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0.     ABSTRACT 

A systematic procedure for transforming a set of logical statements or logical           
conditions imposed on a model into an Integer Linear Progamming (ILP) formulation   
Mixed Integer Programming (MIP) formulation is presented. An ILP stated as a            
system of linear constraints involving integer variables and an objective function,       
provides a powerful representation of decision problems through a tightly interrelated    
closed system of choices. It supports direct representation of logical (Boolean or 
prepositional calculus) expressions. Binary variables (hereafter called logical variables)     
are first introduced and methods of logically connecting these to other variables are           
then presented. Simple constraints can be combined to construct logical relationships         
and the methods of formulating these are discussed. A reformulation procedure which      
uses the extended reverse polish representation of a compound logical form is then 
described. These reformulation procedures are illustrated by two examples. A scheme          
of implementation.ithin an LP modelling system is outlined. 
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1.     INTRODUCTION 

In recent times first order logic in the form of prepositional or predicate 
calculus has taken a central position in the formulation and solution of 
problems taken from diverse domains such as management science models, 
artificial (AI) intelligence, database applications, and programming languages       
In AI for instance, not only automatic theorem proving via instantiation and 
resolution is a leading topic of interest; the simplest form of knowledge 
representation via production rules and diagnostic expert systems, which       
provide explanation through chaining procedures, also have many applications.   
All of these depend heavily on the underlying logic representation and the      
related computational issue of making deductive inference. 

 
Thus central to these applications is the problem of logical inference which is 
the problem of determining if a particular conclusion in prepositional logic 
follows from certain premises. The generally accepted type of inference 
procedure, symbolic (as opposed to numeric) calculation has failed to solve 
large inference problems. Even with successive generations of powerful 
computers logicians have been able to handle problems of limited size. 
Consequently, an alternative quantitative approach has been under invest-
igation in recent years. The current indications are that these quantitative 
schemes to represent and solve problems of prepositional or predicate logic 
lead to computationally superior inference procedures. The upsurge of interest 
in applying mathematical programming to problems in prepositional logic can 
be explained by highlighting the three underlying reasons set out below: 

 
(i) An "intelligent" mathematical programming system is highly structured; 
such a system can be used to exploit the high degree of mathematical 
structure inherent in prepositional logic. This enables the development of 
modelling procedures by which statements in prepositional logic can be 
represented as discrete optimization problems involving 0-1 integer, and 
continuous variables; that is, integer programmes (IP) and mixed integer 
rogrammes (MIP). 

 
(ii) Close parallels exist between some important concepts of prepositional 
logic and mathematical programming which can lead to better methods, both 
quantitative and symbolic, for solving logical problems more efficiently. 
Furthermore, the results of this research can also be applied to solve various 
types of optimization problems in the area of mathematical programming. 
 
(iii) It is well known that inference is a very hard combinatorial problem. If    
a knowledge base is encoded in the simplest sort of logical language 
(prepositional calculus), then the inference problem cannot be solved in better 
than "exponential" time. The situation is even worse when the data are 
expressed in first-order predicate logic. However, it has been proved that 
inference involving Horn clauses can be accomplished in linear time (Dowling 
and Gallier [DOWGLR84]), using a class of resolution techniques. The 
special structure of mathematical programming methods, which can be 
potentially very fast, can then be exploited to provide a more robust approach 
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towards representing and solving problems considered by AI  and expert 
systems (it  is  usually possible to  solve large IP  models  in  a  reasonable period 
of time if they have a special structure). 

The focus  of  this  paper  is  to develop a systematic approach for transforming 
statements  in  prepositional logic into integer or mixed integer programmes 
This method is particularly suitable as a modelling technique which then 
allows one to automate the conversion to  an IP or  MIP model. The final goal 
is to integrate this modelling function an "intelligent" mathematical 
programming modelling  support  system.  The  rest  of  the paper is  organized in 
the following way. In section 2 the background and motivations of earlier 
work in  this  field  are  set  out.  Section 3  contains  a  summary description of the 
important results in prepositional logic and the corresponding 0-1 discrete 
programming  equivalent  forms. In section 4 these reformulation techniques 
are used in a progressivece and a systematic reformulation procedure      
is enunciated. Illustrative examples and implementation issues  within  an LP 
modelling  system are  considered  in  sections  5  and 6  respectively. 

2.   PREVIOUS WORK 

2.1 First-Order Logic, Symbolic and Quantitative Methods 

Symbolic, as opposed to numeric, calculation is the mathematical manipulation   
of symbols. In the domain of logic it was adapted by Boole who devised a 
real workable system (he used 0 and 1 for truth values and arithmetic symbols 
for logical operations) - which is now well known as the Boolean Algebra. 
Today, problems in AI rely heavily on symbolic manipulation. The popular 
resolution method for inference [ROBINS65] is designed for first-order 
predicate logic. Resolution applied to prepositional logic is called ground 
resolution and is part of Quine's algorithm [QUINEW55]. The difficulty of 
the resolution algorithm is that it  has recently been shown to have exponential 
complexity and to become rapidly impractical as the problem increases in size 
[HOOKERS 8b]. Due to the inability of traditional inference methods to deal 
with large knowledge bases, most of the recent work in this area has been 
directed toward automated theorem proving, which involves relatively small 
knowledge bases. Hooker [HOOKER88a] surveys the application of 
quantitative methods, and integer programming methods in particular as 
applied to inference problems in prepositional logic. Williams    
[WILLMS77, WTLLMS85], has shown how such problems could be modeled 
as equations or inequalities involving 0-1 integer variables. That verification 
or refutation of an argument could be modelled as a maximization or 
minimization of an objective function in these variables leading to an Integer 
Programme (IP) is also shown in this paper. 

