (SCADA) 
measurements [4, 5]. But nowadays, additional phasor 
measurement units (PMUs) have been installed as a 
measurement device to provide faster and more accurate 
measurements, which adapts to the growing deployment of 
distributed renewable generators, electric vehicles, and 
demand response programs [6]. The PMU shows great 
advantages over conventional SCADA on the following 
aspects: (1) synchronization. Each PMU measurement is 
time-stamped and synchronized from the global positioning 
satellite (GPS) system [7]; (2) higher measurement precision. 
This is because network buses’ voltage phasor can be 
measured direly and a reference bus with fixed voltage phase 
angle is not needed to choose any more. (3) higher sampling 
rates (up to 60 samples/sec), which can capture fast system 
dynamics while bringing about the huger amount of data as 
compared with SCADA system (around 1 sample/ 5 secs) [8]. 
Owing to these merits, the deployment of PMUs makes it 
possible for real-time monitoring of the smart power grid [9]. 
In this sense, if every bus of the network is installed with a 
PMU, the voltage phasors for the entire system can be directly 
and fully acquired [10]. Yet, it is impossible for a real system 
with thousands of buses since the PMUs and their networking 
communication system are costly, which makes the current 
penetration of PMU is far from the desired level [7, 11]. 

The studies of SE with PMU measurements have 
already been extensively carried out, the approaches are 
either based on the combination of SCADA and PMU 
measurements [12-18] or purely PMU measurements [8, 19-
21]. The former ones can be further divided into two 
categories: namely hybrid state estimator method and multi-
stage method. The hybrid state estimator combines PMU 
measurements and conventional SCADA measurements by 
using a nonlinear transformation to connect the traditional 
state vector in polar form with the voltage phasors in the 
rectangular form [12-15]. It is proved that incorporation of 
PMU measurements can significantly improve the SE 
performance as compared to that with only SCADA 
measurements under steady-state condition. Nevertheless, the 
accuracy of those approaches can be compromised due to 
different time scales between PMUs and SCADA systems 
[16]. To address the issues of time scale inconsistency, the 
multi-stage approach is adopted by processing PMU 
measurements or SCADA measurements in independent 
stages. A Bar-Shalom-Campo data fusion technique is 
applied to combine the results of different PMU and SCADA 
stages in [17, 18]. All those methods based on the 
combination of SCADA and PMU measurements adopt 
various principles to enhance the robustness against gross 
errors. On the other hand, the purely PMU-based SE method 
has shown various benefits comparing with purely 
conventional SCADA based or PMU-SCADA based SE 
methods [20, 22, 23]： (1) the measurement function is linear 
as only current or voltage phasors are measured by PMUs, 
which gets rid of the computationally expensive iterative 
process in traditional SE with SCADA measurements. (2) no 
reference bus is needed since the voltage / current phasor 
phase angle can be directly acquired at the same time with 
time-stamped from GPS system [24]. (3) real-time SE can be 
realized due to high sampling rates and low latency of PMUs. 
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Aforementioned SE methods are all based on 
weighted least squares (WLS) or its variants. These methods 
are well-known non-robust, and a single outlier can severely 
alter the estimation results. To overcome this drawback, a 
separate post-estimation bad data processing function is 
needed to detect and eliminate gross errors [25]. Therefore, 
robust SE methods are proposed to enhance robustness. The 
least absolute value (LAV) estimator is an alternative 
technique. By minimizing the L1 norm (rather than L2 in WLS) 
of measurement residuals, the LAV estimator can be executed 
via linear programming (LP) solvers and it will detect and 
eliminate gross errors accordingly [26]. The authors in [27] 
formulated a robust LAV estimator by using PMUs to 
improve the computation performance of LAV estimator. A 
hybrid state estimator was proposed in [28] with the 
coexistence of PMU measurements and SCADA 
measurements, to determine the states based on weighted 
LAV (WLAV). Besides, WLAV is also one of the most 
common robust estimators with high performance in the 
aspect of robustness [29, 30]. Other enhanced estimators for 
robustness include the method of least median of squares 
(LMS) and least trimmed squares (LTS), and they aim to 
restrain the effects of bad data by alternatively using 
measurements [31, 32]. The LMS method is proposed 
depended on the notion that the median of a set of values 
could be more effective than mean in estimation process 
though it has got the particular disadvantage of rejecting 
several normal measurements along with the outliers. The 
LTS method calculates the sum of squared errors for the 
smallest residuals only. 

The main issue of the above-mentioned studies, 
including WLS-based SE methods and robust SE methods, is 
that the system must be pre-assumed to be fully observable, 
and they cannot work effectively when the system is 
unobservable. However, in reality, many contingencies can 
result in system unobservable including measurement loss, 
line outage, failure of the data concentrator, or failure of the 
local communication system [33]. The network is 
unobservable if any state variables cannot be uniquely 
computed for a given set of measurements and network 
topology [34]. In unobservable networks, SE cannot be 
implemented expectedly via WLS-based estimators or robust 
estimators, hence the system operator cannot monitor any 
violations or events in these unobservable buses, which may 
lead to catastrophic outcomes. The traditional solution for 
unobservability is to use the pseudo-measurements to replace 
the missing measurement. Their calculation is based on 
external processes such as historical data, prediction 
procedures, load curve assessment [16] or derives from 
interpolated observations [35, 36]. Due to the poor temporal 
resolution of the pseudo-measurements, the accuracy of SE 
cannot be guaranteed, thus failing to satisfy the SE 
requirement.  Besides, it is difficult to implement real-time 
SE as a result of the sparse data rate of pseudo-measurements 
with finite source data. 

