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Abstract 

The ability to perceive and recognise facial expressions of emotion is an important part of social 

communication. These processes are subject to influence from several internal and external sources 

of variance. The aim of the research within this thesis is to explore the relative contribution of some 

of these sources of variance on the processing of facial expressions. Under this broad aim, two main 

problems are addressed, using a combination of behavioural and neuroimaging methods in each. 

The first concerns the effect of observer age on the recognition of emotions from facial expressions. 

We showed that (1) older adults have poorer recognition of certain facial expressions than younger 

adults, and that these differences are explained by differences in several cognitive and visual 

measures, and (2) that the neural response to facial expressions attenuates across the lifespan. 

The second problem concerns the relative influence of stimulus-based cues and conceptual 

knowledge of emotions on behavioural and brain representations of emotion. Within this set of 

studies, we showed that perceptual similarity and confusability of facial expressions of emotion are 

explained by the similarity of face shapes, surface textures, and similarity of emotion concepts. In 

addition to behavioural measures, we found that these cues can explain representational similarity 

within several regions of the brain involved in the perception of facial expressions. 

Together, the results highlight several sources of variance affecting the processing of facial 

expressions of emotion in adults. These studies also pave the way for future research to investigate 

age differences from the perspective of differences in the role of conceptual and stimulus-based 

cues. 
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1 Literature review 

1.1 Facial Expressions of Emotion 

The experience of an emotion can cause physiological changes to a person’s face, conveying 

information about their emotional state to others. As observers, therefore, we are able to infer the 

emotional state that an individual might be experiencing based on their facial expression. Early 

research into the identification of emotions from facial expressions concluded that the expressions 

associated with each emotional state are largely consistent across individuals, and across cultures 

(Ekman, 1970; Ekman & Oster, 1979). For example, smiling is associated with the emotion happiness, 

whereas a lowered brow and pursed lips are associated with anger. Furthermore, Ekman’s research 

concluded that there are six universal expressions of emotion: anger, disgust, fear, happiness, 

sadness, and surprise. Although this has since been the subject of debate (e.g. Barrett, 2006; Cowen 

& Keltner, 2017; Skerry & Saxe, 2015), these six categories of facial expression have been used 

extensively in subsequent research. 

Despite the relative consistency of the correspondence between an expression and an emotion, 

there are numerous factors that can affect how people identify the emotion that another person 

might be experiencing. For example, individuals with some clinical disorders (e.g. schizophrenia), and 

patients with damage to certain regions of the brain, often experience difficulty correctly identifying 

the emotion of another individual based on their facial expression (e.g. Adolphs, Tranel, Damasio, & 

Damasio, 1994; Premkumar et al., 2008). Even considering non-clinical samples, the ability to 

recognise emotions from facial expressions varies considerably across individuals and ages. 

This thesis aims to examine several of the contributing factors that can influence the recognition of 

emotions from facial expressions. Two main research areas will be addressed. One set of studies 

concern the effect of observer age on recognition ability, and the cognitive and behavioural 

measures that may account for these age-related changes. A second set of studies examines the 

contribution of the observer’s internal knowledge of emotion concepts, and physical properties of 

the facial expression stimulus, to the processing of facial expressions. 

In either case, the behavioural studies of recognition performance are supplemented by 

neuroimaging experiments looking at the neural basis of facial expression processing, with the 

common aim of understanding the relative contribution of several factors to the processing of facial 

expressions. 
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1.2 Facial expression processing in the brain 

A distributed network consisting of a number of regions of the brain is involved in the processing of 

facial expressions of emotion. Several regions (for example, some temporal regions including the 

amygdala and superior temporal sulcus) are suggested to be involved in the general processing of 

emotions from expressions (Adolphs et al., 1999; Engell & Haxby, 2007), whereas other regions have 

been reported to respond to specific expressions. First, this subsection will explore the regions that 

are implicated in the processing of specific expressions. Next, research into the regions that are 

involved in the general processing of expressions will be reviewed. 

When assessing which regions are involved in the processing of specific expressions using fMRI, the 

activation in response to each emotion can be contrasted against the response to baseline or a 

fixation cross. Such analysis may highlight the regions involved in processing the expression 

alongside the network of regions involved in processing faces. Alternatively, the activation in 

response to a specific emotion may be contrasted against the response to neutral faces. This method 

identifies the expression-specific regions without the network of face-responsive regions. Here, we 

focus on the latter method of analysis. 

Contrasting the response to angry faces to the response to neutral faces revealed significantly higher 

activation in the bilateral fusiform gyri (Kesler-West et al., 2001) left medial temporal gyrus 

(Sprengelmeyer, Rausch, Eysel, & Przuntek, 1998), left insula (Fusar-Poli et al., 2009), bilateral 

amygdala (Fischer et al., 2005; Whalen et al., 2001; Yang et al., 2002), right occipital gyrus (Fusar-Poli 

et al., 2009; Kesler-West et al., 2001), and bilateral cingulate cortices (Jehna et al., 2011; 

Sprengelmeyer et al., 1998). Data from a patient with a large frontal legion covering areas including 

the orbitofrontal cortex further suggests that this area is also involved in the processing of angry 

faces (Blair & Cipolotti, 2000). 

For fearful faces, greater activity in the bilateral amygdala (Breiter et al., 1996; Fusar-Poli et al., 

2009; Whalen et al., 2001; Yang et al., 2002), right fusiform gyrus (Fusar-Poli et al., 2009; 

Sprengelmeyer et al., 1998), left inferior frontal gyrus (Kesler-West et al., 2001), bilateral medial 

frontal gyri (Fusar-Poli et al., 2009) and left dorsolateral frontal cortex (Sprengelmeyer et al., 1998) 

compared to neutral has been reported. The role of the amygdala in the processing of facial 

expressions of fear has been well documented in numerous lesion studies, in which patients with 

amygdala damage are impaired at the processing of fearful faces (e.g. Adolphs, Tranel, Damasio, & 

Damasio, 1994, 1995; Adolphs et al., 1999; Fine & Blair, 2000). 

Facial expressions of disgust have been reported to evoke greater activity in the right putamen 

(Sprengelmeyer et al., 1998), right thalamus (Fusar-Poli et al., 2009), bilateral occipital cortices 
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(Jehna et al., 2011) and left insula cortex (Fusar-Poli et al., 2009; Jehna et al., 2011; Sprengelmeyer 

et al., 1998), compared to neutral faces. 

Compared to neutral faces, sad faces show greater activity in the left fusiform gyrus (Kesler-West et 

al., 2001), right amygdala (Fusar-Poli et al., 2009; Yang et al., 2002) and left lingual gyrus (Fusar-Poli 

et al., 2009). Support for the role of the amygdala in the processing of sad faces comes from Adolphs 

and Tranel (2004), who reported that patients with bilateral amygdala damage performed more 

poorly at the recognition of sad faces than controls. 

For happy faces compared to neutral faces, higher activation in the bilateral amygdala (Fusar-Poli et 

al., 2009; Yang et al., 2002), left fusiform gyrus (Fusar-Poli et al., 2009), medial frontal/cingulate 

sulcus (Kesler-West et al., 2001) and right anterior cingulate cortex (Fusar-Poli et al., 2009) has been 

reported. 

Subtracting the response to neutral faces from the response to negative (a mix of angry and 

disgusted) faces revealed significantly higher activation in the right middle and bilateral superior 

temporal gyri, the left amygdala, and the right orbitofrontal cortex (Iidaka et al., 2001). Furthermore, 

the researchers reported that activity in the left amygdala correlated with activity in the left 

prefrontal cortex, suggesting an interaction between these areas in response to negative facial 

expressions. 

Support for the role of the amygdala in the processing of emotions from facial expressions comes 

from lesion studies, where patients with bilateral amygdala damage are impaired at the recognition 

of emotions from facial expressions, particularly fear and anger (for a review, see Fine & Blair, 2000). 

There are some suggestions that the functional role of the amygdala is to evaluate the affective 

significance of stimuli, and contribute to prioritising attention to the stimuli where appropriate 

(Pessoa & Adolphs, 2010). 

In sum, frontal, temporal, and some occipital regions are associated with the processing of different 

expressions. Some temporal regions such as the superior and medial temporal gyri, and some frontal 

regions such as the prefrontal and orbitofrontal cortices appear to be involved in the processing of 

negative expressions. While the amygdala is commonly reported to respond to negative expressions, 

there is some evidence (e.g. Yang et al., 2002) to suggest that it also responds to facial expressions of 

happiness. Similarly, regions of the cingulate cortex appear to respond to both happy and angry 

faces.  

Next, research into the regions involved in the general processing of facial expressions will be 

reviewed. A key model of face perception (Haxby, Hoffman, & Gobbini, 2002, 2000) proposes 3 core 
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regions, within a distributed network, that are implicated in the processing of faces. The original 

model proposes that early processing of facial features occurs in the inferior occipital gyrus 

(Occipital Face Area; OFA), invariant aspects of faces (e.g. identity) are processed in the lateral 

fusiform gyrus (Fusiform Face Area; FFA), while variable aspects of faces (e.g. facial expressions) are 

processed in the superior temporal sulcus (STS). Evidence from an fMRI-adaptation study supports 

this functional dissociation of the FFA and STS, in that reduced signal in the anterior STS was 

associated with repeated instances of expression, while repeated identities led to reduced signal in 

both a region of the fusiform cortex and the posterior STS (Winston, Henson, Fine-Goulden, & Dolan, 

2004).  

There is, however, research to suggest that all three of these regions may be involved in the 

processing of facial expressions. When attending to either the identity or expression of faces, the 

response in the FFA is larger when attending to expression, and is sensitive to changes in expression 

(Ganel, Valyear, Goshen-Gottstein, & Goodale, 2005). Similarly, Fox, Moon, Iaria, and Barton (2009) 

used an fMRI-adaptation paradigm to assess the involvement of the FFA, OFA, and STS in the 

processing of both identity and expression. The OFA was sensitive to both changes in identity and 

expression, even when participants were not aware of a change. The FFA and pSTS were also 

sensitive to these changes. Together, these studies suggest that all three of the core face regions are 

involved in the processing of expressions, in addition to identity. In support of this, research using 

Multivariate Pattern Analysis (MVPA; Haxby et al., 2001) has reported that these 3 regions represent 

facial expressions in the form of decodable patterns of activation. Contrary to more standard 

univariate analysis of fMRI data, which assesses the signal change within each voxel between 

experimental conditions, MVPA uses distributed patterns of activation across voxels within a region 

of interest to determine whether that region contains information about different stimuli. For 

example, early research using MVPA reported dissociable patterns of activation in response to 

different stimuli belonging to the same sub-category of objects (e.g. different images of shoes) 

within the ventral visual cortex (Haxby et al., 2001). Research using MVPA has been used to study 

representations of different facial expressions within face-responsive regions. 

Research using machine-learning classifiers has reported that patterns in response to 7 different 

facial expressions can be successfully decoded above chance in the bilateral superior temporal sulci 

(Said, Moore, Engell, Todorov, & Haxby, 2010; Said, Moore, Norman, Haxby, & Todorov, 2010). 

Similarly, binary classifiers have been used to discriminate between pairs of patterns elicited by 

different facial expressions within the FFA (Harry, Williams, Davis, & Kim, 2013) and OFA (Zhang et 

al., 2016). Together, this suggests that the core regions of the face processing network (Haxby et al., 

2002, 2000) may all contain discriminable representations of facial expressions, to some extent. 
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In addition to the 3 regions in the core face network, regions in the ‘extended’ face network (the 

intraparietal sulcus, amygdala, insula, and anterior temporal; Haxby et al., 2000) are also suggested 

to contain decodable representations of facial expressions. Wegrzyn et al (2015) used a classifier to 

decode patterns of activation in response to happy, angry, fearful and neutral faces within these 4 

regions, in addition to the 3 core face regions. Together, this research suggests that regions within 

both the core and extended face network represent of facial expressions.  

A research question that is subject of debate is whether facial expressions are processed 

categorically or continuously. There is seemingly contradictory evidence that the perception of 

expressions and associated neural representations are based either on the allocation of expressions 

to distinct emotion categories, or that expressions vary continuously across several dimensions. 

Behavioural evidence that facial expression are processed categorically comes from studies showing 

that participants are better able to detect differences between morphed facial expressions that 

cross a categorical boundary than those that do not (Calder, Young, Perrett, Etcoff, & Rowland, 

1996; Etcoff & Magee, 1992). Alternatively, the relatively consistent patterns of confusions made 

between expressions (Young et al., 1997), and the ability of participants to detect differences in 

intensity of expressions (Calder, Young, Rowland, & Perrett, 1997) suggests a continuous perception 

of facial expressions. 

Some studies have addressed whether facial expressions are represented continuously or 

categorically in the brain. For example, Harris, Young, and Andrews (2012) presented participants 

with morphed facial expressions that varied either within- or between-emotion category. Results 

showed that the posterior STS was sensitive to both within- and between-emotion category changes 

in facial expressions, suggesting that facial expressions are represented continuously in this region. 

Conversely, the amygdala was only sensitive to between-category changes in expressions, suggesting 

that this regions facial expressions categorically.  

Similarly, Said, Moore, Norman, et al. (2010) presented participants with a series of morphed facial 

expressions from along the Anger-Fear continuum, measuring neural response with fMRI. The 

researchers trained a classifier to discriminate between the responses in the left- and right-STS to 

the two end points of the continuum (i.e. the response to 100% angry faces and the response to 

100% fearful faces), then tested the classifier to discriminate between the intermediate morphed 

faces. Under the hypothesis that facial expressions are represented categorically, the performance 

of the classifier at classifying the responses to the intermediate steps would best be modelled as a 

step function, whereas under the hypothesis that facial expressions are represented continuously, 

the performance of the classifier would be linear. Results showed that the left-STS represented facial 
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expressions continuously (i.e. performance of the classifier showed a linear relationship with the 

percentage of an emotion in the morph). However, in the right-STS, performance of the classifier 

was modelled both linearly and with a step function, suggesting that this region represents both 

subtle stimulus-gradations and distinct emotion categories. 

 

1.3 Thesis content 

There are several sources of variance that can affect the recognition of emotions from facial 

expressions. Here, the literature review (and subsequent research within the thesis) will focus on 

two main areas of research that examine some of these sources of variance.  

The first research area examines the effect of observer age on the recognition of emotion from facial 

expressions, and the cognitive, behavioural, and neural measures that may account for any age-

related changes. Below is a review of the literature surrounding the contribution of several sources 

of variance that may account for any age-related changes in expression recognition. The review 

covers both behavioural measures, and age-differences in neural response to expressions. 

The second area of research examines the relative contribution of stimulus-based cues and 

conceptual knowledge of emotions on the perception, recognition, and neural representations of 

facial expressions. As before, research into the contribution of these cues to both behaviour and 

neural representations will be covered.  

 

1.4 Ageing and the recognition of emotions from facial expressions 

The recognition of emotions from facial expressions is an important part of social communication, 

and age-related changes in the ability to recognise emotions has been a focus of research over the 

past three decades (Malatesta, Izard, Culver, & Nicolich, 1987). Research into this area has assessed 

the ability of older adults to recognise the six basic emotions in comparison to younger adults. The 

observed pattern of impairments is that older adults experience difficulty recognising negative 

emotions; particularly anger (Isaacowitz et al., 2007; Sullivan, Ruffman, & Hutton, 2007), sadness 

(Calder et al., 2003; Horning, Cornwell, & Davis, 2012) and fear (Calder et al., 2003; Horning et al., 

2012; Sullivan et al., 2007). Some research has suggested an age-related improvements in the 

recognition of disgusted facial expressions (Calder et al., 2003; Horning et al., 2012; Suzuki, Hoshino, 

Shigemasu, & Kawamura, 2007; Wong, Cronin-Golomb, & Neargarder, 2005), however a meta-

analysis reviewed effect sizes between the accuracies of younger and older participants from 17 
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datasets, and reported that the mean effect size between the two groups for the recognition of 

disgust failed to reach statistical significance (Ruffman, Henry, Livingstone, & Phillips, 2008).  

Several cognitive processes are associated with the normal recognition of emotions from facial 

expressions. Changes in these processes that occur across the lifespan may explain the age 

differences in emotion recognition that have been observed in behavioural research. Several of 

these cognitive processes are claimed to account for the young-old differences in expression 

recognition. While there is research reporting that young-old differences can be explained by age 

differences in (for example) low-level visual processes, face processing, working memory and fluid 

intelligence, there is little research into the relative contribution of these potential covariates on the 

young-old differences that have been observed. Below is an outline of several cognitive processes 

that are associated with the recognition of emotions from facial expressions, and research into the 

contribution of these processes to the age-related changes in recognition that occur. In addition to 

cognitive processes as measured behaviourally, there is evidence to suggest that age-differences in 

expression recognition may be in part due to changes in structure and function of several regions of 

the brain. This neuropsychological account, and surrounding research, is also explained below.  

 

 Low-level visual processing 

There is evidence to suggest that low level visual processing may account for the effects of age on 

emotion recognition from facial expressions. The processing of visual information recruits complex 

visual pathways, so any age-related deterioration to these pathways (Spear, 1993) may account for 

deficits in the recognition of facial expressions.  

Two measures of low-level visual processing are visual acuity and contrast sensitivity. Visual acuity is 

a measure of the clarity of vision, where individuals with better visual acuity are better able to 

process smaller changes in shapes (for example when reading small print). Contrast sensitivity is a 

measure of the ability to detect differences in shading and textures, where individuals with better 

contrast sensitivity are better able to tell apart subtle changes in shading. This ability to detect 

subtle changes in shape and surface textures is an important part of facial expression recognition 

(Bruce & Young, 1998; Sormaz, Young, & Andrews, 2016), as these are two properties of face stimuli 

that aid in the recognition of emotions (this is discussed in more detail later in the chapter). Both 

visual acuity and contrast sensitivity typically decline across the lifespan (Rubin, Roche, Prasada-Rao, 

& Fried, 1994), so it is possible that this reduction in visual processing may account for some of the 

age-related changes in emotion recognition. 
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Adults with age-related macular degeneration (AMD; a condition that is associated with poorer 

visual acuity and contrast sensitivity; Bellmann, Unnebrink, Rubin, Miller, & Holz, 2003) perform 

more poorly than age matched controls when deciding whether a face was expressive or neutral 

(Boucart et al., 2008). This could suggest that differences in visual acuity and contrast sensitivity may 

account for some young-old differences in expression recognition.  

Murphy and Isaacowitz (2010) tested a group of younger and older adults on the recognition of 

angry, sad, fearful, and happy facial expressions, and measured contrast sensitivity, visual acuity, 

and several other cognitive and affective measures. Contrast sensitivity was correlated with the 

recognition of only angry and fearful faces, whereas visual acuity was not correlated with the 

recognition of any facial expression. Furthermore, age differences in the recognition of anger and 

sadness were still present after controlling for the visual, cognitive, and affective control measures, 

suggesting a specific age-related impairment in the recognition of these emotions. 

Research has yet to investigate the independent contribution of the decline in visual processing on 

the deficits in emotion recognition observed in ageing. While it is clear how deficits in visual 

processing can result in difficulties processing facial expressions, it is not clear how visual 

impairments can account for the specific pattern emotion recognition observed in ageing. As there 

are specific impairments in the recognition of anger, sadness, and fear, and reported improvements 

in the recognition of disgust, it is possible that there are more contributing factors to the young-old 

differences in facial expression recognition than a general decline in low-level visual processing. 

 

 General face processing deficit 

Research into ageing and emotion recognition seems to suggest that the age-related decline in facial 

expression recognition is independent from any changes in general face processing ability. The 

processing of faces activates a large network of brain regions, with the recognition of facial identity 

and facial expressions occurring along separate neural pathways (Haxby et al., 2002). Identity and 

expression processing do, however, share some common perceptual processes (Palermo, O’Connor, 

Davis, Irons, & McKone, 2013), so research has investigated whether the age-related decline in facial 

expression processing is completely independent from any changes in face identity processing. 

The processing of face identity has been shown to decline with age (Crook & Larrabee, 1992), 

alongside the processing of facial expressions. . This has led some researchers to question whether 

the decline in emotion recognition is emotion-specific, or symptomatic of a more general decline in 

face processing. To test this, research into ageing and emotion recognition has often included a face 
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identity processing task as a control measure, however most studies suggest that the young-old 

differences in emotion recognition are independent from any differences in face identity processing 

(Orgeta & Phillips, 2008; Sullivan & Ruffman, 2004; Suzuki et al., 2007).  

 

 Working Memory and Fluid Intelligence 

Both working memory and fluid intelligence are suggested to play a role in facial expression 

processing. The terms ‘working memory’ and ‘fluid intelligence’ are often used to refer to the same 

cognitive process, although some argue that working memory is a more general process that 

encompasses the short-term maintenance of information, while fluid intelligence is the flexible 

knowledge required to solve novel problems, and that these two processes are distinct but highly 

correlated (Salthouse & Pink, 2008). 

The role of these processes in emotion recognition has been demonstrated via the interference on 

task performance that occurs, while simultaneously using emotion recognition processes and 

processes of working memory. For example, Phillips, Channon, Tunstall, Hedenstrom, and Lyons 

(2008) found that participants performed more poorly during an emotion recognition task when 

under working memory load (while completing a 2-back task), than when they were not. In a second 

experiment, they found that this effect was greatest when participants had higher numbers of 

emotion labels to choose from.  

The relationship between working memory and emotion processing was further demonstrated by 

Stiernströmer, Wolgast, and Johansson (2016). Participants were required to complete a 2-back task, 

where they indicated if a presented facial expression displayed the same emotion as the facial 

expression two trials previously. There was an effect of emotional valence on performance, as 

participants matched negative facial expressions more accurately than positive. Such interference on 

task performance suggests the involvement of at least partially overlapping cognitive processes.  

Frontal regions of the brain including the medial prefrontal cortex have been suggested to be 

recruited during both emotion processing (Phan, Wager, Taylor, & Liberzon, 2002) and tasks 

requiring the use of fluid intelligence (Gong et al., 2005). These frontal regions of the brain are 

reported to undergo substantial structural changes across the normal adult lifespan (Allen, Bruss, 

Brown, & Damasio, 2005) alongside changes in working memory and fluid intelligence (Salthouse & 

Davis, 2006). Taking this structural change together with the decline in both working memory and 

emotion processing that occurs during ageing has led to the view that changes in working memory 

or fluid intelligence may account for the age-related impairments in facial expression recognition 
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(Suzuki & Akiyama, 2013). This neuropsychological account is discussed in more detail in the next 

subsection. 

The research into the contribution of working memory to the decline in emotion processing, 

however, has not been entirely consistent with this position. There is research suggesting that the 

recognition of emotions from facial expressions is only partially dependent on fluid intelligence. 

Some research uses measures of emotion recognition, averaged across the different expressions 

used in the tasks. For example, Sullivan and Ruffman (2004) used an emotion recognition task where 

a presented facial expression morphed into a second expression, and participants were required to 

identify the second expression. Young-old differences were still present after covarying reaction 

time and fluid intelligence, suggesting that age differences in emotion processing are partially 

independent from these control measures. It was not reported, however, whether these measures 

accounted for a significant amount of variance in the emotion processing task. 

Similarly, Phillips, MacLean and Allen (2002) measured emotion recognition across several 

modalities in a group of younger and older adults, and reported that performance on the facial 

expression recognition task was correlated with performance on the Matrix Reasoning test 

(Wechsler, 1997), a measure of fluid intelligence. This suggests that there is some overlap between 

emotion recognition from facial expressions and fluid intelligence, however the measure of facial 

expression recognition in this study only used 4 examples of each facial expression, and accuracy 

was averaged across the six expressions. 

When examining the influence of fluid intelligence on the ability to process specific expressions 

however, the research is not entirely consistent. For example, Horning et al. (2012) measured 

accuracy at the recognition of the 6 basic emotions, fluid intelligence (using the Matrix Reasoning 

subtest of the WASI; Wechsler, 1999), speed of processing (using a reaction time task; Teng, 1990), 

and verbal memory (using the Rey Auditory Verbal Learning Test; Rey, 1964), in a sample of 

participants aged 5-89. Using multiple linear regression, the researchers showed that these control 

measures accounted for variance shared between age and recognition accuracy of anger, disgust, 

and surprise, for participants aged 46-89. Age was not a significant predictor of accuracy, but fluid 

intelligence was, suggesting that differences in fluid intelligence can account for the age differences 

in the recognition of anger, disgust and surprise. 

However, Suzuki and Akiyama (2013) performed principle components analysis on speed of 

processing and fluid intelligence scores to create a ‘general cognitive ability’ variable, and found that 

this measure can account for young-old differences in the recognition of the 6 basic emotions except 

for anger and disgust. Furthermore, using the raw fluid intelligence scores in the model (instead of 
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the general cognitive ability variable), only age differences in the recognition of happiness were 

accounted for.  

Suzuki et al. (2007) measured emotion recognition accuracy from the facial expressions of the 6 

basic emotions, and measures of fluid intelligence (WAIS-R Picture completion subtest), crystallised 

intelligence (WAIS-R Information subtest), face identity processing, and general affect. These control 

measures fully accounted for the age-related decline in the recognition of sadness, but did not fully 

account for the age-related improvement in the recognition of disgust. Despite this, their measure of 

fluid intelligence accounted for a significant amount of variance in the recognition of disgust, further 

suggesting that there is a partial overlap between fluid intelligence and the recognition of this 

expression. 

In sum, age differences in working memory and fluid intelligence may account for some differences 

in emotion recognition, but examining the role of fluid intelligence on the recognition of specific 

expressions produces some mixed results. Research has yet to explore the distinction between 

working memory and fluid intelligence as contributors to the age-related decline in facial expression 

processing. 

 

 Neuropsychological account 

Evidence suggests that the brain undergoes structural and functional changes across the adult 

lifespan. For example, a linear reduction in global grey matter volume across age was reported in a 

large-scale study (n=465, age range = 61 years) using voxel-based morphometry (Good et al., 2001). 