2.2 A Quantitative Approach: Efficient Formulation and Solution 
         Procedures 

Statements in prepositional calculus can be modelled as integer programmes in 
different ways: thus a given compound proposition may have more than
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one representation. It is, however, well known that from a computational 
point of view one of these representations is superior to the others 
[WILLMS74]. 

One obvious method of reformulation is to express a compound proposition 
into a Conjunctive Normal Form (CNF) and then convert it into integer 
programming constraints [BLARJL88] [WILSON90]. This is a cumbersome 
approach as it requires more than one constraint to represent a compound 
proposition. In general, a number of CNFs are possible and there is no 
guarantee that a unique representation is obtained. 

Williams argues that when using IP algorithms based on LP relaxations for 
solving  problems  in  prepositional  calculus,  it  is  desirable to  "disaggregate" 
the constraints  so  that the LP relaxation is as close to the convex hull of 
feasible integer  solutions  as  possible  (that  is,  tight LP relaxations are 
created). Taking into consideration the geometry of the convex hull 
Jeroslow [JERSLW85] deduced that it is generally better to express a 
model in the Disjunctive Normal Form (DNF) before converting it to a 
representation in linear inequalities  in  terms of 0-1 variables. Blair, 
Jeroslow and Lowe [BLARJL88] were apparently the first to solve non-
trivial inference problems with mathematical programming methods. They 
examined the connections and parallels  between prepositional  logic and 
integer programming and how these can be combined to create new 

inference methods. 

It is well known that most successful IP algorithms are based on "Branch 
and Bound" or "Cutting-Plane" techniques or some combination of the two. Blair, 
Jeroslow and Lowe showed that a branch-and-bound approach not only solves 
satisfiability problems quickly, but it is closely related to a variant of the well 
known Davis-Putnam procedure in logic.  Later,  Jeroslow and Wang 
[JERWAN87] replaced the LP in the branch-and-bound method by a variable 
f i x ing  heu r i s t i c  and  ob t a ined  a  symbol i c  me thod  even  f a s t e r  t han  t he  
branch-and-bound tree search. Beaumont [BEAUMN87] approaches the 
computational issue from the other direction. He first converts a MIP model 
into a DNF and then solves the resulting model by an algorithm based on a 
branch-and-bound procedure. 

A well known class of inference problems, those involving Horn clauses, 
define IPs whose duals have integral polytopes and that exhibit a dynamic 
programming structure (Jeroslow and Wang [JERWAN89]). Roehrig 
[ROEHRG88] considered problems in prepositional logic and suggested the 
use of a variant of an effective IP heuristic to achieve fast inference. His 
technique proved to be computationally more efficient compared to the 
traditional symbolic methods. The resolution method for solving inference is 
related to a cutting plane method for solving IPs and resolution can be 
dramatically accelerated by treating resolvents as cutting planes 
[HOOKER88b]. 
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2.3 Logic Programming, Artificial Intelligence: The Common Problems 

The growth in AI based wider modelling techniques can be traced back to 
development of inference procedures and computational logic: thus 
developments in natural language understanding, theorem proving and rule 
based expert systems utilize the computational underpinning of first order 
logic. 

. Rule based expert systems 

The simplest yet the most successful examples of expert systems use 
production rule based knowledge representation. These are usually set out in 
the well known prepositional logic forms (see section 3) and are called rules. 
These rules and especially their statements are often exploited through the 
explanations procedure. The end user of the ES application is given a 
meaningful reasoning as to how a deduction was made [BSHORT84]. The 
proposal that set covering IP models and their variation are used to provide 
explanation in diagnostic expert systems has been put forward by Yager 
[YAGERR85] and Reggia et al [REGNWN83]. 

. Constraint satisfaction and planning 

AI planning and reasoning with time is a specialist area of study where the 
applications of logic is extended to the time domain. AI planning is 
concerned with the selection and sequencing of actions which achieve a set of 
desirable goals: the main domains of its application are job shop scheduling, 
production planning, maintenance scheduling, Steel [STEEL87] as well as 
Allen [ALLENJ83] discuss the application of logic in these deductive systems. 

. Games, Puzzles and Combinatorial Programming 

Mathematical puzzles and games provide a rich source of application of AI 
and logic. Crossword compilation Berghel [BERGHL87], cryptarithm and 
"Smith-Jones-Robinson" problem of recreational logic [GARDNR61] are 
typical examples which are well suited for solution through logic. A wide 
range of combinatorial problems can also be cast in this paradigm and 
Laurier's research focus [LARIER78] was indeed to unify the description and 
solution of these problems. 

. Constraint Logic Programming 

Constraint logic programming, also known as constraint programming 
systems (CPS), are in essence programming paradigms which seek to satisfy 
arithmetic constraints within an otherwise logic programming framework. 
The motivations, methodologies and their scope of application are well 
discussed by Hentenryck [HENTRK89] and Chinneck et al [CHINBK89]. 
naturally the simplex algorithm is applied to achieve constraint satisfaction; 
Lassez CLP(R) [LASSEC87] and Colmerauer [COLMRA87] PROLOG III are  
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two such CPSs. For constraints stated in discrete integers (natural numbers) 
tree search method or interval arithmetic is applied to achieve constraint 
satisfaction. Hentenryck [HENTRK89] CHIP and Brown and Chinneck 
[BNPRLG88] BNR-PROLOG report two systems of this type. 