To overcome these issues, in this paper, a novel SE 
approach using a conditional generative adversarial network 
(GAN) is proposed. GAN is one of the most promising 
generative networks under deep learning framework and have 
attracted great interests in recent years, especially in 
computer vision research due to its excellent capability in 
generating realistic images [37] given a collection of 
indistinct or incomplete images. It has serval merits: 1) speed 

of processing. Once the model is trained well, it can give the 
output immediately; 2) do not need any appropriate 
knowledge of the system model. This method is model-free 
and data-driven; 3) fault tolerant. The output is not likely to 
have a large error even with fault input; 4) fast and robust. It 
retains good learning ability in the context of bad or missing 
data [38]. This inspires us to apply GAN in SE process, where 
the raw system measurements can be regarded as corrupted 
images, and the desired system states are corresponding to the 
real images that can be directly generated through a fine-
tuned GAN. Compared to the standard GAN, we apply the 
conditional GAN (CGAN) to adapt to the SE problem 
appropriately. The proposed method uses Wasserstein 
distance rather than the Jensen-Shannon divergence proposed 
in [37], which can improve the accuracy by capturing all of 
the patterns in training set instead of a single pattern. The 
main contributions of this paper are as follows: 

1) A novel data-driven, model-free approach for 
power system SE is proposed. By applying 
conditional generative adversarial networks, the 
actual correlations of system states can be well 
captured, and the system states can be accurately 
estimated without prior knowledge of the system 
model. 

2) The PMU-based SE method can effectively 
restore all system states considering the corrupted 
raw measurements or even missing measurements 
under contingencies. Thus, the SE process can 
still be implemented even in an unobservable 
network. The influence of data contaminations is 
fully investigated with respect to different data 
contamination levels and types. 

3) The experiment is carried out on a large system, 
i.e., 2746-bus Polish system. The simulation 
results validate the effectiveness of the proposed 
method and all estimated system states are close 
to true system states. To the best of the authors' 
knowledge, this is the first work using deep 
learning models for power system SE processes 
on a large-scale system. 

The proposed method presented in this paper builds on 
the previous preliminary study [39]. This work presents a 
comprehensive study and the proposed method can handle 
different types and levels of contamination measurements. 
The case studies are supported by two large power systems, 
including the IEEE 118-bus system and the 2746-bus Polish 
system. 

The remaining of this paper is organized as follows: 
Section 2 presents the problem formulation. The proposed 
method in SE using GAN model is elaborated in Section 3. 
Results of several case studies performed on the IEEE 118-
bus system and a 2746-bus Polish system are presented and 
analysed in Section 4. Finally, Section 5 concludes the paper. 

2. Problem Formulation  
This section firstly introduces the problem 

formulation of power system state estimation with different 
input measurements. Then we will give the mathematical 
formulations for three state estimation scenarios with 
different measurements: 1) state estimation with raw 
measurements; 2) state estimation with corrupted 
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measurements; and 3) state estimation with incomplete 
measurements. 

 
2.1. Power System State Estimation Models 

 
Conventionally, in the SCADA system, the state 

variables are magnitude and phase angle of the bus voltage. 
The most commonly used measurements are the line power 
flows and bus power injections. As a result, the measurement 
function between the state variables and the measurements is 
nonlinear [40]. While for PMUs, the measured quantities are 
voltage or current phasors, leading to a linear relationship 
with the state variables. In this work, we assume that the 
system is observed merely by PMUs, i.e., all the obtained 
measurements are voltage phasors. The system states thus can 
be estimated via a linear measurement model instead of the 
conventional nonlinear measurement function. 

Especially, for an N-bus power system, the vector of 
state variables x is denoted by 

, .  and  
are the voltage magnitude and phase angle of j-th bus 
respectively. Hence, a static system model is formulated for 
the problem as: 

                                     (1) 
where y represents the measurement vector obtained by 
PMUs; h (·) is the vector-valued measurement function 
established based on the state vector x; e is the measurement 
error vector that is usually assumed to white noise composed 
by zero mean with a covariance matrix R. 
 

2.2. State Estimation with Raw Measurements 
 
In the system with M  PMUs installed, we assume the 

whole system can be observable by deploying all these PMUs 
for all system buses, i.e., . This corresponds to say 
that, the voltage phasors , of all 
buses in the system, can be measured to form a raw 
measurement vector y, which is denoted as .  

We then define  as the true system states, the 
training samples are obtained as the pairs of raw 
measurements and true system states . In this model, the 
inputs are raw measurements y, each of that is labelled with 
an assigned label (true system states ) as a condition. Once a 
large number of  pairs are collected, the goal is to train 
a GAN network to generate the estimated system states  
that are desired to be close to the true system states  as 
much as possible. 

 
2.3. State Estimation with Corrupted 

Measurements 
 

In practice, there is a wide range of factors that might 
lead to measurement corruption, such as impulsive 
communication noise, the failures of instruments, cyber-
attacks, etc. The developed SE model with high robustness to 
these potential contaminations is more favoured by decision-
makers. In this model, the number of corrupted measurements 
is assumed as nC, and the vector of corrupt system 
measurements yC is expressed as . 