It was also reported that some parietal regions (superior parietal gyri, pre- and post- central gyri), 

and the insula/frontal operculum undergo a relatively accelerated decline in volume across the 

lifespan. Similarly, Allen et al. (2005) reported an age-related reduction in grey matter volume, with 

particular reduction in the frontal and temporal lobes. A direct comparison of grey matter volume 

between middle-aged and older adults revealed significant reductions in volume in some frontal 

areas including the middle and frontal gyri, and some temporal areas including the right superior 

temporal and left posterior-superior temporal gyri (Ramanoël et al., 2018). While it has been 

reported that the volume of some medial temporal structures, including the amygdala and 

hippocampus, may not decline as rapidly as other areas (Good et al., 2001; Grieve, Clark, Williams, 

Peduto, & Gordon, 2005), some research suggests that these structures are still subject to age-

related reductions in volume (Mu, Xie, Wen, Weng, & Shuyun, 1999).  
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In sum, there appears to be some overlap between the regions that undergo structural changes, and 

the regions that are involved in the processing of facial expressions of emotion. The reduction in 

volume of the amygdala may account for the general age-related decline in expression recognition, 

but the accelerated structural changes to some frontal and temporal regions may account for age 

differences in the recognition of some negative emotions. To examine whether structural changes to 

these regions affects the ability to process emotions, the next step is to identify any age-related 

changes in functional response to facial expressions. 

Several studies have examined the effect of age on functional response to facial expressions. A 

common result of this research is an age-related reduction in amygdala response to facial 

expressions. For example, Iidaka et al. (2002) examined young-old differences in functional response 

to positive, negative, and neutral faces compared to a baseline condition (blocks of rectangles). 

Older adults had reduced activation in the amygdala in response the negative faces than younger 

adults. For positive faces, older adults had reduced activation in the parahippocampal, lingual, and 

angular gyri. Similarly, Fischer et al. (2005) reported reduced amygdala activation in older adults 

compared to younger adults in response to angry versus neutral faces. Conversely, older adults 

showed greater response than younger adults in a region of the insula cortex. One explanation for 

the age-related impairment in the recognition of anger, therefore, could reflect this reduced 

involvement of the amygdala or increased involvement of the insula. As with the processing of angry 

faces, it has been reported that older adults show reduced amygdala response to happy faces than 

younger adults (Keightley, Chiew, Winocur, & Grady, 2007; Williams et al., 2006). In addition to 

angry and happy faces, fearful faces are reported to evoke a greater response in the amygdala for 

younger and middle-aged adults than older adults (Williams et al., 2006). Mather et al. (2004) 

reported greater amygdala activity in younger adults than older adults in response to negative 

emotionally valenced stimuli (International Affective Picture System; Lang, Bradley, & Cuthbert, 

1997), suggesting that the young-old differences in amygdala response to facial expressions may 

reflect age differences in a more general response to emotional stimuli.  

In addition to the amygdala, an age-related reduction in activation has been reported to occur in 

other parts of the limbic system. For example, Fischer et al. (2005) reported that older adults have 

reduced activation in response to angry faces in the bilateral hippocampi compared to younger 

adults. Similarly, Iidaka et al (2002) reported that older adults show reduced activation in the 

parahippocampal gyrus in response to positive faces than younger adults. Gunning-Dixon et al. 

(2003) compared the activation during an emotion discrimination task to the activation during an 

age-discrimination task, in groups of younger and older adults. While the researchers did not directly 

compare the neural activity of younger and older adults, they reported that younger adults recruited 
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regions of the superior temporal lobe and parts of the limbic system (the amygdala, hippocampus 

and parahippocampal gyrus) during the emotion discrimination task whereas older adults did not. 

The general decline in expression recognition could reflect this attenuated activity in the amygdala 

or other parts of the limbic system. However, as there is a relative sparing of the recognition of 

happy faces, and there is a similar age-related attenuation of amygdala and parahippocampal 

response to happy faces, this may not solely account for the specific age-related impairments in the 

recognition of anger, sadness and fear. 

Considering that some frontal regions are both involved with the processing of emotions, and are 

subject to accelerated age-related changes, it may be the case that these regions show age 

differences in functional response to expressions. Keightly et al. (2007) reported that younger and 

older adults recruit different regions when processing happy faces, but there is an overlap between 

the groups in the recruitment of the ventromedial prefrontal cortex. Notably, activation was found 

in the amygdala for younger adults but not older adults. Surprisingly, however, little difference was 

found between the groups when comparing the activation in response to angry, disgusted, or sad 

faces. This result is not necessarily consistent with the neuropsychological account, as it would be 

expected that the behavioural group differences in the recognition of negative expressions would be 

reflected by group differences in neural activation. 

However, Williams et al. (2006) reported that increasing age is associated with greater response to 

fearful faces in the medial prefrontal cortex, and reduced response to happy faces. Importantly, 

participants’ subjective ratings of emotional intensity could be predicted by activity in the MPFC. 

This result links neural activity to behaviour, and provides support for the neuropsychological 

account. As older adults show reduced amygdala response to fearful faces than younger adults, it 

may be the case that the medial prefrontal cortex takes on a role in the processing of negative 

expressions.  

It is worth noting that the reduced activation in older adults compared to younger adults may not 

necessarily directly reflect reduced behavioural recognition of an emotion. Group differences in 

activation could reflect, for example, age-related dedifferentiation, a process whereby neural 

representations become less distinct across the lifespan. Processes of dedifferentiation have been 

studied in areas of the ventral visual cortex, where reduced neural specialisation for different object 

categories was reported to occur across age (D. C. Park et al., 2004). In addition to these areas, age-

related dedifferentiation has been studied in areas of the face processing network, where activation 

in the FFA and areas of the extended network (Haxby et al., 2000) became less face-selective across 

the lifespan (J. Park et al., 2012). It is possible, therefore, that the age-related reduction in response 
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to facial expressions might reflect reduced specificity to different expression categories, or reduced 

selectivity for emotional faces in comparison to neutral. 

Alternatively, differences in activation in response to facial expressions between younger and older 

adults might reflect compensatory mechanisms, or poorer neural efficiency. Some studies have 

reported age-related increases in activation in lateral, medial, and inferior frontal regions in 

comparison to younger adults for emotion processing tasks (Gunning-Dixon et al., 2003; Keightley et 

al., 2007; Williams et al., 2006). These increases in activity in some regions, and concurrent 

decreases in other regions, have been argued to reflect some reorganisation of the cortical networks 

recruited during the perception of facial expressions (Gunning-Dixon et al., 2003). According to 

neurocognitive models of ageing, concurrent increases and decreases in activation in response to 

(e.g.) tasks requiring working memory could reflect some compensatory mechanisms, where some 

frontal regions take on some of the processing load to account for the decline in other neural 

structures (D. C. Park & Reuter-Lorenz, 2009). While these accounts are not necessarily incompatible 

with the neuropsychological account, the association between measures of dedifferentiation or 

neural compensation and behaviour have not yet been examined. 

In sum, older adults have less activation than younger adults in a network of regions, including the 

medial prefrontal cortex, and the amygdala and other areas of the limbic system. This age-related 

attenuation is suggested to account for the young-old differences in the behavioural recognition of 

expressions, although research has yet to examine whether this reduction in activity is associated 

with measures of expression recognition accuracy. 

Together, there are several contributing factors to the age-related decline in expression recognition. 

Although there is research suggesting that these age differences can be accounted for by several 

cognitive and behavioural measures, we have yet to determine the relative contribution of these 

measures to the age-related changes in expression recognition. Furthermore, the 

neuropsychological account offers a compelling account of these age-differences, although there are 

some results that are not necessarily consistent with the explanation. Research has yet to examine 

the relationship between neural response to expressions and the behavioural recognition of the 

emotion.  

 

1.5 Alternative accounts of age-differences in expression recognition 
Of course, the accounts listed above are not an exhaustive list of explanations for age differences in 

expression recognition, and several alternative accounts have been proposed. One such account 

suggests that older adults experience positivity effects (Carstensen & Mikels, 2005), where older 
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adults experience a processing bias towards positive stimuli and/or a reduction in the processing of 

negative stimuli. Support for this account comes from a study showing that older adults have poorer 

recall and recognition accuracy for negatively valenced emotional stimuli than younger adults, 

suggesting a processing bias towards the positively valenced stimuli (Charles, Mather, & Carstensen, 

2003). In relation to age differences in the processing of facial expressions, this account suggests 

that the age-related reduction in the processing of negative facial expressions (i.e. anger, fear, and 

sadness), and the sparing of any age differences in the processing of positive facial expressions (i.e. 

happy), are a result of a bias in processing towards positive stimuli in general. On study showed that 

older adults displayed an attentional bias (measured using reaction time to indicate the position of a 

dot-probe placed over one of two faces) away from sad and angry faces, and towards happy faces 

(Mather & Carstensen, 2003). Additionally, eye-tracking studies have shown that older adults spend 

longer looking at negative facial expressions than positive expressions (Mather & Carstensen, 2003; 

Sullivan et al., 2007), suggesting that any positivity bias might not reflect an avoidance in processing 

negative facial expressions rather a difficulty processing them. However, a test of the positivity bias 

account of age differences would be to examine the emotions that older adults find difficult to 

recognise in other modalities (e.g. voices or body postures). Any age differences in the recognition of 

happiness from (e.g.) voices, or the lack of any difference in the recognition of emotions from 

negative voices, would be contradictory to an account suggesting a processing bias towards positive 

stimuli. The meta-analysis provided by Ruffman et al., (2008) showed that older adults are 

frequently poorer at recognising happiness from voices, and that there is no significant difference 

between younger and older adults in the recognition of fearful voices, suggesting a positivity bias 

cannot be the sole explanation of any age differences in expression recognition. 

Another account for the age differences in expression recognition suggests that there is an own-age 

bias. Studies showing age differences in expression recognition tend to use databases of emotional 

faces that typically comprise younger adult models, and so the age differences that have been 

observed may simply reflect a reduction in the ability to process expressions belonging to other age 

groups. In support of an own-age bias in the processing of faces Rhodes and Anastasi (2012) 

conducted a meta-analysis and reported that memory for (and discrimination between) face 

identities is superior for ones own age group as opposed to other age groups. However the results 

surrounding the perception of emotions from faces in own/other age groups is not as clear. For 

example, Ebner and Johnson (2009) presented younger and older adults with happy, angry and 

neutral younger and older faces, and found no evidence for an own-age bias in expression 

recognition or memory of faces. In a subsequent study, Ebner, He and Johnson (2011) reported that 

both younger and older adults had better emotion identification for younger faces in comparison to 
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older faces, suggesting that facial expressions displayed by older adults may be more difficult to 

identify, regardless of observer age. However the researchers reported age differences in gaze 

behaviour, with both age groups spending longer looking at faces from their own age group, 

suggesting there may be some own age bias in how emotional faces are processed. Using fMRI, 

Ebner et al. (2013) examined neural response to happy, angry, and neutral facial expressions 

displayed by younger and older models, in groups of younger and older participants. In the medial 

prefrontal cortex, insula, and amygdala, activity was higher for expressions displayed by own-age 

models, across all expressions. Examining the response to individual expressions, this own-age effect 

remained for happy and neutral faces, but disappeared for angry faces (i.e. there was no greater 

response to own-age vs other-age for angry faces). This result is interesting given the relative 

difficulty in the processing of negative facial expressions, and suggests that any age differences in 

the processing of angry facial expressions are not simply a result of an own-age bias. As reported in 

previous studies (Ebner et al., 2011; Ebner & Johnson, 2009), both groups of participants were more 

accurate at identifying emotions displayed by younger faces than older faces. Together these results 

suggest that behaviourally, little own-age effects are observed, but the eye-tracking and fMRI results 

suggest some own-age effects in the processing of facial expressions.  

 

1.6 Top-down and Bottom-up processing 

Visual perception is not a solely feed-forward, stimulus-driven process. Instead, we apply 

expectations, derived from memories and associations, to make predictions of the visual input. 

There is an interaction between internal models and visual stimuli that shape conscious visual 

perception (O’Callaghan, Kveraga, Shine, Adams, & Bar, 2017). A key theory proposed by Gregory 

(1980) compares perceptions to scientific hypotheses, suggesting that visual perception tests our 

predictions, and that our predictions are updated if they are not consistent with the visual input. 

This interaction between top-down and bottom-up information is biologically supported as there are 

both feed-forward and feed-back connections between V1 and other higher-order cortical areas of 

the visual system (Bullier, 2001a, 2001b). 

Top-down predictions facilitate visual perception, and aid in the recognition of stimuli across 

multiple domains including objects, words, and social categories (Bar et al., 2006; O’Callaghan et al., 

2017; Stolier & Freeman, 2016). In the domain of social perception, there is research suggesting that 

judgements of gender and race is biased by expectations based on internal concepts of stereotypes 

(Levin & Banaji, 2006; Macrae & Martin, 2007). Similarly, there is evidence suggesting an interaction 

between top-down and bottom-up mechanisms within the face processing system (Li et al., 2009), 
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including the recognition of emotions from facial expressions. In other words, internal 

representations of emotion concepts likely predict and shape the visual perception of facial 

expressions of emotion.  

The following literature review (and research within the thesis) aims to explore the interaction 

between bottom-up mechanisms (that process properties of the face stimuli) and top-down 

mechanisms (that utilise knowledge of emotion concepts) in the visual perception of facial 

expressions of emotion. The relative roles of stimulus-properties and emotion concepts in both 

behaviour and neural representations of facial expressions will be explored. 

 

 Behavioural Studies 

The recognition of emotions from facial expressions requires the perceptual processing of the visual 

stimulus. In addition to the stimulus-based cues, higher-level conceptual information may play a role 

in the recognition of emotions. For example, an emotion labelling task (where participants select the 

best label to match the presented facial expression, e.g. Young, Perrett, Calder, Sprengelmeyer, & 

Ekman, 2002) requires participants not only to process the visual input but also to have some 

semantic knowledge of the emotion labels. The recognition of emotions, therefore, is reliant on both 

conceptual and stimulus-based sources of information. This integration of stimulus-based cues and 

conceptual knowledge may also occur in perceptual tasks, which do not require the explicit labelling 

of an expression.  

Palermo et al. (2013) distinguish between perceptual tasks (e.g. same/different, 3 alternate forced 

choice, etc.) and labelling tasks, by suggesting that labelling tasks require initial perception plus 

additional cognitive processes needed to assign an emotion label. Palermo and colleagues reported 

that performance on a perceptual matching task was correlated with performance on a labelling 

task. Furthermore, performance on the labelling task was correlated with performance on a vocal 

emotion labelling task, whereas performance on the perceptual matching task was not. Together, 

this suggests that the perceptual and labelling tasks share perceptual processes, whereas the 

labelling task also taps into a cognitive process used to assign emotion labels to a stimulus, 

regardless of the stimulus modality. These results suggest that perceptual tasks and labelling tasks 

may recruit different processes, or rely to different extents on different processes. Below, we review 

evidence of the use of stimulus-based cues and/or conceptual cues in perceptual and categorical 

tasks. 
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1.6.1.1 Integration of high- and low- level information in perceptual tasks 

Facial expressions are associated with specific musculature movements which physically change the 

appearance of the face and are consistent across individuals (Ekman & Friesen, 1971). These 

movements allow for changes in the overall shape of the face, such that both the shape and position 

of individual features may vary. For example, a smile changes the shape of the mouth, whereas a 

surprised face may change the position the eyebrows. Muscular movements also create differences 

in what is referred to as surface information, i.e. the texture of the face (Bruce & Young, 1998). As 

the shape changes, the pattern of light and shadow across the face too changes. For example, an 

angry scowl is associated with a heavy brow which causes a darker shadow above the eyes than 

other expressions.  

The importance of shape cues in emotion perception tasks has been shown in studies using contrast-

negated faces. By negating the contrast of face images, surface cues become disrupted but 

information about face shape remains intact. It has been shown that there is no difference in error 

rates between pairs of normal faces and pairs of contrast negated faces during same/different 

expression judgement tasks, suggesting that the perceptual processes required for these task make 

little use of surface information and instead primarily rely on shape cues (Harris, Young, & Andrews, 

2014; White, 2001).  

Pallet and Meng (2013) measured thresholds at which an emotion can be detected in a face, using a 

psychophysical paradigm to adjust the weighting of the emotion in expressive-neutral warps. 

Contrast negation had little effect on the thresholds of detection, in a task where participants were 

required to choose the expressive (warped) face from a pair containing a neutral face, further 

suggesting that the perception of expressions is unaffected by disruption to surface information. 

Benton (2009), however, reported that surface information may in fact also be used during the 

perceptual encoding of expressions. The author used an adaptation paradigm, in which the 

presentation of the adapter caused the perception of the expression of the test face to shift away 

from the expression of the adapter. When participants viewed a contrast-negated adapter, the shift 

in perception was smaller than when the adapter face was normal. This suggests that surface cues 

may play a role in the perceptual encoding of faces. 

Sormaz, Watson, et al. (2016) investigated the usage of both shape and surface information in a 

perceptual task involving pairwise similarity of pairs of expressions. After computing the pairwise 

similarities of the shape (using Procrustes analysis) and surface (using correlation between pixel 

intensities) properties of the face images, the authors showed that the pairwise perceived similarity 

could be predicted by the pairwise shape and surface distance measures. The mean beta for surface 
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was larger than the mean beta for shape as predictors of perceptual similarity, although statistical 

inference on this difference was not reported. 

In addition to low-level information based on shape of facial muscles and texture of faces, there is 

some evidence that conceptual information may also influence these perceptual tasks that do not 

require the labelling of facial expressions. For example, some studies have shown that performance 

on perceptual tasks could be altered after access to emotion concepts was disrupted, via a process 

called ‘semantic satiation’. When a word is read aloud a high number of times, access to the 

meaning of the word becomes temporarily attenuated (Smith & Klein, 1990). In the context of 

emotion concepts, participants who verbally repeat an emotion label (e.g. “anger”) aloud a high 

number of times experience a temporary attenuation of access to the concept of anger. 

Lindquist, Barrett, Bliss-Moreau, and Russell (2006) reported that participants were both slower and 

less accurate at matching pairs of facial expressions (a task conducted in the absence of emotion 

labels), and Gendron, Lindquist, Barsalou and Barrett (2012) reported reduced effects of repetition 

priming, after access to the semantic meaning of emotion labels had been disrupted via this process 

of ‘semantic satiation’. Together, this could suggest that perception of expressions can be altered if 

an individual does not have access to the concept of the emotion. 

Further evidence for the role of concepts in the perception of expressions comes from Nook, 

Lindquist and Zaki (2015), in which participants used a slider to indicate which of a set of morphed 

facial expressions they believed they had previously seen in a trial. When the facial expression in the 

trial was paired with an incongruent emotion label (e.g. a sad face paired with the emotion label 

“anger”), participants indicated that they had viewed an expression (using the slider) that was closer 

along the morphed continuum to an expression corresponding to the label (e.g. an angry face) than 

was actually presented in the trial. Importantly, this shift in perception was larger for incongruent 

emotion labels (e.g. a sad face paired with the label “anger”) than for congruent labels (e.g. an angry 

face paired with the label “anger”).  

A similar shift in perception was reported by Halberstadt and Niedenthal (2001). Participants were 

presented with ambiguous morphs (a 50-50 blend of two facial expressions) alongside an emotion 

label corresponding to one of the two faces used to create the morph. Using a slider to choose a 

morphed expression that they believed they had seen, participants chose faces displaying an 

expression that was closer to the corresponding label than had been presented in the trial. Taken 

together, this suggests the activation of concepts via emotion labels can influence the perception of 

the expression. 
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Fugate, Gouzoules, and Barrett (2010) tested the hypothesis that concepts shape perception by 

investigating whether conceptual knowledge can affect categorical perception of chimpanzee facial 

expressions. Categorical perception was measured using an ABX task, where participants were 

presented with 2 morphed faces sequentially (A and B) followed by a test face (X) that was a 

repetition of either A or B. Categorical perception is demonstrated when participants are more 

accurate at discriminating between faces A and B if they cross a categorical boundary in the 

morphed continuum than if they do not. Participants who were trained to pair chimpanzee facial 

expressions with arbitrary nonsense labels demonstrated categorical perception more so than those 

who had been trained without the labels, providing support for the role of concepts in the 

perception of facial expressions. 

A recent study by Brooks and Freeman (2018) showed further the influence of concepts on a number 

of emotion perceptual tasks, using a representational similarity analysis approach (this method of 

analysis is summarised in the next subsection (1.4.2.1) and is explained in more detail in Chapter 4). 

Across three experiments the researchers showed that pairwise measures of conceptual similarity of 

emotions predicted measures of perceptual similarity of the corresponding facial expressions. 

Conceptual similarity was measured using subjective ratings of the similarity of emotion categories, 

and the overlap between ratings of the association of emotions with more specific feelings (i.e. 

emotion categories that were more conceptually similar had common feelings attributed to them).  

Perceptual similarity of the images was measured using two approaches. The first was the deviation 

in mouse-tracking trajectory, during a two-choice categorisation task. Participants were presented 

with a facial expression and two emotion labels, and were required to drag the face towards one of 

the labels. The size of the deviation in trajectory towards the non-target category label is argued to 

reflect the degree to which that category was activated by the perception of the face (Freeman, 

2018). 

The second approach was a reverse-correlation paradigm. In this task, participants were presented 

with two identical neutral faces, overlaid with different patterns of noise on each trial, and were 

required to choose which face was (e.g.) “more angry”. ‘Classification images’ were then generated 

by averaging the patterns of noise that participants had previously indicated displayed a given 

emotion. Two independent groups of participants then provided the measures of perceptual 

similarity; the first rated classification images on a 7-point scale with each emotion category at the 

end points (e.g. 1= Angry, 7 = Disgusted), or as subjective ratings of how similar pairs of the 

classification images look (i.e. 1 = “Not at all similar”, 7 = “ Extremely similar”). 
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These results suggest that conceptual information may influence performance in perceptual tasks. 

However, the explicit use of emotion labels in all these experiments could have led participants to 

rely more on, or make explicit use of, conceptual information (Brooks & Freeman, 2018; Halberstadt 

& Niedenthal, 2001; Nook et al., 2015). For example, in the mouse tracking task from Brooks and 

Freeman (2018), the changes in mouse trajectories could be affected by the conceptual similarity of 

the labels, not of the facial expressions per se. Similarly, the perception of the classification images 

may have been influenced by the presence of the labels on the 7-point scale.  

As perception likely involves the interaction between multiple bottom-up and top-down processes, it 

is unlikely that any perceptual task (e.g. a 3AFC task) will fully isolate the use of perceptual processes 

from any higher-level cognition. Despite this, ideally a perceptual task designed to assess the ability 

to discriminate between facial expressions using perceptual processes would avoid the use of any 

emotion labels. 

 

1.6.1.2 Integration of high- and low- level information in labelling tasks 

A commonly used task within facial expression research requires participants to choose which of 

several (typically 6) labels best describes the emotion of a presented facial expression (e.g. Young et 

al., 2002). This labelling task requires the perceptual processing of the stimulus-based cues, in 

addition to knowledge of the semantic meaning associated with the emotion labels. Recognition 

accuracy was significantly reduced when participants freely labelled a facial expression than when 

they undertook a forced-choice labelling task (Widen, Christy, Hewett, & Russell, 2011), suggesting 

that the presence of emotion labels aids in the recognition of emotions from facial expressions 

during forced-choice labelling tasks. Furthermore, participants had higher false recognition rates 

when they indicated if facial expressions matched an emotion label than if they matched the 

expression of another face (Fernández-Dols, Carrera, Barchard, & Gacitua, 2008), again showing how 

the presence of a label affected the recognition of the emotion. It has been argued that emotion 

labels provide more clearly defined emotion categories than faces do (Nook et al., 2015), so the 

presence of labels in multiple-choice recognition tasks aids in reducing ambiguity over the emotion 

category that the facial expression falls into.  

As with perceptual tasks, categorical tasks also involve the processing of shape and surface 

information. A number of studies have reported that participants are still able to recognise emotions 

from line drawings of facial expressions (Etcoff & Magee, 1992; Katsikitis, 1997; Mckelvie, 1973). 

These line drawings remove surface information from the face and leave only shape information 

available, so these results could suggest that the processes involved in recognition do not make use 
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of surface information. However, in order to claim that surface cues are unimportant, recognition 

must be tested for faces that remove shape information and leave only surface information 

available. Evidence that the processes involved in labelling emotions make use of both shape and 

surface cues comes from Sormaz, Young, and Andrews (2016) who created a set of facial expression 

stimuli that varied in either shape or surface information only. The surface-varying stimuli were 

created by warping an original set of facial expression images (Ekman & Friesen, 1976) to the 

average shape, whereas the shape varying stimuli were created by finding the average surface 

texture and warping this to the original shapes. The recognition accuracy for both sets of stimuli was 

well above chance but was significantly improved for original unedited images (that varied in both 

shape and surface information), highlighting how the processes involved in emotion labelling tasks 

make use of both shape and surface information. 

 

 Neuroimaging Studies 

There is currently little research investigating the regions of the brain that may be involved in this 

integration of conceptual and stimulus-based information. Below, we review research suggesting 

that representational structure of emotions in the face processing network may make use of 

stimulus properties, while regions involved in processing theory of mind may contain modality-

independent representations of emotions. 

 

1.6.2.1 Representations of facial expressions in regions explained by stimulus-properties 

To investigate whether the representational structure of emotions within a given region is organised 

around high- or low- level information, previous research has often used Representational Similarity 

Analysis (RSA; Kriegeskorte, Mur, & Bandettini, 2008). RSA is a method of predicting the 

representational structure within a given region with use of theoretical models.  

