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ABSTRACT

This paper is concerned with the problem of determining approximations
to the function F which maps conformally a simply-connected domain Q
onto a rectangle R, so that four specified points on 0Q are mapped
respectively onto the four vertices of R. In particular, we study the
following two classes of methods for the mapping of domains of the form
Q={z=x+1y:0<x<l, Ti(x)<y<T,(x) }. (1) Methods which approximate
F:Q—> R by F =S0 f,where f is an approximation to the conformal map
of Q onto the unit disc, and S is a simple Schwarz-Christoffel
transformation. (ii) Methods based on approximating the conformal map of

a certain symmetric doubly-connected domain onto a circular annulus.
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1.  Introduction.

LetQ be a finite simply-connected domain with boundary 0Qin the
complex z-plane, where 0Q is a closed piecewise analytic Jordan curve.
Also, let Zj ; j=1 (1)4, be four points in counter-clockwise order on 0Q,

and let Ry, denote the rectangle

h={w=e+in : 0O<e<l, 0<n<h} (1.1)

in the w-plane. Then, it follows from the Riemann mapping theorem that,
for a certain h, there exists a unique conformal map F:Q — Rp which
takes the four boundary points zj ; j=1(1)4, respectively onto the four

vertices w1 =0, wp =1, w3 =1+ih and wgq =ih of Ry} . This conformal map has

many practical applications, and in these the height h of the rectangle is

often of special significance In fact, h is an important domain
functional known as the conformal module of the quadrilateral{Q;

71,2),23,24}. (See e.g. [5]r [8,§16.11] and [13], and observe that some

authors define h_l, rather than h, as the conformal module.}
This paper is oncerned with a study of the following two

well-known classes of procedures for determining approximations to the
conformal map F: Q — Ry.

(D Procedures which approximate F by F =S 0T where T is an
approximation to the conformal map of Qonto the unit disc D := {{:

|€|<1 ),and S : D — Ry is a simple Schwarz-Christoffel transformation.

In theory, procedures of this type depend only on the availability
of a suitable approximation T, and their use is not otherwise restricted
by the geometry of & and the position of the points zj on Q. It is
well-known however that in practice the application of such procedures
is restricted considerably by a form of ill-conditioning which is caused
by a certain crowding phenomenon. (See [4, p.179], [8, p.428] and the
remarks of Trefethen in his preface of [14, p.4 ]. See also the paper by

Zemach [15], which concerns a similar crowding phenomenon.) O



(IT) Procedures in which the approximation to F is obtained by
approximating the conformal map of a certain doubly-connected domain Qg

onto a circular annulus of the form Ag = { C: q<|C|<I1 }.

Procedures of this type can be used only in cases where the
quadrilateral {Qft; Z,,z,,23,z4) has one of the two special forms illustrated
in Fig, 1. We note however that the mapping of such geometries has

received considerable attention recently. {See e.g. [2, 9, 12].) O

FIGURE 1

The specific objectives of the paper are as follows:

(1) To consider in detail the effects of the crowding phenomenon
and of the resulting ill-conditioning, associated with the use of
procedures of type (I).

(i1) To show that the ill-conditioning mentioned above can be
avoided by using procedures of type (II), and to illustrate that such
procedures are well-suited for the mapping of domains of the form
illustrated in Fig. 1.

2. Procedures based on approximating f: Q - D :={ { : | (| <l }.

With the notation of Section 1, let f be the function which maps
confermally Q onto the unit disc D so that f(zy)=0 and f’(zy)>0, where

zo 1s some fixed point in Q Then, F: Q — R}, can be expressed as



F=Sof 2.1)

where S : D— Rhis a simple Schwarz-Christoffel transformation. In

particular S can be formulated as

S=S3085 08y, (2.2)

where Sj ; j=1,2,3 are the three elementary conformal maps illustrated in
Fig. 2. The details of these maps are as follows:

(i)  Let gj = f(zj); j=1(1)4, and let

S,(0)= e (g =co )/ (1-55) }, (2.3)

o

where the point g € and the rotation e!® are such that

S1 (61) +S1 (63) =0, S1 (62) +S51 (64) =0,
and

arg{ (S1(c1) +51 (c4))/2}=0.

Then, the bilinear transformation ¢ = Sj(g) maps the unit disc D onto
itself and arranges the points ¢=Si(gj); j=1(1)4, on [{|=1 so that

¢] and &y are diametrically opposite to G, and ¢, respectively, and the

mid-point of the arc ¢, G, coincides with the point ¢ =1; see Fig. 2(b).

