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1. Introduction 

The theory of splines over a partition in JR2 is concerned with the construc- 

tion of bivariate piecewise p lynomial (scalar) surfaces of a given degree and  o

a given order of continuity. The theory of such splines involves arefu a c l  

analysis of continuity conditions around vertices of the partition. There is  

an analogous problem in Differential Geometry and CAGD (Computer Aided  

Geometric Design) concerned with the construction of smooth complexes of 

 

-1- 



parametr surface patch  Here, however, the ic es. 2RI  domains of the patches  

nee  not be considered as belonging to one common partition of 2RI . Indeed,  d

the construction of closed surfaces cannot be achieved as a mapping from a  

single domain. 

In this paper, we are concerned with the particular roblem of the analysis   p

of the C2 continuity conditions which arise for the case of n rectangular patches  

meetin  at an n-vertex. Each patch is a bi-polynomial mapping of the unit  g

square [0,1]2 into mRI , where m = 3 is of specific in rest t GD. For n ≠ 4,  te o CA

we clearly av a situation which cannot be analysed using componentwise  h e 
parametr  Cic n nu2 co ti ity. It is necessary to view the continuity between two  

adjacent patches in terms of ' ntac of order 2' conditions. Such conditions  co t 

are called 'geometric continuous GC2 conditions' in the CAGD literature. 
 

Th  case of etric patches meeting with GCe  param 1, i.e. tangent plane, con- 

tinuity  been considered by a number of authors, a good reference for which  has

is the r ie  article of Peters [7]. Also, in a recent paper [3] we studied the  ev w

problem of n bicubic patches meeting vertex subject to GC1 constraints.  at an n-

Here we wish to extend the me C1 case to that of the  thod of analysis for the 

construction  Cof rfa2 su ces. We are interested in the use of bi-polynomials  

of nimal degree which results in a C mi 2 surface about the n-vertex. It will  

be proved that bi-polynomial patches which are quartic in position, first and  

second deriv iv along the terior edges about the n-vertex are sufficient for  at es in

the purposes of constructing C2 surfaces. 

 

Although e aper is pr arily concerned with the proof of existence in  th p im

Sections 2-6, we conclude in section 7 with some observations about the use 

of the theory in the practical setting of CAGD. 
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2.  Description of  the Problem 

Consider an n-sided hole surrounded by a bi-polynomial C2 rectangular patch 

complex as shown in figure 1. The hole is partitioned as shown in figure 2, 

where we wish to use n additional bi-polynomial rectangular patches to fill the 

hole with C2 continuity for the resulting surface. Each additional patch thus 

has a common central 'n-vertex', a '4-vertex' at a corner of the hole and two 

'mid-point' vertices on the boundary of the hole. We refer to an edge joining 

the central vertex and a boundary mid-point vertex as an 'interior edge'. 

 

 
      Figure 2     Filling the hole with rectangular patches 
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Figure 1     The polygonal hole problem



      Let PJ, j = 0, ...,n — 1, be the n additional bi-polynomial patches parameter  

ized as shown in figure 2. T en  P (S, 1) and   Pj+1(l,s) defines the j'th boundary  h j

edge  of the hole; P1,0∂ j(S, 1) and 0,1∂ Pj+1 (1, s) defines the cross boundary first  

derivative; and P2,0∂ j(S, 1) and 0,2∂ Pj+1(1, s) defines the cross boundary second  

derivative. 

To achieve C2
 continuity inside the hole, the bi-polynomial patches must be 

constrained such that they join with 'geometric' GC2 continuity across interior  

edges, that is, the patches join with C2 continuity under a reparameterization.  

Such geometric continuity conditions between patches have been extensively  

studied, see for example DeRose[l], Hahn[4] and Hö11ig[5]. In our case, the  

conditions for a GC2 join of the patches PJ across the interior edges give the  

constraints 

(2.1) Pj+1(s,0) – Pj-(0,s) = 0, 

(2.2) ,0)0,(1)().0()(),0()( 010110 =+∂+∂+∂ spsspssps jjjjjj γβα  

where αj(S) > 0 and γj(s) > 0, and 

γ (s)∂2
j 02pj+1(s.0) = +∂+∂ ),0()(),0()( 0110 spssps jjjj ρσ  

(2.3)  ),,0()(),0()()(2),0()( 02
2

1120
2 spsspsssps jjjjjjj ∂+∂+∂ ββαα

for j = 0,..., n-1. Here, the scalar functions αJ(S) etc. are polynomial unknowns. 