3. REPRESENTATION IN PROPOSITIONAL LOGIC AND 0-1 DISCRETE 
 PROGRAMMING  

3.1 Basic Concepts and Notations in Propositional Logic 
A "statement" defines a declarative sentence. For example, "Athens is the 
capital of Greece" and "Five is an even number" are statements. This type of 
statement, about which it is possible to say that it is either true or false, but 
not both, is called a simple or individual or atomic proposition, (propositions and 
statements are synonymous words). A proposition can take one of the 
truth values true or false, that is the truth value of a true proposition is 
TRUE (abbreviate to T) and the truth value of a false proposition is FALSE 
(abbreviate to F). As no other value is permitted, the calculus of propositions 
is referred to as a two-valued logic. 

Propositional calculus enables compound propositions to be formed by 
modifying a simple proposition with the word "not" or by connecting 
propositions with the words "and", "or", "if ... then" (or implies) and "if and 
only if". These five words are called prepositional or logical connectives and 
they are known as the negation, conjunction, disjunction, implication and 
equivalence, respectively. By repeatedly applying the connectives, the 
compound propositions can be used in turn to create further compound 
propositions. The symbolic representation of these connectives and their 
interpretation are shown in Table 1. 

No Name of 
connective 

Symbol Meaning of 
connective 

Other common words 

1 negation ~P not P                    
Both P and Q 
Either P or Q/at least one of 
P or Q 
Exactly one of P or  Q is true 

2 conjunction P ^ Q 
P v Q 

P and Q 
P or Q 3 

 
inclusive 
disjuction   

4 non-equivalence P ≠ Q 
(P V Q) 

P xor Q 
  

 
(exclusive 
disjunction) 

 
   

    
P → Q 

 
If P then Q 5 

 
implication 
 

P implies Q…P is a sufficient 
condition for Q 
P if and only if Q/P is a 
necess-     ary and sufficient 
condition for  
Q 
Neither P nor Q/None of P or  
Q is true 

  
6 
 
 
7 
 

equivalence 
 
 
joint denial 
 

P ↔ Q 
(P ≡ Q) 

P iff Q 
 

  
~(P v Q) 

 
P nor Q 
 

8 non-conjunction ~(P ^ Q) P nand Q 
Not both P, Q 

TABLE 1:  Propositional Connectives 
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There are two meanings of the disjunction connective: the inclusive or 
meaning that at least one disjunct is true (allowing for the possibility that 
both disjuncts hold) and the exclusive or which is true if exactly one disjunct 
is true but not both. The latter operation is also known as "non-equivalence". 
Using the implication connective, a compound proposition has the form "if ... 
then ...", the proposition following "if" is the antecedent and the proposition 
following "then" is the consequent. Thus, the antecedent "implies" the 
consequent. 

It is convenient to represent arithmetic variables by small letters x, y, z, etc., 
and propositions by capital letters from the middle part of the alphabet, P, Q, 
etc. Thus, P, Q, … are used to represent 
 
(i) actions, options or yes/no decisions (that is,   atomic propositions). 

For example, P: "product is manufactured". 
(ii) linear restrictions, that is, (in)equalities involving LP (or IP) variables. 

For example, Q: "3x + 4y ≤ z" 
(iii) compound propositions. 

Let P, Q, R and S represent the atomic propositions 

P: "It is raining today" 
Q: "Today is clear" 
R: "Yesterday was cloudy" 

The following compound propositions can then be constructed: 

~P : "It is not raining today" 
Q v P : "Today is clear or today is raining" 
P  R : "If and only if, yesterday was cloudy today it is raining" ↔
Q v (R →  P) : "Either today is clear or if yesterday was cloudy then it  
  is raining today" 
~R Q : "Yesterday was not cloudy and today is clear" ∧

To avoid an excess of parentheses in writing compound propositions in 
symbolic form, the above connectives are considered to be binding in the 
conventional order of precedence: negation "~", conjunction "^", disjunctions 
" ", , implication "→" and equivalence "↔". For example, R ^ S→ P means ∨ ∨&
(R  S) → P and ~R  Q means (~R) ∧ ∧ ∧  Q.  

For any assignment of truth values T or F to atomic propositions, depending 
upon the connectives used, the truth value of a compound proposition can be 
computed in a mechanical way by means of truth tables. 

The truth values of six compound propositions, defined in terms of the truth 
values of propositions P and Q, for the main prepositional connectives 
described earlier, are shown in Table 2. 
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TABLE 2: Definition of Connectives 

3.2    Reductions to Normal Forms 

It is possible to define all prepositional connectives in terms of a subset of 
them. For example, they can all be defined in terms of the set ( ∧ ,~) so that ,,∨
a given expression can be converted into a "normal form". Such a subset is 
known as a complete set of connectives. This is accomplished by replacing a 
certain expression by another "equivalent" expression involving other 
connectives. Two expressions are said to be "equivalent" if and only if, their 
truth values are the same, and this is expressed as P↔Q (or P≡Q), that is P is 
equivalent to Q. 

For example, P→Q≡~PvQ, and ~~P≡P, are equivalent expressions. The 
following laws of prepositional logic are known as De Morgan's Laws and 
Distributive Laws: 
 De Morgan's Laws 
 ~(P Q) ≡ ~P ~Q ∨ ∧
 ~(P Q) ≡ ~P ~Q ∧ ∨
 Distributive Laws 
 P∨  (Q∧R) ≡ (P Q) ∨ ∧ (P R) ∨
 P∧  (Q∨R) ≡ (P Q)  (P∧ ∨ ∧R) 

In the first law, " " distributes across "∨ ∧ ", while in the second law "∧ "  
distributes across "∨ ". 

