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ABSTRACT 
 
 
 

This paper is concerned with the problem of determining approximations 
to the function F which maps conformally a simply-connected domain  Ω
onto a rectangle R, so that four specified points on  are mapped Ω∂
respectively onto the four vertices of R. In particular,  we study the 
following two classes of methods for the mapping of domains of the form 

})x(Ty)x(T,1x0:iyxz{: 21 < <<<+==Ω . (i) Methods which approximate 
,f0SFbyR:F =→Ω where f  is an approximation to the conformal map 

of Q onto the unit disc, and S is a simple Schwarz-Christoffel 
transformation. (ii)  Methods based on approximating the conformal map of 
a certain symmetric doubly-connected domain onto a circular annulus. 
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1. Introduction. 

 
Let Ω  be a finite simply-connected domain with boundary in the Ω∂

complex z-plane, where  is a closed piecewise analytic Jordan curve. Ω∂

Also, let Zj ;   j=1 (1)4, be four points in counter-clockwise order on Ω∂ ,  
and let Rh denote the rectangle 

     }hn0,1ε0:inεw{:h <<<<+==     (1.1) 

in the w-plane. Then, it  follows from the Riemann mapping theorem that,  
for a certain h, there exists a unique conformal map  which hRΩ:F →
takes the four boundary points  ;  j=l(1)4, respectively onto the four jz

vertices hR  of  ih4  wand  ih13w,12w,01w =+=== . This conformal map has 

many practical applications, and in these the height h of the rectangle is 

of ten  of  spec ia l  s ign i f icance  In  fac t ,  h  i s  an  impor tan t  domain  
functional known as the conformal module of the quadrilateral { ; Ω

}.4z,3z,2z,1z  (See e.g. [5]f  [8,§16.11] and [13], and observe that some 

authors define ,  rather than h, as the conformal module.} 1h−

 T h i s  p a p e r  i s  o n c e r n e d  w i t h  a  s t u d y  o f  t h e  f o l l o w i n g  t w o  

well-known classes of procedures for determining approximations to the 
conformal map  .hΩ:F R→

(I) Procedures which approximate F by f~0SF~ =  where f~  is an 

approximat ion  to  the  conformal  map of  on to  the  uni t  d i sc  D  :=  { :  Ω ζ

),1|| < and S : D →  Rh is a simple Schwarz-Christoffel  transformation. ζ

In  theory,  procedures  of  this  type depend only on the avai labi l i ty  

of  a  sui table  approximation f~ ,  and their  use  is  not  otherwise res t r ic ted 
by the geometry of  & and the posi t ion of  the points   on .  I t  i s  jz Ω∂

well-known however  that  in  pract ice  the appl icat ion of  such procedures  

is  res t r ic ted considerably by a  form of  i l l -condi t ioning which is  caused 

by a certain crowding phenomenon. (See [4, p.179], [8, p.428] and the 

remarks of Trefethen in his preface of [14, p.4 ].  See also the paper by 

Zemach [15], which concerns a similar crowding phenomenon.) □  
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 (II) Procedures in which the approximation to F is obtained by 
approximating the conformal map of a certain doubly-connected domain  dΩ
onto a circular annulus of the form  := {  :  q<| ζ |<l  }. qA ζ

Procedures of this type can be used only in cases where the 

quadrilateral { ft; ZΩ 1,z2,z3,z4) has one of the two special forms illustrated 

in Fig, 1. We note however that the mapping of such geometries has 

received considerable attention recently. {See e.g. [2, 9, 12].) □  

 

 

 
FIGURE    1 

 

 

 

 The specific objectives of the paper are as follows: 

 (i) To consider in detail  the effects of the crowding phenomenon 

and  of  the  resu l t ing  i l l -condi t ion ing ,  assoc ia ted  wi th  the  use  of  

procedures of type (I).  

 (i i)  To show that the il l-conditioning mentioned above can be 

avoided by using procedures of type (II),  and to il lustrate that such 

procedures are well-suited for the mapping of domains of the form 

illustrated in Fig. 1. 