In short, the representational distance of each pair of experimental conditions is calculated, then the 

relationship between these representational distances and the distances as measured within a 

different modality is assessed, typically using a correlational approach. If a significant association is 

found between them, then it is inferred that the representational structure of the stimuli within the 

region is (at least partially) explained by the information used to construct the model. For example, 

RSA has been used to show that the pairwise dissimilarities of patterns of neural response to 

different object categories in the ventral visual pathway is strongly associated with the pairwise 
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dissimilarities of low-level image properties (Rice, Watson, Hartley, & Andrews, 2014). RSA is 

explained in more detail in Chapter 4. 

This type of analysis has been used in the context of facial expression processing to predict the 

representational structure of facial expressions in the core face network from properties of face 

stimuli. For example, Weibert, Flack, Young and Andrews (2018) measured the similarity of low-level 

properties of images of facial expressions by measuring the correlation between GIST descriptors 

(Oliva & Torralba, 2001). Briefly, this method finds the spatial frequency distributions of an image 

after passing the image through a series of Gabor filters, then creating a vector (the GIST descriptor) 

from the filtered image after windowing it. The researchers found that the similarity of this low-level 

image property predicted representational distances of facial expressions in all three of the core face 

regions. While this result suggests that the representational distances within these regions can be 

explained by similarities of low-level image properties, it does not necessarily mean that the 

representational structure is organised around the similarities of shape and surface properties of the 

facial expressions. 

Some researchers have used shape and surface information, alongside perceived perceptual 

similarity of expressions, to study the representational structure of emotions within the core face 

regions. Sormaz, Watson, et al. (2016) presented participants with blocks of angry, disgusted, 

fearful, happy and sad faces. Using RSA, the perceptual similarity of expressions (as measured 

behaviourally) was predicted by the similarity of neural representations in the STS and OFA, but not 

the FFA. Furthermore, perceptual similarity of expression pairs was also predicted by the pairwise 

similarity of the face shapes and surface textures. While the researchers did not use the stimulus-

models to predict the similarity of neural representations, together these results might suggest an 

association between the representational structure within the OFA and STS, and the shape and 

surface properties of the stimuli.  

Similarly, Said, Moore, Engell, et al. (2010) found that the representational structure of facial 

expressions within the posterior STS was associated with behavioural ratings of the perceptual 

similarity of expression pairs. Together, these studies suggest that perceived similarity of pairs of 

expressions is associated with the similarity of neural representations, within some of the core face 

processing regions. As the results from Sormaz, Watson, et al (2016) suggest that this perceived 

similarity is associated with the similarity of shape and surface information, it is possible that these 

stimulus-based properties play a role in explaining the representational structure of expressions 

within these regions.  
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1.6.2.2 Regions that contain modality-independent representations of emotion 

There is research to suggest that some areas associated with theory of mind may contain 

representations of emotion concepts, that may be activated in response to expressions. For 

example, there are studies that suggest that regions of the Medial Prefrontal Cortex (MPFC) may 

represent modality independent emotion concepts. Skerry and Saxe (2014) presented participants 

with facial expressions or animations of a situation that were either positively or negatively 

valenced. The researchers used the multivoxel patterns of activation in the MPFC to train a classifier 

using the response to one set of stimuli (e.g. animations), and tested the classifier using the other 

set of stimuli (i.e. faces). The classifier performed above chance when discriminating between 

valence of the second set of stimuli, suggesting that the representations of the valence within this 

region of the brain are cross-modal.  

Similarly, Peelen, Atkinson, and Vuilleumier (2010) used this method of training and testing a 

classifier using different stimulus modalities, to discriminate between the emotions of faces, voices, 

and body postures. Using a whole-brain searchlight analysis, the classifier was reported to perform 

above chance using voxels in the MPFC and left STS. Together, these studies show that the patterns 

of neural activation within the MPFC is common across different modalities and stimulus sets.  While 

this region is not typically responsive to faces, these studies showed that faces can elicit dissociable 

patterns of activation in response to different valences and expressions. As the patterns are cross-

modal, it is likely that the representational structure of expressions within the MPFC can be 

explained by emotion concepts rather than anything specific to the stimulus. 

Skerry and Saxe (2015) required participants to read short stories that described an event that 

happened to a character, who would experience one of 20 ‘fine grained’ emotions. The researchers 

trained a classifier to discriminate between the patterns of activation in response to each of the 

subtle emotion categories, using voxels within several areas involved with theory of mind (the MPFC, 

bilateral temporoparietal junctions, the precuneus, and right STS). The classifier successfully 

decoded the emotion categories above chance in all regions, suggesting that these regions may 

represent different emotion categories with subtle distinctions. 

Although the MPFC is not typically face-responsive, there is research to suggest that the MPFC is 

involved in processing facial expressions. Research using TMS over frontal areas including the MPFC 

and dorsolateral prefrontal cortex has reported disruption of priming effects for facial expression 

recognition (Mattavelli, Cattaneo, & Papagno, 2011), improvement facial affect recognition in 

schizophrenia (Wölwer et al., 2014), interference with the recognition of angry facial expressions 

(Harmer, Thilo, Rothwell, & Goodwin, 2001) and interference with the in-group advantage in 
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expression recognition (Gamond & Cattaneo, 2016). In sum, both the MPFC and STS are involved in 

the processing of facial expressions of emotion, and both regions contain representations of 

emotion categories with subtle distinctions. The work of Peelen et al. (2010) and Skerry and Saxe 

(2014) suggest that the MPFC may represent emotion concepts independently from any stimulus 

modality, so it is possible that the representational structure of facial expressions within the MPFC 

and STS may be best explained by the similarities of emotion concepts. 

A key result comes from Brooks, Chikazoe, Sadato and Freeman (2019) who investigated whether 

the structure of the neural representations of facial expressions can be explained by emotion 

concepts. In the MRI scanner, participants were presented with facial expressions displaying the 6 

basic emotions. A neural Representational Dissimilarity Matrix (RDM) was constructed by taking the 

squared Euclidean distance between the patterns of activation associated with each facial 

expression category. Offline, participants also rated the relationship between each of the 6 emotions 

and 40 word/phrase stimuli (e.g. “On a scale from 1 = not at all to 7 = extremely, how related is 

‘tension’ to the emotion Sadness?”, Brooks et al., 2019, page 8). A conceptual similarity matrix was 

constructed by taking the correlation of these ratings, between each pair of the 6 emotions.  

Multiple linear regression was used to assess the correspondence between the conceptual model 

and neural RDM, using searchlight to select the voxels used in the analysis. Searchlight analysis 

centres a sphere on each voxel in the brain, and repeats the statistical test (in this case, multiple 

linear regression RSA) using the voxels within this region to construct the RDM, then maps the result 

of the statistical test (i.e. regression coefficient for the conceptual model) back to the centre voxel in 

the searchlight. Three measures of visual similarity were controlled for in the regression model at 

each location, by constructing separate matrices that measured the similarity of the silhouettes of 

the faces, the pixel intensities, and the representations from a computational model of object 

recognition (HMAX). 

The results showed that the representational structure of expressions within a region of the right 

fusiform gyrus could be explained by the conceptual model, after controlling for the 3 measures of 

visual similarity of the stimuli. These results suggest that information about emotion concepts may 

shape the representational structure of facial expressions in the right fusiform gyrus, adding to the 

understanding of its role in the perceptual processing of faces. 

In sum, the MPFC and right STS have been reported represent both facial expressions and stimulus-

independent representations of emotions. In addition to this, emotion concepts shape 

representations of facial expressions in the right FFA.  Taken together, these results suggest that 
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emotion concepts play a role in explaining the representational structure of expressions within these 

regions. 

 

1.7 Aim of research in this thesis 

The broad aim of the set of studies reported here is to explore the relative contribution of different 

sources of variance on the processing of facial expressions of emotion. This thesis covers two main 

research areas; the first examines the effects of observer age on the processing of facial expressions 

of emotion, and the second examines the contribution of stimulus-based cues and conceptual 

knowledge. Within both research areas, both behavioural methods and fMRI are used.  

Within the ageing research, first behavioural methods are used to explore the relative contribution 

of potential covariates that can account for young-old differences in expression recognition. Next, 

we use fMRI to explore any age-related changes in functional response to expressions. 

Within the second research area, behavioural methods are used to examine the relative contribution 

of conceptual information and stimulus-based cues to the perception and recognition of emotions. 

We then use fMRI to explore the contribution of these sources of information to the representations 

of emotions within different regions of the brain. For both studies within this research area we use 

Representational Similarity Analysis, a multivariate method of analysis that allows for the 

assessment of the ability of theoretical models to explain representations of emotions across 

multiple modalities. 

In addition to the behavioural and fMRI studies within the second research area, a further study 

investigates individual differences in the role of conceptual and stimulus-based cues in the 

perception and recognition of expressions, by performing secondary analysis of the data gathered in 

the behavioural study. Substantial individual differences exist in the perception and recognition of 

facial expressions (Palermo et al., 2013), so the aim of this study was to explore whether variation in 

performance during behavioural tasks could be explained by variation in the role of conceptual or 

stimulus-based cues. As these cues are shown to play a role in the behavioural recognition of 

expressions, it is of interest to examine whether the role of a given cue is associated with 

better/worse performance at the tasks. 

Chapters 2 and 3 cover the first research area, examining the effect of observer age on the 

processing of facial expressions. Chapters 4, 5, and 6 cover the second research area, examining the 

contribution of stimulus-based and conceptual information to behavioural and brain representations 

of emotion. 
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In chapter 2, differences in ability to recognise emotions from facial expressions between a group of 

younger and older adults are examined, and the relative contribution of several covariates to these 

age differences are explored. 

In chapter 3, we use fMRI to examine the effects of age on the neural response to facial expressions. 

The research then aims to examine the relationship between brain and behaviour, by assessing the 

relationship between neural activation and accuracy during a recognition test. 

In chapter 4, the relative contribution of conceptual and stimulus-based information to the 

perception and recognition of emotions during behavioural tasks area examined. This chapter 

explains the construction of three computational models, and the methods involved in 

Representational Similarity Analysis. 

In chapter 5, we conduct secondary analysis on the data from the previous chapter, and explore the 

contribution of conceptual and stimulus-based cues to performance during two tasks. The aim of this 

chapter is to examine whether individual differences in performance can be explained by the 

contribution of any particular cue. 

In chapter 6, fMRI is used to examine the relative contribution of conceptual and stimulus-based 

cues to neural representations of emotions, within several regions of the brain. The three models (as 

constructed in Chapter 4) are used in conjunction with Representational Similarity Analysis to 

explore which source of information can best explain the representational structure of emotions 

within these regions. 

Chapter 7 provides a discussion of the results, and attempts to bring the two research areas 

together. 
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2 Behavioural age differences in the recognition of facial expressions 

2.1 Introduction 

The primary aim of our experiment was to examine which of these main accounts can best explain 

the young-old differences observed in emotion categorisation. To do so, we tested younger and 

older adults’ ability to categorise the six basic facial expressions using labels, as often used within 

previous research (Ekman, 1992). We then assessed participants’ short term memory, fluid 

intelligence, visual acuity, contrast sensitivity and face identity processing ability. We include a task 

requiring short term memory and a task requiring the use of fluid intelligence to dissociate these 

two processes from the more general term ‘working memory’, allowing us to examine the relative 

contribution of these two processes on the age differences in emotion recognition. Using 

performance on these tasks as covariates, we assessed the relative importance of these processes in 

the accurate labelling of each emotional facial expression. 

A secondary aim of our experiment was to assess not only accuracy at labelling emotions, but to 

explore any age differences in the categorisation of emotions. A few studies into ageing and emotion 

recognition have presented full categorisation matrices (Henry et al., 2008; Isaacowitz et al., 2007; 

Mill, Allik, Realo, & Valk, 2009; Suzuki et al., 2007), reporting the number of instances that each 

presented facial expression was categorised using each of the emotional labels. Mill et al (2009) 

reported a strong correlation between the confusion matrices for younger and older participants, 

suggesting that the pattern of categorisation does not change across age. Other research however, 

reports that younger adults will erroneously label facial expressions of disgust as ‘angry’ more 

frequently than older adults (Suzuki et al., 2007). Research has yet to examine age differences in the 

exact patterns of labelling and mislabelling for all emotions, during these multiple-choice emotion 

recognition tasks. Here, we performed cell-by-cell comparisons of the full categorisation matrices 

between younger and older adults to further assess the young-old differences in the confusions 

made between facial expressions of emotion. For this we made no formal predictions other than 

that we expected older adults to perform more poorly than younger adults at correctly categorising 

angry, sad, and fearful facial expressions. 

 

2.2 Methods 

 Participants 

Two groups of participants were recruited; younger and older adults. The younger adults were 

recruited via the Brunel university participant pool and were granted course credits for participating. 
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The older adults were recruited from a range of sources, including a Brunel University database of 

older adults, a local sports group, a community newsletter, and advertisements in the local library 

and church. Ethical approval to conduct the research was granted by the College of Health and Life 

Sciences Research Ethics Committee at Brunel University London. Participant information is 

presented in Table 2.1. 

 

Table 2.1: Participant information 

Group Group size Males: 

Females 

Mean age Standard 

Deviation 

Range 

Young 50 10:40 20.52 3.10 18-27 

Old 45 16:29 75.00 8.97 60-93 

 

 Design 

A mixed design was used. We gave 2 independent groups of participants (young and old) an 

expression categorisation task, with 6 expressions. In addition to this, performance on tasks 

measuring visual acuity, contrast sensitivity, face identity processing, working memory, and fluid 

intelligence were used as covariates. We used independent samples t-tests to assess group 

differences in labelling accuracy, ANCOVA to assess whether the covariates can account for the 

group differences, multiple linear regression to assess the relative contribution of these covariates, 

and finally a series of Wilcoxon rank sum tests to assess group differences in the pattern of 

confusions. Participants viewed all stimuli at a distance of approximately 150cm under binocular 

viewing conditions. All visual stimuli were presented on an Iiyama monitor (Height = 10.3°, Width = 

12.9°), and responses were made using keys on a standard QWERTY keyboard.  

 

 Expression categorisation task 

Faces from the Radboud face database (Langner et al., 2010) were used for this task. For this task, 

we selected the front-facing images of all 67 models in the database, with each displaying the six 

basic emotions (angry, disgusted, fearful, happy, sad, surprised). Each model was trained to produce 

the facial expressions using the Facial Action Coding System (FACS; Ekman, Friesen, & Hager, 2002). 

Images were cropped to a square containing the whole face (but excluding the top part of the head – 

see Figure 2.1), and were 12cm x 12cm on the monitor (4.6° of vision).  
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Ten random examples of each expression were presented to participants in a random order, with six 

numbered emotion labels presented underneath Participants used a standard keyboard to indicate 

their response by pressing the numbered key corresponding to the emotion they perceived. A full 

categorisation matrix was collected for each participant, which recorded the number of instances 

that each of the presented expressions were labelled (or mislabelled) with each of the emotion 

categories.  

Each stimulus was preceded by a fixation cross for 500ms. Then, the stimulus was presented until 

the participant responded, after which there was a blank screen for 200ms. 

 

 

Figure 2.1: An example of a trial in the expression categorisation test. 

 

 Visual Acuity and Contrast Sensitivity task 

Visual acuity and contrast sensitivity were measured using the Freiburg Visual Acuity Test (FrACT; 

Bach, 1996). In these tests, participants were presented with a Landolt-C (an incomplete circle) in 

one of eight orientations and were required to indicate the position of the gap in the circle with use 

of a button press. Thresholds were estimated via a best PEST (best Parameter Estimation by 

Sequential Testing) procedure. 

For visual acuity, threshold was estimated by manipulating the size of the Landolt-C, and for contrast 

sensitivity, threshold was estimated by manipulating the spatial frequency of the Landolt-C in 

comparison to the background. Participants completed 18 trials for each threshold estimation at a 

viewing distance of 2m. Acuity was measured as decimal acuity (where 1.00 is considered normal 
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‘20/20 vision’) and contrast sensitivity was measured as a Weber percentage. Full task details are 

available at https://michaelbach.de/fract/) 

 

 Glasgow Face Matching Test 

We used the short version of the Glasgow Face Matching Test (GFMT; Burton et al., 2010) as a 

measure of face identity processing. To our knowledge, the GFMT has not been used within ageing 

research. The Benton Face Recognition Test (A. L. Benton, Sivan, Hamsher, Varney, & Spreen, 1994) 

has been more widely used (e.g. Bucks, Garner, Tarrant, Bradley, & Mogg, 2008; Orgeta & Phillips, 

2008), but the validity of this test has been questioned with prosopagnosics performing similarly to 

healthy controls (Duchaine & Nakayama, 2004). As the GFMT is a relatively challenging task with 

“large interindividual variation” (Burton et al., 2010, p. 290), we use it here as a sensitive measure of 

face identity processing that may highlight age differences that have not previously been observed.  

In this test, participants were presented with 40 pairs of faces and must make same/different 

judgements. Of the 40 pairs of faces, 20 are matching and 20 are nonmatching. The pairs of faces 

comprise of two full face images; one taken with a still camera, the other taken from the frame of a 

video. Full stimuli can be found at http://www.facevar.com/glasgow-face-matching-test. 

Performance on this test has been shown to correlate with performance on face memory and object 

matching tasks (Burton et al., 2010). Stimuli were presented in a random order, and participants had 

no time limit to respond although they were encouraged to use their initial judgement. We used a 

signal detection approach (d’; Stanislaw & Todorov, 1999), rather than accuracy, as this provides a 

more sensitive measure of identity processing and is not subject to response biases. 

 

 WAIS-IV Digit Span 

Short term memory was measured using the WAIS-IV Digit Span (Wechsler, 2008). Participants 

listened to sequences of digits, and were required to recall them forwards, backwards, or in 

ascending order across 3 subtests. Sequences ranged in length, from 2 digits to 9, and the raw score 

for this test was calculated as the sum of correctly recalled sequences across the 3 subtests. Two 

sequences of each length were presented, and each subtest stopped if the participant incorrectly 

recalled both sequences in the pair. 

 

https://michaelbach.de/fract/
http://www.facevar.com/glasgow-face-matching-test


39 
 

 WAIS-IV Matrix Reasoning 

We used the WAIS-IV Matrix Reasoning test (Wechsler, 2008) to measure fluid intelligence. For this 

test participants were presented with a sequence of incomplete matrices, containing images of 

coloured shapes. Participants were required to select which of 5 options best completed the matrix. 

The raw score was calculated as the sum of correct responses, and the test stopped when the 

participant provided 3 consecutive incorrect responses. 

 

2.3 Results 

 Age differences in expression labelling accuracy  

Labelling accuracy was calculated for each participant, as the percentage of correctly labelled facial 

expressions for each emotion. We conducted 6 independent t-tests to compare the accuracy for 

each emotion between the groups, correcting for multiple comparisons with the Bonferroni 

adjustment. Consistent with our predictions, older adults performed more poorly at labelling angry 

and sad faces. Unexpectedly, older adults did not differ from younger adults in the recognition of 

fearful facial expressions, and performed more poorly than younger adults in the recognition of 

surprise. Group distributions for each emotion are presented in Figure 2.2; results of the t-tests, 

descriptive statistics, and effect sizes are presented in Table 2.2. 

 

Table 2.2: Means, standard deviations, t-statistics, p-values, and effect sizes (Cohen’s d) for 

accuracies at correctly labelling each emotion between the two groups.  

 Young Old  

 Mean S.D. Mean S.D. t p d 

Angry 78.40 17.54 65.71 18.37 3.709 <.001* 0.85 

Disgusted 87.40 13.52 81.90 18.51 1.451 .150 0.31 

Fearful 60.20 26.76 50.24 26.00 1.937 .056 0.52 

Happy 96.80 5.13 95.48 7.72 1.475 .144 0.22 

Sad 91.00 12.33 71.90 23.19 5.422 <.001* 1.35 

Surprised 91.80 10.63 83.10 14.73 3.607 .001* 0.72 

* indicates that the p-value falls below the Bonferroni adjusted alpha level of 0.008 (.05/6). 
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Figure 2.2: Split box plots showing the accuracy scores for younger (blue) and older (red) adults, for 

each emotion. Horizontal black bars show the mean, coloured boxes show the interquartile range, 

and violins show the shape of the distributions. 

 

 Age differences in control task performance 

We then calculated age differences in the performance at each of the control tasks. To do so, we 

again conducted 6 independent t-tests between the raw scores for the WAIS subtests, GFMT d’, and 
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the visual acuity and contrast sensitivity measures. Older adults performed significantly poorer than 

the younger adults on all tests. Group distributions for each control task are presented in Figure 2.3; 

results of the t-tests, descriptive statistics, and effect sizes are presented in Table 2.3. It is worth 

noting that the higher mean (and therefore negative t-statistic and effect size) for the Weber % 

reflects poorer contrast sensitivity for older adults. 

All participants scored within 2.5 standard deviations from their group mean. 

 

 

 

 

 

 

 

 

Figure 2.3: Split box plots showing the accuracy scores for younger (blue) and older (red) adults, for 

each of the five control measures. Horizontal black bars show the mean, coloured boxes show the 

interquartile range, and violins show the shape of the distributions. 
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Table 2.3: Means, standard deviations, t-statistics, p-values, and effect sizes (Cohen’s d) for 

performance on the 5 control tasks between the two groups.  

Measure Young Old t p d 

Mean S.D. Mean S.D. 

Matrix Reasoning (raw) 16.04 4.63 13.267 4.213 3.042 .003* 1.07 

Digit Span (raw) 26.74 4.77 23.978 4.883 2.788 .006* 1.03 

Glasgow Face Matching Test d’ 1.95 0.75 1.292 0.744 4.929 <.001* 0.71 

Visual Acuity (decVA) 1.29 0.33 0.792 0.313 7.637 <.001* 0.72 

Contrast Sensitivity (Weber %) 1.72 0.97 2.705 1.486 -3.882 <.001* -0.76 

* indicates that the p-value falls below the standard alpha level of 0.05. 

 

 Age differences in the recognition of anger and surprise can be explained by the 

control tasks. 

After finding age differences in the recognition of anger, sadness, and surprise, we then tested to 

see whether these differences could be explained by the covariates. Three one-way ANCOVAs were 

performed, using emotion labelling accuracy as the dependent variable and group as the 

independent, while using the 5 control measures as covariates. 

After correcting for multiple comparisons with the Bonferroni adjustment (alpha = .016) age 

differences fell to non-significant for the correct recognition of anger (F(1,88) = 0.374, p = .543, ηp
2 = 

.004) and surprise (F(1,88) = 5.382, p = .023, ηp
2 = .058) when accounting for the control measures, 

but remained significant for the recognition of sadness (F(1,88) = 6.889, p = .010, ηp
2 = .073). This 

suggests that age-differences in the recognition of anger and surprise can be accounted for by 

differences in the 5 control measures, whereas age differences in the recognition of sadness cannot. 

The R2 values for each ANCOVA model show that age group and the 5 covariates can explain most 

variance in the recognition of sadness (R2 = .283), followed by anger (R2 = .257), then surprise (R2 = 

.137). 

To assess the relative contribution of each covariate to the recognition of anger and surprise, partial 

eta squared (ηp
2) was calculated for each covariate in the ANCOVA model. This is a measure of the 

proportion of variance accounted for by each covariate, so is used as a measure of the relative 

contribution of each covariate on recognition accuracy. These effect sizes, and the associated F and 

p-values, are presented in Table 2.4 for the recognition of anger and surprise. As such, we can see 

that performance on the GFMT was the largest contributor to the recognition of anger, whereas 
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performance on the Matrix Reasoning test was the biggest contributor to the recognition of surprise. 

Analysis for the contribution of each covariate to the group differences in the recognition of the 

other emotions can be found in Appendix A (Table A1). 

 

Table 2.4: F ratios, p-values, and effect sizes for each covariate within the ANCOVA model for the 

recognition of anger and surprise. 

Covariate Anger Surprise 

F p ηp
2 F p ηp

2 

Matrix Reasoning .693 .407 .008 1.067 .305 .012 

Digit Span 2.320 .131 .026 .094 .759 .001 

GFMT 5.032 .027 .054 .394 .532 .004 

Visual Acuity 1.416 .237 .016 .045 .832 .001 

Contrast Sensitivity .043 .836 <.001 .079 .780 .001 

 

 Comparison of Confusion Matrices 

The secondary aim of our experiment was to compare how younger and older participants confuse 

facial expressions. To do so, we first generated the mean categorisation matrix for each age group, 

presented in Figure 2.4. Each matrix shows the 6 presented facial expression categories on the y-

axis, and the selected emotional label on the x-axis. Each cell in the matrices represents the mean 

number of instances that the expression on the y-axis was labelled with the emotional label on the x-

axis, across all participants in each group. 

Firstly, we performed a replication of the analysis used by Mill et al. (2009), who calculated the 

relationship between the confusion matrices from younger and older adults using all cells in 

averaged matrices from each group. The researchers reported a strong correlation (r = .97), 

suggesting that younger and older adults make similar patterns of confusions. After Mill et al. (2009), 

we performed a correlation between all cells within the confusion matrices for each group, and 

found a relationship of a similar strength (r(36) = .990, p<.001). Repeating this analysis for on-

diagonal cells only (correct responses) shows a strong relationship (r(6) = 0.907, p = .013), although 

the small number of on-diagonal cells may have artificially inflated the coefficient. Interestingly, 

repeating the analysis using only the off-diagonal cells (the pattern of incorrect emotion 

categorisations) similarly shows a strong relationship (r(30) = 0.867, p<.001), suggesting that the 
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relationship between the matrices is not driven by the (high) numbers of correct responses, but 

rather the patterns of confusions made between pairs of emotions. 

 

 

 

 

 

 

 

 

 

Figure 2.4: Mean categorisation matrices for younger and older participants. Each matrix shows the 

mean number of instances that each presented emotion along the y-axis was categorised using each 

emotion label along the x-axis. The value of the cells in each matrix have been presented here using a 

colourbar to aid in visualisation. 