(ii) Let
e = arg ¢, (2.4)
and let
S,(9)= —i{ (& —1i)/ (Vk-g+i)}, (2.5)
where
k=(1-sine)/ (1 + sine). (2.5a)
Then, the bilinear transformation t=S,(¢) maps the unit disc T = ¢:
|G| <1 } onto the half-plane H = Imt>0 } so that
g1 = tp =-1, Gy = tp = —1,
and } (2.6)

3 > t3 =-1/k, ¢4 = tg = -1k;

see Fig. 2(c¢)



(i) Let
S3(t) = {1 + sn (K, k) } / 2, 2.7)

where sn(., k) and K(k) denote respectively the Jacobian elliptic sine and
the complete elliptic integral of the first kind, each with modulus k.

Then, the transformation w=S3(t) maps H onto the rectangle Rp, where
h =K{(1-k*)"*}/2K(k), (2.8)
so that

tf >wp =0, tp > wy =1 t3 > w3 =1+1th, t4 > wgq =1h. (2.9)

Rhe—S3 J

tg=-VR tys -t o t2=1 t3= 17k

FIGURE 2

It follows easily from the above that the main computational
requirement for the construction of S by means of (2.2) is the calculation

of two incomplete elliptic integrals of the first kind for each transformed
point. Thus, in theory the problem of approximating F:Q — Rj, may be

regarded as solved once a suitable approximation to f:Q — D is found.

In practice however, the use of (2.1) is restricted by a well-known
numerical difficulty which can be explained as follows:

With reference to Figs 2(a) and 2(b), let @ be the length of the
smaller of the two aros ¢, ¢, and ¢, ¢;, and observe that both aros
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¢1 ¢4 and @2 @3 are of length 20 > ®. Also, with reference to Fig. 2(c¢),
let d be the distance between the points ty,t4 (and t[,t3), i.e.

d=1/k =1 =2sin0 / (1-sin ). (2.10)

Then, the numerical difficulty mentioned above is due to the fact that
the three lengths ®,0 and d become very small even when the height h

of the rectangle Rp is only moderately small, for example when h = 0.1.
In fact, it can be shown easily by using (2.5a), (2.8) and (2.10) that
d = 20 = 8exp{—n/(2h) }; (2.11)

see also [1, p.21]. Therefore, if h is small then some of the images of
the points zj ; j=1(1)4, on the two circles |¢|=1 and |[¢|=1 and on the
real axis of the t-plane will be very close to each other. This crowding
of points may be regarded as a form of ill-conditioning, in the sense

that a numerical procedure based on (2.1) - (2.2) may fail to provide a
meaningful approximation to F:Q—>Rp, even if an "accurate"

approximation to f:Q — D is used. For example, if h = 1/12 then ®<

5.3x10™* and the procedure will fail on a computer with precision 107,
even if the conformal map f is performed "exactly".

It should be observed that the crowding of points described above
is caused by the conformal map f:Q —> D For this reason, any
procedure based on the use of (2.1) is subject to serious numerical
difficulties in cases where h is small. It should also be observed that
the situation cannot be improved by altering the formulation (2.2) of S.
In fact the use of other standard formulations for S may lead to much
more severe crowding. For example, let S be expressed in the
well-known form

S=S,08,, (2.12)
where §1 is a bilinear transformation mapping D onto H:= {t:Imt>0}
so that

¢l >t =0, ¢cp =>tr=1 ¢33 >1t3=1, ¢4 = tg =ox, (2.13)
and is §2 - H—> Rp given by



S,() = {sn' (1, k)} /KK ; k=t (2.14)

see e.g. {1, p.57}. Also, let d be the distance between the points t
and 3, i.e. d = 1/k2-1. Then, it can be shown that

A

d = 16exp{-n/h}, (2,15)

ie. d=~ d2/4, were d is the measure of crowding assocated with the use

of (2.2). This means that if the formulation (2.12) is used then the
crowding on Imt=0 can be much more severe than on |¢|=1. For
example, if h = 1/12 then d < 6.8x107'® and a procedure based on (2.1)
and {2.12} will fail on a computer with precision 107°, even if the
conformal map f is performed "exactly".

We end this section by considering the use of (2.1) for the mapping
of domains having one of the two special forms illustrated in Fig. 1.
Clearly, in such applications, severe crowding will occur when the domain
under consideration is "thin", i.e. when the two arcs zjzp and z3z4 are
close to each other. Equivalently, for domains of the form of Fig. 1(b)
severe crowding will also occur when the two arcs are "far" from each
other. For example, with reference to Fig. 1(b), let the arcs zjzp and
z3z4 have cartesian equations y:Tj(x);j:1,2, respectively, where
T,(x) <T,(x), x €{0,1}.Also, let

o =min| T,(S)—T1,(t) |, B = max| T7,(S) — T,(t) |; s,te[0,1].
(2.16)

Then, since
0 <a<h<§p (2.17)

a procedure based on (2.1) will be subject to serious numerical
difficulties when B is "small" or a is "large".