Similarly, a robust SE model is expected to detect the 
buses with corrupted measurements and generate the system 
states that are close to true system operating condition. 
Through learning with the samples composed of a collection 
of  pairs, the underlying SE model can be well trained 
even when partial measurements are contaminated. As a 
consequence, once the system measurement is obtained by 
PMUs, the proposed fully data-driven SE model can render 
true system states as much as possible irrespective of the 
contamination type (such as malicious attacks) or degree. 

 
2.4. State Estimation with Incomplete 

Measurements 
 
Incomplete measurement is another common situation 

faced by system operators. This might attribute to the 
insufficient PMUs installed due to the high cost of PMUs. 
Also, the unavailability of getting voltage or current 
measurements from potential transformers (PTs) or current 
transformers (CTs), failure of phasor data concentrator (PDC) 
and failure of a local communication system [33] may all lead 
to the measurement loss of different severity. Especially, the 
system is more likely to be unobservable without enough 
redundancy when the aforementioned situations occur.  

In this study, we substitute the missing phasor 
measurement , either resulting from uninstallation of 
PMUs or measurement loss, with zero. Thus, the vector of 
incomplete measurements yL can be expressed as 

. yL is combined with the corresponding true 
system state  to yield the training samples . 
Likewise, the generated system states  should be close to 
the true system states  to ensure the high model robustness 
and accuracy. 

3. The Proposed Method  
The proposed fully data-driven methodology based on 

Wasserstein GAN is presented in this section. The basic 
theory of GAN [41] will be reviewed first. Then, the section 
explains how the framework of Wasserstein GAN fit into the 
SE problem. Later, we will discuss the model establishment 
process for SE by integrating the synthetic PMU 
measurement. 
 

3.1. Wasserstein GAN 
 
As defined before,  represents the true 

system state,  denotes the i-th sample of true system 
state and m is the number of samples. Let  denote the 
distribution of true system state. Suppose a group of noise 
inputs  follow a known distribution , e.g., 
uniform distribution or jointly Gaussian. The goal of the 
method is to transform the sample  from the distribution

so that it can follow true system state distribution
. To this end, two deep neural networks are trained 

simultaneously. One is the generator network G expressed as 
, who is parametrized by ; the other is the 

discriminator network D written as , whose 
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function is parametrized by . The generator and 
discriminator are combined to form the GAN network. 

Generator: When training the generator, a large 
number of up-sampling operations are implemented to the 
inputs , the generator outputs are the estimated system 
states. The training procedure can be expressed as the 
following mapping: 

                      (2) 
where  is the generated distribution which provides 
samples to the estimated system state. also follows the 
true system state distribution . 

Discriminator: The discriminator should be trained 
with the generator at the same time. Both samples from the 
generated distribution  and the true system state 
distribution are served as discriminator inputs. After 
plenty of down-sampling operations, the output is a value 

which is continuous and reflects what extent these 
inputs belong to the true system state distribution . 
Likewise, the training process of discriminator can be 
expressed as a mapping: 

                      (3) 

where x is the input vector that can be sampled either from 
 or . The discriminator is expected to learn to 

distinguish between  and , and to maximize 
the difference between these two distributions. 

In the training stage, D is trained to maximize its 
capacity of discernment between true system state 
distribution and estimated state distribution from the 
generator. We simultaneously train G and D to minimize the 
difference between these two distributions. The weights of G 
and D are updated to minimize generator loss function 
and discriminator loss function , respectively.  
Specifically, a batch of samples collected from distribution

are fed into G. Meanwhile, a batch of true samples 
drawn from distribution  are fed into D. A small  
indicates that the generated samples are more realistic from 
the discriminator’s view. That is, for this work, the generated 
system states are more similar to the true system states. On 
the other hand, a small reflects the D does well in 
distinguishing the discrepancy between the generated system 
states and the true system states. Also, It indicates that there 
is a large difference between generated state distribution 

and true state distribution . Generator loss 
function and discriminator loss function  can be 
expressed as [42]: 

                                      (4) 
    (5) 

For a given D, as a large output value of discriminator 
shows the generated samples are more realistic, the 

generator should seek to minimize  by 
altering G to generate more realistic samples, which gives the 
loss function of a generator in (4).  For a given G, as seen in 
(5), the discriminator attempts to minimize , thus 
giving a large discriminator output value  In the 

meanwhile, the network minimizes , 
which is virtually a reverse of . Note that, Eq. (4) equals 
to minimize . Hence, the GAN can be 
formulated by combining these two loss functions as a two-
player minimax game with value function : 

 

(6) 
where  is the negative of . 

At the beginning of training, the performance of 
generator G is poor and the system state samples generated 
by G are very different from samples of , 
consequently, the discriminator outputs a small value of 

and reject these ‘fake’ samples with high confidence. 
Under these circumstances,  is small,  is large and 

 is also large. As the training goes on, the generator 
learns to produce more realistic samples and the discriminator 
learns to distinguish these samples from two different 
distributions. Finally, G defeats D, i.e., the samples generated 
by G are almost as real as true samples, also, D fails to 
distinguish samples from  and . 

According to the Kantorovich-Rubinstein duality [43], 
The Wasserstein distance (Earth-Mover distance) is the dual 
of the minimax objective in (6).  and  are two random 
variables and  is the set of all joint distributions 

whose marginals are  and , respectively. Then 
the Wasserstein distance between  and  is defined as: 

                (7) 

the Wasserstein distance can be viewed with the “cost” of the 
optimal plan that moves all the “mass”  from 
location  to location  in order to transform the 
distribution  into the distribution .  can be 
described as the quantity of the moved “mass” at one time. 

