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1. Introduction

The theory of splines over a partition in JR* is concerned with the construc-

tion of bivariate piecewisepolynomial(scalar) surfaces of a given degree and
a given order of continuity. The theory of such splines involves a careful
analysis of continuityconditions around vertices of the partition. There is
an analogous problem in Differential Geometry and CAGD (Computer Aided

Geometric Design) concernedwith the construction of smooth complexes of



parametric surface patches. Here, however, the R’ domains of the patches
need not be considered as belonging to one common partition of R*. Indeed,
the construction of closed surfaces cannot be achieved as a mapping from a

single domain.

In this paper, we are concerned with the particular problem of the analysis

of the €’ continuity conditions which arise for the case of n rectangular patches

meeting at an n-vertex. Each patch is a bi-polynomial mapping of the unit

square [0,1]* into IR™, where m =3 is of specific interest to CAGD. For n # 4,
we clearly have a situation which cannot be analysed using componentwise
parametric C° continuity. It is necessary to view the continuity between two
adjacent patches in terms of 'contact of order 2' conditions. Such conditions

are called 'geometric continuous GC° conditions' in the CAGD literature.

The case of parametric patches meeting with GC', i.e. tangent plane, con-
tinuity has been considered by a number of authors, a good reference for which
is the review article of Peters [7]. Also, in a recent paper [3] we studied the
problem of  bicubic patches meeting at an n-vertex subject to GC' constraints.
Here we wish to extend the method of analysis for the C” case to that of the
construction of C’ surfaces. We are interested in the use of bi-polynomials
of minimal degree which results in a C° surface about the n-vertex. It will
be proved that bi-polynomial patches which are quartic in position, first and
second derivatives along the interior edges about the n-vertex are sufficient for

the purposes of constructing C” surfaces.

Although the paper is primarily concerned with the proof of existence in
Sections 2-6, we conclude in section 7 with some observations about the use

of the theory in the practical setting of CAGD.



2. Description of the Problem

Consider an n-sided hole surrounded by a bi-polynomial C* rectangular patch
complex as shown in figure 1. The hole is partitioned as shown in figure 2,
where we wish to use » additional bi-polynomial rectangular patches to fill the
hole with C°  continuity for the resulting surface. Each additional patch thus
has a common central 'n-vertex', a '4-vertex' at a corner of the hole and two
'mid-point' vertices on the boundary of the hole. We refer to an edge joining

the central vertex and a boundary mid-point vertex as  an 'interior edge'.

Figure 1  The polygonal hole problem
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Figure 2  Filling the hole with rectangular patches



LetP,,j =0,...,.n—1, be the n additionalbi-polynomial patches parameter
izedasshownin figure 2. Then P;(s, 1) and Pj:1(l,s) defines the j'th boundary

edgeofthehole; 0, Pi(s,1) and 0, P (1,5) definesthecrossboundary first
derivative; and 0, Pj(s,1) and 0, , Pj+1(1,s) defines the cross boundary second

derivative.

To achieve C? continuity inside the hole, the bi-polynomial patches must be

constrained such that they join with 'geometric' GC” continuity across interior
edges, that is, the patches join with C? continuity under a reparameterization.

Such geometric continuity conditions between patches have been extensively

studied, see for example DeRose[l], Hahn[4] and H611ig[5]. In our case, the

conditions for a GC? join of the patches PJacross the interior edges give the

constraints
@.1) Pi11(s,0) - Pi-(0,5) = 0,
(2.2) a;(s)0,,p;(0,5)+ B,(s)0,,p;(0.5)+7,(s)0y p, +1(s,0) =0,

where a;($) > 0 and v;(s) > 0, and

yﬁ(s)aozpjﬂ(s.O) = 0,(5)0,,p,;(0,9)+ p;(5)04,p,(0,5) +

(2.3) a; ()05 p,;(0,5)+2a,(s)B,()0,,p,(0,5) + B ()00, 2, (0, 5),

for j = 0,..., n-1. Here, the scalar functions oy(S) etc. are polynomial unknowns.
Condition (2.1) is that for continuity of position, (2.2) is that for tangent plane

continuity and (2.3) is that for curvature continuity.