3. Proceduresbased on approximating g:Qq — Aq ={c¢:q<|g|<l }.

Let Q be of the form illustrated in Fig. 1(a), where the straight line
zpz3 1s inclined at an angle n/n to the real axis, with n>l an integer,

and where Iy:= arc(ziz2) and Ip := aro(z3z4) are given in polar

co-ordinates by



Fj={z:z=pj0)e’, O<0<a/n}; j=12, 3.1)
with 0 < pp(0) < p1(®), 06€[0,m/n]. Also, let Q4 be the 2n-fold

symmetric doubly-connected domain obtained by first reflecting Q about

the straight line z:eln/n. That is,
Q4 = Int(0Q,) n Ext(0Q),), (3.2)
where
o0, ::{Z:Z:pj(O)ele, 0<0<2m }; j=12, (3.2a)
with

@j(e) = Pj(e), 0 €[0,n/n],

and } (3.2b)
ﬁj(k,n/n+9) = f)j(k,n/n—e) 0e[0,n/n]; k=1(1)2n-1

Then, for a certain value q , 0<q<1, Qg is conformally equivalent to the

annulus

Aq ={¢:q<|¢|<l}, (3.3)

and the reciprocal of the inner radius
M = 1/q, 3.4)
is called the conformal module of Q.

Let g be the function which maps Q4 conformally onto Aq and
observe the following:
(1) The requirement that 0Q, is mapped onto |¢|=1 defines g uniquely,

apart from a rotation in the z-plane
(ii)  The transformation
w =nlog ¢/ in (3.5
maps the sector
Sq:={g:g=rei(p,q<r<l,0<cl)<n/n} (3.6)
conformally onto the rectangle
h={w=E&+in:0<&<], O<n<h }, (3.7)
where
h = —( nlogq ) /=, (3.7a)



so that the four corners of Sq are mapped onto those of .

FIGURE 3

It follows from the above that
F(z) = { nlog(g(2)) }/im; (3-8)

see the illustration of Fig. 3, which corresponds to the case n=l.

Therefore, the problem of determining F : Q — Ry is equivalent to that
of determining g : Qg — Agq. Furthermore, since Aq has unit outer

radius and inner radius

q = exp{-nh/n) , (3.9
a procedure based on the use of (3.8) will not be affected by crowding
of the form described in Section 2. More precisely, if h is small then
the distance between the inner and outer circles of Aq is

D =1-q= —nh/n. (3.10)
This should be compared with the measure of crowding (2.11) assocated
with the mapping via the disc described in Section 2.

Let now ft be a domain of the form illustraded in Fig. 1(b) and, as
in Section 2, let the arcs z;z, and z3 z4 have cartesian equations y =
Tj x) :j =12, ie. let

Q={z=x+1y: 0<x<1, IX)<y<Tr(x) }. (3.11)

Then, the transformation



z = exp (inz) (3.12)

maps Q conformally onto the upper half of a symmetric doubly-connected
domain Qg which has the form (3.2) with n =1 and

07(0) = exp {-nTj(0/m)}; j=12. (3.13)
Therefore,

F(z) = log{ f(exp(inz)) } / in, (3.14)
and the equivalence of the conformal maps F: Q — Rp and g: Qg — Aq
persists.

4. Numerical examples

In this section we illustrate the theory of the previous sections by

considering the computation of the conformal modules of two domains of
the type illustrated in Fig. 1. In both examples we compute
approximations to the modules by using each of the following three
methods:
Method 1: Based on approximatingf : Q — D. The approximation to f is
determined by wusing the Bergman kernel method (BKM), i.e. an
orthonormalization method based on the properties of the Bergman kernel
function of Q. {Full details of the BKM procedure used can be found in
[10,11] and the reference cited there.)

Method 2: Based on approximating g : Q4 — Aq.The approximation to g

is determined by an orthonormalization method (ONM), which may be
regarded as the generalization of the BKM to the mapping of
doubly-connected domains. (The details of the ONM can also be found in
[10,11] and the references cited there.)

Method 3. This method determines the inverse conformal map pl-1l . h
— Q, by approximating g[_l] P Ag > Q4. (That is the method is of the

type described in Sect. 3.) The approximation tog[_l] is obtained by

using the well-known method of Garrick; [7], [4, p.p. 194-207], [8,
p.p. 4 76-4 78]. (For the actual Garrick algorithm used see [6, Alg. 4.1], and
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observe that for the two domains considered here this algorithm is

equivalent to that of Challis and Burley [2]; see [6, §5].)
In presenting the numerical results we use the notations El,d~>, 0

and Cr in connection with Meth. 1, and E) in connection with Meth. 2.
The meaning of these notations is as follows:
E;, Eo:  These denote respectively the estimates of the maximum error
in modulus in the BKM approximation to f : Q — D and the ONM
approximation to g : Qg4 — Ag-
$, 6, Ct: With reference to Fig. 2, ®, and 0, denote respectively the
computed values of ¢ and 0, whilst CT denotes the theoretical measure of
crowding, i.e.