2. Procedures based on approximating f :  Ω  →  D  := {  ζ   :   |  ζ  |  <1  }.  

With the notation of Section 1, let f  be the function which maps 
confermally  onto the unit disc D  so that f( )=0 and f’( )>0, where Ω oz oz

oz  is some fixed point in  Then, Ω h      :  F R→Ω  can be expressed as 
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 F = S o f,     (2.1) 

where S :  D is a simple Schwarz-Christoffel transformation. In hR→

particular S can be formulated as 

         (2.2) ,1S o 2S o 3S  S=

where Sj ;  j=1,2,3 are the three elementary conformal maps illustrated in 

Fig. 2. The details of  these maps are as follows: 

(i)   and let 4,(1)1j;)jf(zjLet ==ς

   ,})ςς1(/)ςς({iαe:)ς(1S ΟΟ −−=    (2.3) 

where the point  and the rotation ∈Ος
αie  are such that 

   0,)4(ς1S)2(ς1S0,)3(ς1S)1(ς1S =+=+  

and 
   .0}2/))4(ς1S)1(ς1S({arg =+  

Then ,  the  b i l inear  t ransformat ion  )(1Sˆ ς=ς  maps  the  uni t  d i sc  D  on to  
i t s e l f  a n d  a r r a n g e s  t h e  p o i n t s  ,4)1(1j;)j(1Sˆ =ς=ς  o n   s o  t h a t  1|ˆ| =ς

1ς̂  and  are diametrically opposite to 2ς̂ 3ς̂  and 4ς̂  respectively, and the 

mid-point of the arc  coincides with the point 1ς̂ 4ς̂ ;1ˆ =ς  see Fig. 2(b).   

(i i)  Let 

 ,1ς̂arg:e =      (2.4) 

and let 
 ,})iς̂k(/)iς̂({i:)ς̂(2S +−−−=    (2.5) 

where 

 k = ( 1 - sine ) /  (  1 + sine ).     (2.5a) 

Then, the bilinear transformation )ˆ(St 2 ς=  maps the unit disc  :ˆˆ ς=

}1|ˆ| <ς  onto the half-plane }0Imt >=H  so that 

and    }
;1/k4t4ς1/k,3t3ς

1,2t2ς1,1t1ς

−=→−=→

−=→−=→
 (2.6) 

see Fig. 2(c) 



4 

(iii)  Let 

    (2.7) 2,   /   }   k)   (K(k)t, 1-sn      1   {   :   (t)3S +=

where sn(. ,  k) and K(k) denote respectively the Jacobian elliptic sine and 
the  comple te  e l l ip t ic  in tegra l  o f  the  f i r s t  k ind ,  each  wi th  modulus  k .  
Then, the transformation (t)3S  w =  maps H  onto the rectangle ,  where hR

    (2.8) ,)k(K2/})k1({Kh 2/12−=

 so that 

 .ih4w4t,ih13w3t,12w2t,01w1t =→+=→=→=→  (2.9) 

 

 
FIGURE  2 

 

 It  follows easily from the above that the main computational 

requirement for the construction of S by means of (2.2) is the calculation 

of two incomplete elliptic integrals of the first  kind for each transformed 
point.  Thus, in theory the problem of approximating  may be ,h:F R→Ω

regarded as  solved once a  sui table  approximation to   is  found.  D→Ω:f

In practice however, the use of (2.1) is restricted by a well-known 

numerical difficulty which can be explained as follows: 
 With reference to Figs 2(a) and 2(b),  let  be the length of the Φ
smaller of the two aros  and ,  and observe that both aros 41 ςς 32 ςς
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4ς̂1ς̂  and  are  of  length  Also,  with reference to  Fig.  2(c) ,  3ς̂2ς̂ Φ.2θ ≥

let d be the distance between the points  (and )4t,1t 3t,1t ,  i .e.  