By De Morgan's laws, conjunction can always be expressed in terms of 
negation and disjunction. First use De Morgan's laws to get negations against 
atomic propositions, and then recursively distribute " " over " " where it ∨ ∧
applies. This transforms a general compound proposition R to an equivalent 
proposition of the form R1 ∧R2 ∧ ...Rn in which every Ri, i=l, …, n is a 
disjunction of atomic propositions. The logical form R1∧  R2∧  ...Rn is called a 
Conjunctive Normal Form (CNF) for R and the Ri are clauses of the CNF. 
For example, applying De Morgan's and distributive laws ~P(Q R)→ (S∨T) can ∨
be written as (P ~Q∨S∨T)  (P ~R S∨T). ∨ ∧ ∨ ∨

Similarly De Morgan's laws followed by the second distributive law are 
applied to transform R to an equivalent proposition of the form S1 ∨ ∨S2 ...Sm 
in which each Sj,j=l, ..., m is a conjunction of atomic propositions or their 
negation. In this case S1∨ ∨ S2 ...Sm is called a Disjunctive Normal Form 
(DNF). 

P Q ~P P^Q PvQ P∨&Q P→Q P≡Q 

1 

1 

0 

0 

1 

0 

1 

0 

0 

0 

1 

1 

1 

0 

0 

0 

1 

1 

1 

0 

0 

1 

1 

0 

1 1 

0 0 

1 0 

1 1 
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In both normal forms, negation is only applied to atomic propositions. All 
conjunctions may be removed leaving an expression entirely in "~" and " ". ∨
Similarly, all disjunctions may be removed leaving an expression entirely in 
"~" and " ". Clearly, (~,∨ ) or (~,∧ ∧ ) define complete sets of connectives. This 
implies that any expression can be converted to a conjunction or disjunction 
of clauses by using the equivalent statements given in Table 3. It should be 
pointed out, however, that in general, a number of conjunctive or disjunctive 
normal forms are possible, leading to more than one representation for a      
particular compound proposition. Using the method described above, the         
most computationally efficient representation of a logical form is not     
necessarily achieved. The authors therefore aim to provide a systematic   
reformulation procedure with computer support, whereby alternative (discrete) 
mathematical programming formulations can be constructed for a given logic         
form. 

 

No Statement Equivalent Forms  

1 ~~P P  

2 P∨&Q (~P Q)∨ (P∧ ∧~Q) Exclusion 

3 

4 

~(P Q) ∨

~(P Q) ∧

~P ~Q ∧

~P ~Q ∨

De Morgan’s Laws 

 

5 

6 

 

7 

8 

9 

10 

P→Q 

P↔Q or 

(P≡Q) 

P→Q R ∧

P→Q R ∨

P∧Q→R 

P∨Q→R 

~P Q ∨

(P→Q)  (Q→P) ∧

(~P Q) (~Q∨ P) ∨ ∧

(P→Q)  (P→R) ∧

 (P→Q) ∨  (P→R) 

(P→R) ∧  (Q→R) 

(P→R)  (Q→R) ∧

 

Implication 

. 

. 

. 

. 

. 

. 

 

11 

12 

P∧ (QVR) 

P∨ (Q R) ∧

(P^Q) ∨  (P^R) 

(P∨Q)  (PVR) ∧

 

Distributive Laws 

 
 

TABLE 3: Transformation of Logical Statements 
into Equivalent Forms 
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3.3 Polish Notation and Expression Trees 

Using the normal precedence operators and the conventional evaluation of              
expressions the following logical form 

 P∨Q∨ ~R S ∧

would be written as 

  )).S)R~(()QP(( ∧∨∨

Not using brackets as above but simply placing the operator symbols at the                
nodes, one can build up a tree representation which was discovered by            
LuKasiewiz [LUKSWZ63] and is well known as the Polish notation. Choice                      
of the directions in which the variables and symbols are scanned leads to two                       
well known variations, namely, forward (right to left scan) or reverse (left to                 
right scan) Polish notation. The Polish notation for an expression is not                     
unique and within forward Polish, for instance, early-operator form or                     
late-operator form lead to two different notations and corresponds to inserting                       
Church's brackets [CHURCH44] from the left or from the right respectively.                       
The given expression can be written as 

 ))SR~()QP(( ∧∨∨  

 or 

  ))).SR~(Q(P( ∧∨∨

The tree representation for the first of these expression is shown in Diagram                   
3.1. 

 (( P Q ) ∨  (~R∨ ∧S )) 

 
 
 
 Diagram 3.1 
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For our purposes we call this an "expression tree". We note the limitation of 
Prepositional calculus with only unary and binary logical operators. The 
extended logical operators which involve n-tuples and n-place predicates (see 
next section where we introduce connectives such as "exactly k out of n", "at 
most k out of n") can be used to construct "extended expression trees". We  
give illustrations of extended expression trees in the examples discussed in 
section 5. 

Reverse Polish notation found natural application in algebraic expression 
evaluation in compilers for automatic computers. It is no coincidence 
therefore that we find that our reformulation (translation) procedure is based 
upon this fundamental representation that is the "extended expression tree". 

3.4 Logic Forms Represented by 0-1 Variables and Linear (In) Equalities 

We wish to transform a compound proposition into a system of linear 
constraints so that the logical equivalence of the transformed expressions is 
maintained. The resulting system of constraints clearly must have the same 
truth table as the original statement, that is, the truth or falsity of the 
statement is represented by the satisfaction or otherwise of the corresponding 
set of linear equations and inequalities. 

In order to explain the transformation process and the underlying principles 
more clearly, two cases are distinguished, namely, connecting logical variables 
and logically relating linear form constraints. 