 

To assess the young-old differences in the exact pattern of categorisation of facial expressions, we 

then computed 36 Wilcoxon rank-sum tests between the corresponding cells in each matrix, and 

corrected for multiple comparisons using the False Discovery Rate correction (FDR; Benjamini & 

Hochberg, 1995). We opted to correct using this FDR correction as opposed to the more stringent 

Bonferroni adjustment, as the Bonferroni adjustment assumes independence between all 

comparisons. The results of this comparison are presented in Figure 2.5. Cells with significant young-

old differences are indicated with asterisks, where the p-value of the Wilcoxon rank sum-test falls 

below the FDR corrected alpha level of 1.328*10-2. 

The value of the associated Z-statistic for each cell has been scaled with a colourbar, such that blue 

cells indicate that the presented facial expression on the y-axis was categorised with the emotional 

label on the x-axis more by younger adults than older adults, and red cells indicate the opposite. The 

blue cells with significant differences along the diagonal are consistent with our initial analysis that 

younger adults correctly labelled angry, sad, and surprised facial expressions more than older adults. 
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In addition to this, we find significant age differences in a number of off-diagonal cells, suggesting 

that younger and older adults differ in their patterns of confusions between emotions. Older adults 

mislabel facial expressions of anger as fear, fear as anger, happiness as surprise, and sadness as 

anger and fear, more than younger adults. Younger adults, on the other hand, mislabel facial 

expressions of happiness as sad more than older adults. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Young-old differences in facial expression categorisation. Each cell shows the Z-statistic 

associated with the Wilcoxon rank sum test between younger and older adults’ categorisations. 

Asterisks indicate significant young-old differences (Blue cells: Younger>Older; Red cells: 

Older>Younger). 

 

2.4 Discussion 

Consistent with our hypotheses, we found significant age differences in the accurate labelling of 

anger and sadness. Unexpectedly, we found no differences in the recognition of fear, but we did for 

surprise. Our finding that older adults experience poorer recognition of anger and sadness in facial 

expressions is commonly reported in previous research (Calder et al., 2003; Horning et al., 2012; 



46 
 

Isaacowitz et al., 2007; Ruffman et al., 2008; Sullivan et al., 2007). The age differences in the 

recognition of surprise are reported less frequently (Ruffman et al., 2008). We found no age related 

improvement in the recognition of disgust as has been reported in some previous work, although 

this improvement is not reported as frequently across research (Ruffman et al., 2008). In addition to 

this, we found no differences in happy recognition due to ceiling effects, which is commonly 

reported (Isaacowitz et al., 2007; Ruffman et al., 2008). 

Here we have also demonstrated that our measures of fluid intelligence, short term memory, face 

processing, visual acuity, and contrast sensitivity significantly account for the age differences only in 

the accurate labelling of angry and surprised faces, but not sad faces. The calculation of the effect 

sizes for each covariate within the ANCOVA models advances previous research by assessing the 

relative contribution of these control measures to the age differences in the accurate labelling of 

angry and surprised facial expressions. After doing so, we found that our measure of face identity 

processing (GFMT) accounted for the most variance in the recognition of anger, whereas our 

measure of fluid intelligence (the Matrix Reasoning test) accounted for the most variance in the 

recognition of surprise. 

This is not entirely consistent with previous research that suggests the age-related decline in facial 

expression recognition is independent from any changes in general face processing (Orgeta & 

Phillips, 2008; Sullivan & Ruffman, 2004). This inconsistency may arise as we have analysed the 

effect on the recognition of each emotion separately, whereas this previous work has used 

concatenated scores as a measure of general emotion recognition accuracy. Alternatively, this result 

may be due to the signal detection approach that we adopted with the GFMT, which is arguably 

more sensitive than simple accuracy at quantifying face identity discrimination. We found significant 

age differences in the d’ scores, which is consistent with previous research suggesting an age-related 

decline in the ability to process face identity (Crook & Larrabee, 1992). Our results may highlight 

how age differences in facial expression recognition are not fully independent from the decline in 

face identity processing. 

With regard to the influence of lower level visual processes, our results suggest that visual acuity is a 

more important contributor to labelling accuracy for angry faces than contrast sensitivity (after 

controlling for the other covariates). This suggests that face shape information may be a more 

important cue than surface information when labelling angry facial expressions. In the ANCOVA 

model for surprise recognition, differences in visual acuity and contrast sensitivity had a comparable 

influence. Future work could investigate any age-related changes in the relative usage of shape and 

surface information when categorising facial expressions. Sormaz, Young, and Andrews (2016) 
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created sets of stimuli that varied only in shape (by warping the average surface texture to the 

original shapes) or only surface (by warping the original facial expressions to an average shape). In 

other words, shape cues were removed from one set of stimuli, while surface cues were removed 

from the other. Participants were then tested on their ability to recognise the emotions from these 

expressions. Applying this task within ageing research would allow for the examination of any age-

related differences in the use of shape and surface information.  

Previous research suggests that the age-related decline in ‘working memory’ is either independent 

from, or partially related to, the decline in emotion recognition from facial expressions (Horning et 

al., 2012; Orgeta & Phillips, 2008; Phillips & Allen, 2004; Ryan, Murray, & Ruffman, 2010). The 

present work furthers this by differentiating between processes of short-term memory and fluid 

intelligence, with use of the digit span and matrix reasoning tests. After controlling for all covariates, 

we found that the measure of short term memory shares more unique variance with the recognition 

of angry facial expressions than fluid intelligence, whereas the opposite is true for the recognition of 

surprise. On the other hand, we found that age differences in the recognition of sadness remained 

significant. Similarly, Murphy and Isaacowitz (2010) reported that sadness recognition accuracy was 

not associated with several cognitive, affective, and visual measures. Together, these results may 

suggest a specific age-related impairment in the recognition of this emotion.  

The secondary aim of our experiment was to explore any age differences in the pattern of 

categorisation of facial expressions. While Mill et al. (2009) suggested that older adults categorise 

emotions similarly to younger adults, here we have highlighted age differences by performing a cell-

by-cell comparison of the full categorisation matrices generated by each group. We found significant 

differences between the groups in some diagonal cells, reinforcing our previous finding of an age-

related decline in the recognition of anger, sadness and surprise, even when all possible 

categorisations were accounted for. Interestingly, we found significant differences in several off-

diagonal cells, suggesting that older adults mistake certain facial expressions for different emotions, 

more than younger adults. This could suggest that the facial expressions of these emotions become 

more perceptually similar across the lifespan.  

While this was conducted with no formal hypotheses, it highlights how older adults differ from 

younger adults in the emotions they recognise from certain facial expressions. Interestingly, older 

adults differed from younger adults here in their erroneous usage of the labels ‘anger’ (in response 

to fearful and sad faces) and ‘surprise’ (in response to happy faces). We found that older adults were 

poorer at the accurate recognition of anger and surprise, so it would be expected that they use 

these emotion labels less frequently than younger adults. Our results here suggest that they differ 
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from younger adults in their misuse of these labels, rather than simple avoidance of them. Similarly, 

this analysis compliments the result that older adults are poorer at the accurate recognition of 

sadness, by suggesting that they mislabel facial expressions of sadness as angry and fearful more 

than younger adults. It is also worth noting that several of the off-diagonal cells with significant age-

differences lie between pairs of emotions that older adults typically find more challenging to identify 

in facial expressions. Our results suggest that older adults misperceive angry faces to be fearful, 

fearful faces to be angry, sad faces to be angry, and sad faces to be fearful, more than younger 

adults. Complimenting previous research that suggests an age-related decline in the accurate 

recognition of anger, sadness and fear in facial expressions, our results suggest that older adults 

make more confusions between pairs of these emotions than younger adults.  
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3 Age-related changes in neural response to facial expressions 

3.1 Introduction 

The recognition of emotions from facial expressions has been reported to decline with age, with 

older adults experiencing difficulty with the recognition of negative emotions. Specifically, the 

recognition of expressions of anger, sadness, and fear shows the most frequent young-old 

differences across research into this area (Ruffman et al., 2008). In Chapter 2, we tested a group of 

younger (mean age = 20.5y) and older (mean age = 75.0y) adults on their ability to recognise the 6 

basic emotions, alongside a number of control tasks. We found that the young-old differences in the 

recognition of anger and surprise could be accounted for by measures of working memory, fluid 

intelligence, face processing, visual acuity, and contrast sensitivity, however these covariates could 

not account for the young-old differences in the recognition of sadness. In the current study, we 

focus on a neuropsychological account for age differences in expression recognition (Ruffman et al., 

2008). This account explains the behavioural young-old differences in terms of the age-related 

structural changes that occur in regions of the brain that process specific expressions. As ageing is 

associated with poorer recognition of negative expressions (commonly anger, sadness and fear), it is 

expected that the regions involved in the processing of negative expressions undergo these age-

related structural changes. By contrast, regions that are involved in the processing of other emotions 

(for example happiness) are expected the undergo fewer age-related changes.  

Previous research has highlighted several regions that are subject to age differences in activation in 

response to facial expressions (see Chapter 1). This research commonly examines differences in 

activation between 2 distinct age groups, often excluding middle-aged adults (an exception to this is 

Williams et al. (2006) who used 4 age groups). Many of these studies have had sample sizes that may 

be considered small, ranging from as little as 8 participants in each group to 24. Given the 

problematic nature of conducting an adequately powered group study using fMRI (Thirion et al., 

2007), it could be argued that a correlation-based approach may be better suited to study effects of 

age. Furthermore, as there is research to suggest that the recognition of certain expressions may 

begin to decline during middle-age (Calder et al., 2003; Horning et al., 2012; Williams et al., 2006), 

using a wider spectrum of ages may capture effects that have previously been overlooked. A 

common result of previous research is that the activation in the amygdala and areas of the 

prefrontal cortex is reduced in older adults, although there is a large network of regions that are 

responsible for the processing of different expressions. Using a correlation-based analysis may 

therefore reveal an age-related attenuation in these regions that group-studies have not.  
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In addition to examining any age-related changes in neural response to expressions, it is of interest 

to examine whether neural response is associated with the behavioural recognition of the emotion. 

While the neuropsychological account (Ruffman et al., 2008) does not necessarily specify any 

relationship between the degree of activation and the behavioural recognition of an emotion, 

finding such an association would provide support for any explanation of age differences in 

behaviour in terms of age differences in functional response. Older adults show both poorer 

recognition accuracy and speed of processing than younger adults, so it may be of interest to 

examine the relationship between functional response to expressions and both accuracy and 

reaction time to recognise them behaviourally. Any relationship between these behavioural 

measures and neural responses would provide support for the neuropsychological account, and 

provide new evidence associating specific regions of the brain to the age-related decline in 

expression recognition. 

In the present study we conduct secondary analysis of fMRI data, using participants aged 18-65. The 

data was collected as part of a larger project investigating emotion processing in schizophrenia 

(Kumari et al., 2011), although was not included in the publication. Participants viewed facial 

expressions of anger, fear and happiness, in addition to a neutral expression, while undergoing MRI. 

This allows us to examine any effects of age on emotion-specific activation. In addition to this, 

participants took part in a behavioural facial expression recognition test, allowing us to examine 

whether any age-related decline in neural activation is associated with emotion recognition ability. 

Firstly, we identified regions that show greater response to each expression category in comparison 

to neutral faces. Next, we identified the brain regions in which the magnitude of this activation 

varied with age. Taking the view that the age-related decline in the recognition of negative emotions 

is related to reduced activation, we expect to find an age-related reduction in activation in response 

to angry and fearful faces. Finally, we assessed the relationship between the activation in these 

regions and performance at the emotion recognition test. If any age-related changes in activation 

are associated with the behavioural recognition of the emotion, a relationship between activation 

and behaviour is expected.  

 

3.2 Methods 

 Participants 

Data from 30 participants (21 males) were used. Participants were aged 20-65y (mean age = 33.9, 

S.D. = 11.65). All participants fell within the normal range across a range of neuropsychological tests, 

were not on any medication, and had no history of drug use. 
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 Expression recognition task 

Participants were presented with 128 faces (Ekman & Friesen, 1976) displaying neutral, happy, 

angry, or fearful expressions. Each face was presented for 3 seconds, and faces were presented in a 

pseudo-random order to avoid repetition of any emotion category. After the face disappeared, 

participants were presented with the question “What emotion did you see?” and were required to 

choose from one of 4 emotion labels (Neutral, Happy, Anger, and Fear). Participants responded 

using the mouse. Full task details can be found in Premkumar et al. (2008). 

 

 fMRI task and protocol 

Participants were presented with angry, fearful, happy, and neutral faces (from Ekman & Friesen, 

1976), each in separate blocks lasting 30s. Each block contained 8 faces, presented for 3.75s each. 

After each block of faces, participants were presented with an oval frame (matched for the 

luminance of the face blocks) lasting 15 seconds. Blocks for each facial expression category were 

presented 4 times each. During the face blocks, participants performed a gender discrimination task 

(to keep attention), where they indicated if each face was male or female using a button box. Full 

details on the fMRI paradigm can be found in Kumari et al. (2011). 

 

 fMRI Image Acquisition 

MRI data was collected with a 1.5T GE Signa System. 240 T2*-weighted images were collected for 

each participant, using an Echo Planar Imaging (EPI) sequence with 16 near-axial slices aligned 

parallel to the intercommisural plane (TR = 3000ms, TE = 40ms, flip angle = 90°, voxel size = 3.1mm x 

3.1mm x 7mm, matrix size = 64 x 64, interslice gap = 0.7mm). In addition to these function images, a 

high-resolution 3D inversion recovery prepared spoiled gradient recalled acquisition in the steady 

state volume data set was acquired (TR = 12.2ms, TE = 5.3ms, inversion time = 300ms, voxel size = 

0.94mm x 0.94mm x 1.5mm). 

 

 Image preprocessing and beta estimation 

For each participant, all functional images were realigned (registered to the mean of the whole 

session using 2nd degree B-spline interpolation) and resliced (using 4th degree B-spline interpolation). 

Each participant’s structural image was co-registered to their mean functional image, then functional 
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images were normalised to MNI space (voxel size = 3mm x 3mm x 3mm) using the deformation field 

output from warping the structural to an MNI template. Functional images were smoothed with an 

8x8x8mm FWHM Gaussian kernel, using the SPM12 toolbox in MATLAB 2016b. Each expression 

condition was modelled with a box-car, convolved with a standard haemodynamic response 

function, for each 30 second block. The 6 realignment parameters were included in this GLM. 

 

 Analysis 

At the first level of analysis we contrasted the betas for each expression (Angry, Fearful, Happy) 

against the beta for the Neutral condition, for each participant. Using random effects analysis at the 

second level, we first investigated the effect of each expression (compared to neutral) across the 

group. Next, we used age as a second-level covariate to identify the regions in which the magnitude 

of activation (for each expression in comparison to neutral) was correlated with age. We tested for 

both positive and negative correlations with age. After identifying these age-sensitive regions, we 

then tested the correlations between the activation in response to an expression within the peak 

voxel (the voxel showing the greatest relationship with age in each region) and three behavioural 

measures: recognition accuracy and reaction time (during the behavioural task), and reaction time in 

the gender decision task participants performed in the scanner. Doing so allowed us to examine 

whether the activation in these regions was only associated with age, or whether it was also 

associated with differences in any of these behavioural measures. 

 

3.3 Results 

 Behavioural Emotion Recognition Task (Offline) 

The mean and standard deviation were calculated for reaction time and recognition accuracy for 

each expression. A Pearson’s correlation was also conducted to assess the relationship between 

accuracy at recognising each emotion and age. These results are presented in Figure 3.1 below. 
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Figure 3.1: Accuracy (left) and reaction time (right) during the behavioural emotion recognition task. 

Error bars show 1 standard error. The results of the Pearson’s correlation with participant age is 

presented above each bar. 

 

 Gender Discrimination Task (Online) 

The mean and standard deviation for the accuracy and reaction time during the gender 

discrimination task was also calculated. Figure 3.2 shows these, and the results of the Pearson’s 

correlation between each measure and age. Only reaction time to respond to angry faces was 

correlated with age (r(30) = .479, p = .007). 
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Figure 3.2: Accuracy (left) and reaction time (right) during the gender categorisation task, split by 

emotion category. Error bars show 1 standard error. The results of the Pearson’s correlation with 

participant age is presented above each bar. 

 

 Effects of emotion across participants 

A one-sample t-test was conducted comparing the magnitude of activation for each expression (in 

comparison to neutral) to 0. Using a threshold of p<.001 (uncorrected) and a cluster threshold of 10 

voxels, significant activation was only found for fearful faces in comparison to neutral in the right 

parahippocampal gyrus. Results are reported in Table 3.3. 

 

Table 3.3: Results of the random effects analysis for the effect of each emotion compared to neutral. 

Contrast Hemisphere Region MNI Coordinates Peak T 

X Y Z 

Angry > Neutral n/a 

Fearful > Neutral R Parahippocampal gyrus 9 -34 -10 4.16 

Happy > Neutral n/a 

 

 

 The relationship between age and activation 

Next, participant ages were entered as a covariate into the second level analysis to explore the 

regions in which the magnitude of activation in response to each expression was correlated with 

age. Following Kumari et al. (2003), we first identified clusters showing effects of age using a 

relatively liberal threshold (p<.001 uncorrected, cluster threshold = 10 voxels), then tested the 

significance using a threshold of p<.05 (FWE corrected) within a 5mm spherical ROI centred on the 

peak voxel within each cluster. Activation in several regions was negatively correlated with age for 

each expression. No regions showed a positive correlation with age (i.e. we found no regions in 

which increasing age is associated with greater activation to each expression). 

Results are reported in Table 3.4.  
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Table 3.4: Regions in which activation is negatively correlated with age, for each expression.  

Contrast Hemi-

sphere 

Region MNI Coordinates Peak T p  

X Y Z Cluster Peak 

Angry > 

Neutral 

 

L Postcentral gyrus -42 -25 53 4.60 .003 .001 

L Anterior cingulate -9 26 17 4.54 .003 .001 

L Precuneus -9 -49 65 4.15 .003 .002 

R Postcentral gyrus 36 -25 56 4.04 .003 .003 

Fearful > 

Neutral 

L Superior parietal 

lobule 

-21 -58 56 5.25 .002 <.001 

-21 -73 50 4.75 .003 <.001 

L Ventral Dorsal 

Caudate 

-3 -7 -13 5.17 .002 <.001 

L Putamen -24 2 -10 3.91 .004 .004 

R Superior parietal 

lobule 

21 -67 47 3.88 .002 .004 

Happy > 

Neutral 

R Medial precentral 

gyrus 

12 -22 53 5.58 .002 <.001 

R Lateral precentral 

gyrus 

30 -22 56 4.69 .002 .001 

L Lingual gyrus -27 -70 8 4.59 .003 .001 

L Middle cingulate -15 -7 44 4.52 .002 .001 

Happy > 

Neutral 

R Middle frontal 

gyrus 

30 32 26 4.51 .003 .001 

L Precentral gyrus -30 -22 53 4.23 .003 .002 

L Superior parietal 

lobule 

-24 -52 56 4.22 .004 .002 

L Middle temporal 

gyrus 

-48 -40 2 4.11 .002 .002 

R Middle cingulate 18 8 35 4.03 .003 .003 

L Angular gyrus -42 -55 32 4.01 .004 .003 

R Medial postcentral 

gyrus 

6 -37 62 3.84 .004 .004 
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 Overlap between age-sensitive regions for each expression contrast  

To investigate whether there was any overlap in regions showing an age-sensitive response to each 

of the three emotions, we overlaid the results for the three emotions onto the average anatomical 

image across participants (Figure 3.3). 

There was an overlap between the voxels showing significant age-related declines in the response to 

happy and fearful faces in the left superior parietal lobule (Figure 3.3, left). There were also overlaps 

between the voxels showing significant age-related reductions in the response to angry and happy 

expressions, in regions in the bilateral postcentral gyri (Figure 3.3, middle and right). There were no 

voxels showing significant age-related reductions in the response to both angry and fearful 

expressions, nor any showing an age-related reduction in activation in response to all three 

expressions. 

 

Figure 3.3: Regions in which age is negatively associated with response the 3 emotions (red = angry, 

green = fearful, blue = happy). Crosshairs are centred on overlapping regions showing an age-related 

reduction in response to both happy and fearful faces (Left), and both angry and happy faces 

(Middle, Right) 

 

 Correlation between activation and behavioural expression recognition 

For each region showing significant age effects (regions in which the activation in response to an 

expression was negatively correlated with age), we performed a Pearson’s correlation between the 

activation (within the peak voxel) and three behavioural measures (accuracy at the recognition of 

the emotion, reaction time to recognise the emotion, and reaction time to classify the gender of the 

face in the scanner). All correlations were performed within-emotion (e.g. the activation in response 

to happy faces was correlated with the reaction time to recognise happy faces). It should be noted 

that reaction times within the offline recognition task were missing for seven participants. 
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The only correlation to reach significance was between the activation in response to happy faces in 

the left middle cingulate (MNI coordinates = [-15, -7, 44]) and the reaction time to classify the 

gender of happy faces (r(30) = 0.370, p = .044). However, as this has not been corrected for multiple 

comparisons, we take this as no clear evidence that the reduction in activation across age is 

associated with behaviour. Full results are presented in Appendix B (Table B1). 

 

3.4 Discussion 

The main aim of this research was to examine whether the age-related attenuation in neural 

response to emotions from facial expressions was associated with the behavioural recognition of the 

emotion. Firstly, we found that a reduction in selectivity for emotional faces in several regions of the 

brain was associated with increasing age, across all 3 expression categories. We found a reduction in 

selectivity for angry faces in the bilateral postcentral gyri, the left anterior cingulate, and the left 

precuneus. We found a reduction in selectivity for fearful faces in the superior temporal lobule, left 

ventral dorsal caudate, and left putamen. We found the most regions showing effects of age in 

selectivity of happy faces, in the bilateral precentral gyri and middle cingulate cortices. Additionally, 

we found a reduction in lateralised regions including the left superior parietal lobule, lingual, middle 

temporal, and angular gyri, and in the right middle frontal and medial postcentral gyri. This was 

somewhat unexpected as typically the recognition of happy faces is maintained across age (Ruffman 

et al., 2008). Of note is that the activation in the superior parietal lobule and bilateral postcentral 

gyri showed an age-related reduction in activation across the different expressions. We found no 

regions in which ageing was associated with an increase in activation. 

Interestingly, one study found cross-modal representations of face, body, and whole-person 

expressions of emotion in the left postcentral gyrus (Cao, Xu, Yang, Li, & Liu, 2018), comparable to 

the cross-modal representations of emotion found in the MPFC (Peelen et al., 2010; Skerry & Saxe, 

2014). Additionally, another study reported involvement of the postcentral gyrus in taking a third-

person perspective of emotion-inducing situations (Ruby & Decety, 2004), suggesting that this region 

may represent abstract emotion concepts and may be involved in theory of mind. As we found 

reduced selectivity for emotional faces in the bilateral postcentral gyri across age, perhaps the age-

related decline in emotion processing may be associated with a reduction in theory of mind. 

Of note is that we found reduced selectivity for fearful faces across age in the left dorsal caudate and 

putamen, part of the basal ganglia. Evidence from patients with Parkinson’s disease (a 

neurodegenerative disorder affecting the basal ganglia among other regions) suggests the 

involvement of the basal ganglia in the processing of emotions from both faces (Dujardin et al., 
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2004) and voices (Pell & Leonard, 2003). Perhaps, the age related decline in the recognition of 

fearful faces may be some result of reduced processing in this region. 

In relation to the main aims of this research, we found no strong evidence that activity within these 

regions was related to performance (accuracy or reaction time to recognise the emotion, or reaction 

time to classify the gender of the face). Together, this suggests that the reduction in activity across 

the lifespan is age-related, and is not a reflection of behavioural differences in the recognition of the 

expressions. 

Some of these results are consistent with those in previous studies. For example, Iidaka et al. (2002) 

reported reduced activation in response to positive facial expressions, in the lingual and angular gyri. 

This is comparable to some results of the present study, in which there was an age-related reduction 

in the neural response to happy faces in these regions. Williams et al. (2006) reported young-old 

differences in the response to happy faces in a frontal region (the medial prefrontal cortex). In the 

present study, we found an age-related decline in activation in response to happy faces in some 

frontal areas (the middle frontal gyrus and middle cingulate). 

There are, however, several results that are not entirely consistent with previous research. A 

common result reported by previous research is young-old differences in amygdala activation, with a 

reduced response to negative (Iidaka et al., 2002), angry (Fischer et al., 2005), happy (Keightley et 

al., 2007; Williams et al., 2006) and fearful (Williams et al., 2006) faces in older adults. Similarly, 

previous research often reports that older adults have reduced activation in some other areas of the 

limbic system in response to facial expressions and during facial expression discrimination tasks 

(Fischer et al., 2005; Gunning-Dixon et al., 2003; Iidaka et al., 2002). In the present study, we found 

no age-related decline in activation in any limbic areas in response to any of the facial expression 

categories. In contrast, we found that the activation in several occipital and parietal regions was 

negatively correlated with age. These differences could reflect our use of correlational analysis, in 

comparison to the group-based analysis used throughout previous research. Furthermore, the lack 

of any age effects in the amygdala may be due to our cluster threshold (Keightley et al., 2007).  

The neuropsychological account of age differences in expression recognition (Ruffman et al., 2008) 

explains the behaviourally observed young-old differences in terms of age-related changes in 

structure and function of regions involved in the processing of specific facial expressions. Two results 

of the current study may not necessarily be consistent with this position. The first is that there were 

numerous regions in which the response to happy faces declined with increasing age. As the 

recognition of happy faces is relatively spared during ageing, it would be expected that the neural 

response to happy faces is not associated with ageing.  
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The second is that no regions (in which a reduction in activation was associated with increasing age) 

showed a relationship between activation and any of the behavioural measures associated with the 

recognition of the emotion. As this suggests that the reduction in activation does not reflect any 

differences in behaviour, it brings to question the link between the behaviourally observed age-

differences and the age-related changes in neural response as proposed by the model.  