The objective of GAN is to make the generated sample 
distribution  close to the true system states 
distribution . Thus, the Wasserstein distance 
between the true system state and the generated sample can 
be expressed as:  

 (8) 
When the Wasserstein distance converges, the optimal 

plan of moving “mass” is found, and the optimal generator 
 is also found. As reported in the literature [42], the JS 

divergence applied in original GAN  cannot reflect what 
extent two distribution  and are close when 
they are very different from each other, which makes GAN 
sensitive to the parameters. As a result, the generated system 
states almost follow the pattern with the highest occurring 
probability regardless of the inputs. However, applying 
Wasserstein distance as the loss function of GAN [44] 
successfully address these limits and gives the accurate 
distance between two distributions. Therefore, the generator 
of WGAN can mimic the true system operating scenarios to 
generate diversified system states rather than the same ones 
produced by original GAN. 
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3.2. Conditional GAN 
 
The standard GAN model uses merely the noise vector 

as input and has no extra limitations for the generated output. 
The standard GAN can be extended to a conditional 
counterpart where both the generator and discriminator are 
conditioned on some extra information [44]. In conditional 
GAN (CGAN), the generated samples should satisfy this 
condition . 

This architecture is more fit to SE problems where the 
raw system measurement can be regarded as condition , 
and the generated system states should be guaranteed to be as 
close as possible to the true system states while satisfying the 
corresponding raw measurement. The CGAN is implemented 
by feeding  into both the generator and discriminator as 
additional inputs. Eventually, Eq. (8) can be rewritten as: 

 

(9) 

Fig. 1 illustrates the CGAN architecture for SE and the 
algorithm used in the proposed method is described in 
Algorithm 1. 

 

 
 
Fig. 1.  The architecture of CGAN that we use, including the 
input and output of the generator and discriminator, 
respectively. 
 

In algorithm 1,  and  are neural networks 
with parameter  and , respectively. Both networks 
consist of multilayer perceptron (MLP), convolution, 
normalization, max-pooling and Rectified Linear Units 
(ReLU). The parameters are tuned within several training 
batches. The training algorithms for discriminator and 
generator are slightly different, where the former is based on 
gradient ascend and the latter is gradient descend. Besides, 
Root Mean Square Propagation (RMSProp) algorithm is 
applied in both generator and discriminator to allow the 
learning rate to be self-adjustable. RMSProp is a method in 
which the learning rate is adapted for each of the parameters. 
The idea is to divide the learning rate for a weight by 
calculating the average of recent gradients magnitudes [45]. 
It should be noted that weight clipping is applied in 
discriminator training to meet specific conditions and avoid 
gradient explosion [42]. The model setting for CGAN will be 
presented in the next section. 

 

 
 
 

Algorithm 1 CGAN with Wasserstein Distance for SE 
Require: : , the learning rate; , the clipping parameter; 

, the batch size; , the number of iterations of the 
discriminator per generator iteration. 

Require: : , initial discriminator’s parameters; , 
initial generator’s parameters. 
while  has not converged do 

for  do 
Sample batch of  noise sample   

from noise prior distribution . 
Sample batch of  examples   

from the true system state data  
Update the discriminator by ascending its  

gradient: 

 

 

 
end for  

Sample batch of  noise samples   
from noise prior distribution . 

Update the generator by descending its gradient: 

 

 
end while 

4. Numerical Results 
To validate the effectiveness of the proposed SE 

method the experiment is carried out on two power systems, 
namely IEEE-118 bus system and the 2746-bus Polish 
network, respectively. The system data are simulated from 
MATLAB and MATPOWER toolbox by implementing the 
Monte Carlo power flow calculations [46]. To obtain distinct 
system states, we assume the system load satisfies the 
Gaussian distribution with zero mean and standard deviation 
of 0.1. Load samples are then drawn and fed into power flow 
computations to derive true system states. For IEEE-118 bus 
system and a 2746-bus Polish network, we have 15,000 
training examples, respectively. 80% of these samples are 
used for training and the remaining 20% are used for testing. 
The batch size is 32, and the number of epochs is 300, 
therefore, the training of the networks took 112,500 iterations 
(15000 * 80% / 32 * 300) for each scenario. All the programs 
for the conditional GAN-based SE (CGAN-SE) model are 
implemented using ‘TensorFlow’ [47] in Python on PyCharm 
IDE with NVIDIA GeForce RTX 2080 Ti GPU and 11GB 
RAM is 11GB. 
 

4.1. Model Architecture and Training Details 
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The generator G consists of 2 fully connected 
multilayer perceptron (MLP) and 3 de-convolutional layers. 
The first 2 MLPs are used for up-sampling, and the de-
convolutional layers kernel size is and strides size 2 are 
used to up-sample the input noise . While the discriminator 
D has a reversed architecture, whose3 convolutional layers 
are all with a kernel size of and stride size of 2. Table I 
lists the detailed settings of our GAN model on the IEEE 118-
bus system. 
 