 .)sinθ-1(/θsin21k/1d =−=    (2.10) 

Then,  the numerical  diff icul ty  ment ioned above is  due to  the fact  that  
the  three lengths   and d become very small  even when the height  h  θΦ,

of the rectangle  is only moderately small,  for example when h = 0.1. hR

In fact,  i t  can be shown easily by using (2.5a),  (2.8) and (2.10) that 

 ;}(2h)/π{8exp2d −≈≈ θ    (2.11) 

see also [1,  p .21] .  Therefore ,  i f  h  is  smal l  then some of  the images of  
the points   ;  j=l( l )4 ,  on the two circ les  jz 1|ς| =  and  and on the 1|ς̂| =

real  axis  of  the t -plane wil l  be  very close to  each other .  This  crowding 

of  po in ts  may be  regarded  as  a  form of  i l l -condi t ion ing ,  in  the  sense  

that a numerical procedure based on (2.1) - (2.2) may fail  to provide a 
meaningful approximation to ,h:F R→Ω  even if an "accurate" 

approximation to  is used. For example, if  h = 1/12 then D→Ω:f <Φ   

5.3x10- 8 and the procedure will  fail  on a computer with precision 10- 7,  

even if the conformal map f is performed "exactly". 

 I t  should be observed that  the crowding of  points  descr ibed above 
i s  caused  by  the  conformal  map  D→Ω:f  For  th i s  r eason ,  any  

procedure based on the use of (2.1) is subject to serious numerical 

d i f f i cu l t i e s  in  cases  where  h  i s  smal l .  I t  shou ld  a l so  be  obse rved  tha t  

the s i tuat ion cannot  be improved by al ter ing the formulat ion (2.2)  of  S.  

In  fact  the use of  other  s tandard formulat ions for  S may lead to  much 

m o r e  s e v e r e  c r o w d i n g .  F o r  e x a m p l e ,  l e t  S  b e  e x p r e s s e d  i n  t h e  

well-known form 
     (2.12) ,ŜοŜS 12=

where  is  a  bi l inear  t ransformation mapping D  onto  1Ŝ }0t̂Im:t̂{:ˆ >=H

so that  
  (2.13) ,4t̂4ς1,3t̂3ς1,2t̂2ς0,1t̂1ς ∞=→=→=→=→

and is  given by hRĤ:2Ŝ →
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   (2.14) ;t̂k̂;)k̂K(/})k̂,t̂(sn{:(t)Ŝ 2/11/21
2

−− ==

see  e .g .  {1 ,  p .57} .  Also ,  l e t  d  be  the  d i s t ance  be tween  the  po in t s   ˆ 2t̂

and  i .e.  d  = 1/,3t̂ ˆ 2k̂ -1. Then, it  can be shown that 

      (2,15) ,}h/π-16exp{d̂ ≈

i .e .   were d is  the measure of  crowding assocated with the use ,4/2dd̂ ≈

of (2.2).  This means that if the formulation (2.12) is used then the 
crowding on  can be much more severe than on .  For 0t̂Im = 1|ς| =

example,  i f  h  = 1/12 then d < 6.8xl0- 1 6  and a  procedure based on (2.1)  

and {2.12} will  fail  on a computer with precision 10- 5,  even if the 

conformal map f is performed "exactly". 

 We end this section by considering the use of (2.1) for the mapping 

of domains having one of the two special forms illustrated in Fig. 1. 

Clearly, in such applications, severe crowding will  occur when the domain 
under consideration is "thin", i .e.  when the two arcs  and  are 2z1z 4z3z

close to each other.  Equivalently, for domains of the form of Fig. l(b) 

severe crowding will  also occur when the two arcs are "far" from each 
other .  For  example,  with  reference to  Fig.  l (b) ,  le t  the  arcs   and 2z1z

4z3z  have cartesian equations 1,2,j;(x)jy == τ  respectively, where 

 Also, let {0,1}.x ∈(x),(x) 21 ττ <

 ].1,0[ts,;|)t()S(|maxβ|,)t()S(|min 212 ∈−=−=α ττττ1  
           (2.16) 

Then, since 
 βhα0 ≤≤≤      (2.17) 

a  p rocedure  based  on  (2 .1 )  wi l l  be  sub jec t  to  se r ious  numer ica l  
difficulties when β  is "small" or α  is "large". 