It may be difficult to draw conclusions from this lack of a relationship with behaviour however, as 

the behavioural emotion recognition task may not have been sensitive enough to capture any 

relationship with neural activity. For example, ceiling effects were observed for the recognition of 

happy and fearful faces (with mean recognition accuracies of 96% and 93% respectively) so it is 

difficult, therefore, to examine the relationship between these measures and neural activity. 

Perhaps the use of a more challenging emotion recognition task may produce scores with sufficient 

variance to be able to examine the relationship with neural activity. 

A potential reason for the differences between the results of our study and the results of previous 

research is the age range. Previous research often uses two distinct groups, with the minimum age 

of the older group starting at approximately 60. The recognition of certain expressions is suggested 

to begin to decline during middle-age (Calder et al., 2003; Horning et al., 2012; Williams et al., 2006), 

so perhaps the results of our study capture neural basis of the changes in emotion recognition that 

occur during middle age. It may be the case that some common results of previous research (for 

example, the reduction in amygdala response) may begin to occur during older adulthood. Future 

research could investigate the age at which these effects begin using an age range with older adults 

that we used. 
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4 The influence of conceptual and stimulus-based cues on the 

perception and recognition of facial expressions 

4.1 Introduction 

Previous research has shown that tasks that require the perception and the categorisation of facial 

expressions of emotion involve the use and integration of both stimulus-based cues and conceptual 

information. There is, however, little understanding of the relative importance and usage of 

different types of information to the different tasks.  

Palermo et al. (2013) have shown different patterns of associations of individual differences in 

perceptual and categorical tasks, which suggest that the processes used in both tasks are not 

completely overlapping. To assess the relative usage of stimulus-based and conceptual cues on both 

the perception and categorisation of facial expressions, we take a Representational Similarity 

Analysis (RSA) approach. RSA is a powerful technique that allows for the comparison of the structure 

or geometry of representations across different modalities, methods, or groups, that are ordinarily 

incomparable (e.g. the brain, theoretical models, and behaviour; Kriegeskorte, Mur, & Bandettini, 

2008). In RSA, the similarities (or dissimilarities) between the responses to all pairs of stimuli or 

conditions in one modality are computed (for example, pairwise measures for the similarity of facial 

expressions, measured using a behavioural task), and are used to construct a Representational 

Dissimilarity Matrix (RDM). Separate RDMs can be created to measure the similarities of stimuli 

within other modalities, and can then be compared across modalities, typically by correlating the 

RDMs or using them in regression models. RSA has been previously been used to investigate the role 

of concepts in the perception of facial expressions (Brooks & Freeman, 2018), the similarity of 

emotion representations across sensory modalities (Kuhn, Wydell, Lavan, McGettigan, & Garrido, 

2017) and the integration of high- and low-level representations in judgements of personality traits 

from faces (Stolier, Hehman, & Freeman, 2018; Stolier, Hehman, Freeman, Keller, & Walker, 2018). 

In our case, we aimed to use RSA to explore the types of information that participants use in 

perceptual and categorical facial expression tasks. Therefore, participants completed two tasks: a 

Perceptual Task in which they discriminated between facial expressions relying mostly on perceptual 

processes (no labelling was involved), and a Categorisation Task in which they categorised facial 

expressions using one of 6 emotion labels. From these tasks, we computed a perceptual and a 

categorical RDM for each participant. We then investigated whether model RDMs based on shape, 

surface, and conceptual information could explain the behavioural RDMs. Using multiple linear 

regression, we expected to see that each model can independently predict behaviour as measured 
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by categorisation patterns and perceptual discriminability, and explored the different extents to 

which each source of information is used.  

RDMs that contain the representational structure of facial expression percepts have been computed 

using a number of methods, often requiring participants to make subjective judgements or involving 

the presentation of emotion labels (Brooks & Freeman, 2018; Said, Moore, Engell, et al., 2010; 

Sormaz, Watson, et al., 2016).  It is possible that these methods may recruit some top-down 

processes, so we aimed to design a task to reduce this top-down influence.  

As shape, surface, and conceptual cues have all been shown to play a role in the perception and 

recognition of emotions, we expect all three of these cues to explain behaviour in the perceptual 

and categorisation tasks. Given that the presence of emotion labels may activate emotion concepts, 

we expect that conceptual cues may play more of a role in the categorical task than in the 

perceptual task. 

 

4.2 Methods 

 Participants 

50 participants (40 women) were recruited using the Brunel University Participant Pool, and by word 

of mouth. All participants were aged 18 or over (M = 19.02; S.D. = 1.70; range from 18 to 27) and 

reported normal or corrected-to-normal vision. Ethical approval to conduct the research was 

granted by the College of Health and Life Sciences Research Ethics Committee at Brunel University 

London. 

 

Design 

This study used a within-subjects design, so all participants completed both the Perceptual and the 

Categorical Tasks. The Perceptual Task was conducted first, so the participants were only exposed to 

the emotion labels during the Categorical task.  

 

 Perceptual Task 

Materials 

We selected pictures of facial expressions of emotion from the Radboud Faces Database (Langner et 

al., 2010). Three male identities and three female identities were chosen based on the ratings of 
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genuineness and intensity for the six basic emotions (using validation data from Langner et al., 

2010). First, we calculated the mean and standard deviations for the ratings of genuineness and 

intensity across the six basic emotions for each identity in the database. Next, identities were ranked 

according to these ratings allowing us to select only those identities with above average means and 

below average standard deviations (so that the genuineness and intensity ratings had less variability 

across the six emotions for the individual). From this selection we then chose the highest equal 

number of Caucasian male and female identities, leaving us with three males and three females. In 

total, there were 36 different pictures (6 identities x 6 expressions). 

For each identity, we created morphed continua between each pair of six emotions. Each face was 

marked with 112 fiducial points (using the positions in the FantaMorph software; 

www.fantamorph.com) to allow for linear interpolation between every pair of expressions, within 

identity (Figure 4.1). Although Fantamorph was used to position the points, MatLab was used to 

create the continuum, which contained 100 discrete steps. Images were cropped to a square 

containing the whole face.  

 

 

Figure 4.1: Seven examples from the happy-disgusted continuum. The stimuli in the task could be 

taken from any point along the continuum. 

 

Procedure  

During each trial, participants simultaneously viewed 3 faces aligned horizontally (Height/Width = 

8.0°, Width of 3 images = 28.4°, with an average viewing distance of 60cm), each displaying one of 

two expressions. Beneath each face were numbers (1-3), and participants were required indicate 

which one displayed a different expression to the other two, by pressing the corresponding key (1-3) 

on a standard QWERTY keyboard. The faces were presented for a maximum of 5 seconds, or until 

the participant made a response. There was an ISI of 300ms. All faces were of different identities, 

and the position of the target was random.  
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To measure the perceptual similarity of pairs of expressions, we calculated discrimination thresholds 

using a psychophysical method. Psychophysical methods have been used in previous research to 

calculate sensitivity at which emotions can be detected in warped neutral-expressive pairs (Calvo, 

Avero, Fernández-Martín, & Recio, 2016; Marneweck, Loftus, & Hammond, 2013; Suzuki, Hoshino, & 

Shigemasu, 2006). Each trial of the Perceptual Task was used in the threshold estimation for one of 

15 possible pairs of emotions. Each of the 3 face images was the result of linear interpolation 

between two original expressive images. A staircase procedure (Cornsweet, 1962) was used to 

adjust the weighting of the expressions in each image by 10% of the remaining distance in each step. 

This meant that the fiducial points of one expression were moved towards the corresponding points 

of the other expression (by 10% of the distance) for correct responses, and were moved away from 

the points of the other expression for incorrect responses (Figure 4.2).  

 

Figure 4.2: An example of the staircase adjustment of the weighting for a subject’s happy-disgust 

discrimination threshold. Red markers indicate reversals in performance. The dashed red line 

indicates the threshold, which was calculated as the mean weighting at the last 7 reversals. The three 

faces show an example trial at threshold weight. 

 

A 1-up-2-down design was used such that the participants were required to consecutively respond 

correctly 2 times for the weight to be adjusted downwards. The threshold estimation for each 

emotion pair started at 100% (the original images), and no exaggerations were shown during the 
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task (e.g. if a participant responded incorrectly on the first trial of one threshold estimation, 

weighting was capped at 100%). The threshold estimation for each pair of emotions was terminated 

after 8 reversals in performance, and the discrimination threshold for a given pair of emotions was 

taken as the mean weighting at the last 7 reversal points. A perceptual matrix for each participant 

was constructed from the discrimination thresholds for each pair of emotions. 

Trials for each emotion pair were presented in a random order, before the weighting was adjusted 

and all (remaining) emotion pairs were presented again in a random order. 

 

 Categorical task 

Materials 

We selected pictures of facial expressions of emotion from the Radboud Faces Database (Langner et 

al., 2010). Ratings of genuineness (using validation data from Langner et al., 2010) were used to 

select the top 40 most genuine examples of each emotion. In total, there were 240 images (40 x 6 

emotions). Images were cropped to a square containing the whole face. 

 

Procedure 

During each trial participants were presented with a single picture of a facial expression in the centre 

of the screen (Height/Width = 9.6°, with an average viewing distance of 60cm). To avoid ceiling 

effects and ensure that the task was sufficiently challenging, each stimulus was presented for 

200ms. This ensured that participants did not study the image in too much detail but were still able 

to make an informed decision. Brief presentation times have been used in validated facial expression 

recognition tests to reduce ceiling effects (Ekman & Friesen, 1974; Matsumoto et al., 2000). 

After the image, participants were presented with 6 emotional labels with numbers 1-6 and were 

required to label the facial expression using the corresponding number keys on a keyboard. We 

recorded the number of correct responses to each emotion, as well as the number of instances each 

emotion was mislabelled with another. 

The categorical RDM was constructed from the raw confusion matrix generated by each participant. 

Although this RDM does not measure ‘categorical similarity’ of emotions, each subject’s pattern of 

categorisation encodes the similarity of emotions as reflected by the behavioural confusions 

between a facial expression and an emotion label. Raw confusion matrices have previously been 

used with RSA (Skerry & Saxe, 2015 (Supplemental Information)). 
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As the confusion matrix is not necessarily symmetrical along the diagonal, mirroring cells in the 

upper and lower triangles were averaged, to produce a categorical matrix for each participant (e.g. 

the sad-anger cell in the categorical matrix contains the average number of instances a participant 

mislabelled a sad face as angry, and an angry face as sad). 

 

 Model Construction 

We constructed three models of the types of information that could explain the participants’ pattern 

of categorisations in the Categorical Task and perceptual discrimination sensitivity in the Perceptual 

Task. A matrix was constructed for each model, where each cell of the matrix represented the 

discrimination between the corresponding pair of emotions, using a different source of information 

for each model. Two models discriminated between pairs of expressions using stimulus-based cues 

(Shape and Surface information), whereas another model discriminated between the emotion 

concepts (Conceptual).  

 

Shape 

Similarity of face shape was measured by performing Procrustes analysis between the fiducial points 

of the faces used in the perceptual task. This analysis allows for the comparison of any two shapes, 

and has previously been used to calculate the similarity of facial expression shapes (Kuhn et al., 

2017; Sormaz, Watson, et al., 2016). Procrustean analysis computes the average squared distance 

between each pair of corresponding fiducial points, after correcting for size and position in 2D space 

by allowing shape translation, rotation, and scaling without morphing or non-linear distortion. The 

distance measure is then scaled such that the value of the output lies between 0 and 1. This analysis 

was performed between every within-identity pair of facial expressions as used in the perceptual 

task, to construct a shape dissimilarity matrix for every identity. To construct the shape model used 

in this experiment, we averaged these identity-level matrices. The resulting matrix was subtracted 

from 1 to keep the direction consistent with the other matrices: as such, higher values indicate 

greater similarity between the shapes of the corresponding facial expressions.  

 

Surface 

To measure surface similarity between the pictures used in the perceptual task, we computed the 

Fischer’s Z-transformed Pearson’s correlation coefficient between the pixel intensities for within-
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identity pairs of facial expressions. A similar procedure has been previously used in previous 

research to measure the similarity of face textures (Kuhn et al., 2017; Sormaz, Watson, et al., 2016). 

First, we found the average face shape across all facial expressions, by averaging the locations of the 

corresponding fiducial points. Then, we warped all face stimuli to this average face shape using 

Psychomorph (Tiddeman, Stirrat, & Perrett, 2005) to remove shape cues and converted all images to 

greyscale. We then calculated the correlation coefficient of the pixel intensities, for pixels falling 

within a mask that excluded all non-face pixels, and transformed them using Fischer’s Z-

transformation.  A matrix was constructed for each identity, then averaged across identities to 

create the surface model.  

 

Conceptual 

The conceptual model was computed based on data form Skerry and Saxe (2015), which was 

generously provided by the authors. In that study, participants on Amazon’s MTurk rated 200 verbal 

stimuli describing an emotional event that happened to a character on the extent to which the 

character was experiencing the six basic emotions, on a scale from 1 to 10. In each story the 

character experienced one of 20 ‘fine-grained’ emotions (e.g. a story about a character experiencing 

the emotion loneliness was about them finding it difficult to make friends after moving to a new 

city). Other examples of these fine-grained emotions include ‘disappointment’, ‘nostalgia’, and 

‘embarrassment’, although these labels were never shown to participants. 10 stories were written 

for each of the 20 ‘fine-grained’ emotions. Full details of stimuli and procedure can be found in 

Skerry and Saxe (2015). A total of 1556 ratings for each of the six basic emotions were provided for 

the 200 short stories. From this data, we calculated the mean ratings for the six basic emotions for 

each of the 20 categories (e.g. we found the mean ratings for ‘anger’, ‘disgust’, etc. across stories in 

which a character was feeling ‘nostalgic’ etc.).  

To generate the matrix for conceptual similarity, we calculated the Fischer’s Z-transformed pairwise 

Pearson correlation coefficients between the ratings for the six basic emotions across the 20 subtle 

emotions. Pairs of the six basic emotions with higher transformed coefficients therefore had similar 

subtle emotions attributed to them than pairs with lower correlations. As such, cells with higher 

values suggest a greater conceptual overlap between the corresponding emotions than cells with 

lower values. 
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 Data Analysis 

For each task, we first assessed the relationship between the behaviour and each of the three 

models using Spearman’s correlations. The correlation was performed between the behavioural 

matrices and each of the 3 models separately, for each subject. The array of coefficients for each 

model was then tested against 0 using a one-sided Wilcoxon signed rank test. 

To assess the relative contribution of each model in explaining the behavioural tasks, we used 

multiple linear regression. The three models were entered into a multiple linear regression model 

(with a constant of ones) to explain each behavioural task, for each participant. The behavioural 

measures and the models were z-scored to calculate the standardised beta weights, allowing us to 

examine the relative contribution of each model. The arrays of standardised beta weights were 

tested against 0 using a one-sample t-test. All analyses were conducted using only the lower triangle 

(15 off-diagonal cells) of each matrix. 

 

4.3 Results 

 Behavioural Matrices 

For each participant, we constructed a confusion matrix from their choice of labels in the 

categorisation task, and a perceptual similarity matrix from the pairwise discrimination thresholds in 

the perceptual task. Figure 4.3 shows the categorical matrix and the perceptual matrix, averaged 

across all participants for visualisation. 

 

 

 

 

 

 

Figure 4.3: The mean categorical matrix (left), which displays the mean number of instances pairs of 

emotions were confused with each other. The mean perceptual matrix (right), which displays the 

perceptual discrimination thresholds for each pair of expressions in the perceptual task. The 

colourbars are scaled to the minimum and maximum values in the off-diagonal triangles. 
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 Inter-subject reliability 

To test how consistent were the Perceptual and Categorical matrices across participants, we 

computed inter-subject reliability for each type of matrix by correlating (Spearman’s correlation 

coefficient) each participant’s matrix with the average matrix for all remaining participants. Inter-

subject reliability is presented in Figure 4.4, and the behavioural matrices showed good inter-subject 

reliability, with mean correlation of .661 for the Perceptual matrices and .765 for the Categorical 

Matrices. 

 

 

 

 

 

 

 

 

Figure 4.4: Inter-subject reliability. For each participant’s perceptual and categorical matrices, we 

computed the correlation with the average of all other participants’ matrices. Red bars represent the 

mean correlation coefficient. 

 

 Models 

Figure 4.5 shows the matrices for the 3 models used in the analysis. We then investigated the 

correlations between the different models. Pairwise Spearman’s correlations showed no significant 

correlation between Conceptual and Shape (rho(15) = .043, p = .883), a small non-significant 

correlation between Conceptual and Surface (rho(15) = .354, p = .196), and a large and significant 

correlation between Shape and Surface (rho(15) = .707, p = .004). 

To check that the models were not colinear, we calculated the variance inflation factor (VIF) 

between the models. The VIF for the Shape and Surface models was 1.80, for the Shape and 

Conceptual models was 1.00, and for the Surface and Conceptual models was 1.11. None of these 

values exceeds the recommended threshold of 5 (Montgomery, Peck, & Vining, 2012). 
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Figure 4.5: Conceptual (Fischer Z-transformed correlation coefficients; left), Shape (1-Procrustes 

distance; centre), and Surface (Fischer Z-transformed correlation coefficients; right) models. 

 

 Explaining perceived similarities in Perceptual Task 

To investigate the role of the conceptual, shape, and surface cues on the Perceptual Task, we first 

computed the Spearman’s correlation coefficient between each participant’s perceptual matrix, and 

each of the three models to evaluate their individual contribution. All arrays of correlation 

coefficients were significantly higher than zero (Conceptual: mean rho = .361, Z = 1258.5, p < .001; 

Shape: mean rho = .373, Z = 1273, p < .001; Surface: mean rho = .430, Z = 1275, p < .001), after 

correcting for multiple comparisons with the Bonferroni adjustment (a = .0167). These results show 

that judgments in the Perceptual Task could be explained by each of the models that we used here.  

Figure 4.6 shows the correlation coefficients, and the estimated noise ceiling, which was computed 

in a similar manner to Nili et al. (2014). The upper bound of the noise ceiling shows the average 

Spearman’s correlation coefficient between each participant’s perceptual matrix and the average of 

all participants’ perceptual matrices, after rank transforming all matrices. The lower bound of the 

noise ceiling is the average Spearman’s correlation coefficient between each participant’s perceptual 

matrix and the average of all other participants’ perceptual matrices, after rank transforming all 

matrices. The proximity of the upper and lower bounds of the noise ceiling suggest that participants 

were behaving very similarly in the perceptual task. These results show that, while the correlations 

were significantly above zero for each model, none of the correlations reached the noise ceiling, so 

no individual model could explain most of the variance in participants’ perceptual dissimilarities.  
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Pairwise comparisons (using Wilcoxon rank-sum tests) revealed no significant differences between 

the distributions of correlation coefficients (Conceptual-Shape: Z = -0.141, p = 0.888; Shape-Surface: 

Z = 1.565, p = 0.118; Conceptual-Shape: Z = 1.534, p = 0.125). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Distributions of Spearman’s correlation coefficients between each participant’s perceptual 

matrix and each of the models. Red bars represent the mean correlation coefficient. The grey bar 

represents the upper and lower bounds of the noise ceiling. 

 

We then used multiple linear regression to estimate the individual contribution of each model for 

the similarities in the Perceptual judgments. The beta weights for each model were significantly 

higher than zero (Conceptual: t(49) = 11.72, p < .001; Shape: t(49) = 8.72, p < .001; Surface: t(49) = 

3.40, p = .001), after correcting for multiple comparisons with the Bonferroni adjustment (a = .0167). 

The mean R2 value across subjects was 0.386 (S.D. = 0.158), so approximately 38.6% of the variance 

was explained by all three models. Pairwise comparisons revealed greater contribution of 

conceptual than surface (t(49) = 2.96, p = .005, d = 0.74), no significant difference between the 
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contributions of shape and surface (t(49) = 2.23, p = .030, d = 0.60), and no significant difference 

between the contributions of conceptual and shape (t(49) = 0.67, p = .504, d = 0.10), after correcting 

for multiple comparisons with Bonferroni adjustment (a = .0167). Distributions of standardised beta-

weights are presented in Figure 4.7. 

 

Figure 4.7: Distributions of standardised beta weights for each model as a predictor of each 

participant’s perceptual matrix. Red bars represent the mean standardised beta-weight and the 

dashed red line represents the test value of 0. 

 

 Explaining judgments in Categorical Task 

To investigate the role of the conceptual, shape, and surface cues on the Categorical Task, we first 

computed the Spearman’s correlation coefficient between each participant’s categorical matrix, and 

each of the three models to evaluate their individual contribution. All arrays of correlation 

coefficients were significantly higher than zero (Conceptual: mean rho = .508, Z = 1275, p < .001; 

Shape: mean rho = .379, Z = 1274, p < .001; Surface: mean rho = .557, Z = 1275, p < .001), after 

correcting for multiple comparisons with the Bonferroni adjustment (alpha = .0167). These results 

show that judgments in the Categorical Task could be explained by each of the models that we used 
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here. Figure 4.8 shows the correlation coefficients, and the estimated noise ceiling. The upper and 

lower bounds were computed in the same way as for the Perceptual Task. These results show that, 

while the correlations were significantly above zero for each model, none of the correlations 

reached the noise ceiling, and so none of the models could explain well the confusion matrices in the 

Categorical Task. 

Pairwise comparisons (using Wilcoxon rank-sum tests) revealed higher correlation coefficients for 

the conceptual model than the shape model (Z = 4.009, p < .001), higher coefficients for the surface 

model than the shape model (Z = 5.636, p < .001, but no difference between the coefficients for the 

conceptual and surface models (Z = 1.610, p = .107). 

 

 

Figure 4.8: Distributions of Spearman’s correlation coefficients between each participant’s 

categorical matrix and each of the models. Red bars represent the mean correlation coefficient. The 

grey bar represents the upper and lower bounds of the noise ceiling. 

 

We used multiple linear regression to estimate the unique contribution of each model, in order to 

predict each participant’s Categorical matrix. All arrays of standardised betas were significantly 



73 
 

higher than 0 (Conceptual: t(49) = 18.23, p < .001; Shape: t(49) = 7.54, p < .001; Surface: t(49) = 

12.18, p < .001), after correcting for multiple comparisons with the Bonferroni adjustment (a = 

.0167). The mean R2 value across subjects was 0.418 (S.D. = 0.125), so approximately 41.8% of the 

variance was explained by all three models. 

Pairwise comparisons revealed a greater contribution of conceptual than shape (t(49) = 10.50, p < 

.001, d = 1.66), greater contribution surface than shape (t(49) = 4.50, p < .001, d = 1.17), but no 

significant differences between the contributions of conceptual and surface cues (t(49) = 0.838, p = 

.406, d = 0.21) after correcting for multiple comparisons with the Bonferroni adjustment (alpha = 

.0167). Distributions of standardised beta-weights are presented in Figure 4.9. 

 

Figure 4.9: Distributions of standardised beta weights for each model as a predictor of each 

participant’s categorical matrix. Red bars represent the mean standardised beta-weight and the 

dashed red line represents the test value of 0. 
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 Differences between categorical and perceptual regression coefficients 

To investigate whether the association of each cue with the behavioural tasks differed between each 

task, we compared the percentage of variance that was accounted for by each predictor between 

the two tasks, following analysis from Mur et al. (2013). In that study, the researchers compared the 

proportion of variance of behavioural and brain RDMs that was accounted for by several object 

category models. For each regression model for each subject, we estimated the percentage of 

variance accounted for by each predictor, by calculating the squared standardised beta weight as a 

percentage of the sum of squared standardised betas for all predictors. Doing so provided us with a 

normalised measure of the variance that each predictor accounted for. These percentages were 

then compared between the two tasks across subjects, using a paired samples t-test for each 

predictor. There was no difference between the percentage of variance that the conceptual model 

accounted for between the Perceptual and Categorical Tasks (t(49) = 1.730, p = .090). The shape 

model accounted for more variance within the Perceptual task than the Categorical task (t(49) = 

6.710, p < .001), whereas the surface mode accounted for more variance within the Categorical task 

than the Perceptual (t(49) = 2.975, p = .005). The percentages of variance accounted for by each 

predictor for each task are presented in Figure 4.10. 
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Figure 4.10: The mean percentages of variance explained by each of the three predictors. Blue bars 

show the percentage of variance explained in the Perceptual Task, red bars show the percentage of 

variance explained in the Categorical Task. Error bars show one standard error around the mean. 

 

4.4 Discussion 

In this study, we aimed to explore the relative usage of conceptual, shape, and surface cues in 

perception and categorisation tasks of emotions from facial expressions. First, as predicted, we 

found that all three cues seem to be used in both the perceptual and categorical tasks that we 

employed. This is consistent with previous research that suggests people make use of conceptual 

and stimulus-based information during these tasks (Brooks & Freeman, 2018; Sormaz, Watson, et al., 

2016; Sormaz, Young, et al., 2016), but we furthered the research by using multiple linear regression 

to show that each cue plays a role even when controlling for the other cues. This is particularly 

interesting when considering the relative usage of shape and surface information, which inherently 

vary together (Bruce & Young, 1998). 

Second, we found that conceptual information is used approximately equally between our tasks. 