(i) Connecting logical variables 

Let Pj denote the jth logical variable which takes values T or F and represents 
an atomic proposition describing an action, option or decision. Associate an 
integer variable with each type of action (or option). This variable, known as 
the binary decision variable, is denoted by " jδ " and can take only the values 0 
and 1 (binary). The connection of these variables to the propositions are 
defined by the following relations: 

 jδ = 1 iff proposition Pj is TRUE  

 jδ  = 0 iff proposition Pj is FALSE 

Impositioin of logical conditions linking the different actions in a model is 
achieved by expressing these conditions in the form of linear constraints 
connecting the associated decision variables. 

Using the prepositional connectives given in Table 1, and the equivalent 
statements, given in Table 3, a list of standard form "variable transformations" 
Tl.l ... T1.23 are defined. These transformations are applied to compound 
propositions in volving one or more atomic propositions Pj, whereby the 
compound propositions are restated in linear algebraic forms involving 
decision variables. The two expressions are logically equivalent. 
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TABLE  4:  VARIABLE TRANSFORMATIONS 

Statement Constraint Transformation 

~P1 1δ =0 Tl.l 

P1 ∨ P2  1δ + 2δ ≥ l  T1.2 

2δ =1 T1.3 P1 ∨&P2  1δ +

P1  ∧ P2 1δ  = 1, 2δ = 1 T1.4 

~(P1∨ P2) 1δ =0, 2δ = 0 T1.5 

~(P1∧P2) 1δ + 2δ 1≤   T1.6 

P1 ~→ P2 1δ + 2δ 1≤  T1.7 

P1→  P2 1δ - 2δ ≤0 T1.8 

P1↔  P2  1δ - 2δ =0  T1.9 

P1→  P2∧  P3 1δ ≤ 2δ , 1δ ≤ 3δ  T1.10 

2δ + 3δ  Tl.ll P1 →P2 ∨P3 1δ ≤

P1 ∧P2→P3 1δ + 2δ - 3δ ≤ l  T1.12 

3δ , 3δ  T1.13 P1∨P2→P3 1δ ≤ 2δ ≤

Pl ∧  (P2∨P3)  1δ =1, 2δ + 3δ ≥ l  T1.14 

3δ ≥ l  T1.15 P1∨  (P2∧P3) 1δ + 2δ ≥ l ,  1δ + 

Some general forms of transformations are stated below: 

P1∨ P2∨ ... Pn 1δ + 2δ  ...+ nδ > 1 T1.16 

P1∨&P2∨&... Pn 1δ + 2δ  ...+ nδ =1 T1.17 

Pl ∧ ...Pk →Pk+1∨  ...Pn ( l - 1δ ) . . .  + 1k+δ +... + nδ ≥ l T1.18 

"at least K out of n are TRUE" 1δ + 2δ  ...+ nδ ≥k T1.19 

"exactly k out of n are TRUE" 1δ + 2δ  ...+ nδ = k T1.20 

"at most k out of n are TRUE" 1δ + 2δ  ...+ nδ ≤k                 T1.21
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Pn ≡ P1  P∨ 2 ∨ ... Pk δ1+ δ2 ... + δk ≥δn,     T1.22 
 (-δj+ δn ≥0,j= l , . . . ,k )  
 
Pn ≡ P1∧P2∧   ... Pk -δ1 -δ2 ... - δk +δn ≥1-k,  T1.23  
 (δj- δn ≥ 0,j= l , . . . ,k )  

(ii) Logically relating linear form constraints 

In order to reformulate "logical constraints in the general form", it is well 
known that finite upper or lower bounds on the linear form must be used 
Simonnard [SIMNRD66], Brearly, Mitra et al [BRMTWL75], Williams 
[WILLMS89]. 
Consider the linear form restriction 
 

  { }∑
=

n

1j
kjkjk bxa:LF ρ

 

where ρ  defines the type of mathematical relation, ρ  { }.,, =≥≤∈   Let Lk, Uk, 
denote the lower and upper bounds, respectively, on the corresponding linear 
form, that is 
 

 Lk ≤∑  
=

≤−
n

1j
kkjkj Ubxa

 

In our reformulation procedure, we use the finite bounds Lk and Uk .These 
bounds may be given or, alternatively, can be computed for finite ranges of xj 
[BRMTWL75]. 
A "Logical  Constra int  in  the  Implicat ion Form"  (LCIF)  is  a  logical  
combination of simple consraints and is defined as 
 If  antecedent then consequent 

where the antecedent is a logical variable and the consequent is a linear form 
constraint. 
A "logical constraint in the general form" can be always reduced to an LCIF 
using standard transformations. To model the LCIF, a 0-1 indicator variable  
is linked to the antecedent. Whether the linear form constraint LFk applies    
or otherwise is indicated by a 0-1 variable δ’

k , 

 δ’
k = 1 iff the kth linear restriction applies 

 = 0 iff the kth linear restriction does not apply
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A set of constraint transformations T2 are defined below which illustrate how 
this binary variable, namely the indicator variable of the antecedent, using the 
bound value relates to the linear form restriction, that is the consequent. 

  TABLE 5:  CONSTRAINT TRANSFORMATIONS 

Statement Constraint Transform 

δ'k = 1→ xk ≥ Lk xk ≥ Lk δ '
k T2.1 

δ '
k = 0 → xk ≤ 0 xk ≤ Uk δ ' k T2.2 

δ'k = 1→ ∑  ≤ b
j

jkj xa k  -b∑
j

jkj xa k≤ Uk(1- δ '
k) T2.3 

δ'k =1→   ≥b∑
j

jkj xa k   -b∑
j

jkj xa k ≥ Lk (1- δ '
k) T2.4  

 

δ'k = 1→   = b∑
j

jkj xa k T2.3 (δ'k = 1→ ∑
j

jkj xa  ≤ bk) T2.5 

 

 T2.4 (δ'k =1→ ∑
j

jkj xa   ≥bk)
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4. A SYSTEMATIC PROCEDURE FOR REFORMULATION 
 

Having represented in the previous sections, compound propositions as 
(in)equalities, the next step is to model more complicated logical statements 
by further inequalities. As a result of the many, but equivalent, forms any 
logical statement can take, there are often different ways of generating the 
same or equivalent mathematical reformulations. 
 