Table 1 Proposed GAN model structure 

 Generator G Discriminator D 
Input 100 2 * 118 
Layer 1 MLP, 1024 Conv, 64 
Layer 2 MLP, 512 Conv, 256 
Layer 3 Conv_transpose, 512 Conv, 512 
Layer 4 Conv_transpose, 256 MLP, 1024 
Layer 5 Conv_transpose, 64  

 
The input data are normalized to [-1, 1] to match the 

output of tanh activation in the last layer of the generator G. 
The models are trained by RMSProp optimizer. Random 
initializations of neuron weights follow a standard normal 
distribution with zero mean and standard deviation of 0.02. 
Batch normalization is employed before each layer excluding 
the input layer to stabilize the inputs to nonlinear activation 
functions. To be specific, it normalizes each layer’s inputs by 
using zero mean and unit variance. Leaky-ReLU activation is 
used in the discriminator and ReLU activation is used in the 
generator excluding the output layer. In this paper, the 
discriminator D is trained for four times and the generator G 
is trained once. Thus, is set as 4 in algorithm 1. 

 
4.2. Data Generation 

 
As mentioned in the early part, we generated the true 

system states  via Monte Carlo power flow calculations 
with different load scenarios. Then, the raw measurements 
are created by adding a Gaussian noise e with zero mean and 
standard deviation of 0.001 (PMU’s precision) to  . The 
next section will discuss the fabrication of abnormal 
measurements considering 3 contamination scenarios, in each 
of which different contamination level r% ranging from 0% 
to 100% will be considered.  

 
4.2.1 Corrupted Measurement Data: Corrupted 
measurement data refers to the measurements that 
significantly differ from the normal measurement data. 
Corrupted voltage magnitude and phase angle measurements 
are generated by randomly choosing r% raw measurements 
and adding an error with 0.5 mean and 0.05 standard 
deviation. The rest 1 - r% are still raw measurement with only 
PMU measurement noise. 
 

4.2.2 Incomplete Measurement Data: Incomplete 
measurement data are generating by randomly choosing r% 
raw measurement and setting their voltage magnitude and 
voltage phase angle with zeros. 
 
4.2.3 Mixed Measurement Data: A more common event 
occurred in practice might be that the collected database is 
contaminated with a mixture of bad data and missing data. To 
fabricate this situation, we equally generate the contaminated 
data for each type. i.e., the mixed contamination data 
accounting for r % of the dataset contains (r% / 2) corrupted 
data and (r% / 2) missing data. 

 
4.3. Performance Evaluation  
 

The estimated performance is evaluated by mean 
average error (MAE) for total error [27]: 

                 (10) 

where  is the number of buses,  is the number of 
samples,  and refer to estimated system states and true 
system states corresponding to i-th sample and j-th bus, 
respectively.  
 
4.3.1 Overall SE accuracy under different contamination 
levels and types: Different contamination levels r% ranging 
from 10% to 90% with 10% increment is examined in this 
section to give the full-scale analysis of the model accuracy 
and robustness. The case with raw measurements (r% = 0%) 
is also tested. Additionally, to ensure the experiment is 
unbiased, the verified model is simulated 10 times for each 
result. The MAE of the proposed method for both voltage 
magnitude and phase angle under each contamination 
scenario, are illustrated in Fig. 2 (IEEE-118 bus system) and 
Fig. 3 (2746-bus Polish network). Their average value of 10 
runs is represented by the blue/orange bars, respectively.  

From the results shown in Fig. 2, the MAE of voltage 
angle is higher than the voltage magnitude under all three 
contamination scenarios. Especially in Fig. 2 (c), with mixed 
contamination measurement, the MAE of phase angle is 
significantly greater than the voltage magnitude. In the 
scenario with only raw measurement involved (r%=0%), the 
MAE of voltage magnitude and phase angle are 5.1193e-4 
and 1.5605e-3, respectively. With the increase of 
contamination level from 0% to 90%, the MAE of both 
voltage magnitude and phase angle grows accordingly. 
Additionally, the MAE of phase angle has an obvious rising 
trend while that of voltage magnitude ascends slowly. The 
MAE under mixed contamination situations is greater than 
that of the other two cases. The MAE with incomplete 
measurement is slightly smaller as compared to that with a 
corrupted measurement. The tendency of model performance 
for 2746-bus Polish system under all verified contamination 
levels is similar to that of 118-bus system, as observed in Fig. 
3. Yet, the MAE of voltage magnitude is larger than that in 
the 118-bus system whereas the error of phase angle is 
smaller. 
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Fig. 2.  MAE (e-3) of CGAN-SE on IEEE 118-bus system over 10 runs with respect to various contamination levels of under 
three measurement contamination scenarios. 
(a) Corrupted Measurement, (b) Incomplete Measurement, (c) Mixed contamination Measurement 
 

 
Fig. 3.  MAE (e-3) of CGAN-SE on 2746-bus Polish system over 10 runs with respect to various contamination levels of under 
three measurement contamination scenarios. 
(a) Corrupted Measurement, (b) Incomplete Measurement, (c) Mixed contamination Measurement 
 