This was not entirely consistent with our predictions that conceptual information would explain the 

behaviour in the categorical task better than the perceptual. Previous research has reported that 

conceptual information is used in both the perception and explicit labelling of emotions from facial 

expressions (Brooks & Freeman, 2018; Widen et al., 2011), so this result is consistent with the 

literature. It is clear that labelling of emotions requires access to emotion concepts to choose the 

correct label, which has been previously reported (Widen et al., 2011). Here we extend this and 

provide evidence that concepts seem to be as readily available when performing a perceptual 

discrimination task that required no explicit labelling of emotions. Our measure of the perceptual 

similarity of facial expressions was designed in an attempt to tap into perceptual discrimination 

processes, and reduce the top-down influence during the task. Despite this, we still found that 

conceptual information could explain perceptual discrimination well above chance, even when 

controlling for the similarity of stimulus-based cues, supporting the conclusions of previous research 

(Brooks & Freeman, 2018). The result that conceptual information can explain patterns of perceptual 

discrimination better than surface information is surprising, as we expected that processes involved 

in perceptual discrimination would rely more on stimulus-based cues than emotion concepts. 

Third, we found a dissociation between the role of shape and surface cues, in that shape cues could 

explain more variance of the perceived similarities in the Perceptual Task than the confusions in the 

Categorical Task, and surface cues could explain more variance in the Categorical than Perceptual 
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Task. Taking the view that perceptual processes occur before the labelling of emotions (Palermo et 

al., 2013), this suggests that initial perceptual processes place greater weight on shape information, 

while surface information is required more so in the categorisation of emotions. 

While the results provide a basis for the relative use of conceptual and stimulus-based cues in these 

two tasks, there may be some limitations to consider. One is that there were frequently a lot of tied 

ranks in the participants’ categorical matrices. As healthy adults often perform at ceiling for labelling 

tasks (especially with certain emotions), the off-diagonal cells often contained a number of 0’s. For 

example, as happy is particularly easy to recognise, there were very few instances of participants 

mislabelling a happy face as sad, or other negative emotions. We attempted to overcome this using 

two methods. The first was to average the mirroring off-diagonal cells (so that each cell contained 

the number of instances a participant mislabelled (e.g.) happy as sad, and sad as happy). The second 

was to use a short stimulus presentation time, to make the task sufficiently challenging. To 

overcome these tied ranks, it would be best to use a higher number of trials.  

Another limitation is that from the perspective of psychophysical research, the number of trials in 

the perceptual task may not have been enough to accurately measure the ‘true’ discrimination 

threshold. Our threshold estimation terminated after 8 reversals in the staircase, whereas some 

vision researchers consider even 20 reversals to be short (García-Pérez, 1998). In any case, we still 

found that those thresholds were highly reliable across participants. 

An important conceptual issue to consider is that these results do not necessarily show us that 

participants were ‘using’ any of the cues. As we used a correlation approach, the results show us 

that there is simply a relationship between the measures. To assess whether participants make use 

of the cues during the tasks, one could take the approach of Sormaz, Young and Andrews (2016) 

who systematically removed each of the two stimulus-based cues from sets of stimuli. While it may 

be more challenging to remove conceptual cues, one could take the semantic satiation approach 

used in previous research (Gendron et al., 2012; Lindquist et al., 2006) to disrupt access to the 

concepts. 

Together, these results provide information about the influence of different cues in the perception 

and recognition of facial expressions, in our sample of healthy younger adults. Such a paradigm may 

be of interest to use in clinical research to study group differences in the extent to which the cues 

can explain behaviour during the tasks. For example, older adults experience difficulty with the 

recognition of emotions from facial expressions (Ruffman et al., 2008), and have reduced visual 

acuity and contrast sensitivity relative to younger adults (Rubin et al., 1994). It may therefore be the 

case that older adults rely more on conceptual information and less on stimulus-based cues than 



77 
 

younger adults. In relation to the conceptual issue discussed in the previous paragraph, this research 

would not necessarily show that one group is ‘using’ any cue more than another, but it would allow 

to the assessment of any group differences in the extent to which each cue can explain the 

behaviour during the tasks. This potential for research is discussed further in the Chapter 7. 

An inspection of the distributions of standardised beta weights in the two regressions we performed 

reveals a considerable range of the use of different sources of information. Previous research 

suggests that there are large individual differences in both perceptual and labelling tasks (Palermo et 

al., 2018, 2013). One question that remains, is whether performance at perceptual and labelling 

tasks is associated with greater use of conceptual or stimulus-based cues. It is of interest to examine 

whether individuals who perform better at these tasks make greater use of a certain type of 

information than those who are poorer at the tasks. Alexithymia, a sub-clinical trait characterised by 

difficulty identifying emotional states of the self, is associated with poorer performance at emotion 

recognition tests (Cook, Brewer, Shah, & Bird, 2013). Furthermore, Lewis, Lefevre, and Young (2016) 

suggest that the ability to recognise emotions from facial expressions is dependent in part on a 

modality-independent emotion processing factor. Perhaps, the ability to recognise emotions from 

facial expressions is therefore associated with greater access to emotion concepts, so it would be 

expected that individuals who perform better at the labelling task may make greater use of 

conceptual cues than individuals who are poorer at the task. Further analysis of the current dataset 

is conducted in the next chapter in an attempt to answer this question. 

Our conceptual model used data from separate research (Skerry & Saxe, 2015), to create a measure 

of general conceptual similarity of two emotions. While this measure did account for perceptual 

discrimination and categorisation errors, it may be of interest to measure the similarity of emotion 

concepts within each subject. Having a subject-specific conceptual measure would allow for the 

analysis of the subject-specific relationship between emotion concepts and behaviour in both tasks. 

This is discussed in more detail in Chapter 7. 

In conclusion, these results show that shape, surface, and conceptual sources of information  can 

explain patterns of perceptual discrimination and emotion categorisation. Each source of 

information is still used above chance, even when accounting for the other sources. Shape cues 

account for more variance in a task designed to use perceptual processes, whereas surface cues 

account for more variance in the categorical task. Conceptual information accounts for a similar 

amount of variance in both tasks. The results highlight the role of conceptual information, even 

when one does not need to assign any emotion labels to a face.  

  



78 
 

5 Individual differences in the role of conceptual and stimulus-based 

cues on the perception and recognition of facial expressions 

5.1 Introduction 

There are substantial individual differences in the ability to recognise facial expressions of emotion, 

within the non-clinical population (Palermo et al., 2018, 2013). Variation in performance was 

reported across a battery of tasks measuring the perception and recognition of facial expressions, in 

a large sample of participants with no psychiatric disorders (Wilhelm, Hildebrandt, Manske, Schacht, 

& Sommer, 2014). 

Palermo et al. (2013) designed two tests to assess individual differences in the perception and 

recognition of emotions. The first was a perceptual matching task to test participants’ ability to 

discriminate between facial expressions using perceptual processes, without having to assign an 

emotion label. In this task, participants chose which one of three presented faces displayed a 

different expression to the other two. The second task was a labelling task, where participants chose 

which one of six emotion labels best suited the emotion displayed by a face. There was a large range 

in performance at both tasks (suggesting individual differences in perceptual matching and 

labelling), and there was a moderate correlation between the two tasks (suggesting that the 

processes used in both tasks are partially overlapping). In addition to these two tasks, participants 

completed a vocal emotion labelling task. Performance at this task was correlated with the facial 

expression labelling task, but not with the perceptual matching task. This suggests that the emotion 

labelling task recruits a multimodal process used to assign emotion labels to a stimulus (regardless of 

the stimulus modality) that the perceptual task does not.  

In the Chapter 4, we investigated the use of conceptual, shape, and surface information in a 

perceptual task and a labelling task. We used multiple linear regression to assess the relative 

contribution of these 3 cues on patterns of categorisation and perceptual discrimination. While we 

found that the distributions of standardised beta weights were significantly higher than 0 in all cases 

(indicating that all sources of information can explain the patterns of behaviour during the tasks to 

some extent), there was variation within these weights, suggesting that there are individual 

differences in the relative use of these sources of information. 

Taken together with the results from Palermo et al. (2013), a question that remains is whether the 

performance at each task is associated with particular sources of information. For example, it may 

be the case that individuals who are better at labelling emotions make greater use of high-level 
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conceptual cues, or perhaps that individuals who are better at discriminating between expressions 

make greater use of stimulus-based cues. 

The second question that this chapter aims to answer is whether there are any individual differences 

in patterns of categorisation and perceptual discrimination. While the results of Palermo et al. (2018, 

2013) suggest that performance at these two tasks is related to each other, we aim to extend these 

findings by investigating whether the patterns of confusions that people make can also vary from 

individual to individual. When a participant completes a labelling task, there is a wealth of 

information contained in the exact patterns of categorisation. For example, there are certain pairs of 

emotions that are frequently confused (e.g. angry faces are often mislabelled as disgust; Young et 

al., 1997). Taking the average accuracy across the stimuli overlooks both the accuracy at labelling 

individual emotions, and specific patterns of mislabelling of facial expressions. We have yet to assess 

whether differences in perceptual processes can account for individual differences in the exact 

pattern of categorisation an individual may make. To test whether individual differences in 

perceptual discrimination can account for differences in the pattern of categorisation, we will 

investigate idiosyncratic relationship between each subject’s perceptual and categorical 

representations of emotions. Here, we expect to find a relationship between the representational 

structure across the two modalities and expect the within-subject relationships to be higher than the 

between-subject relationships. 

In the current chapter we investigate these two research questions using the data and results from 

the previous chapter (Chapter 4). First, we investigate whether greater performance at the two tasks 

is associated with a greater role of conceptual, shape, or surface information. If a given cue plays a 

greater role in explaining task performance for those who are better at either task, we would expect 

to see a positive correlation between the measure of performance and the regression coefficient for 

the cue. Second, we investigate whether there is any idiosyncratic relationship between an 

individual’s pattern of perceptual discrimination and their pattern of categorisation. If there is, we 

expect the within-subject relationship between the two tasks to be greater than the between-

subject relationship.  

 

5.2 Methods 

For this experiment, we used the data and the results of the regressions from Chapter 4. Please refer 

for Chapter 4 for full experimental methods and results. 
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5.3 Results 

 Individual differences in role of top-down and bottom-up cues 

First, we calculated a measure of performance at each task, for each individual. The measure of 

performance for the perceptual task was taken as the average discrimination threshold for the 15 

expression pairs. As such, a lower average discrimination threshold represents greater discrimination 

sensitivity and so is taken as a general measure of performance at the Perceptual Task (those with 

lower average thresholds perform better at the task than those with higher average thresholds). The 

measure of performance for the categorical task was taken as the average of the correct 

categorisations. The distributions of these measures are presented in Figure 5.1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Distributions of the measures of performance at each task. 

 

To investigate whether these measures of performance at each task were associated with the roles 

of conceptual, shape, and surface cues, we conducted a Pearson correlation between each measure 

of performance and the standardised betas from the regressions in Chapter 4 (presented in Figures 

4.7 and 4.9). For example, to test the association between performance at the Perceptual Task and 

the role of conceptual cues, we performed a correlation between participants’ average 
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discrimination thresholds in the Perceptual Task and the standardised beta weights for the 

Conceptual model in the regression for the Perceptual Task. The results of these correlations are 

reported in Table 5.1. None of the six correlations reached significance, suggesting that performance 

at each task is not associated with the usage of any of the three cues.  

 

Table 5.1: Results of the correlations between performance and relative role of three cues. 

Cue Task 

Categorical Perceptual 

r p r p 

Conceptual -.112 .397 .003 .984 

Shape -.135 .350 .045 .757 

Surface .061 .672 .059 .682 

 

 

 Relationship between patterns of perceptual discrimination and patterns of 

categorisation 

Before investigating whether there is any idiosyncratic relationship between a participant’s patterns 

of perception and patterns of categorisation, we first established whether there was a relationship 

between these measures across participants. Using only the 15 off-diagonal cells within each matrix, 

we calculated the Spearman’s correlation coefficient between each participant’s perceptual and 

categorical matrices (Mean Rho = 0.462, S.D. = 0.219). A one-sided Wilcoxon signed rank test 

showed that this array of coefficients was significantly higher than 0 (Z = 1.664, p < .001).  

 

 Investigating the idiosyncratic relationship between categorical and perceptual 

As a confirmatory measure, we replicated the correlation between averaged performances at each 

task as conducted by Palermo et al. (2013).  

It is worth noting that this is not exactly comparable as they used the average accuracy at a 3AFC 

task, whereas here we take average perceptual threshold as a general measure of perceptual 

discrimination ability. Consistent with this previous research, we found a significant relationship 

between the two measures (rho(50) = -.491, p < .001), suggesting that performance on one task is 

related to performance on the other (note that the correlation is negative because lower thresholds 
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of discrimination indicate greater sensitivity). Figure 5.2 shows a scatter plot for this correlation. The 

correlation reported by Palermo et al. (2013) was of a similar strength (rho = .47, p < .001). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: A scatter plot of the performance at the perceptual task against the categorical tasks. 

 

To examine whether individual differences in perceptual discrimination can account for individual 

differences in emotion categorisation errors, we first computed a subject similarity matrix (Figure 

5.3) where each cell represents the Spearman’s correlation coefficient between all perceptual 

matrices (y-axis) and categorical matrices (x-axis). The diagonal cells represent the within-subject 

correlations (mean rho = 0.462, S.D = 0.219) and the off-diagonal cells represent the between-

subject correlations (mean rho = 0.453, S.D. = 0.211).  

Following the analysis as used by Charest, Kievit, Schmitz, Deca and Kriegeskorte (2014) to examine 

the idiosyncratic relationship between neural RDMs, we then subtracted the average between 

subject correlation (off diagonal cells) from the average within subject correlation (diagonal cells). 

Under the null hypothesis that there is no idiosyncratic relationship between the categorical and 

perceptual matrices the subject labels are exchangeable. To examine how the observed within-

between subject difference compares to this null hypothesis, we randomised the subject labels for 
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the categorical dimension (x-axis) of the subject similarity matrix 10,000 times. After each random 

permutation, we re-calculated the difference between the average within and the average between 

subject correlations to simulate a distribution representative of the null hypothesis that the subject 

labels are exchangeable. If the observed within-between subject difference lies within the top 5% of 

this distribution, then we can reject the null hypothesis that there is no idiosyncratic relationship 

between a participant’s perceptual and categorical matrices. After following this analysis, we found 

26.8% of the within-between subject differences from the distribution with randomised subject 

labels fell above the observed difference (0.009), so we fail to reject the null hypothesis suggesting 

that there is no idiosyncratic relationship between each participant’s perceptual and categorical 

matrices. 

 

 

 

 

 

 

 

 

 

Figure 5.3: The subject similarity matrix. Each cell represents the Spearman’s correlation coefficient 

between each of the 50 perceptual matrices (y-axis) and the 50 categorical matrices (x-axis). 

Coefficients have been visualised with a colour bar. Diagonal cells represent within-subject 

correlations, and off-diagonal cells represent between-subject correlations. 

 

5.4 Discussion 

The aim of this chapter was to examine two aspects of individual differences in the perception and 

recognition of facial expressions. 

Firstly, we examined whether the ability to perceptually discriminate between facial expressions, 

and the ability to correctly label facial expressions, was associated with the relative contribution of 
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conceptual, shape, or surface information. These results suggest that there is no association 

between the role of these cues and performance, suggesting that individual differences in 

perception and categorisation are independent from the use of any particular cue. 

Secondly, we examined whether there was any idiosyncratic relationship between the patterns of 

perceptual discrimination and categorisation. While we found that there was a relationship between 

these patterns of behaviour in each task, we found no greater relationship within-subject than 

between-subjects, suggesting that similar patterns of categorisation errors and pairwise perceptual 

discrimination thresholds were observed across subjects. This is supported by the proximity of the 

upper and lower bound of the noise ceilings in the previous chapter (Chapter 4).  

These results are consistent with literature suggesting large variation in perceptual discrimination 

and emotion categorisation (Palermo et al., 2018, 2013). Here we add to the literature by showing 

that any variation in performance within a non-clinical population is not due to any variation in the 

use of conceptual or stimulus-based cues. 

The categorical matrices were constructed from the raw confusion matrices during a categorisation 

test, so contain a number of tied ranks (see Chapter 4 for exact methods, and a discussion of the 

issue of tied ranks in relation to that study). It could be suggested therefore that this method may 

not sensitive enough to capture individual differences in categorisation patterns. However, the 

proximity of the upper and lower bounds of the noise ceiling for the correlations with the perceptual 

matrices suggests that the pattern of perceptual discrimination was similar across subjects (see 

Chapter 4 for the calculation and visualisation of the noise ceilings). This in turn could suggest that 

there is no observable individual component to the relationship between patterns of perceptual 

discrimination and emotion categorisation. 

To conclude, we found variation in our performance measures for perceptual discrimination and 

emotion categorisation, but these measures of performance were not associated with differences in 

the relative contribution of stimulus-based and conceptual cues when performing the tasks. We also 

found that, while there is a relationship between patterns of perceptual discrimination and emotion 

categorisation, there is no observable individual component to this relationship. 
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6 The influence of conceptual and stimulus-based cues on neural 

representations of facial expressions 

6.1 Introduction 

There are several regions of the brain in which the representations of emotions from facial 

expressions can be decoded. Research using multivariate pattern analysis has shown that patterns of 

activation in response to facial expressions can be decoded in the FFA, OFA, and STS (Harry et al., 

2013; Said, Moore, Engell, et al., 2010; Wegrzyn et al., 2015; Zhang et al., 2016). Moreover, patterns 

of activation in response to emotional stimuli can be decoded in the MPFC (Peelen et al., 2010; 

Skerry & Saxe, 2014, 2015).  

There is, however, little research investigating which sources of information can best explain how 

these regions discriminate between expressions. Sormaz, Watson, et al. (2016) showed that 

representational similarity of expressions in the OFA and STS can predict the perceptual similarity of 

expressions, which can also be explained by the similarities of face shapes and surface textures. On 

the other hand, more anterior regions of the MPFC seem to process more abstract or conceptual 

information about emotions (Peelen et al., 2010; Skerry & Saxe, 2014). Critically, conceptual 

information is not only represented in the frontal cortex, in that Brooks et al. (2019) reported that 

the representational structure of facial expressions in the right FFA can be explained by differences 

in emotion concepts, even when controlling for differences in several stimulus-based properties. In 

Chapter 4, we investigated the relative influence of shape, surface, and conceptual information on 

behavioural representations of emotions. In the current chapter, we aim to investigate the relative 

influence of these properties on brain representations of emotions, in regions of the brain involved 

in the processing of facial expressions.  

Brooks et al. (2019) used three measures of visual similarity as control variables in multiple linear 

regression RSA (similarity of face silhouettes, similarity of pixel intensity maps, and similarity of 

‘higher-level visual features’ as output from the HMAX model of object recognition). While these 

measures are reported to explain representations in the early visual cortex and FFA (Kriegeskorte et 

al., 2008), we chose to use shape and surface similarities as controls given the importance of these 

cues in the perception of facial expressions (Bruce & Young, 1998; Kuhn et al., 2017; Sormaz, Young, 

et al., 2016). Furthermore, the similarity of face shapes and surface textures can explain perceptual 

similarity of expression pairs (Sormaz, Watson, et al., 2016). 

In addition to these stimulus-based cues, we also included conceptual similarity (Brooks et al., 2019; 

Skerry & Saxe, 2014). Doing so will test whether the representational structure of emotions can still 
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be explained by similarities of emotion concepts, even when controlling for stimulus-based 

properties that are specific to facial expressions, and vice-versa.  

To investigate the relative influence of these three cues, we have followed the approach of multiple 

previous studies (including Chapter 4) and used RSA (Kriegeskorte et al., 2008). In Chapter 4, we 

measured the perceptual similarity and mean categorisation errors between each pair of the 6 basic 

emotions. We then constructed three models based on the similarity of face shapes, surface 

textures, and emotion concepts, and used RSA to assess the relationship between the models and 

behaviour. Here, we measured the dissimilarity of neural representations of emotions and used the 

same three models to explain the representational distances in the brain.  

We have chosen to examine the three core face regions (the FFA, OFA, and STS), as each of these 

regions are reported to represent facial expressions (Harry et al., 2013; Said, Moore, Engell, et al., 

2010; Wegrzyn et al., 2015; Zhang et al., 2016), and the representational structure may be linked to 

differences in shape and surface properties (Sormaz, Watson, et al., 2016). Should the perception of 

facial expressions act in a completely feed-forward manner, then we would expect that shape and 

surface cues best explain the representational structure within these regions and concepts do not. If, 

however, emotion concepts are accessible earlier on in the perceptual process, then we would 

expect that concepts also explain the representational structure of emotions in these regions. We 

have also examined the representational structure of emotions from facial expressions in the MPFC. 

As representations of emotions in this region are likely modality independent (Peelen et al., 2010; 

Skerry & Saxe, 2014), we expect that shape and surface properties of the stimuli do not explain the 

representational structure of emotions in this region, whereas the similarities of emotion concepts 

do. 

In addition to examining the relative influence of these 3 models on representations, we also 

examined the relationship between the neural representations and two models derived from the 

two behavioural tasks in Chapter 4. Previous research suggests that the perceptual similarity of 

expression pairs is associated with the representational similarity within the core face regions (Said, 

Moore, Engell, et al., 2010; Sormaz, Watson, et al., 2016). This research, however, used subjective 

judgements on a 7-point scale to measure the perceptual similarity of expression pairs. We argue 

that the psychophysical method that we used in Chapter 4 was a measure of perceptual similarity 

that was less reliant on top-down processes and emotion concepts. It is of interest therefore, to 

examine whether the representational structure of expressions within these regions can still be 

explained by perceptual similarity using this measure. Furthermore, we will examine whether the 

representational structure can be explained by categorisation errors, as this will allow us to explore 
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which of the two tasks is best associated with the representational structure of expressions within 

each region. 

 

6.2 Methods 

 Preregistration 

Methods and analysis plan were pre-registered on 08/11/18 and are available on the Open Science 

Framework (https://osf.io/34fm7/) 

 

 Participants 

Thirty participants (19 females, mean age: 26.10 years, S.D: 6.45, range: 18-46) were recruited via 

posters, advertisements on the university participant pool, and word of mouth. All participants had 

normal or corrected-to-normal vision, no history stroke, neurological, or diagnosed emotion 

processing disorders. Ethical approval to conduct the research was granted by the College of Health 

and Life Sciences Research Ethics Committee at Brunel University London. 

 

 Multiple choice task 

Stimuli 

Facial expressions of anger, disgust, fear, happiness, sadness and surprise were selected from the 

Radboud face database (Langner et al., 2010). We used the validation data from Langner et al. 

(2010) to rank the front facing images for each emotion by genuineness of expression, then selected 

the top 5 pictures for each emotion. Images were cropped to a square containing the whole face but 

removing the neck and the top of the head (Figure 6.1).  

 

https://osf.io/34fm7/
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Figure 6.1: An example trial of the multiple-choice task 

 

Procedure 

Before participants entered the scanner, they completed a brief multiple-choice style expression 

categorisation test. Participants viewed each face for 5000ms in the centre of a laptop screen, with 6 

labels (state the labels) presented underneath. Each label had a corresponding number (1-6), and 

participants were required to indicate which of the labels best described the emotion in the 

presented face. The purpose of this task was to encourage participants to discriminate between the 

faces in terms of the 6 basic emotions. 

 

 MRI data acquisition 

MRI data was collected with a 3T TIM Trio MRI scanner (Siemens, Erlangen) using a 32-channel head 

array coil at the Combined Universities Brain Imaging Centre (CUBIC). Functional images were 

acquired for the experimental and localiser runs with an echo planar imaging sequence using 

multiband imaging, with 46 axial slices aligned with the ventral surface of the temporal and occipital 

lobes, covering the whole brain excluding the cerebellum in most participants (TR = 2000ms, TE = 

34ms, Flip angle = 76°, voxel size = 2.5mm x 2.5mm x 2.5mm). For participants with larger brains, the 

upper most part of the parietal lobe was excluded. A high-resolution T1-weighted MPRAGE 

anatomical scan was also acquired for each participant (TR = 1830ms, TE = 3.03ms, Flip angle = 11°, 

Voxel size = 1mm x 1mm x 1mm).  

Runs were divided into experimental runs and functional localiser runs. Participants completed 10 

experimental runs, 2 theory of mind area localiser runs, and 1 face area localiser run. Experimental 
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runs were stopped after 8 and 9 runs for 2 participants due to discomfort, and one participant did 

not complete the theory of mind localiser.  

 

 Experimental fMRI task 

Stimuli 

We selected the top 11 most genuine examples of each of the six basic emotions (Anger, Disgust, 

Fear, Happiness, Sadness, and Surprise) from the Radboud face database, using the validation data 

from Langner et al. (2010). Participants had previously viewed 5 examples of each expression 

category in the behavioural task. During each run, participants viewed all 66 images. 

 

Procedure 

An event-related design was used for the experimental runs. The 66 pictures of facial expressions 

were presented once each in each experimental run. Pictures were presented sequentially for 

1000ms each (height = 12.5°, width = 16.7°, at a viewing distance of 80cm). After each presentation, 

a blank fixation screen was presented at a jittered duration of between 1000ms and 3000ms. 

Participants performed a 1-back task, by pressing a button whenever there was a consecutive 

repetition of any facial expression – the repetition was always of a different identity (i.e. it was a 

different picture), encouraging participants to attend to the expression rather than just the image.  

During each run, the 66 faces were presented in a pseudo-random order: initially the order of 60 (10 

examples of 6 expressions) was randomised until there were no consecutive repetitions of the same 

facial expression. Each of the 6 remaining images of facial expressions were inserted into this 

sequence after the position of a random example of the same expression, to provide a repetition of 

each expression for the 1-back task.  

This randomisation procedure was conducted independently for each run and each participant. A 

blank fixation screen was presented for the first 4 seconds of each run.  

 

 Functional localisers 

To localise the face responsive regions, participants viewed 16 second blocks of expressive faces, 

neutral faces, and scrambled faces from the Radboud face database (Langner et al., 2010), with 

additional 16 second blocks of rest (no stimuli). Blocks of expressive faces comprised a randomly 
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selected mix of angry and fearful faces from the front facing angry and fearful faces of the database. 