 
.}1|ς|q:ς{:qAdΩ:gingapproximaton  based Procedures 3. <<=→  

 Let Ω  be of the form illustrated in Fig. l(a),  where the straight line 

3z2z  is  incl ined at  an angle   to  the real  axis ,  wi th  n≥ l  an integer ,  n/π

a n d  w h e r e  : =  a r c ( z1Γ 1 z 2 )  a n d  2Γ  : =  a r o ( )  a r e  g i v e n  i n  p o l a r  4z3z

co-ordinates by 
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   (3.1) 1,2,j;}n/πθΟ,θie)(θjρz:z{jΓ =≤≤==

with .]n/π0,[θ),θ(1ρ)θ(2ρ0 ∈<<  Also, let  be the 2n-fold dΩ

symmetric doubly-connected domain obtained by first  reflecting  about Ω

the straight l ine  That is,  .n/iπez =

 ,)Ω(Ext)Ω(Int:dΩ 11 ∂∩∂=    (3.2) 

where 

   (3.2a) 1,2,j;}π2θΟ,θie)(θjρz:z{:j =≤≤==Ω∂

with 

and  }
1-2n1(1)k;]n/π0,[θθ)n/πk,(jρ̂θ)n/πk,(jρ̂

,]n/π0,[θ,)(θjρ)(θjρ̂

=∈−=+

∈=

 (3.2b) 

Then, for a certain value q ,  0<q<1 ,   is conformally equivalent to the dΩ

annulus 
 ,}1|ς|q:ς{:q <<=A     (3.3) 

and the reciprocal of the inner radius 
      ,q/1   :   M =      (3.4) 
is called the conformal module of .  dΩ

 Let g be the function which maps  conformally onto  and dΩ qA

observe the following: 
(i)  The requirement that 1Ω∂  is mapped onto 1|ς| =  defines g uniquely, 

apart from a rotation in the z-plane  

(ii)  The transformation 
 iπ/ςnlogw =      (3.5) 

maps the sector 
    (3.6) }n/πΦ01,rq,iφreς:{ς:qS <<<<==

conformally onto the rectangle 
 },hn0,1ξ0:inξw{:h <<<<+==   (3.7) 

where 
 ,/π)qlogn(h −=     (3.7a) 
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so that the four corners of Sq  are mapped onto those of .  h
 

FIGURE 3 
 

 

It  follows from the above that 

 F(z) = { nlog(g(z)) }/iπ;     (3.8) 

see the illustration of Fig. 3, which corresponds to the case n=l.  
Therefore, the problem of determining hR:F →Ω  is equivalent to that 
of determining  Furthermore, since Aq has unit outer .qAd:g →Ω

radius and inner radius 
 q   =   exp{- h/n)  ,    (3.9) π

a procedure based on the use of  (3 .8)  wil l  not  be affected by crowding 

o f  the  fo rm desc r ibed  in  Sec t ion  2 .  More  p rec i se ly ,  i f  h  i s  smal l  then  

the distance between the inner and outer circles of Aq is 
 .n/hπq1D −≈−=     (3.10) 

This should be compared with the measure of crowding (2.11) assocated 

with the mapping via the disc described in Section 2. 

 Let  now ft  be a  domain of  the form i l lust raded in  Fig.  l (b)  and,  as  

in Section 2, let the arcs z1z2 and z3  z4 have cartesian equations y = 
 let.e.i,2,1j:(x)j =T

 }.)x(2y)x(1,1x0:iyxz{Ω TT <<<<+==   (3.11) 

Then, the transformation 
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 )zπi(expẑ =     (3.12) 

maps Ω  conformally onto the upper half of a symmetric doubly-connected 
domain  which has the form (3.2) with n = 1 and dΩ
 .2,1j)};π/(θjTπ{exp)θ(jθ =−=   (3.13) 

Therefore, 
 ,i/}))zi(exp(flog{)z(F ππ=     (3.14) 
and the equivalence of the conformal maps qAd:gandhR:F →Ω→Ω  

pers i s t s .  