4.3.2 Estimated Distribution Assessment: To investigate 
the similarity of the distribution between the generated 
system states and true system states, we randomly choose two 
PQ-buses to compare their probability density distribution 
profiles. Fig. 4 and Fig. 5 depict the probability density 
histograms of generated and true system states, respectively 
at bus 30 (118-bus system) under 30% contamination level. 
Also, Fig. 6 and Fig. 7 depict the probability density 
histograms of generated and true system states, respectively 
at bus 245 (2746-bus system) under 30% contamination level. 
The probability in these figures are represented by the 
individual rectangle areas multiplied by the width of the 
interval and the Y-axis value and the cumulative rectangle 
areas are equal to one. The distribution of voltage magnitude 
is closer to its true distribution than that of phase angle under 
three contamination scenarios in both tested systems. On the 
other hand, CGAN-SE is more effective to handle either 
incomplete or corrupted measurement than mixed 
contamination measurement, as the discrepancy of 
distribution profiles for the former two scenarios is less 
evident than that for the mixed contamination measurement  
case. To quantify the similarity between the generated system 
states and true system states, we calculate the Wasserstein 
distance between two distributions and the results are shown 
in Table 2.  The Wasserstein distance has been introduced in 
Section 3.1 as a common approach to compare two 
probability distributions, and the smaller value means the two 

distributions are similar. As seen from Table 2, the smallest 
Wasserstein distance is observed in the case of voltage 
magnitude on IEEE 118-bus system with corrupted 
measurement and the largest distance occurs in the estimated 
voltage phase angle on IEEE 118-bus system with corrupted 
measurement. Besides, the distance of voltage magnitude is 
larger than that of voltage phase angle for the same system. 
 
Table 2 Wasserstein distance with different contamination 
measurement (30% contamination level) on IEEE 118-bus 
system and 2746-bus Polish system. 

 
Contamination Type (30% level) 

Corrupted Incomplete Mixed 

IEEE 118-bus system 
(voltage magnitude) 1.4903 1.5808 2.0910 

IEEE 118-bus system 
(voltage phase angle) 6.1195 6.8061 8.7550 

2746-bus Polish system 
(voltage magnitude) 2.0592 1.9056 2.4831 

2746-bus Polish system 
(voltage phase angle) 3.9170 4.1434 5.4669 
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Fig. 4.  Probability density histograms of the generated system states and true system states with different contamination 
measurement (30% contamination level) at bus 30 of the IEEE 118-bus system (voltage magnitude). 
(a), (b), (c) Probability density distribution of voltage magnitude with 30% level of corrupted measurement, incomplete 
measurement and mixed contamination measurement, respectively.  
 

 
Fig. 5.  Probability density histograms of the generated system states and true system states with different contamination 
measurement (30% contamination level) at bus 30 of the IEEE 118-bus system (voltage phase angle). 
(a), (b), (c) Probability density distribution of phase angle with 30% level of corrupted measurement, incomplete measurement 
and mixed contamination measurement, respectively. 
 

 
Fig. 6.  Probability density histograms of the generated system states and true system states with different contamination 
measurement (30% contamination level) at bus 245 of 2746-bus Polish system (voltage magnitude). 
(a), (b), (c) Probability density distribution of voltage magnitude with 30% level of corrupted measurement, incomplete 
measurement, and mixed contamination measurement, respectively.  
 

 
Fig. 7.  Probability density histograms of the generated system states and true system states with different contamination 
measurement (30% contamination level) at bus 245 of 2746-bus Polish system (voltage phase angle). 
(a), (b), (c) Probability density distribution of phase angle with 30% level of corrupted measurement, incomplete measurement, 
and mixed contamination measurement, respectively. 
 
4.3.3 Spatial Correlation Assessment: To further validate 
the quality of generated system states, we study the 
correlation of buses for voltage magnitude and phase angle, 

respectively. To exhibit the evolving process of correlation 
during training, the Pearson correlation coefficient matrix is 
computed at several training iterations, i.e., 200, 2000 and 
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20000, under 30% mixed contamination scenario. For the 
voltage magnitude of 118-bus system, as shown in Fig. 8(a) 
both generated voltage magnitude and true voltage magnitude 
show weak spatial correlations as the correlation coefficients 
tend to be zeros. Thus, CGAN-SE can yield the correlations 
that almost similar to the true system state. This is also 
confirmed in Fig. 8 (c) on the 2746-bus system. By contrast, 
the spatial correlation of the phase angle between buses is 
stronger than that of voltage magnitude. At the beginning of 
the training, though the correlation profile of phase angles is 

far from the true ones, with the learning carries on, it can learn 
the spatial interdependency and finally gives a better result. 
Additionally, the dark cross line around bus 70 in both 
generated phase angles and true phase angles means this bus 
has no spatial correlation with all of the other buses, which 
represents the phase angle of this bus is a constant. This 
conforms to the system model that bus 69 is a slack bus. 
Therefore, CGAN-SE has the capability of learning the 
spatial correlation of voltage magnitude and phase angle 
between buses. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 8.  The spatial correlation coefficients matrix colourmap for different training iterations. From left to right: 200 iterations, 
2000 iterations, 20000iterations, true system states. All results are tested with 30% contamination level of mixed contamination 
measurement (the right colour bar is the correlation coefficient). 
(a) and (b) are the voltage magnitude and phase angle spatial correlation on IEEE 118-bus system, respectively; (c) and (d) are 
the voltage magnitude and phase angle spatial correlation on 2746-bus Polish system, respectively. 
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4.4. Accuracy Comparison 
 
As discussed before, only PMU measurements are 

considered in the network and the measurement model is 
linear. Thus, the proposed method is compared with a linear 
WLS state estimator (LWLS-SE) [23]. To investigate the 
robustness of CGAN-SE, we also implement the WLAV state 
estimator (WLAV-SE) by minimizing the L1 norm between 
true system states and estimated states [30]. 

For the unobservable scenarios, it can be occurred 
with incomplete measurements from level 10% to 90%. Since 
the process of the incomplete measurement data generation is 
stochastic, and we randomly choose r% raw measurements 
that are set as zeros, the system can be unobservable with any 
level of incomplete. For example, if 10% of total 
measurements for IEEE 118-bus system are lost in an 
adjacent area, some buses will not be monitored, that 
corresponds to say that the system is unobservable. Besides, 
with the increased number of the incomplete measurements, 
the system is more likely to be unobservable. 