Each face was also scrambled using MatLab, by overlaying the image with a 20x20 grid and randomly 

rearranging the position of the ‘tiles’. During each block, 16 faces (or scrambled faces) were selected 

at random. In each block, each stimulus was presented for 900ms (ISI = 100ms). Blocks of stimuli 

were presented in a pseudo-random order. Each block occurred 4 times, and there were never 

consecutive repetitions of the same block.  

To localise the middle MPFC, we used stimuli from Dodell-Feder, Koster-Hale, Bedny and Saxe (2011) 

Participants were presented with short textual scenarios that require inferences about either the 

mental state of an individual (belief condition) or physical state of a scene (photo condition). Full 

stimuli are available at http://saxelab.mit.edu/superloc.php. Participants completed a true/false task 

in response to a statement presented beneath the text, by pressing a button with their left hand for 

true and right hand for false. The text and true/false statement appeared on screen for 18 seconds, 

followed by a blank screen for 12 seconds. It is worth noting that we used timings that differed from 

those used in the original paper. 

 

 Image preprocessing and general linear model 

For each participant, all functional images were realigned (registered to the mean of the whole 

session using 2nd degree B-spline interpolation) and resliced (using 4th degree B-spline interpolation). 

Each participant’s structural image was segmented and co-registered to their mean functional 

image, then functional images were normalised to MNI space (voxel size = 2mm x 2mm x 2mm) 

using the deformation field output from warping the structural to the MNI template. Functional 

images for the localiser tasks were smoothed with a gaussian kernel at FWHM = 8mm. All 

preprocessing was performed in the SPM12 toolbox in MATLAB 2016b. Runs were excluded if the 

participant moved more than 2.5mm in any direction, or rotated more than 1 degree along any axis. 

To estimate betas for each event of the experimental runs (i.e. each of the 66 pictures of facial 

expressions), we used the LS-S approach (Mumford, Turner, Ashby, & Poldrack, 2012), where each 

event was fitted with a separate linear model containing a regressor for the event of interest and a 

separate regressor that models all other events, along with 6 regressors for the realignment 

parameters within each run. This approach aims to lead to more accurate estimates of activation 

than modelling each trial with a separate regressor within the same model (Mumford et al., 2012), 

and has previously been used to estimate patterns of activation in response to facial expressions 

(Wegrzyn et al., 2015). The GLMs were convolved with a standard haemodynamic response function 

and high-pass filtered at 128s. Due to technical issues, some stimuli were unexpectedly presented 

http://saxelab.mit.edu/superloc.php
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after the scanner had stopped for some participants (a total of 6 stimuli across all runs across all 

participants were presented after the scanner stopped). Betas for any event presented within 3 

seconds of the scanner finishing were not estimated (18 stimuli across all participants).  

 

 Region of Interest definition 

To define the face responsive regions and the MPFC, a group-constrained subject-specific approach 

was used (Fedorenko, Hsieh, Nieto-Castañón, Whitfield-Gabrieli, & Kanwisher, 2010; Julian, 

Fedorenko, Webster, & Kanwisher, 2012). This method allows us to define these regions without 

experimenter bias. Briefly, we used group masks for each region of interest from previous studies 

and then intersected each group mask with each participant’s activation map to define individual 

ROIs. 

Group level maps from previous research were used as masks for the middle-MPFC (Dufour et al., 

2013), and 3 core face regions (Julian et al., 2012). For each participant, we performed standard 

univariate analysis for each of the two localiser tasks. To localise face responsive regions, we 

subtracted the response to scrambled faces from the response to expressive faces. To localise theory 

of mind responsive regions, we subtracted the response to the photo conditions from the response 

to the belief conditions in the Theory of Mind localiser task. Using a liberal threshold of p<.05 

(uncorrected), we found the peak voxel for each participant within each mask and used a sphere 

with a 6mm radius, centred on these coordinates, as the ROI for each participant. If no peak voxels 

were significant below p<.05, we used the peak coordinates from second level random effects 

analysis to centre the sphere. The second-level analysis was conducted at the group-level, using a 

one-sample t-test for each contrast at p<.001 (uncorrected), within the same group level maps from 

previous research (Dufour et al., 2013; Julian et al., 2012) as used in the subject-specific approach. 

 

 Model construction 

In Chapter 4, we constructed three models to explain behaviour during two tasks. For each model, a 

matrix was constructed where each cell in the matrix is a measurement of the similarity of each pair 

of six emotions (15 pairs). For the current experiment, we use these three models in addition to the 

behavioural tasks to explain neural representational similarity. The construction of these three 

theoretical models (and the two behavioural models) is summarised below, but more details are 

presented in Chapter 4. All models are presented in Figure 6.2. 
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Shape 

First, all faces used in the experimental MRI task were marked with 112 fiducial points. Following 

Sormaz, Watson, and Andrews (2016), Procrustes analysis was performed between every pair of 

images and the resulting distance measure was averaged for each expression pair to create a 6x6 

matrix. The resulting matrix was subtracted from 1 to keep the direction consistent with the other 

models; as such, higher values indicate greater similarity.  

 

Surface 

The Fischer’s Z-transformed Pearson’s correlation coefficient was calculated between the pixel-

intensities for faces used in the experimental MRI task. Following Sormaz, Watson, and Andrews 

(2016), this analysis was conducted for every possible pair of faces, and averaged across the 

expression pairs to create a single 6x6 matrix. All faces were first warped to an average face shape to 

remove shape cues, then converted to greyscale. Non-face pixels were excluded from the analysis. 

 

Conceptual 

Data from Skerry and Saxe (2015) was used to construct a model for conceptual similarity of 

emotions. Participants were asked to rate stories describing an event that happened to a character 

on how much the character was experiencing each of the 6 basic emotions. To construct our model, 

we computed the Fischer Z-transformed Pearson’s correlation coefficient between the ratings for 

each pair of emotions. As such, pairs of emotions with greater semantic overlap will result in higher 

coefficients than more semantically distinct pairs.  

 

Perceptual Task 

The perceptual similarity of every pair of facial expressions was measured using a psychophysical 

task to adjust the ‘weight’ of expressions in morphed faces. Participants performed a 3 Alternate 

Forced Choice task with two different expressions in each trial. Psychophysical discrimination 

thresholds were estimated using a staircase procedure, where correct responses adjusted the 

weight of the expressions down (so that the two different expressions in each trial were more 

similar), and incorrect responses adjusted the weight of the expressions up (so that the two different 

expressions were more distinct). This procedure was performed for every pair of emotions, to 
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construct a matrix for each participant (from Chapter 4). To construct the Perceptual model used in 

the present chapter, we averaged the matrices across participants.  

 

Categorical Task 

In Chapter 4, participants categorised facial expressions during a multiple-choice style categorisation 

test. A confusion matrix was measured for each participant, recording the number of instances that 

each expression category was labelled (or mislabelled) with each emotion label. Mirroring cells were 

then averaged to measure the mean number of instances that one emotion was confused for 

another. To create the model used in the current experiment, these matrices were then averaged 

across participants. 

 

 

 

 

 

 

Figure 6.2: The three theoretical models (upper row) and two models derived from behaviour 

(bottom row). 

 

 Univariate Analysis (Experimental Task) 
For exploratory purposes, we assessed any differences between the univariate responses to each of 

the facial expression categories within each of the ROIs. Betas for each emotion were averaged 

across all voxels within each ROI, then averaged across runs. To assess any differential response 
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between them, paired t-tests were performed between every pair of betas across all participants, 

using FDR correction to account for multiple comparisons (Benjamini & Hochberg, 1995). 

 

 Representational Similarity Analysis 

After betas were estimated for each event in each run, they were averaged for each emotion 

(creating six averaged response patterns per run), then these averaged response patterns within 

each region were vectorised and each pattern was z-scored (i.e. the pattern of activation for each 

condition across voxels was zscored to mean of zero and standard deviation of one — see Goesaert 

& Op de Beeck, 2013). A 6x6 Representational Dissimilarity Matrix was constructed by taking the 

squared Euclidean distances between each z-scored vector, for each region of interest. We chose 

this distance measure (squared Euclidean) as we used multiple linear regression with RSA, which 

requires a distance measure that sums linearly (Brooks et al., 2019; Carlin & Kriegeskorte, 2017). 

Rows and columns of the RDMs were sorted by expression and identity consistently across runs, and 

corresponded to the order of the emotions in the model matrices (i.e. Angry, Disgusted, Fearful, 

Happy, Sad, then Surprised). For each participant, an average RDM was computed by averaging the 

RDMs from all runs. Models were reversed to keep the direction and size consistent with the neural 

RDMs. The relationship between each of the models and the neural RDMs was first examined using a 

Spearman’s correlation, for each participant. The array of correlation coefficients was then tested 

against 0 (i.e. no correlation) using a one-sided Wilcoxon signed rank test.  

In addition, we ran multiple regression to examine the unique predictor value of each model and 

whether a combination of models could better explain the brain representational distances. For each 

participant, multiple linear regression was performed using the conceptual, shape, and surface 

models as predictors and the brain RDMs (separately for each region of interest) as the outcome 

(Figure 6.3). All predictors and the neural RDM were z-scored to calculate the standardised betas for 

each model. A constant of ones was also entered into each regression model. The distributions of 

standardised beta weights across participants were tested against 0 using a one-sample t-test, for 

each model, for each region of interest.  

To assess the relationship between the neural RDMs and perceptual and categorical models, these 

were each entered as predictors in separate regression models. As with the previous regressions, the 

predictor and the neural RDM were z-scored and entered into the model with a constant of ones, 

and the array of standardised betas were tested against 0 using a one sample t-test. 
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Figure 6.3: Illustration of the regression model performed per participant, to assess the relative 

contribution of conceptual, shape, and surface information. 

 

6.3 Results 

 Data exclusion 

One participant moved more than our threshold (2.5mm) during the face localiser and 5 of the 

experimental runs, so we opted to exclude this participant from any further analysis. One 

experimental run was also excluded from each of three additional participants due to movement. 

Finally, one participant was found to have a large structural abnormality, so was excluded from any 

further analysis, leaving 28 participants for the main analysis (with 10 experimental runs for 23 

participants, 9 runs for 4 participants, and 8 runs for 1 participant). 

 

 Multiple choice task 

We calculated the mean and standard deviation for the accuracy at correctly recognising each 

emotion during the behavioural multiple-choice task conducted outside the scanner. The results are 

presented in Table 6.1 below. Participants were most accurate at the recognition of happy faces 

(with an average accuracy of 98.00%), and were least accurate at the recognition of angry and 

fearful faces (with recognition accuracies of 61.33% and 66.00% respectively). As this task was 

conducted to familiarise participants with the six basic expressions, these results were not used in 

any further analysis. 

 

 

 

 

+ β + β + β0 = β 
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Table 6.1: The mean, standard deviation, minimum and maximum accuracy scores for the 

recognition of each emotion.  

Emotion Mean (%) S.D. Min Max 

Angry 61.33 25.69 0 100 

Disgusted 91.33 17.95 20 100 

Fearful 66.00 34.10 0 100 

Happy 98.00 6.10 80 100 

Sad 92.00 14.48 40 100 

Surprised 94.00 10.70 60 100 

 

 

 ROI definition 

Using the approach described in the methods section, we used the localiser tasks to define the 

regions of interest for each participant. Table 6.2 shows the number of participants in which we 

found at least one voxel showing significant differential activation, and the mean coordinates in MNI 

space across these participants, for each region. For these participants, we placed a sphere (of 6mm 

radius) around the peak voxel for each contrast and extracted response patterns for each condition 

from these spheres. Each ROI at this radius comprised 123 voxels. 

 

Table 6.2: Results from the group-constrained subject-specific approach to region of interest 

definition. Number of subjects in which at least one-voxel showing significant differential activation 

within each mask, and the average x, y, and z coordinates across these subjects are shown. 

Region Number of 

subjects (/28) 

Mean coordinates 

x y z 

FFA 27 40.8 -48.2 -19.8 

OFA 25 44.8 -74.9 -9.3 

STS 24 52.5 -47.6 10.0 

MPFC 27 3.6 56.4 14.2 
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As described in the methods section, we conducted second level analysis across all participants, and 

used the peak coordinates from this analysis to centre the sphere for the remaining participants for 

each ROI. Figure 6.4 shows the group level maps for this analysis, constrained using masks from 

previous research (Fedorenko et al., 2010; Julian et al., 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Group maps for the FFA (upper left), OFA (upper right), pSTS (lower left), and MPFC (lower 

right), presented on the average structural image of the 28 participants included in the main RSA. 

Maps have been masked by group maps from previous research (Fedorenko et al., 2010; Julian et al., 

2012), thresholded at p < .001. Crosshairs are presented at the peak voxel for each map (MNI 

coordinates [x, y, z]: FFA = [42, -44, 20]; OFA = [46, -74, -4]; STS = [54, -46, 12]; MPFC = [10, 48, 14]). 
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 Univariate analysis (Experimental Task) 

To assess whether there was any differential univariate response to the facial expressions within 

each of the ROIs, the betas in response to each emotion were averaged across all voxels within each 

ROI, and then averaged across runs. Paired t-tests were then performed between every possible 

pairwise combination of these mean betas. FDR correction (Benjamini & Hochberg, 1995) was used 

to account for multiple comparisons. Results are presented in Figure 6.5. A similar pattern of results 

was observed across the three core face regions, where fearful expressions evoked the largest 

response, followed by surprised, then angry faces. Happy faces evoked the smallest response. 

Interestingly, the response to all facial expressions was negative in the MPFC.  
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Figure 6.5: Univariate response to each expression category within each ROI. Horizontal black bars 

indicate the p-value for the pairwise comparison falls beneath the FDR corrected alpha level (FFA 

alpha = .021; OFA alpha = .005; STS alpha = .007; MPFC alpha = .013) 

 

 Correlation between models 
Before conducting the RSA, we first assessed the relationship between the models by calculating the 

Spearman’s correlation coefficient between the lower diagonal cells of each of the three model 

RDMs (Shape, Surface, and Conceptual). No correlation was found between any of the models 
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(Shape-Surface: rho(15) = -0.068, p = .812; Shape-Conceptual: rho(15) = 0.311, p = .259; Surface-

Conceptual: rho(15) = 0.311, p = .259). 

 

 Relationship between models and RDMs 

We first explored the relationship between each model and the representational structure within 

each region. To do so, we calculated the Spearman’s correlation coefficient between the lower 

diagonal cells of each model RDM and the corresponding cells in the brain RDM for each region and 

each participant. Brain RDMs are presented in Figure 6.6.  

 

 

Figure 6.6: Brain RDMs for each ROI. Cells of each matrix used in the analyses are highlighted. 

 

The array of correlation coefficients (i.e. coefficients across all participants) was then tested against 

0 using a one-sided Wilcoxon signed rank test. FDR correction was used to correct for multiple 

comparisons within each ROI. The mean correlation coefficients, standard deviations, associated z-

statistic from the Wilcoxon signed rank test, alpha levels, and p-values are reported in Appendix C 

(Table C1). 
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Conceptual, Categorical, and Perceptual similarities were related to the representational distances in 

all four ROIs. The structure of the Shape Model was only associated with the representational 

structure in the FFA and MPFC, whereas the Surface model was not associated with the 

representational structure in any region. Figure 6.7 shows the correlation coefficients, and the 

estimated noise ceiling, which was calculated following Nili et al. (2014). The upper bound of the 

noise ceiling for each region shows the average Spearman’s correlation coefficient between each 

participants’ RDM (for that region) and the average of all participants’ RDMs (for the same region), 

after rank transforming all matrices. The lower bound of the noise ceiling is the average Spearman’s 

correlation coefficient between each participant’s RDM and the average of all other participants’ 

RDMs, after rank transforming all matrices. The lower-bound of the noise-ceilings ranged from 0.243 

in the MPFC to 0.340 in the FFA. The only model to reach the noise ceiling in any region was the 

Perceptual Model in the MPFC, suggesting this model performs as well as any model can, given the 

noise in the data (Nili et al., 2014). 
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Figure 6.7: The mean correlation coefficient between each model and the RDM for each region, 

across participants. Error bars represent one standard error. Asterisks show that the array of 

coefficients is significantly larger than 0. Grey bars show the upper and lower bounds of the noise 

ceiling.  

 

 Multiple Linear Regression Representational Similarity Analysis 

To assess the relative contribution of the three models (conceptual, shape, and surface) to the 

representational structure of emotions in each of the 4 regions, we used multiple linear regression 

with each of the models as predictors and each subject’s RDM as the dependent variable. Models 

and RDMs were z-scored to calculate the standardised beta value for each predictor. Standardised 

betas were then compared against 0 using a one-sample t-test, and compared to each other using a 
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paired sample t-test. Alpha levels were adjusted using FDR correction separately for each test (see 

Appendix C (Tables C2 and C3) for the adjusted alpha levels). 

The mean standardised beta and standard error for each predictor are presented in Figure 6.8. 

Results of the one-sample T-tests are presented in Appendix C (Table C2), and results of the pairwise 

comparisons are presented in Appendix C (Table C3). Conceptual similarity significantly explained 

some of the variance of the representational structures in all four regions after controlling for the 

similarities of face shapes and surface textures. Interestingly, after controlling for conceptual 

similarities, shape and surface similarities did not share any variance with representational similarity 

in any region. The three models together explained most variance in the OFA (mean R2 = 0. 377), 

followed by the STS (mean R2 = 0. 350), FFA (mean R2 = 0.309), then MPFC (mean R2 = 0.322). 
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Figure 6.8: The mean standardised betas for each of the 3 models, for each region. Error bars show 

standard error. Asterisks indicate that the regression coefficients are significantly larger than 0, and 

horizontal bars indicate significant differences between the regression coefficients. 

 

 Perceptual and categorical models 

We then assessed whether the representational structure within each region is best associated with 

the Categorical or Perceptual tasks (derived from the results of Chapter 4). For this analysis, we 

conducted a separate regression for each of the two tasks, using the model as a predictor of the 

neural RDM for each ROI. This analysis was conducted separately from the previous regressions as it 

would not be appropriate to include the theoretical models (Shape, Surface, and Conceptual) in the 
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regression model when assessing the fit of the task-based models (Perceptual and Categorical). As 

with the previous regressions, the neural RDMs and predictors were z-scored, and the array of 

resulting standardised beta weights were compared against 0 using a one-sample t-test. Both 

models were able to predict the representational structure in all regions above chance. The mean 

standardised beta, mean R squared value, and the results of the t-test for the categorical and 

perceptual models are presented in Table 6.3 below. 

 

Table 6.3: The mean standardised beta across participants, the standard deviation, and the results of 

the t-test for the perceptual and categorical models as predictors of the representational structure in 

each region. 

Region Predictor Mean standardised 

beta 

S.D. Mean R2 T-test 

FFA Perceptual 0.295 0.253 0.149 t(27) = 6.166, p < .001 

Categorical 0.228 0.282 0.129 t(27) = 4.283, p < .001 

OFA Perceptual 0.246 0.268 0.130 t(27) = 4.853, p < .001 

Categorical 0.214 0.267 0.115 t(27) = 4.242, p < .001 

STS Perceptual 0.247 0.315 0.156 t(27) = 4.149, p < .001 

Categorical 0.227 0.224 0.100 t(27) = 5.371, p < .001 

MPFC Perceptual 0.232 0.275 0.127 t(27) = 4.450, p < .001 

Categorical 0.163 0.275 0.099 t(27) = 3.143, p = .004 

 

We compared the overall fit of the two models, by performing a paired sample t-test between the 

arrays of R2 values output from the regressions. The Perceptual Model explained more variance than 

the Categorical Model in the STS (t(27) = 2.851, p = .008), but no difference was found in the FFA 

(t(27) = 0.809, p = .425), OFA (t(27) = 0.805, p = .428), or MPFC (t(27) = 1.290, p = .208). 

 

6.4 Discussion 

In this study, we aimed to explore the relative role of conceptual and stimulus-based cues in the 

neural mechanisms underpinning facial expression perception. The results highlight the particular 

role of conceptual information, as the conceptual model showed the highest correlations with the 

representational distances within three face-responsive regions and an MPFC region involved in the 

processing of theory of mind.  Such results add to previous research into the role of these three cues 
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in neural representations of facial expressions (Brooks et al., 2019; Sormaz, Watson, et al., 2016), by 

showing that representational distances in all regions we examined (the FFA, OFA, STS, and MPFC) 

are only explained by the similarities of emotion concepts (and not the similarities of shape and 

surface cues), after controlling for the variance shared by the other cues. 

We found a similar pattern of results in all four regions that we examined, where the 

representational structure was explained by similarities of emotion concepts but was not explained 

by similarities of either of the stimulus-based properties. This pattern of results in the OFA highlights 

the accessibility of emotion concepts in the early perception of facial expressions.  

The result that the two stimulus-based cues did not explain the representational structure was 

unexpected as this area is reportedly involved in early stages of the visual processing of faces and 

facial expressions. It may be the case that the representational distances of facial expressions within 

the OFA could have better been explained by similarities of other low-level image properties. For 

example, Weibert et al. (2018) found that the correlations between GIST descriptors (spatial 

frequency distributions after passing each image through a series of Gabor filters; Oliva & Torralba, 

2001) could explain the representational similarity of facial expressions in the three core face 

regions. Similarly, Brooks et al. (2019) used three measures of visual similarity as controls in the RSA 

regression model (the similarity of face silhouettes, similarity of pixel intensity maps, and similarity 

of ‘higher-level visual features’ as output from the HMAX model of object recognition). While the 

regression coefficients of these models were not reported, their measure of conceptual similarity did 

not explain representational distances within the OFA after controlling for these measures. Perhaps 

these low-level measures of image similarities can better explain the representational structure of 

expressions within the OFA than shape and surface similarities. 

For the MPFC these results were in line with our predictions as previous research has shown that 

representations of emotions within this area are modality independent (Peelen et al., 2010; Skerry & 

Saxe, 2014), and so are not structured around any property of the stimulus but rather conceptual 

knowledge of emotions.  

Previous research has shown that multivariate patterns of activation elicited by emotional stimuli in 

the MPFC are cross-modal (e.g. the pattern of activation elicited by an angry face is similar to that 

elicited by an angry voice; Peelen et al., 2010). The results of the current research have furthered 

this by demonstrating that the similarity of patterns of activation in response to facial expressions is 

explained by the similarity of emotions concepts, and is not explained by the similarity of properties 

of the stimuli. 
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To our knowledge, research has yet to assess whether shape and surface properties of facial 

expressions can explain representations in core face areas. Despite this, the result that these 

properties did not explain variance in the OFA and STS (as they did in the FFA) was surprising. 

Several studies have suggested that the representational structure within these regions is explained 

by the perceptual similarity structure of pairs of facial expressions, as measured behaviourally (Said, 

Moore, Engell, et al., 2010; Sormaz, Watson, et al., 2016). Research has also highlighted the 

important role of shape and surface properties to the perception of expressions (Sormaz, Watson, et 

al., 2016; Sormaz, Young, et al., 2016). Similarly, in Chapter 4, we showed that pairwise perceptual 

similarities were explained above chance by shape and surface properties, even when controlling for 

conceptual information. Given these two lines of evidence, we expected to find that shape and 

surface similarities would explain representational similarities in the OFA and STS, in addition to the 

FFA.  

The second aim of this experiment was to explore which of the perceptual and categorical tasks 

(from Chapter 4) was better associated with the representational structure of emotions within each 

brain region. Representational distances within all four regions we examined were explained by both 

tasks above chance, and the Perceptual task explained more variance than the Categorical in the 

three core face regions, but not in the MPFC. This trend for the Perceptual task to better explain 

representations than the Categorical suggests that the representational structure within the three 

core face regions is better associated with the perceptual similarity of expressions than 

categorisation errors. Sormaz, Watson, (2016) found that perceptual similarity of expressions was 

associated with representational similarity in the OFA and STS, but not the FFA. The results of our 

study suggested that the representational structure in all three of these regions is explained by 

perceptual similarity. A potential reason for the difference of results in the FFA is our measure of 

perceptual similarity, which arguably uses fewer high-level decision-making processes than the 

subjective judgements used by Sormaz and colleagues. 

In our study, we found that representations of facial expressions in the MPFC can be explained by 

conceptual knowledge of emotions, in addition to perceptual similarity of expressions and 

categorisation errors. These results suggest that, while the MPFC may represent modality 

independent emotion concepts, it also plays a role in perception and categorisation of facial 

expressions of emotion tasks. Future work could examine the exact role of the MPFC in earlier stages 

of the perception of facial expressions, perhaps with use of TMS to disrupt activity within this region. 

While our results provide an understanding of the role of conceptual and stimulus-based properties 

in brain representations of emotion, there are some limitations to consider. Our model of 
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conceptual similarity of emotions was derived from data from an independent study (Skerry & Saxe, 

2015). Although this model predicted the representational structure of emotions better than the 

other models we used, a potential limitation is that this model is not specific to the individual. While 

previous research has measured conceptual similarity of emotions within-subject (Brooks et al., 

2019; Brooks & Freeman, 2018), research has yet to test for an individual component to this 

relationship between conceptual and representational similarity. Constructing a conceptual model 

for each subject would allow us to examine whether an individual’s own idiosyncratic conceptual 

knowledge of emotions predicts their representational structure, better than an averaged model. 

Similarly, the perceptual and categorical models were constructed using the data from Chapter 4, 

using a separate group of participants. Measuring perceptual similarity and confusion errors for each 

subject of the current study would allow us to examine any individual component to the relationship 

neural representations and behaviour.  