One possible way would be to convert the desired expression into a normal  
form such as the conjunction of disjunctive terms, the clauses. Each clause is     
then transformed into a linear constraint (applying transformation T1.16) so            
that the resulting CNF can be represented by a system of constraints, derived   
in this manner, which have to be satisfied invoking the logical "and" operation.        
 
In the absence of a systematic approach, the above process appears to be 
unduly complicated. This has motivated us to propose a systematic procedure          
to reformulate a logical condition imposed on a model into a set of integer         
linear constraints. Our approach, in essence, involves identifying a precise 
compound statement of the problem and then processing this statement. This 
compound statement (S) is represented as an extended expression tree by the     
Polish notation (see section 3.3) and two working stack mechanisms, namely 
VSTACK for variables and CSTACK for constraints are created. The 
expression tree is traversed, that is, the expression is analysed and constraints        
are created (using variable and constraint transformations of section 3) in     
CSTACK using variables which are introduced in VSTACK. The steps of the 
procedure which fully processes and resolves the tree are set out below. 

 
STEP 1 Write explicitly the required condition in words, in the form of a logical 

compound statement, using known logical operators.    Let S be this 
statement. 

 
STEP 2 Identify simple (atomic) propositions Pj which can be used to state S. 

Express S in terms of the (extended) set of logical connectives - "not",    
"and", "or", "implies" (see Table 1), "at least k out of n", "exactly k out of    
n", "at most k out of n" (see Table 4 for these extensions), and the            
atomic propositions Pj. Use Church's brackets to indicate precedence of       
sub-expressions. If necessary, apply transformations from Table 3 to       
obtain an equivalent statement of S. 

STEP 3  Construct the expression tree for S based on the forward/backward            
Polish notation whereby each logical connective in S is used as a              
predicate, that is, connective - name (list of arguments). 

Construct this tree using the (extended) set of connectives as                
intermediate nodes and the simple propositions Pj or their negations as 
terminal nodes. Any subtree represents a compound proposition. 
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Define 0-1 decision variables δj to represent the truth or falsity of each 
one of the simple propositions PJ, that is 

 
δj = 1/0       iff Pj is true/false 

 
Introduce the variables δj into VSTACK. 

STEP 4  Traverse the tree from the bottom, that is, use the terminal node index k   
to identify the corresponding compound proposition Qk (subtree) and       
the related 0-1 indicator variable .  Introduce  again into the       '

kδ
'
kδ

VSTACK. 
 

Convert the first-order compound propositions at the lowest levels of the 
tree into associated linear restrictions using Table 4 of variable             
transformations. Introduce these into CSTACK. 

 
Apply the constraint transformations of Table 5 to convert the resulting 
LCIF k  = 1→  Q'δ k,  into an integer linear restriction for this node.     
Pop-up the most recently placed constraint in CSTACK and then insert  
this new restriction into CSTACK. All terminal nodes are resolved in 
this way and the resulting integer linear constraints are inserted in the 
'constraint' stack. 

 
STEP 5 Continue traversal of the tree upwards by processing all nodes of the 

tree in the following way. 
 

Introduce an indicator variable k  for any node k at intermediate to top 'δ
levels in the tree, and update VSTACK. 

Produce  an   LCIF  for   this   node  involving    and   the  compound '
kδ

propositions Qk1,...,Qkn or their associated indicator variables  ,...,  'δ '
''kn

δ1k
corresponding to the n branches of node k. 

 
Apply the variable and constraint transformations of Tables 4 and 5,   
respectively,  to convert  the result ing LCIF into an integer l inear 
restriction and add it to CSTACK. 

 
If at any node in the two highest levels of the tree, a standard tree 
representation from Table 4 is identified and all associated nodes are 
resolved, do not introduce a new indicator variable for this node, but 
simply add the corresponding integer constraint, as obtained from Table  
4, directly to CSTACK. The node is then considered resolved. 

 
STEP 6 If  a l l  nodes of  the t ree  are  resolved then s top.  At  the  end of  the  

procedure, CSTACK contains all integer linear constraints and the 
VSTACK contains the decision and indicator variables used by these 
constraints. 
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STEPS 1-3 

σk  a symbol taken from the extended set of connectives 
Pj  atomic or simple proposition or its negation represented by terminal node. 
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Apply constraint transformations (Table 5) to convert the resulting LCIF's  
into integer linear restrictions: 

Node 4 (using T2.4) :  δ1 + δ2  + δ3 + δ4 + δ5 - 3  0   (5.1.1) ≥'δ 4

Node 5 (using T2.3) :  δ3 + δ4 + δ5 + δ6 + δ8 + δ9+ 3 6   (5.1.2) ≤'δ4

Node 6 (using T2.3) : ≤1 - δ'
6δ 5      (5.1.3) 

 (orTl.10) 

 ≤1- δ'
6δ 6               (5.1.41) 

 ≤1- δ'
6δ 7   (5.1.5) 

Node 7 (using T2.4) : δ7 + δ8 + δ9 - 2 0   (5.1.6) ≥'
7δ

All terminal nodes are considered resolved. 

STEP 5 

Consider the intermediate node 3. 