The experiment is carried out by comparing the MAE 
of voltage magnitude and phase angle for the IEEE 118-bus 
system and the 2746-bus Polish system, respectively. 
Specially, three different types of contamination 
measurement from level 0% to 90% are considered.  

We use the same measurement data and apply LWLS-
SE and WLAV-SE to estimate voltage magnitude and phase 
angle. Besides, a deep convolutional neural network-based 
SE (DCNN-SE) method is applied to show the advantages of 
CGAN-SE over other neural networks with deep learning 
[48]. DCNN is a generator network, which is trained by the 
same dataset and verified via the same contamination level 
from 0% to 90%. 

The comparative results of the proposed CGAN-SE 
against three benchmarks, LWLS-SE, WLAV-SE, and 
DCNN-SE under both test systems are listed in Table 3 and  
 

Table 4, respectively. For the measurements containing 
noises only (r% = 0), the MAE of both voltage magnitude and 
phase angle for LWS-SE and WLAV-SE method has the 
PMU measuring precision close to 0.001.  In the cases with 
corrupted measurements for both systems, DCNN-SE 
achieves significant improvements over the traditional 
LWLS-SE and WLAV-SE but is inferior to the proposed 
CGAN-SE method. 

In the context of incomplete and mixed contamination 
measurements, the proposed CGAN-SE consistently 
outperforms LWLS-SE, WLAV-SE, and DCNN-SE. With 
increased contamination levels, the MAE of LWLS-SE and 
WLAV-SE increase dramatically. The reason is that more 
unobservable scenarios have occurred with larger number of 
incomplete measurements or mixed measurements, 
especially in the case of measurement loss, where it shows 
the largest MAE. On the other hand, CGAN-SE performs 
well because it is a data-driven and model-free approach. By 
applying conditional generative adversarial networks, the 
actual correlations of system states can be well captured, and 
the system states can be accurately estimated without prior 
knowledge of the system model. Therefore, even the system 
is unobservable, CGAN-SE can still estimate system states 
with small error.  

Especially for robust WLAV-SE implemented on 
IEEE 118-bus system with 10% corrupted measurement, the 
smallest MAE for voltage magnitude and voltage phase angle 
is 9.032e-03 and 1.115e-02, respectively. While its MAE 
becomes larger as the incomplete level or corrupted level 
increases. In these cases, the system operator cannot monitor 
any violations or events at the buses with bad SE results, this 
may lead to catastrophic outcomes. The large MAE owes to 
a large number of bad data， this is distinct from the 
experiments in most studies that only very few bad data 
(usually less than 5%) is considered. In the latter cases, the 
system can always be observable and WLAV-SE can perform 
well with minor errors.

Table 3 Performance comparison with benchmarks on the IEEE 118-bus system. 

 Contamination 
Type 

Contamination 
Level r% 

IEEE 118-bus System 

Voltage Magnitude (p.u.) Phase Angle (rad) 
LWLS-

SE 
WLAV-

SE 
DCNN-

SE 
CGAN-

SE 
LWLS-

SE 
WLAV-

SE 
DCNN-

SE 
CGAN-

SE 

MAE 

Noise only 0% 1.030e-03 1.152e-03 6.031e-04 5.119e-04 9.910e-04 1.226e-03 1.984e-03 1.561e-03 

Corrupted 

10% 5.086e-02 9.032e-03 8.004e-04 5.496e-04 6.203e-02 1.115e-02 4.972e-03 1.868e-03 

30% 1.308e-01 4.801e-02 8.092e-04 5.683e-04 1.427e-01 5.207e-02 5.669e-03 1.988e-03 

50% 2.205e-01 1.104e-01 8.102e-04 5.745e-04 2.282e-01 1.331e-01 6.242e-03 2.177e-03 

70% 3.103e-01 2.768e-01 8.185e-04 5.864e-04 3.265e-01 2.959e-01 6.945e-03 2.290e-03 

90% 4.301e-01 4.437e-01 8.289e-04 6.046e-04 4.432e-01 5.520e-01 8.079e-03 2.443e-03 

Incomplete 

10% 9.796e-02 1.608e-02 8.031e-04 5.329e-04 1.301e-01 1.896e-02 4.993e-03 1.625e-03 

30% 2.761e-01 9.353e-02 8.234e-04 5.591e-04 2.922e-01 9.700e-02 6.912e-03 1.920e-03 

50% 4.631e-01 2.097e-01 8.281e-04 5.658e-04 4.750e-01 2.277e-01 8.187e-03 2.018e-03 

70% 5.989e-01 5.572e-01 8.324e-04 5.742e-04 6.139e-01 5.781e-01 9.952e-03 2.126e-03 

90% 8.863e-01 8.958e-01 8.331e-04 5.835e-04 8.930e-01 8.894e-01 1.486e-02 2.234e-03 

Mixed 

10% 8.036e-02 1.338e-02 8.245e-04 5.526e-04 9.029e-02 1.537e-02 1.163e-02 1.922e-03 

30% 2.072e-01 7.824e-02 8.432e-04 5.777e-04 2.220e-01 7.981e-02 1.823e-02 2.619e-03 

50% 3.299e-01 1.940e-01 8.795e-04 5.876e-04 3.387e-01 2.253e-01 2.916e-02 3.962e-03 

70% 4.615e-01 4.309e-01 8.978e-04 6.000e-04 4.723e-01 5.435e-01 4.450e-02 5.108e-03 

90% 6.663e-01 6.813e-01 9.111e-04 6.387e-04 6.798e-01 6.993e-01 6.770e-02 5.344e-03 
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Table 4 Performance comparison with benchmarks on 2746-bus Polish system. 