We wish to analyse the constraints (2.1)-(2.3) about the n-vertex, using
bi-polynomial patches of minimal degree consistent with the existence of a
solution. We thus consider bi-polynomial patches whose position, first and

second cross boundary derivatives along the interior edges are no higher than



quartic. The use of quintics gives more constraint equations than is necessary

and the use of cubics proves to be too restrictive. Indeed, we hypothesise that
for a C* construction, the minimal degree of first cross boundary derivatives

should be at least k +2, see Zhou [8].

The interior edge conditions will be analysed using quartic Hermite repre-

sentations which leads to some simplification of the theory. Thus, we denote

the relevant Hermite data in these GC° conditions as
(24) B}/u’" = (_l)l+m al,m p; (0’1) = (_l)m am,l Pin (1’0)7 0< lam < 29
for the data at the boundary mid-point vertices and

0 =p,00),
(2.5) Qj = 601pj (070) = 610pj+1 (070)’
Q_/—l,j = allpj (0,0),

at the central n-vertex. Here, we note that since the boundary mid-point
vertices are regular 4-vertices, C>* continuity is assumed, consistent with a
regular rectangular patch complex, see (2.4). These notations enable us

to write the following polynomials:

(2.6) P;1(50)=p;(0,5) = OH,(s)+Q,H,(s)+ B! H,(s)— BH,(s)+ B,H,(s),
2.7) 0,,p;(0,9)=0, Hy(s)+Q, ,jH (s) - B;’”Z H,(s)+ B H,(s)—B;H,(s),
(2.8) 04,0, (5,0)= 0, Hy(5)+Q, ;. H,(s)+ B H,(s)~ B H,(s)+B"H,(s),

29) 8,,p,(0,5)=0', Hy(s)+ 0 H,(s)+ B H,(5)~ B H,(s)~ B" H,(s),

J+l

And
(2.10)  0y,p,,1(5,0) =0} Hy(s)+ Q. H,(s)+ B H,(s)— By Hy(s)— B} H,(s),



forj =0, ...,n- 1, where

Q, =-120+12B,-60Q,6B’ + B,
2.11) 0, =-120,, +12BY -60, .., +6B} + B!,

2

Q; =-120,,-12B; -6Q, |, —6B —B." .

Here, the quartic Hermite basis functions are given by
H,(s)=1-6s +8s> —3s*,
H,(s)=s-3s"+3s> —s*,

(2.12) H,(s)=s"/2-s+5%/2,
H,(s)=-3s> +5s% = 2s*,
H,(s)=6s"—8s> +3s",

The constraints (2.1) are automatically satisfied by the identification of
Hermite data along interior edges. In the remaining sections, we shall analyse
and solve the tangent plane constraints (2.2) and the curvature constraints
23).

3. Simplified Continuity Constraints

From (2.2) and (2.3), together with (2.4), we derive

G a,)-y,O=a0)-y,O=a;)-y;1)=0, B,1)=p1=1N=0
and

(32) o,)=c =0/ 1)=0, p,1)=p)=p1)=0

The minimum degree scalar polynomials consistent with (3.1) and (3.2) are

(33) a,(5)=1=7,(5), B,(5)=fo,(1-5)
and
(3.4) 0,(5) =0, (-5)", p,(s)= py,(1=5)"



Here we assume

(3.5) a,(0)=1, j=0,.,n-1,

without loss of generality. Further simplification is made by imposing sym-

metric coefficients

(3.6) Bo; =B 00, =00 Poy =P J=0,..,n-1.
Using these minimum degree scalar polynomials for the continuity con-
straints (2.2) and (2.3) and removing the common factor (1 - s)’, we obtain the

following simplified continuity constraints

BN D $)=(0,, +0,, N1+39)+(0,, + O, 1 J5 + BBy P,.i(5,0) =0

and

v, () = (011 = 0, N1+ 38) + (O, + Q)5 + B (1= 5) 03, Py (5.0)
(3.8) +2,0,0P;,,(5,0) + 740,, P, (5,0) + 0, P, (5,0) = 0
for tangent  plane and curvature continuities across the interior edges B,Q

j=0,.n-1
In the following sections, we shall analyse these simplified continuity con

straints.