Ct =8exp{-n/(2h)}; (4.1)
see Eq. (2.11).

The computations were performed on a CRAY I computer using
programs in single precision Fortran, Single length working on the
CRAY 1 is between 14 and 15 significant figures.

Example 1. Q is the trapezium with corners at the points z]=1,,
zp = 1+1, z3 = (1+1)(1-1) and z4 = 1-a, where 0 < a < 1 ; see Fig. 4.
(That is Q is of the form illustrated in Fig. 1(a).)

The numerical results obtained in the three cases where a = 0.2,
0.15 and 0.1 are listed in Tables 1 and 2. Table 1 contains the values
E1, Eo, &),éand Ct concerning the accuracy of the BKM and ONM
approximations in Meths 1 and 2, and the crowding in Meth. 1. Table 2
contains the approximations to the conformal module h, obtained by each
of the three Methods 1, 2 and 3, The exact values of h, which are also
listed in this table, were computed by using the formulae of Bowman [1,
p.104].

In the case a = 0.1, the measure of crowding Cr is smaller than the
BKM error E; and, not surprisingly, the BKM does not give the

approximate images of the points z; in the correct order. For this
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reason, Meth. 1 fails completely. In the other two cases Meth. 1 does
not "fail", but the resulting approximations to h are much less accurate
than those computed by Meths 2 and 3. This is due to the damaging
effect of crowding and also to the fact that, in general, numerical

methods for the conformal map g: Q4 — Aq (or g[_l]: Aq —> Q4 )

approximate q more accurately than g (or gl™'). o

Example 2. Q is the domain bounded by the straight lines y = 0,
x = 1 and x = 0, and a circular arc of unit radius and centre at the
point 0.5 + ia , a > 1 ; see Fig. 5. (That is, Q is of the form
illustrated in Fig. 1(b).)

The numerical results corresponding to the four cases a = 1.2, 1.1,
9 and 10 are listed in Tables 2(a) and 2(b). As might be expected, in the
case a = 10 the crowding on [§| = 1 is severe, and Meth. 1 fails

completely. In the case a = 1.1, although Cgis smaller than E,;, the
BKM gives the approximate images of the points zj; in the correct order.

Because of this, Meth. 1 does not "fail" but, not surprisingly, the

resulting approximation to h is very inaccurate.

?(0.5.0)
/\
/
/
// !
|
2 / i
A
{197 / |
23\ A4 | / !
/ I z
3
1 24 |
E Q
1

Z}'—i—"ﬂ 21 Z1 22

FIGURE 4 FIGURE 5
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TABLE 1(a)
Meth. 1 Meth. 2
a Eq o 2% Cr E)
0.20(1.4 %10 °3.1x10°%9.6x 10%|9.6x 10 |63 x 107
0.15{1.3x10 °[22x10 %6.9x10* |7.0x10*| 1.6 x 10°°
0.10 1.1 x 10 ~* * * 3.7x10°%| [1.3x10°°
*methods "fails".
TABLE 1(1b)
Approximation to h.
a=20.20 oa=0.15 a=0.10
Meth. 1[0.233 676 2..0.167 9. . ... *
Meth. 2[0.233 679 562 (0.168 179 411 [0.107 766 003
Meth. 3[0.233 679 564 [0.168 179 411 [0.107 766 002
Exact h[0.233 679 562 1(0.168 179 411 [0.107 766 002
*methods "fails".
TABLE 2 (a)
Meth. 1 Meth. 2
a Eq $: 20 Ctt E>
1.211.2x10°] 9.6 x 107 [9.6 x 107° 1.2 x10°
1.14.4x 10%]| 2.8 x 10-* [ 5.2 x 107 1.1 x 10°°
9.0/3.8x10°%| 2.4x10° |2.6x10° 1.2 x10°
10.0/ 1.0 x 107° * 5.5x%x 10° 1.4 x 10°

t+ Computed from (4,1), by using the Meth.3

approximation to h.

* Met

hod

"fails".




13

TABLE 2(b)

Approximations to h.

a=1.2

o= 1.1

o =9.0

10. 0

=]
Il

Meth. 1

Meth. 2
Meth. 3

0.233 52.

0.233 498 59
0.233 498 62

0.153 ...

0.131 422 60
0.131 422 63

8.081

8.034 180 07
8.034 180 10

*

9.034 180 07
9.034 180 10

*Method "fails”.
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