 Contamination 
Type 

Contamination 
Level r% 

2746-bus Polish System 

Voltage Magnitude (p.u.) Phase Angle (rad) 
LWLS-

SE 
WLAV-

SE 
DCNN-

SE 
CGAN-

SE 
LWLS-

SE 
WLAV-

SE 
DCNN-

SE 
CGAN-

SE 

MAE 

Noise only 0% 1.020e-03 1.290e-03 8.343e-04 6.677e-04 1.070e-03 1.238e-03 4.900e-03 5.989e-04 

Corrupted 

10% 5.487e-02 9.812e-03 1.305e-03 7.339e-04 6.385e-02 1.176e-02 1.228e-02 1.113e-03 

30% 1.404e-01 5.191e-02 1.320e-03 7.609e-04 1.503e-01 5.479e-02 1.402e-02 1.222e-03 

50% 2.366e-01 1.263e-01 1.339e-03 8.679e-04 2.420e-01 1.418e-01 1.542e-02 1.425e-03 

70% 3.328e-01 2.909e-01 1.355e-03 9.105e-04 3.473e-01 3.248e-01 1.715e-02 1.997e-03 

90% 4.612e-01 4.827e-01 1.409e-03 9.459e-04 4.723e-01 4.944e-01 1.996e-02 2.281e-03 

Incomplete 

10% 1.013e-01 1.515e-02 1.334e-03 6.231e-04 1.336e-01 1.634e-02 1.533e-02 1.055e-03 

30% 2.819e-01 9.428e-02 1.368e-03 6.662e-04 2.972e-01 9.560e-02 1.707e-02 1.181e-03 

50% 4.712e-01 2.244e-01 1.381e-03 7.305e-04 4.836e-01 2.319e-01 2.022e-02 1.262e-03 

70% 6.106e-01 5.652e-01 1.447e-03 7.715e-04 6.254e-01 5.773e-01 2.458e-02 1.609e-03 

90% 8.921e-01 8.845e-01 1.475e-03 8.051e-04 8.908e-01 8.924e-01 3.670e-02 1.847e-03 

Mixed 

10% 7.967e-02 1.282e-02 1.468e-03 8.328e-04 8.214e-02 1.335e-02 3.131e-02 1.270e-03 

30% 2.294e-01 7.869e-02 1.480e-03 8.619e-04 2.423e-01 7.919e-02 3.927e-02 1.570e-03 

50% 3.493e-01 1.831e-01 1.506e-03 9.158e-04 3.575e-01 1.925e-01 6.762e-02 1.620e-03 

70% 4.786e-01 4.495e-01 1.512e-03 9.980e-04 4.979e-01 4.561e-01 1.456e-01 2.225e-03 

90% 6.815e-01 7.003e-01 1.522e-03 1.171e-03 7.001e-01 7.147e-01 2.153e-01 2.460e-03 

Besides, the MAE of DCNN-SE grows rapidly, 
especially for mixed contamination measurement. The 
phenomenon indicates that the method is unable to estimate 
system states accurately. By contrast, the proposed method is 
not significantly influenced, and still can maintain the error 
within the acceptable range. The major reason for these 
results is that the GAN in the proposed method consists of a 
generator and a discriminator, while DCNN only has a 
generator and the discriminator can enhance the performance 
of the generator by providing the feedback (Wasserstein 
distance) between the true system states and the generated 
system states during the training process.  

In the 2746-bus Polish system, the MAE in DCNN-SE 
method increases sharply, especially for phase angle and in 
mixed contamination cases. The MAE of these cases is larger 
than 1.0e-2 which does not satisfy the requirement of SE. In 
contrast, CGAN-SE can maintain a high degree of accuracy 
for both of voltage magnitude and phase angle. 

In summary, the MAE of voltage magnitude for the 
IEEE 118-bus system and 2746-bus Polish system in all 
scenarios ranges in [5.1e-4, 6.4e-4] p.u. and [6.7e-4, 1.2e-3] 
p.u., respectively. Also, the MAE of phase angle for the IEEE 
118-bus system and 2746-bus Polish system in all scenarios 
ranges in [1.6e-3, 5.3e-3] rad and [6e-4, 2.5e-3] rad, 
respectively. 

5. Conclusion 
In this paper, a model-free and data-driven method is 

proposed for SE of a power system. This method is based on 
conditional WGAN, where the Wasserstein distance is 
applied to improve training performance. With the corrupted 
or incomplete measurement at different contamination levels, 
the proposed method can perform better than the traditional 
and state-of-the-art methods i.e., LWLS-SE, WLAV-SE, and 

DCNN-SE. The proposed method CGAN-SE not only can 
estimate the system states with high accuracy but can also 
capture the statistical properties of the system measurements 
either from the probability distribution of system states or 
spatial correlation of buses. The effectiveness of the proposed 
CGAN-SE is validated through testing on the IEEE 118-bus 
system, as well as a large system with 2746 buses. The mean 
absolute error is less than 1.2e-3 p.u. and 5.3e-3 rad for 
voltage magnitude and phase angle, respectively. 
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