Condition (2.1) is that for continuity of position, (2.2) is that for tangent plane 

continuity and (2.3) is that for curvature continuity. 

We wish to analyse the constraints (2.1)-(2.3) about the n-vertex, using  

bi-polynomial patches of minimal degree consistent with the existence of a  

solution. We thus consider bi-polynomial patches whose position, first and  

second cross boundary derivatives along the interior edges are no higher than 
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quartic. The s  of q  gives more constraint equations than is necessary  u e uintics

and e u e of cubics proves to be too restrictive. Indeed, we hypothesise that  th s

for a CK construction, the minimal degree of first cross boundary derivatives  

should be at least k + 2, see Zhou [8]. 

T or he interi e ge cond ons will be analysed using quartic Hermite repre- d iti

sentations which leads to some simplification of the theory. Thus, we denote  

the relevant Hermite data in these GC2 conditions as 

(2.4)  ,2,0),0,1()1()1,0()1( 1,, ≤≤∂−=∂−= +
+ mlppB jlm

m
jml

mluu
j

ml

for the data at the boundary mid-point vertices and 

(2.5)    
⎪
⎩

⎪
⎨

⎧

∂=

∂=∂=

=

−

+

),0,0(

),0,0()0,0(

),0,0(

11,1

11001

jjj

jjj

j

pQ

ppQ

pQ

at the central n-vertex. Here, we note that since the boundary mid-point  

vertices are regular 4-vertices, C2,2 continuity is assumed, consistent with a  

regular rectangular patch complex, see (2.4). These notations enable us  

to write the following polynomials: 

(2.6)    ),()()()()(),0()0,( 43211

2

sHBsHBsHBsHQsQHspsp j
v
j

u
jjojj +−++==+

(2.7)     ),()()()(,)(),0( 43211010,1
2

sHBsHBsHBsjHQsHQsp u
j

uv
j

uv
jjjj −+−+=∂ −−

(2.8)     ),()()()()()0,( 43211,0111,0

2

sHBsHBsHBsHQsHQsp u
j

uv
j

uv
jjjjj +−++=∂ +++

 (2.9)  ),()()5()()(),0( 4321101,2

2222

sHBsHBHBsHQsHQsp u
j

vu
j

vu
jjjjp −−+′′+′=∂ ++

And 

(2.10)       ),()()()()()0,( 432110112,0

2
2

22

sHBsHBsHBsHQsHQsp u
j

vu
j

vu
jjjj −−+′′′+′=∂ +++
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for j = 0, ...,n- 1, where 

(2.11)    

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−−−−=

++−+−=

+−+−=

−−

++

.661212

,661212

,661212Q

2

2

2

,11
'''

j

1,1
''
j

'
j

uv
j

uv
jjj

u
jj

uv
j

uv
jjj

u
jj

v
j

v
jjj

BBQBQQ

BBQBQQ

BBQBQ

Here, the quartic Hermite basis functions are given by  

(2.12)      

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

+−=

−+−=

+−=

−+−=

−+−=

,4s386)(

,253)(

,2/2/)(

,33)(

,3861)(

32
4

422
3

432
2

432
1

432
0

sssH

ssssH

ssssH

sssssH

ssssH

The constraints .1) are automatically satisfied by the identification of  (2

Her te data along interior edges. In the remaining sections, we shall analyse  mi

and solve the tangent plane constraints (2.2) and the curvature constraints  

(2.3). 