 

4. Numerical   examples 

 In this section we illustrate the theory of the previous sections by 

considering the computation of the conformal modules of two domains of 

the type illustrated in Fig. 1. In both examples we compute 

approximations to the modules by using each of the following three 

methods: 
Method 1: Based on approximating . The approximation to f is DΩ:f →

determined by using the Bergman kernel method (BKM), i .e.  an 

orthonormalization method based on the properties of the Bergman kernel 

function of Ω .  {Full details of the BKM procedure used can be found in 

[10,11] and the reference cited there.) 

Method 2: Based on approximating The approximation to g .qAdΩ:g →

is determined by an orthonormalization method (ONM), which may be 

r e g a r d e d  a s  t h e  g e n e r a l i z a t i o n  o f  t h e  B K M  t o  t h e  m a p p i n g  o f  

doubly-connected domains. (The details of the ONM can also be found in 

[10,11] and the references cited there.) 

Method 3. This method determines the inverse conformal map F   :   ]1[−
h

Ω→ ,  by approximating .dΩqA:]1[g →−  (That is the method is of the 

type descr ibed in  Sect .  3 . )  The approximation to ]1[g −  i s  obtained by 

us ing  the  we l l -known method  of  Gar r i ck ;  [7 ] ,  [4 ,  p .p .  194-207] ,  [8 ,  

p.p. 4 76-4 78]. (For the actual Garrick algorithm used see [6, Alg. 4.1], and  
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observe that for the two domains considered here this algorithm is 

equivalent to that of Challis and Burley [2];  see [6, §5].) 
 In presenting the numerical results we use the notations θ~,Φ~,1E  

and connection with Meth. 1, and  in connection with Meth. 2. TC  in 2E

The meaning of these notations is as follows: 

2E,1E : These denote respectively the estimates of the maximum error 

in modulus in the BKM approximation to and the ONM D: →Ωf
approximation to  .qAdΩ:g →
~ :TC,θ~,φ  With reference to Fig. 2, ,Φ~ and ,θ~  denote respectively the 

computed values of φ  and θ ,  whilst  denotes the theoretical measure of TC

crowding, i .e.  
 )};h2/(exp{8TC π−=     (4.1) 

see  Eq.  (2.11). 

 The computations were performed on a CRAY I computer using 

programs in  s ingle  precis ion Fortran,  Single  length working on the 

CRAY I is between 14 and 15 significant figures. 
 Example 1. Ω  is the trapezium with corners at the points ,11z = ,  

= + − = −α+= 14z  and  )i1)((3z,i12z i1 , where 0 < α  < 1 ;  see Fig. 4. 

(That is Ω  is of the form illustrated in Fig. l(a).)  

 The numerical results obtained in the three cases where a = 0.2, 

0.15 and 0.1 are listed in Tables 1 and 2. Table 1 contains the values 
θΦ ~~,, 2E1E , and  concerning the accuracy of the BKM and ONM TC

approximations in Meths 1 and 2, and the crowding in Meth. 1. Table 2 

contains the approximations to the conformal module h, obtained by each 

of the three Methods 1, 2 and 3, The exact values of h, which are also 

listed in this table, were computed by using the formulae of Bowman [1, 

p.104]. 
 In the case α  = 0.1, the measure of crowding CT is smaller than the 

BKM error Et and, not surprisingly, the BKM does not give the 

a p p r o x i m a t e  i m a g e s  o f  t h e  p o i n t s  z ;  i n  t h e  c o r r e c t  o r d e r .  F o r  t h i s  
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reason,  Meth.  1  fa i ls  completely .  In  the other  two cases  Meth.  1  does 