Associate the indicator variable δ'3 and produce the following LCIF: 

δ '
3 = 1 → Q4 V Q5

or (using T1 .2) δ '
3 = 1 → + δ '

4+ δ '
5 ≥1 

or ( using T2.4) δ '
4 + δ '

5- δ '
3 ≥0      (5.1.7) 

Consider node 2. 

 
The tree representation corresponding to variable transformation T1.12 can be 
identified. Since nodes 3, 6 and 7 are resolved, the root node 1 is resolved by   
simply inserting the following integer linear constraint in CSTACK. 

δ '
3  + (1- δ '

6) -δ '
7 ≤1 

or δ '
3 - δ '

6 -δ '
7 ≤ 0      (5.1.8) 

STEP 6 

All nodes are resolved. The complete IP representation is given by           
constraints (5.1.1) - (5.1.8) and 

δ1,…. δ9,     δ '
3 , …δ '

7  ∈{0,l
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5.2  Example 2:  Crossword Compilation ([WILSON89]) 
 

This problem has a logical structure; it can be formulated in terms of Boolean 
Algebra  and then conver ted  in to  an  in teger  programming sys tem of  
constraints. The objective is to fill in an n × n full puzzle with complete 
interlocking using words from a given lexicon. 

Define the following sets 

I the set of rows (i ∈  I) 

M the set of columns (m ∈  M) 

J the set of letters of the alphasbet (j ∈  J) 

and let n = |M| = |I|. Given also is a lexicon of n-letter words. 

 
To formulate the problem, the following set of logical conditions have to be 
modelled. 
 
STEP 1 
 
Cl :  "Each cell (i,m) of the matrix must be occupied by exactly one letter of           
the alphabet." 

C2 : "If cell (i,m) is occupied by letter j then at least (n-1) cells (i,m')( m'≠m, 
        must be occupied by letters j' ∈  J1 (j) and at least (n-1) cells (i'.m), i'≠ i 
         must be occupied by letters j" ∈  J2 (j). 

         J1(j): set  of  letters  which by  virtue  of  the lexicon could appear in  
cells (i, m'), m' ≠ m given that letter j appears in cell (i,m). 

 
       J2(j):     set  of  letters  which  by  virtue  of  the lexicon could appear in 
                 cells (i', m), i' ≠ I given that letter j is in cell (i, m).
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STEP 2 

Define atomic propositions 

Pimj : "Cell (i- m) is occupied by letter j" ∀  i ∈  I, m ∈  M, j ∈  J. 

Rewrite C1 : "Exactly one of propositions PimA  P.∨ imB P.∨ ∨imC … P.
imZ”

  for all i ∈  I, m ∈  M. 

Rewrite C2 : "If {Pimj- is TRUE] then 

{{at least (n-1) of are TRUE for m' ≠m, j' "'mji
P ∈  J1(j)}” , 

and  

{at least (n-1) of Pi'mj" are TRUE for i' ≠i,  j” ∈J2 (j)})" 

for all i ∈  I, m ∈  M, j ∈  J. 

  STEP 3 

  Tree representation of: 

 

Define 0-1 decision variables δi,m,j ∀  i,m,j 

δi,m,j
 = 1, letter j is placed in cell (i,m) that is Pi,m,j: is TRUE  

 = 0 otherwise. 
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STEP 4  

Cl  :  Using T1.20, compound proposition Q1  corresponding to node  1 

(Q1 : PimA  P.∨ ∨ ∨imB  …  P. .
imZ) can be represented by 

∑
∈

=
Jj

imj 1δ  for given i,m (5.2.1) 

C2  :    Assign 0-1 indicator variables to nodes 3 and 4. 

Q3 :    "at least (n-1) of (m' ≠ m, j'' jim
P ’ ∈J1(j))" 

Q4   : "at least (n-1) of (i' ≠ i, j"'mji
P ’ ∈J2(j))" 

Apply variable transformation T1.19 to convert Q3 and Q4 into integer linear 
constraints. 

 
Q3:  for given i, m, j 

( )
1

'
1'

'' −≥

≠

∑
∈

n

mm
jJj

jimδ

Q4:  for given i, m, j. 
( )

ii

n
jJj

mji

≠

−≥∑
∈

'

1
2"

"'δ

δ'3 = 1→  : Node 3 
( )

1

'
1'

'' −≥

≠

∑
∈

n

mm
jJj

jimδ

δ'4 = 1→ : Node 4 
( )

ii

n
jJj

mji

≠

−≥∑
∈

'

1
2"

"'δ

Apply constraint transformation (Table 5) T2.4 to convert the above LCIF's 
into integer linear constraints: 

Node  3  :  ∑
∈
≠

−≥
1'

'

3'' )1(
jj
mn

njim δδ  ( 5 .2 .2 )  

Node  4  :  (5 .2 .3 )  
( )

( )
ii

n
jJj

mji

≠

−≥∑
∈

'

'1 4
"

"'
2

δδ

Termina l  nodes  3  and  4  a re  reso lved .  
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 STEP 5 

C o n s i d e r  n o d e  2 .  T h e  t r e e  r e p r e s e n t a t i o n  c o r r e s p o n d i n g  to variable 
transformation T1.10 can be identified, that is, 

Pimj → Q3 ^ Q4   and the following linear constraints can be inserted in 

CSTACK. 

δ imj≤δ '
3 (5.2.4) 

δ imj≤δ’
4 (5.2.5) 

Node 2 is resolved. 