4. Analysing the Tangent Plane Constraints

Equating coefficients in (3.7) gives

@.1)

Qj—l + ﬂij + Qj+l =0,

(0,1 +0, )+ (0,1, +0,, )80 (1204128, 60, + 68} + B") =0
B,(240-24B, +90, ~15B" —=3B"") =0,

B (=120 + 12B, -40, + SB; +2B" )=0,
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The first equation of (4.1) gives a cyclic system of difference equations for the
tangent vectors at the central vertex. An analysis of this system, see Gregory

and Zhou [3], gives

4.2 P, =—2cos(2x/n)
and
“4.3) Q,=Xcos(2jx/n)+Ysin(2jz/n)j=0,.,n-1,

where X and Y are two linearly independent vectors.

Obviously, S # 0 is concluded from (4.2) since the case n = 4 is excluded
from our polygonal hole problems. Therefore, we can write
Qj—l + ﬂij + QA,'+1 =0,
20-2B+0Q,-B; =0,
4.4) ' 2
-60+6B,-20,+4B; +B" )=0,

Qj—l,j +Qj,j+1 +ﬂo(B;Z _3Qj) =0,

as an equivalent form of (4.1).

The following proposition is a simple consequence of (4.4).

Proposition 1.  Given Q,{QJ-J+1 }nfl and {Qj }’::) satisfying (4.3) so that

Jj=0
(45) Q‘j—l + ﬂOQ‘j + Q_j+1 = 07 ] = 09""> n— 17

then a solution to the tangent plane constraints (3.7) is

5 1
Bj = Q+5Qj _E(Qj—l,j +QJ,J+1)’
0
4.6) B} = _4Q+L(Qj—l,j +0; )’ =05 =1,
B
0
V2 1
B_/ = 3Q_/- _FO(Q_/IJ + Q_/,ﬂl)
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5. Analysing Curvature Conditions at Central Vertex

In this and the following section, we assume that the tangent plane con-

straints (3.7) for j=0 ..., n-1 have been satisfied. Therefore (4.5) and (4.6) hold

forj=0,...,n- 1.

The curvature conditions, at the central vertex,
(5.1) =B +B3B +B.,+2B,0, ., +0,0;+p0;,, =0,j=0,.n—1,.
are derived by requiring ¥, (0)= 0 for j=0,n-1 Using

(52) B; = 20, - ﬂL(Qj—l,j +0; lQ_/—l +0;y =50,

see (4.6) and (4.5), we rewrite (5.1) as
Q0+ (1 - B )Qj,jﬂ - (1 - pj,jﬂ —0jm =
(53) Bo(6+ p)0,, ~ B3B8 =3B, ~ Py + 0, )0,0 J=0uecan—1.

In the case n = 3, we have £, =1 and
Qj*ZJ*l = Qj+l,j+2’j = 07192-

Thus, the left hand side of (5.3) is identically zero for n = 3. The linear inde-

pendence of Q| and Q; then requires
(54) Gy = py =6

for n = 3.
In the case n > 5, we shall prove that only n-3 equations of the » equations
in (5.3) are linearly independent and (5.3) can be satisfied by solving the 'twists'

-1 . .
{Q e };'__0 from an underdetermined system. As we have assumed symmetric

-9.



coefficients, the following lemma about cyclic matrices is very useful for our
analysis.

Lemma?2. Denote

bO bl bn—l
b b -
(55) A = (afk )nxn = . " :O n'_z
bl b2 bO
and
el
(5.6) S =e " k=0,.n-1.

Then, the eigenvalues of the cyclic matrix 4 are
n—1

(5.7 A =.b&L k=0,..,n—1,
i=0

and for 0<k<n-1,

(5.8) x = (L& E)

is a left eigenvector of 4 corresponding to 4, .

Applying Lemma 2 to the coefficient matrix of the system given by (5.3), we
immediately derive

Corollary 3.  The eigenvalues of the coefficient matrix of (5.3) are

(59) A =—(&, - 1)[(; - ei:j(gk - ei:}k =0,.,n—1.