3. Simplified Continuity Constraints 

From (2.2) and (2.3), together with (2.4), we derive 

(3.1)  0)1()1()1(,0)1()1()1()1()1()1( ''''''''' ====−=−=− βββγαγαγα jjjjjj jjj

and 

(3.2)  0)1()1()1(,0)1()1()1( ''
j

'
j

''
j

'
j ====== ρρρσσσ jj

The minimum degree scalar polynomials consistent with (3.1) and (3.2) are 

(3.3)                        3
,0 )1()(),(1)( ssss jjjj −=== ββγα

and 

(3 .4)               .)1()(,)1()( 3
,0

3
,0 ssss jjjj −=−= ρρσσ
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Here we assume 

(3.5) ,1,....,0,1)0( −== njjα  

without loss of generality.  Further simplification is made by imposing sym- 

metric coefficients 

(3.6) .1,...,0,0,0,0,0 −==== 0,0, njjj ρρσσββ ϕ  

Using these minimum degree scalar polynomials for the continuity con- 

straints (2.2) and (2.3) and removing the common factor (1 - s)3, we obtain the  

following simplified continuity constraints 

 

(3.7) Φj (s):= ( ) ( ) 0)0,()31( 11001,,111 =+++++ ++−+− sPsQQsQQ jjjjjjj δβ  

and 
( ) )0,()1()()31(..)( 120

32
01111 sPssQQsQQs jjjjjj +−+−+ ∂−+′′+′′′++−′= βψ  

(3.8) 0)0,()0,()0,(2 101011001100 =∂+∂+∂+ +++ sPsPsP jjj ρσβ  

for tangent plane and curvature continuities across the interior edges  QB j

1,...0 −= nj  

In the following sections, we shall analyse these simplified continuity con 

straints. 

4. Analysing the Tangent Plane Constraints 

Equating coefficients in (3.7) gives 

(4.1) 

  
( ) ( )

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=++−+−

=−−+−

=++−+−+++

=++

+−+−

+−

,0)2841212(

,0)31592424(

0)661212(3

,0

2

2

2

0

0

01,,111

101

νν

νν

νν

β

β

β

β

BBQBQ

BBQBQ

BBQBQQQQQ

QQQ

jjj

jjj

jjjjjjjjj

jjj
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The first equation of (4.1) gives a cyclic system of difference equations for the  

tangent vectors at the central vertex. An analysis of this system, see Gregory  

and Zhou [3], gives 

)/2cos(20 nπβ −=(4.2)  

and 

(4.3)  ,1,...,0)/2sin()/2cos( −=+= njnjYnjXQ j ππ

where X and Y are two linearly independent vectors. 

Obviously, 0≠β  is concluded from (4.2) since the case n = 4 is excluded  

from our polygonal hole problems. Therefore, we can write 

(4.4)    

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=−++

=++−+−

=−+−

=++

+−

+−

,0)3(

,0)4266

,022

,0

2

2

01,,1

101

jjjjjj

jjj

jj

jjj

QBQQ

BBQBQ

BQBQ

QQQ

ν

νν

ν

β

β

as an equivalent form of (4.1). 

The following proposition is a simple consequence of (4.4). 

 Proposition 1.      Given { } { } satisfyingQandQQ nn 11, −−

jjjjj 001, ==+ (4.3) so that 

(4.5)  ,1,....,0,0101 −==++ +− njQQQ jjj β

then a solution to the tangent plane constraints (3.7) is  

(4.6)  ( )

( )⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

+−=

−=++−=

+−+=

+−

+−

+−

1,,1
0

1,,1
0

1,,1
0

13

.1,...,0,14

),(
2

1
2
5

2

jjjjjj

jjjjj

jjjjjj

QQQB

njQQQB

QQQQB

β

β

β

ν

ν  
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5. Analysing Curvature Conditions at Central Vertex 

In this and the following section, we assume that the tangent plane con-

straints (3.7) for j=0 ...,   n-1 have been satisfied. Therefore (4.5) and (4.6) hold 

for j= 0,...,n- 1. 