STEP 6 

The complete IP representation for logical conditions Cl and C2 is given by 
constraints (5.2.1) - (5.2.5) ∀  i ∈  I, m ∈  M, j ∈  J and the integrality conditions.
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6. IMPLEMENTATION WITHIN AN LP MODELLING SYSTEM 

Systems and languages for specifying LP and IP models are well established as 
practical tools for constructing optimisation applications. Fourer [FOURER83] 
provided an excellent summary of the state of the art at the beginning of the 80's 
and an update of this information can be found in the two special issues 
[MITRAG87] on this topic.  The importance of including logic forms within 
quantitative modelling paradigm is now well accepted. In the MODLER system of 
Greenberg [GREENB90] it is possible to combine logical and linear restrictions, 
and the structural modelling language (SML) of Geoffrion [GEOFFR90] includes 
prepositional calculus and predicate calculus modelling in levels two and three 
respectively. We intend to incorporate the reformulation method described in this 
paper into CAMPS which is an interactive modelling system [LUCMIT88]. The 
design objectives of this modelling system are broad: the system is set out to help 
non-expert LP users to come to grips with the task of conceptualising and 
describing LP models, whereas the expert LP user is also supported in his 
requirements to construct large and complex LP models. We are not aware o any f 
MP modelling system which provides reformulation support as described in this 
paper. 

Consider the main menu, the modelling menu (MODEL), and the information flow 
diagram of CAMPS as set  out  in Diagrams 3, 4 and 5. The option 
REFORMULATION in Diagram 5 is introduced to encapsulate the automatic 
transformations and constraint generation described in this paper. The 
REFORMULATION menu in the prototype form is shown in Diagram 6. 

REFORMULATION 

 1. STATEMENT 
 2. DIMENSIONS 
 3. PROPOSITIONS 
 4. IP - VARIABLES 
 5. EQUIVALENT FORMS 
 6. TRANSFORMSIONS 
 7. BOUNDS 
 8. RETURN 

Diagram 6. 

STATEMENT simply records a compact textual natural language statement of the 
problem against the global model statement S. 
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1. MODEL 1. NAMES 
2. GENERATE 2. DIMENSIONS 
3. OPTIMISE 3. TABLES 
4. REPORT 4. VARIABLES 
5. UTILITIES 5. CONSTRAINTS 
6. LOGOUT 6. REFORMULATION 

7. RETURN 
 

DIAGRAM 3 DIAGRAM 5 
 
 
 

MODEL GENERATE OPTIMISE REPORT 

UT AR RO GM 

UTILITIES 

1A 

NAMES 
DIMENTIONS 
TABLES 
VARIABLES 
REFORMUL- 
ATION 
CONSTRAINTS 

INTERNAL 
EXTERNAL 
MODEL 
PROGRAM 
INTERFACE 

PREPARE 
RUN 
SUMMARY 
….. 

VERIABLES
ROWS 
….. 

LIST 
RENAME 
DELETE 
PRINT 
DOCUMENT
DEBUG 

 
 
 
 
 

 

Hierarchical relationship of main menu options 
and 

information flow through the five aster files 
as effected by the subsystem 

 IA     GM                 GM      AR             RO                 UT      AR                  UT 
     ↑↓     ↑↓           ↓         ↑             ↓              ↓             ↓↑ ↓↑
UT   AR UT  RO      UT      AR 
 ↑  ↓     ↑  ↓    ↑ ↓        ↑        ↑  ↓        ↑

     

MODEL 
SOLUTIO

N

ANALYSE
AND 

REPORT

MODEL 
DOCUMENA

-ATION

MODEL 
DATA 

MPSX 
DATA 

FORMAT

DIAGRAM 4 
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Since REFORMULATION is a submenu of MODEL all the existing attributes of a 
given model such as DIMENSIONS, VARIABLES and CONSTRAINTS defined in  
the model are inherited. The DIMENSION option is therefore a continuation of 
DIMENSION in th  parent menu. Under PROPOSITIONS, Pj, Qe j, and Rk (see last 
two sections) are ef ed in that order. As in main CAMPS approach where d in
arithme  perators ar  prompted here logical oprators are prompted and chosen to tic o e
define the LOGICAL Forms. The full statements of the propositions are also 
entered here and used later for the purpose of  documentation. 

IP-VARIABLES option i  used to define the δ s a bi ,  δ ' k '  decis ion nd var ia les .  
E Q U I V A L E N T F O R M S a n d   s i m p l y  d i s p l a y  t h e  T R A N S F O R M A T I O N S
information in Table 3 and e list of transformations T1.1...T1.18, respectively.  th
They also llow these o be chosen for the reformulation procedure. In relating a t  
constraints logically to each the  it may be necessary to compute bounds on the o r
linear rms. Such bounds can be derived by invoking the BOUNDS option. A full fo
system specification fo  implementation of the reformulation support is given in r
[MT...90]. This report also contains examples of dialogue for the il lustrative 
problems. 

7. DISCUSSION AND CONCLUSIONS 

In this paper we have irst reviewed the s, the f  relationship between logical form
methods of computing inferences either symbolically or quantitatively and the   
discrete programm ng ethods. The important connectives with AI and logic i m
programming av  also been reviewed. A systematic procedure for reformulating h e
logic forms  IP nd MIP  is described and illustrated by two representative to a forms
examples.  blue  fo  integrating this automatic procedure within an iteractive A print r
modelling system is then rward. Constraint logic programming uses simple pu fot 
unsophisticate  algorithms r onstraint s tisfaction. In d fo c a contrast computational 
mathematical programming is concerned with fficient algorithms exploiting e
problem stru ture and  many instances of uccess in large and complex c has s
applications. The ideas put orw rd here add to the conceptual foundations of f a
intelligent model ng systems for Mathematical Programming. We also hope the li  
research reported in this paper will provide motivation to bring the work of CLP 
and MP communities  closer  together.  
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