Therefore, a 4, is zero if and only if £ is 0, 2 or n-2.

Proof.  For the coefficient matrix of the system given by (5.3), we have

by =1,b, =1—ﬂ02,b2 :_(1_1802)’[)3 =-1

-10-



and

Thus by the lemma, we get

A=+ (1-p2)e (- p2)

=& —1)(43 —e”)(@ —ei"J

This corollary shows that the rank deficiency of the cyclic coefficient matrix

for k=0,...,n-1.

of (5.3) is always 3. Hence it is always singular.

We now consider the solvability of (5.3) in the case n>5 By Lemma 2.,

we only need to show

(5.10) "Z_igk_, [ﬂ0(6+p0 )Qj—l _:Bo(3ﬂ02 =3B, + pyBy +0, )Qj]: 0

for k=0,2 andn-2 to prove that the system given by (5.3) is consistent. Since

0= Xcos(2jz/n)+Ysin(2jz/n)

and
cos 28 =g+ 5 )sin 20 < el &),
n 2 n 2i
our task is thus reduced to verifying that
n-1 ) L
(5.11) D.&E =0
=0

for k=0, 2 and n-2 where m is some integer.

The left hand side of (5.11) is

n—1 ) " n—1 ot n—1 _i2(k$l)7r J
- mx — x m
kaj 1”:§1m2(§k ) = 112 e " .

-11-



2Dz
As e " #l1for k=0, 2 and n-2 in the case n>5, we have

n—1 2(k+1)7r
e
j=0

and hence (5.10) is true. This demonstrates that (5.3) defines a consistent

system in the case n > 5.

The following proposition summarizes our conclusion.

Proposition 4. The curvature conditions (5.3) at the central vertex can be

satisfied by choosing o, = p, =—6 in the case n=3 or by solving the twists
{QJ /+1} from the under determined, but consistent, system defined by (5.3)

in the case n > 5.

6. Analysing Curvature Constraints along Interior Edges

In this section we further analyse the solvability of ‘Pj(s)z 0. For simplicity,

we write

6.1) 8, P

J+l

(S,O) = Qj+1 + Qj,jHS + Ljsz + ]Mjs3 + st4
where
L,=-6Q,,+6B"-3Q, ., +3B" +(1/2)BY
©2) M, =8Q,, -8B"+3Q,,, ~5B" +B""
=-3Q,, +3B"~Q, ., +2B" +(1/2)B""

Then, substituting (6.1) into the simplified constraints (3.8) and equating

coef-ficients, we obtain
PN, =0,
ﬂOB" +8B) N, + oM, =0,
(6.3) 3,6'0BV. +65,M, +p0L. =0,
3B, B )+ Q7,07 )-34BY +4BL, +6,B" +p,Q, . =

<;+1 B;_l)+ﬂ02B; +245,Q j,j+l+o-0Qj+p0Qj,j+l: >
-12-




for j=0, ...,n-1.

The last equation of (6.3) is just ¥;(0) = 0 which has been discussed in
section 5. Hence only the first four equations of (6.3) are to be solved. We

solve these equations for the cases n>5 and n=3 separately.

Consider the case n>5. Then we choose

(6.4) 5= P, =0

for simplicity. The first equation of (6.3) is automatically satisfied. The
second and third become
- BIB" +8B,N, =0,
34IB" +64M, =0,
which gives
BY =(1/2)B)" +(3/8)8,B) +Q,. +Q, >

(6.5) ) i j=0,...,n—1.
BY =-B" —(1/2)8,B) -Q

JoJ+12

Using (6.5) and (5.2), the fourth equation of (6.3), for j=0...,n- 1, can be

rewritten as

(6.6)
By, -24,B7 + B =9(1+ 4,/2)8,Q, +66+24,.

+(3/8,+3/2)Q ., +Q, 1)~ B/ By +9/2)Q, 10 +Q ez f J = Oy — 1.

We treat (6.6) as a linear system in Bzvz ,j=0,.,n-1.