The curvature conditions, at the central vertex, 

(5.1) . ,1,...0,022 222

−==+++++− njQQQBBB ρσββ ννν
1001,0101 +++− jjjjjjj

are derived by requiring Ψ, (0)= 0 for j=0,n-1 Using 

(5.2) ( ) jjjjjjjjj QQQQQQB 0111,,1
0

2
,12 β

β
ν −=++−= +−+−  

see (4.6) and (4.5), we rewrite (5.1) as 

( ) ( ) =−−−−+ +++−− 1,1,
2
01,

2
01,2 11 jjjjjjjj QQQQ ββ  

(5.3)  ( ) ( ) .1,....,0,336 0000
2
00100 −=+−−−+ − njQQ jj σβρβββρβ  

 

In the case n = 3, we have 10 =β  and 

.2,1,0,2,11,2 == ++−− jQQ jjjj  

Thus, the left hand side of (5.3) is identically zero for n = 3. The linear inde- 

pendence of  and  then requires 1−jQ jQ

600 −== ρσ(5.4)  

for n = 3. 

In the case  we shall prove that only n-3 equations of the n equations  ,5≥n

in (5.3) are linearly independent and (5.3) can be satisfied by solving the 'twists'  

{ } 1
01,

−

=+
n
jjjQ  from an underdetermined system. As we have assumed symmetric 
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coefficients, the following lemma about cyclic matrices is very useful for our 

analysis. 

Lemma 2.      Denote 

 

 

(5.5)    ( )

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

== −−

−

×

021

201

110

bbb

bbb
bbb

aA nn

n

nnjk

L

MOMM

L

L

 
and 
 

(5.6) .1,...0,
2

−== nke n
ki

k

π

ξ  
 
Then, the eigenvalues of the cyclic matrix A are 
 

(5.7)   ,1,....,0,
1

0
−== ∑

−

=

nkb
n

i

i
kik ξλ

 
and for ,10 −≤≤ nk  
 
(5.8) ( )n

kkkx −−= 11 ,...,,1 ξξ  
 
is a left eigenvector of A corresponding to .kλ  

Applying Lemma 2 to the coefficient matrix of the system given by (5.3), we 

immediately derive 

Corollary 3.      The eigenvalues of the coefficient matrix of (5.3) are 

 

(5.9) ( ) .1,...,0,1
44

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−−=

−
nkee n

i

k
n

i

kkk

ππ

ξξξλ  

 
Therefore, a kλ  is zero if and only if k is 0, 2 or n-2. 

 

Proof.      For the coefficient matrix of the system given by (5.3), we have 

 
1),1(,1,1 3

2
02

2
010 −=−−=−== bbbb ββ  
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and 

.0...
14 === −nbb  

Thus by the lemma, we get 

( ) ( ) 32
0

2
0 111 kkk ξβξβλ −−−+=  

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−−=

−
n

i

k
n

i

kk ee
ππ

ξξξ
44

1   

for k=0,...,n-l. 
 

This corollary shows that the rank deficiency of the cyclic coefficient matrix 

of (5.3) is always 3. Hence it is always singular. 

 

We now consider the solvability of (5.3) in the case   By Lemma 2.,  5≥n

we only need to show 

 

(5.10)  ( )[ 0
j β ( ) ]∑

−

=
−

− =++−−+
1

0
0000

2
0010 0336

n

j
jjk QQ σβρβββρξ

 
for k = 0, 2 and n-2 to prove that the system given by (5.3) is consistent. Since 

( ) ( )njnjQ j /2sinY/2cosX ππ +=  

and 

),(
2
12sin),(

2
12cos 1111

jjjj

in
j

n
j −− +=+= ξξπξξπ

 

our task is thus reduced to verifying that 

(5.11)  ∑
−

=

±− =
1

0
1 0

n

j

jmj
k ξξ

for k=0, 2 and n-2 where m is some integer. 

The left hand side of (5.11) is 

∑∑∑
−

=

−−

=

±−
−

=

±−
⎥
⎦

⎤
⎢
⎣

⎡
==

1

0

)1(21

0
1

1
1

1
1

0
11 .)(

n

j

j

n
kin

j

mj
k

n

j

mjmj
k e

π

ξξξξξξ
m
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As 1
)1(2

≠
−

n
ki

e
πm

for k=0, 2 and n-2 in the case  we have ,5≥n

    ∑
−

=

−
=⎥

⎦

⎤
⎢
⎣

⎡1

0

)1(2

0
n

j

j

n
ki

e
πm

 

and hence (5.10) is true. This demonstrates that (5.3) defines a consistent 

system in the case  .5≥n

The following proposition summarizes our conclusion. 