not "fail",  but the resulting approximations to h are much less accurate 

than those computed by Meths 2  and 3.  This  is  due to  the damaging 

effect  of  crowding and also to  the fact  that ,  in  general ,  numerical  

methods for the conformal map  )dΩqA:1][g(orqAdΩ:g →−→

approximate q more accurately than g (or g[ - 1 ]) .  □  

 Example  2 .  Ω  is  the  domain  bounded  by  the  s t ra ight  l ines  y  =  0 ,  

x  =  1  and  x  =  0 ,  and  a  c i rcu la r  a rc  o f  un i t  r ad ius  and  cen t re  a t  the  
po in t  0 . 5  +  i  ,  α  >  1  ;  s e e  F i g .  5 .  ( T h a t  i s ,   i s  o f  t h e  fo r m α Ω

i l lustrated in Fig. l(b).) 
 The numerical results corresponding to the four cases α  = 1.2, 1.1, 

9 and 10 are listed in Tables 2(a) and 2(b). As might be expected, in the 
case  = 10 the crowding on α ||ξ   = 1 is severe, and Meth. 1 fails 

completely .  In  the case α  =  1 .1 ,  a l though is  smal ler  than ETC 1,  the 
BKM gives the approximate images of the points ;  in the correct order.  jz

Because of  this ,  Meth.  1  does not  "fai l"  but ,  not  surpr is ingly,  the  

resulting approximation to h is very inaccurate. 

 
 

 
FIGURE 4       FIGURE 5 
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TABLE   l (a) 
 

 Meth. 1  Meth. 2 
α  1E  φ

~  2 e~  TC   2E  

0.20 1.4 × 10 - 6 3.1 × 10 - 3 9.6 × 10– 3  9.6 × 10– 

3

 6.3 × l 0– 7

0.15 1.3 × 10 - 5 2.2 × 10 - 4 6.9 × 10– 4  7.0 × 10– 4  1.6 × l 0– 6

0.10 1.1 × 10 - 4 * *  3.7 × 10– 6  1.3 × l 0– 5

 *methods "fails".  

 

TABLE 1(1b) 
Approximation to h. 

 
 α  =  0 .20  α  =  0 .15  α  =  0 .10  
M e th .   1  0 . 233   676   2 .  . 0 . 167   9 .  .   .  .  .  *  
M e th .   2  0 . 233   679   562 0 .168   179   411  0 .107  766  003  
M e th .   3  0 . 233   679   564 0 .168   179   411  0 .107  766  002  

Exac t   h  0 . 233   679   562 0 .168   179   411  0 .107  766  002  

 *methods "fails".  

 

 

TABLE 2 (a) 
 

 Meth.  1  Meth.  2 
α  1E  θ~2~

=φ  TC † 2E  

1.2 1.2 ×  10- 5 9.6 ×  10- 3 9.6 ×  10- 3  1.2 ×  10- 6

1.1 4.4 ×  10- 4 2.8 ×  10-4 5.2 ×  10- 5 1.1 ×  10- 6

9.0 3.8 ×  10- 6 2.4 ×  10- 5 2.6 ×  10- 6  1.2 ×  10- 6

10.0 1.0 ×  10- 5 * 5.5 ×  10- 6  1.4 ×  10- 6

 

†  C o m p u t e d  f r o m  ( 4 , 1 ) ,  b y  u s i n g  t h e  M e t h . 3  
a p p r o x i m a t i o n  t o  h .  

*  M e t h o d  " f a i l s " .  
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TABLE 2(b) 

Approximations to h. 
 
 

 α  = 1. 2 α = 1.1 α   = 9.0 α  = 10. 0 

Meth.  1 0.233  52 .   .  .  0.153 .  .  .   .  .   8.081  .  .  .    .  . * 

Meth.  2 0.233  498  59 0.131  422  60 8.034  180  07 9.034  180  07
Meth.  3 0.233  498  62 0.131  422  63 8.034  180  10 9.034  180  10
*Method "fails”. 
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