Proposition 5. The system defined by (6.6) is solvable in the case n>5.
It has a non-singular coefficient matrix for n>5, n#6. For n=6, the coefficient

matrix is singular with rank deficiency 1 but the system is consistent.

Proof. By Lemma 2, the eigenvalues of the coefficient matrix are

2k

6.7) A =1-2B,& + & =202c0s(27/ n)+cos(2kxz /n)le "

-13-



for k=0,..., n-1. Thus a A is zero if and only if
(6.8) 2cos(2n/n)+ cos(2km/n) = 0.

For n > 6, we have
2z 2w 2%
n 6 3
and hence

2cos(2n/n) + cos(2kn/n) > 2cos(m/3) -1 = 0.
Therefore, (6.8) cannot be true for n > 6. Further verification for n=5 and
n=6 shows that in the case n>5, (6.8) holds if and only if £k = 3 and n = 6.
Thus the coefficient matrix is non-singular for n#6 and singular with rank

deficiency 1 for n = 6. Consider the case n = 6. Corresponding to A; = 0,

X3:(17_151:_1515-1)

is a left eigenvector of the coefficient matrix. Since

5 ) 5 )
Z (_ l)j Qm+j = O and Z (_ l)j (Qn1+j—l,m+j + Qm+j,m+j+1) :O
J=0 J=0

J

where m is some integer, we conclude that the system defined by (6.6) is con-

sistent for n = 6.

We now study the case n = 3 when fp = 1 and (5.4) must hold. The first

three equations of (6.3) become

~6N, =0,
(6.9) ~B" +8N,-6M, =0,
3B" +6M, 6L, =0,

which gives

B! =(1/6)B +Q,,,+Q, ..»
(6.10) By =—(1/6)B -Q
B“ =—(1/3)B".

JJ+
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Using (6.10) and (5.2), we can rewrite the fourth equation of (6.3) in this

case as
6.11) 17Q)1;-10Qj 41 - 7Qj1,42 =18 Q; - 45 Q;v1, j=0,1,2.
Proposition 6. The linear system defined by (6.11) is consistent.

Proof. The eigenvalues ofthe cyclic coefficient matrix of the system are
6.12) A, =17-10&, =78 =(1-&, Y17 +7&,)

for k= 0,1,2. The only zero eigenvalue is Ay with
XO = (1’1’1)

as a corresponding left eigenvector. The system isthus consistent because

2

3 (18Q,-45Q,,,)=0.

Jj=0

7. An Application

The theory presented here provides the initial analysis needed for the con-

struction of C° B-spline surfaces of irregular topology. Thus, for example, the

C' bi-polynomial closed surface construction of Goodman[2] and Héllig and
Mogerle[6] could be generalized to the C° case. For a topology with well sep-
arated n-vertices, the dimensionality study of Goodman, Hollig and Mogerle
can be applied, using bicubic and biquartic patches. Here however, we present
a simpler but important application involving the filling of a polygonal hole
within a C*? biquintic rectangular patch complex. The case of a C*? bicubic
spline complex is included in such a description as a special case. As a cones-
quence of the analysis, we have the following basic scheme for a C* fill of the

hole with # biquintic Hermite patches.
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Given Q, X, Y and necessary boundary data then the additional Hermite

data can be derived as follows:

(i) calculate {Qj }’;(1) from

Q, =X cos(2jn/n) + Y sin(2jn/n), j=0,...,n-1,

(if) caleulate {Q, ,,, """ by solving (6.11) for n =3 and (5.3) for n=5,

(ii) caleulate {B,,B!.B” | using (4.6).

(iv) calculate {BZ,BZV,BZVZ }’:) using (6.10) for n = 3 and by solving (6.6) and
then using (6.5) for n>5.

(v) caleulate 0, , P;(0,0) and 0,,,P,(0,0),0 <m < 2,(0,0) from (2.9) and (2.10).

Here, it should be noted that some of the boundary mid-point data have
been perturbed and hence the surrounding biquintic patches must be modi-
fied appropriately. Thus, in practice, we would suggest that some variational
smoothing criterion on the surface be applied, which would constrain more
of the patch complex data. We have, however, exhibited the existence of a

solution for irregular C* surface construction using biquintic patches.
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