Proposition 4.  The curvature conditions (5.3) at the central vertex can be 

satisfied by choosing 600 −== ρσ  in the case n=3 or by solving the twists 

{ } 1−n
01, =+ jjjQ from the under determined, but consistent, system defined by (5.3)       

in the case  .5≥n

 
6. Analysing Curvature Constraints along Interior Edges 

In this section we further analyse the solvability of ( ) .0=Ψ sj  For simplicity, 

we write 

(6.1)  ( ) 432
1,1101 0, sNsMsLsQQsP jjjjjjj ++++=∂ +++

where 

(6.2)   

( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

++−+−=

+−+−=

++−+−=

++

++

++

2

2

2

B2/1B2QB3Q3N

BB5Q3B8Q8M

B2/1B3Q3B6Q6L

1,1

1,1

1,1

uv
j

uv
jjj

u
jjj

uv
j

uv
jjj

u
jjj

uv
j

uv
jjj

u
jjj

 
Then, substituting (6.1) into the simplified constraints (3.8) and equating 

coef-ficients, we obtain 

(6.3)  

( ) ( )
( )⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=++++−

=+++−−+−

=++

=++−

=

++−+

+−+−+

,0QQQ2BBB

,0QBL4B3QBB3

,0LM6B3

,0MN8B

,0N

1,001,0
2
011

1,000
2
01111

00
2
0

00
2
0

0

222

2222

2

2

jjjjjjjj

jjjjj
n
j

m
jjj

jjj

jjj

j

Q

ρσββ

ρσββ

ρββ

ρββ

ρ

ννν

νννν

ν

ν
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for j= 0, ...,n-1. 
 
         The last equation of (6.3) is just Ψj(0) = 0 which has been discussed in 

section 5. Hence only the first four equations of (6.3) are to be solved. We 

solve these equations for the cases n≥5 and n=3 separately. 

 
Consider the case n≥5. Then we choose 

(6.4) σ0= 0ρ  =0 

 
for simplicity. The first equation of (6.3) is automatically satisfied. The 

second and third become 

⎪⎩

⎪
⎨
⎧

=+

=+−

,0M6B3

,0N8B

0
2
0

0
2
0

2

2

jj

jj

ββ

ββ
ν

ν

 

which gives 

 
( ) ( )

( )
.1,....,0

,QB2/1BB

,QQB8/3B2/1B

1,0

1,10
22

22

−=
⎪⎩

⎪
⎨
⎧

−−−=

+++=

+

++ nj
jj

v
j

uv
j

uv
j

jjj
v
j

uv
j

u
j

β

β
(6.5)  

 
Using (6.5) and (5.2), the fourth equation of (6.3), for j=0...,n- 1, can be  

rewritten as 

  
(6.6)     

( ) ( ) 1000101 Q236Q2/19BB2B
222

++− +++=+− jj
uv
j

uv
j

uv
j ββββ   

 
       ( )( ) ( )( ) .1,...,0,QQ2/9/3QQ2/3/3 2,11,01,,10 −=++−+++ ++++− njjjjjjjjj ββ  

We treat (6.6) as a linear system in  
2

Buv
j .1,...,0, −= nj  

Proposition 5.  The system defined by (6.6) is  solvable in the case n≥5. 

It has a non-singular coefficient matrix for n≥5, n≠6. For n=6, the coefficient 

matrix is singular with rank deficiency 1 but the system is consistent. 

Proof.     By Lemma 2, the eigenvalues of the coefficient matrix are 

(6.7) ( ) ( ) n
ki

kkk enkn
π

ππξξβλ
2

2
0 ]/2cos/2cos2[221 +=+−=  

     -13- 



for k=0,..., n-1. Thus a λk is zero if and only if 

(6.8) 2cos(2π/n)+ cos(2kπ/n) = 0. 

For n > 6, we have 

3
2

6
22 πππ

=<
n

 

and hence 

2cos(2π/n) + cos(2kπ/n) > 2cos(π/3) -1 = 0. 

Therefore, (6.8) cannot be true for n > 6. Further verification for n=5 and 

n=6 shows that in the case n≥5, (6.8) holds if and only if k = 3 and n = 6. 

Thus the coefficient matrix is non-singular for n≠6 and singular with rank 

deficiency 1 for n = 6. Consider the case n = 6. Corresponding to λ3 = 0, 

    X3=(1,-1,1,-1,1,-1) 

is a left eigenvector of the coefficient matrix. Since 

  ( ) ( ) 0)QQ(1and01
5

0
1,,1

5

0
∑∑
=

++++−+
=

+ =+−=−
j

jmjmjmjm
j

j
jm

j Q

where m is some integer, we conclude that the system defined by (6.6) is con-

sistent for n = 6. 

         We now study the case n = 3 when β0 = 1 and (5.4) must hold.  The first 

three equations of (6.3) become 

 

(6.9)  

⎪
⎪
⎩

⎪⎪
⎨

⎧

=−+

=−+−

=−

,0L6M6B3

,0M6N8B

,0N6

2

2

jjj

jjj

j

ν

ν

which gives 

(6.10)   

( )
( )
( )⎪

⎪
⎩

⎪⎪
⎨

⎧

−=

−−=

++=

+

++

.B3/1B

,QB6/1B

,QQB6/1B

22

2

2

1,

1,1

v
j

uv
j

jj
v
j

uv
j

jjj
v
j

u
j
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      Using (6.10) and (5.2), we can rewrite the fourth equation of (6.3) in this 

case as 

(6.11) 17Qj-1,j -10Qj,j+1 - 7Qj+1,j+2 = 18 Qj - 45 Qj+1,    j= 0,1,2. 

Proposition 6.  The linear system defined by (6.11) is consistent. 

 

Proof.    The eigenvalues of the cyclic coefficient matrix of the system are 

(6.12) ( )( )kkkkk ξξξξλ 717171017 2 +−=−−=  

for k = 0,1,2. The only zero eigenvalue is λ0 with 

X0 = (1,1,1) 

as a corresponding left eigenvector. The system is thus consistent because         

( )∑
=

+ =−
2

0
1 .0Q45Q18

j
jj  

 

7. An Application 

The theory presented here provides the initial analysis needed for the con-

struction of C2
 B-spline surfaces of irregular topology. Thus, for example, the 

1C  bi-polynomial closed surface construction of Goodman[2] and Höllig and 

Mögerle[6] could be generalized to the C2 case. For a topology with well sep-

arated n-vertices, the dimensionality study of Goodman, Höllig and Mögerle     

can be applied, using bicubic and biquartic patches. Here however, we present   

a simpler but important application involving the filling of a polygonal hole 

within a C2,2 biquintic rectangular patch complex. The case of a C2,2 bicubic 

spline complex is included in such a description as a special case. As a cones-

quence   of the analysis, we have the following basic scheme for a C2 fill of the 

hole with n biquintic Hermite patches. 
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      Given Q, X, Y and necessary boundary data then the additional Hermite 

data can be derived as follows:  

(i) calculate { }  from 1
0

Q −

=

n
jj

jQ  =X cos(2jπ/n) + Y sin(2jπ/n),     j = 0,. . . ,n-l ,  

(ii) calculate  by solving (6.11) for n = 3 and (5.3) for n≥5, { } 1
01,Q −

=+
n
jjj

(iii) calculate  using (4.6), { 1

0

2

B,B,B
−

=

n

j
v
j

v
jj }

(iv) calculate {  using (6.10) for n = 3 and by solving (6.6) and  } 1

0

2

B,B,B
−

=

n

j
uv
j

uv
j

u
j

then using (6.5) for n≥5. 

(v) calculate ,20),0,0(and)0,0( 2,,2 ≤≤∂∂ mPP jmjm (0,0) from (2.9) and (2.10). 

Here, it should be noted that some of the boundary mid-point data have 

been perturbed and hence the surrounding biquintic patches must be modi-

fied appropriately. Thus, in practice, we would suggest that some variational 

smoothing criterion on the surface be applied, which would constrain more 

of the patch complex data. We have, however, exhibited the existence of a 

solution for irregular C2 surface construction using biquintic patches. 
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