In conclusion, these results highlight the important role of conceptual knowledge of emotions in the 

neural mechanisms underpinning facial expression perception. The conceptual model outperformed 

both the stimulus-based models in predicting the representational structure within all 3 of the core 

face regions, in addition to an area involved in theory of mind, adding to the literature showing that 

conceptual knowledge shapes visual perception of expressions. 
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7 General discussion 

7.1 Summary of main results 

This thesis has focussed on two main research areas. The first was to explore the contributing factors 

to the age-related decline in emotion recognition from facial expressions. The second was to explore 

the relative contribution of conceptual and stimulus-based cues to the perception, recognition, and 

neural representations of emotions. Chapters 2 and 3 covered the first research area, and Chapters 

4, 5 and 6 covered the second. 

In Chapter 2 we examined the contribution of several cognitive, visual, and behavioural measures to 

age differences in emotion recognition from facial expressions. We measured accuracy at 

recognition of the six basic emotions, alongside short-term memory, fluid intelligence, face identity 

processing, visual acuity, and contrast sensitivity, in younger and older adults. We found age 

differences in the recognition of anger, sadness, and surprise, and that the control measures could 

account for differences in the recognition of anger and surprise only. Our measure of face identity 

processing was the biggest contributor to age differences in the recognition of anger, whereas our 

measure of fluid intelligence was the biggest contributor to the age differences in the recognition of 

surprised facial expressions. In addition to this, we also found a number of age differences in the 

pattern of confusions made by participants when categorising each of the expressions. 

In Chapter 3 we examined the age-related changes in neural response to facial expressions and the 

relationship between activation and behaviour. We conducted secondary analysis of a pre-existing 

dataset, in which participants viewed angry, fearful, happy, and neutral facial expressions while 

undergoing fMRI. We found several regions in which the response to each facial expression category 

declined with age, and overlaps between these maps in the superior parietal lobule and bilateral 

postcentral gyri. We also found no strong evidence for a relationship between activation in response 

to a given expression and several behavioural measures associated with the recognition of the 

emotion. 

Chapter 4 examined the relative role of conceptual and stimulus-based cues to the perception and 

recognition of emotions from facial expressions. Participants completed two tasks to measure the 

perceptual similarity of pairs of facial expressions, and number of confusion errors made during a 

categorisation task. Three models were constructed that measured the similarity of emotion 

concepts, face shapes, and surface textures. We used RSA and found that all three of the cues were 

related to behaviour during both tasks, and that the conceptual information outperformed the two 

stimulus-based cues in explaining behaviour. 
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In Chapter 5 we used the data and results from the previous Chapter to examine (a) whether the 

strength of the relationship between each cue and behaviour is associated with the performance at 

each task, and (b) whether there is an individual component to the relationship between perception 

and categorisation. We found (a) that performance at each task was not associated with the greater 

role of any particular cue, and (b) there was no individual component to the relationship between 

perception and categorisation 

Finally, in Chapter 6 we examined the relative role of conceptual and stimulus-based information in 

explaining neural representations of emotions in 4 regions of the brain. Participants viewed facial 

expressions of the six basic emotions while undergoing fMRI. We used RSA to examine the relative 

role of the three models constructed in Chapter 4 in explaining the representational structure of 

emotions in the three core face areas (the FFA, OFA, and STS), and an area involved in theory of 

mind (the MPFC). We found that similarity of emotion concepts best explains neural similarity, 

within all four regions examined. We also found that the similarity of patterns of activity within the 

four regions was associated with perceptual similarity and number of categorisation errors, using the 

results from Chapter 4. 

The current chapter includes a more general discussion of our findings on the effects of age on 

emotion recognition (from Chapters 2 and 3), the relative contribution of conceptual and stimulus-

based cues (from Chapters 4, 5, and 6), and the broader implications of both lines of studies for 

understanding the processing of facial expressions. 

 

7.2 Ageing and the recognition of emotions from facial expressions 

In Chapter 2, we showed that older adults were poorer at correctly labelling facial expressions of 

anger, sadness, and surprise than younger adults. Furthermore, differences in short-term memory, 

fluid intelligence, face identity processing, visual acuity, and contrast sensitivity accounted for age 

differences in the recognition of anger and surprise, but not sadness. The results of Chapter 3 

showed several regions of the brain in which the response to angry, fearful, and happy facial 

expressions decreases with age. In addition to this, the results showed that activation was not 

related to several behavioural measures associated with the recognition of the emotion (recognition 

accuracy and reaction time during an expression categorisation task, and reaction time to classify 

the gender of faces presented during scanning). Together the results of the research provide an 

understanding of the neural basis behind the changes in the processing of facial expressions that 

occurs with age. 
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There are, however, some noteworthy inconsistencies between the results of the two studies. In 

Chapter 2, we found significant age differences in the recognition of facial expressions of anger 

(among others). In Chapter 3, however, we found no relationship between age and the recognition 

of anger. Similarly, we found no relationship between age and the recognition of fear, despite 

previous research suggesting that older adults typically have difficulty recognising this emotion 

(Ruffman et al., 2008). There are two possible sources for the discrepancies between the results of 

the two chapters. The first is that substantial ceiling effects were observed in the emotion 

recognition test used in Chapter 3, which may not have been sensitive enough to capture the effects 

of age that were observed in Chapter 2. The second reason is that the age range was larger in 

Chapter 2 than in Chapter 3. This issue is discussed in more detail later in this section. 

In Chapter 2 we found no age differences in the correct recognition of happy facial expressions, 

however in Chapter 3 we found several regions showing an age-related reduction in response to 

happy faces. As there was no difference between younger and older adults in the recognition of 

happy faces in Chapter 2, and the recognition of happy faces did not decline with age in Chapter 3, 

we expected that there would be little difference in the neural processing of happy faces across age.  

This does, however, raise the important conceptual issue of whether a reduction in activation 

actually reflects poorer performance. There are situations in which reduced activation reflects easier 

processing of stimuli, for example in fMRI-adaptation studies in which repeated instances of stimuli 

evoke comparatively smaller neural responses (e.g. Grill-Spector & Malach, 2001). However, the 

converging evidence that older adults are poorer at the recognition of emotions from facial 

expressions and have attenuated neural response to facial expressions is consistent with the 

hypothesis that reduced activation in older participants may reflect poorer performance at the 

recognition of the emotion. For this reason, in Chapter 3 we expected to find age-related reduction 

in  activation for expressions that older adults typically find more challenging to recognise (i.e. anger 

and fear), and no relationship between age and activation in response to happy faces.  

Contrary to expectations, we did not find strong evidence for a relationship between activation in 

response to an expression and several behavioural measures associated with the recognition of the 

emotion. This result suggests that any reduction in activation is not associated with the ease or 

difficulty of processing the stimuli and is instead associated with ageing or other age-related 

changes/factors. While there is evidence suggesting that older adults have reduced activation in 

response to facial expressions of emotion, the results of the present research question the 

relationship between this reduction in activation and the difficulty recognising the emotion, and 

instead suggest that the reduction in activation may reflect other factors associated with ageing. 
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The neuropsychological account suggests that the age-related decline in emotion recognition is a 

result of age-related changes in structure and function of regions associated with the processing of 

certain expressions. As we found no clear relationship between activation in response to an 

expression and the behavioural recognition of the emotion, the results suggest that age-differences 

in the recognition of the emotion may not simply be a result of reduced activation in response to an 

expression. 

These studies have contributed to the literature on the effects of age on the processing of facial 

expressions. In Chapter 2, we showed how the pattern of confusions made during emotion 

categorisation differs between younger and older adults. Mill et al. (2009) had reported a strong 

correlation between the confusion matrices from younger and older adults, suggesting that younger 

and older adults make similar confusions. By performing a direct comparison between 

corresponding cells, we have shown that younger and older adults do differ in the exact pattern of 

confusions they make during categorisation tasks.  

In Chapter 3, we showed that the age-related attenuation in neural response to facial expressions 

could occur independently from several behavioural measures associated with the recognition of the 

emotion. While previous research had reported that several regions showed a reduction in 

activation in response to facial expressions, the present results furthered this by examining this 

relationship with behaviour (and showing the relationship is not straightforward).  

It is worth noting that we only examined the relationship between neural response and behaviour in 

regions that showed a decline in activity across age. Furthermore, previous research has found age 

differences in several regions that we did not. As such, it would not be appropriate to claim that 

there is no relationship between behaviour and neural response within regions that we did not 

examine. For example, several studies have highlighted age differences in amygdala response to 

facial expressions (Fischer et al., 2005; Iidaka et al., 2002; Keightley et al., 2007; Williams et al., 

2006). As this region is commonly implicated in the processing of emotional stimuli, it may be 

possible that any age-related attenuation in response within this region is associated with 

behavioural age-differences in recognition.  

By combining the results of the two studies, potential future research is highlighted. In Chapter 2, we 

showed that age differences in the recognition of anger and surprise were controlled for by several 

cognitive measures. In contrast, Chapter 3 showed that the age-related decline in emotion 

processing was not associated with the behavioural recognition of the emotion. Future work could 

perhaps examine whether age differences in the neural response to facial expressions can be 

explained by these cognitive measures.  
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These studies are, however, not without their limitations. While the results of Chapter 3 provided an 

insight into how the neural processing of expressions changes across the lifespan, the age range of 

participants should be considered. In Chapter 2, we tested two distinct age groups, where the older 

group ranged from age 60 to 93 years. In Chapter 3, the age of participants ranged from 20 to 65. 

While the recognition of emotion begins to decline around middle-age (Calder et al., 2003; Horning 

et al., 2012; Williams et al., 2006), it must be taken into consideration that the effects of age 

observed in the two chapters may not be exactly comparable. Similarly, this may account for the 

discrepancies between the results of Chapter 3 and previous research.  

In the behavioural experiment, we examined age differences in the recognition of six emotions, 

whereas the data we used in the fMRI experiment only concerned the effect of age on neural 

response to facial expressions of anger, fear and happiness (compared to neutral). As such, it is not 

clear how the neural response to facial expressions of the remaining emotions (disgust, sadness and 

surprise) changes across age, nor the relationship between activation and behaviour. Future work 

could combine these studies and examine the relationship between the neural response to each of 

the six basic emotions and the behavioural recognition of the emotion, ensuring that the recognition 

task is sufficiently difficult to capture effects of age. Perhaps a larger age range with two distinct age 

groups could be used, employing a similar ANCOVA model to that used in Chapter 2, to examine 

whether age differences in the activation in response to an expression remain after controlling for 

the behavioural recognition of the emotion. Such research would further examine whether any age 

differences in neural response are controlled for by behavioural performance, or whether they are 

age specific. 

 

7.3 Top-down and Bottom-up processing 

In Chapter 4 we showed that the similarity of emotion concepts can explain both perceptual 

similarity of expressions and categorisation errors, even when controlling for shape and surface 

properties of the face stimuli. The results of Chapter 6 furthered this, by showing that the similarity 

of emotion concepts can explain the similarity of neural representations of emotions, after 

controlling for the same stimulus-based properties. 

Considering both the behavioural and neuroimaging results together provides evidence that 

conceptual knowledge of emotions impacts perception, perhaps by shaping representations of 

emotions within regions involved in the perceptual processing of facial expressions of emotion.  
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Research by Brooks and Freeman (2018) used RSA to show that the similarity of emotion concepts 

predicts the perceptual similarity of facial expressions, claiming that knowledge of emotion concepts 

shapes the perception of expressions. Two aspects of the current research have furthered these 

results. The first is the methodological difference between the measurements of perceptual 

similarity. Arguably, our measure of perceptual similarity is less dependent on top-down processes, 

as emotion labels were not present in the task. The replication of the results, despite this change, 

further demonstrates the role of emotion concepts in the perception of facial expressions. 

Secondly, we have shown not only that knowledge of emotion concepts influences perception, but 

also the explicit categorisation of facial expressions. This finding highlights the role of conceptual 

knowledge of emotions in a common emotion recognition task, and is comparable to the results of 

research showing that categorisations of gender and race is influenced by top-down expectations 

(Levin & Banaji, 2006; Macrae & Martin, 2007). 

The follow up study from Brooks and colleagues investigated the role of conceptual information on 

brain representations of emotion, and found that conceptual similarity can explain representational 

similarity within the right fusiform gyrus, after controlling for the similarity of several low-level 

image properties (Brooks et al., 2019). Again, the current research furthered these results by 

showing that conceptual information can explain brain representations of emotion in other regions 

involved in the processing of facial expressions. It is worth noting that Brooks et al. (2019) used a 

searchlight with multiple linear regression RSA, and the only region that survived multiple 

comparisons was a region in the right fusiform gyrus. The difference between the results of the 

present research and the results of Brooks et al. (2019) in the number of regions in which conceptual 

information explains neural representations may arise from our a priori definition of regions of 

interest. 

The results of the research are consistent with several recent theories of social perception 

suggesting that top-down beliefs and expectations interact with bottom-up processes to shape our 

visual perception of others. For example, Stolier, Hehman, and Freeman (2018) propose a model of 

face-trait judgements, that posits that the space in which these judgements are made (for example, 

where ‘friendly’ falls along dimensions of dominant and trustworthy) is shaped by top-down beliefs 

and stereotypes. Using the example of judgements of female faces, the authors suggest that gender 

stereotypes (e.g. that dominant females are viewed as less trustworthy) manipulates the space in 

which judgements of traits from faces are made.  

Similarly, Freeman and Johnson (2016) propose a dynamic interactive model of social perception. 

This computational model treats the initial perception of others as an interaction between visual 
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features and prior expectations (e.g. from stereotypes, attitudes, or goals). The model suggests that 

there are feed-forward and feed-back connections between facial feature space and social category 

representations (e.g. between the facial feature of a larger jaw and the social category of male), and 

between social category representations and stereotypes, attitudes and goals (e.g. between the 

social category ‘male’ and the stereotype ‘aggressive’). As such, representations of social categories 

and facial features are influenced in part by higher-level social cognition, dynamically shaping the 

visual perception of others. The model proposes a network of brain regions involved in this split-

second social perception, consisting of the fusiform gyrus, anterior temporal lobe, and orbitofrontal 

cortex. It is suggested that the anterior temporal lobe retrieves social-conceptual information (e.g. 

stereotypes), which is then used by the orbitofrontal cortex to implement top-down predictions that 

shape representations of faces in the fusiform gyrus. The results of the current research are 

consistent with these models of social perception, that put emphasis on prior knowledge and 

expectation in shaping the perception and categorisation of others. 

The focus of this section thus far has been on the role of conceptual information, however we aimed 

to examine the relative influence of conceptual and stimulus-based cues. The results for the role of 

the stimulus-based cues, however, have not been quite as clear. In Chapter 4 we found that the 

similarities of both shape and surface cues can explain perceptual similarity and categorisation 

errors, where shape information played a particular role in explaining behaviour in the perceptual 

task and surface information best explained behaviour in the categorical task. However, the results 

of Chapter 6 are not entirely consistent with the behavioural results, as these cues did not share any 

unique variance with the representational distances in any region (after controlling for the similarity 

of emotion concepts). As we found that shape and surface information still play a role in explaining 

perceptual similarity after controlling for conceptual similarity, and there is research suggesting that 

perceptual similarity is explained by representational similarity within these regions (Said, Moore, 

Engell, et al., 2010; Sormaz, Watson, et al., 2016), it was unexpected that these cues did not explain 

neural representations in the brain regions that we examined. 

In Haxby’s original model of the neural systems involved in face perception, the OFA is proposed to 

be involved with the early perceptual processing of faces, the STS is involved with changeable 

aspects of the face (e.g. expressions), and the FFA is involved with the processing of face identity 

(Haxby et al., 2000). In addition to these core regions, an extended system comprising the 

intraparietal sulcus, amygdala and limbic system, and anterior temporal cortex, are suggested to be 

involved with further processing of faces. Several studies have proposed updates to this model, as 

the core regions and several regions of the extended system all represent facial expressions of 

emotion (Harry et al., 2013; Said, Moore, Engell, et al., 2010; Wegrzyn et al., 2015; Zhang et al., 
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2016). Given the results of Chapter 6, in which we found that the representational structure of facial 

expressions within the MPFC is explained by the similarity of emotion concepts, this region could be 

considered as an addition to the extended system in the model.  

While these studies provided an understanding of the relative influence of conceptual and stimulus-

based information on behaviour and brain representations of emotion, there are some limitations to 

consider. To explore the relative contribution of these sources of information in both studies we 

used RSA, which is inherently correlational. As such, we cannot be sure of any causal relationship 

between any particular cue and behaviour or neural representations. For example, it would not be 

appropriate to infer that a given pair of facial expressions are perceptually more similar because the 

corresponding emotion concepts are more similar. 

This issue of causality raises a further conceptual issue, which is that we cannot be sure that 

participants are ‘using’ any of the three cues we examined. For example, in the regression model for 

the Perceptual Task in Chapter 4 the average beta for the conceptual model was larger than that of 

the surface model, but the claim that participants use conceptual information more than surface 

information would be unwarranted.  

One further limitation to note is that the regression model for each of the four ROIs (in Chapter 6) 

produced low average R-squared values across participants, suggesting that there are additional 

sources of variance that can account for the representational structure within these regions. Of 

course, the three sources of information we chose to examine are not an exhaustive list of factors 

that can affect the processing of facial expressions. Several low-level image properties are reported 

to explain representations of emotions within the core face regions. Weibert et al. (2018) found that 

the correlations between the spatial frequencies of pairs of images (measured using GIST 

descriptors; Oliva & Torralba, 2001) explained the representational structure within the three core 

face regions. Similarly, Brooks et al. (2019) constructed RDMs that measured the similarity of the 

silhouettes, pixel-by-pixel intensities, and a measure output from a computational model of object 

recognition (HMAX; Serre, Oliva, & Poggio, 2007). While the exact influence of these models on the 

representational structure was not reported, they acted as control measures in the regression 

models. In addition to the cues examined within this research, the perception of facial expressions is 

well documented to be affected by multiple personality traits, hormones, and age, so it is likely that 

these factors may account for additional variance of the representational structures we observed. 

Should future work include individual-level measures (e.g. personality traits), more complex 

multilevel regression models should be used to account for this variance at the individual-level (in 

addition to variance between emotion-pairs). 
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This research showed that emotion concepts can influence the perception of facial expressions, 

perhaps by shaping neural representations within several regions responsible for the visual 

processing of faces. These studies therefore show that the perception of facial expressions is not a 

purely stimulus-driven process, and that some top-down mechanisms play a role. One question that 

remains is how these mechanisms are initiated. Bar et al. (2006) addressed this question in the 

domain of object recognition. The researchers tested a model of object recognition proposing that a 

partially analysed version of the input image is projected to the orbitofrontal cortex, which then 

activates representations in temporal recognition-related regions that are constrained by the low 

spatial frequencies of the initial image. Magnetoencephalography (MEG) was used to measure the 

time course of activation in the OFC and recognition-related regions of the temporal cortex (the 

fusiform gyrus), in response to briefly presented objects. Results showed that the activity in the OFC 

preceded activity in the fusiform gyrus by 50ms for objects that were consciously recognised, 

suggesting that the OFC is involved in facilitating top-down recognition of objects. It may therefore 

be possible that the OFC is involved in implementing top-down emotion concepts to ‘fine-tune’ 

representations of emotions in face processing regions. Indeed, the model of social perception 

proposed by Freeman and Johnson (2016) suggests that the OFC shapes facial feature 

representations in the fusiform gyrus, by implementing top-down social knowledge. Support for this 

possibility comes from evidence suggesting the OFC is involved in predicting the affective value of 

stimuli. A region within the OFC was found to be activated in response to both objects with positive 

valence, and objects with greater associative strength with other objects (Shenhav, Barrett, & Bar, 

2013). Future work could therefore investigate the potential role of the orbitofrontal cortex in 

implementing top-down knowledge of emotion concepts in shaping representations in face 

processing regions. Perhaps the approach of Bar et al (2006) could be used to investigate the time 

course of activation in the orbitofrontal cortex and the face processing regions. 

Another question that future research could address is whether there are individual differences in 

the role of emotion concepts. In the current research we constructed a model of conceptual 

similarity of emotions by using data from Skerry and Saxe (2015). While this model performed well in 

predicting behaviour and neural representations of emotions, a potential limitation of this approach 

is that using an averaged model overlooks cultural and individual differences in the similarities of 

emotion concepts. In Chapter 5 we sought to investigate whether there is an individual component 

to the relationship between perceptual similarity of expressions and categorisation errors. While 

these two measures were correlated (pairs of facial expressions that were more perceptually similar 

were more likely to be confused), there was no greater relationship within-subject than there was 

between-subject. As we used a model of conceptual similarity that was not subject-specific, we were 
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not able to test whether there is an individual component to the relationship between conceptual 

similarity of emotions and behaviour during the perceptual and categorical tasks. Brooks and 

colleagues measured the similarity of emotion concepts for each participant and reported that their 

measure of conceptual similarity can predict both perceptual similarity (Brooks & Freeman, 2018), 

and neural representational similarity (Brooks et al., 2019), although they did not examine whether 

there is an individual component to this relationship. Doing so would allow us to test whether an 

individual’s perceptual similarity of expressions, categorisation errors, and neural representational 

similarity, is best explained by their own conceptual similarity of emotion pairs, or by an averaged 

model.  

 

7.4 General discussion 

As this thesis has addressed two main problems, this Chapter has primarily focussed on discussing 

these problems independently. The aim of this section is to bring the two together. First, the 

common results shared across the two areas will be highlighted. Next, the broader context and 

future questions surrounding the possible integration of the two areas will be discussed. Finally, this 

section will cover general issues and considerations surrounding the research.  

Both behavioural experiments in Chapters 2 and 4 involved a multiple-choice categorical test, where 

participants had to categorise examples of each of six facial expressions, and for both tests we 

measured a full confusion matrix. An informal inspection of the pattern of confusions made during 

the tasks suggests that participants in both experiments behaved similarly in terms of the confusions 

made between expressions. For example, confusions were frequently made between expressions of 

anger and sadness, between fear and surprise, and between disgust and anger. These confusions are 

consistent with those identified by Young et al. (2002) in the design of the Emotion Hexagon test, 

where participants must identify the dominant emotion in warps between pairs of the most easily 

confused emotions. No formal comparisons have been conducted between the matrices generated 

by participants in each Chapter due to the different number of stimuli. 

As outlined in Chapter 1, conscious visual perception is not simply a feedforward stimulus-driven 

process, but is instead the result of an interaction between top-down predictions and bottom-up 

processing of visual stimuli. Accurate perception is, therefore, thought to necessitate a flexible 

balance between these top-down and bottom-up processes (O’Callaghan et al., 2017). This view has 

allowed for recent models to predict symptoms of psychosis (e.g. hallucinations) as an imbalance in 

this system, with greater importance placed on predictions rather than the sensory input (Adams, 

Stephan, Brown, Frith, & Friston, 2013; Corlett, Honey, Krystal, & Fletcher, 2011). Furthermore, it 
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has been suggested that imbalances in this predictive coding can explain symptoms in multiple areas 

of psychopathology, including reduced theory of mind in autism (Friston, Stephan, Montague, & 

Dolan, 2014).  

It may, therefore, be worth taking this view in the investigation of the effect of age on emotion 

recognition. As we established in Chapter 4, the perception of facial expressions requires the 

integration of stimulus-based cues with top-down knowledge of emotion concepts, so perhaps age 

differences in the processing of facial expressions may be (in part) due to an imbalance in the roles 

of top-down expectations and bottom-up processing of the stimuli. 

As examined in Chapter 2, older adults have poorer visual acuity and contrast sensitivity than 

younger adults, suggesting that there may be age differences in the processing of the shape and 

surface properties of face stimuli. As such, it could be that greater importance is placed on 

conceptual information than the stimulus-based cues in older adults. Alternatively, perhaps the age-

related reduction in volume of some frontal areas may attenuate the role of top-down information 

Future work could perhaps repeat the experimental paradigm as used in Chapter 4, using distinct 

age groups with the aim of assessing age differences in the contribution of conceptual and stimulus-

based cues to the perception of facial expressions. The results of Chapter 4 suggested that 

conceptual information plays a greater role in explaining perceptual similarities and categorisation 

errors than the stimulus-based cues. Should older and younger adults differ in the relative roles of 

conceptual and stimulus-based cues, an interaction would be expected between age group and cue 

type. It should be noted, however, that this would not necessarily explain the specific impairments in 

the recognition of anger, fear and sadness, but rather would explain age differences in the patterns 

of confusions, or perceptual similarities. Future work to further examine this could perhaps use fMRI 

with RSA to investigate whether conceptual information shapes representations in face processing 

areas in older adults to a different extent than younger adults. Such research would provide a new 

perspective on age differences in facial expression processing. 

There are, or course, some potential issues to consider for the research within this thesis. For 

example, our use of the six basic emotions throughout this research is worth discussing. As explained 

in Chapter 1, the conclusion that there are six universal basic expressions of emotion came from the 

work of Ekman (e.g. Ekman, 1970; Ekman & Oster, 1979), and these six categories have been used 

extensively in subsequent research. However, the experience of an emotion is clearly not confined 

to these six distinct categories, and is instead a much a more subjective and content-rich experience 

(Barrett, Mesquita, Ochsner, & Gross, 2007). It has been argued that emotions do not have such 
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distinct boundaries, and that evidence that the six basic facial expressions can reliably be identified 

should not be taken as evidence of these boundaries for emotional experiences (Barrett, 2006).  

Cowen and Keltner (2017) used a fully data-driven approach to examine categories of emotional 

experiences. The researchers probed the emotional states elicited by a large number of short 

emotionally evocative videos, such as videos of natural disasters, sex acts, deaths, and awkward 

handshakes. Using self-report methods, the researchers found that participants reliably reported 

experiencing an emotion that falls into one of 27 distinct categories. Furthermore, Skerry and Saxe 

(2015) presented participants with stories depicting a character experiencing one of 20 emotions 

with subtle distinctions. When identifying the emotion, dissociable patterns of activation for each 

emotional category were elicited in several regions involved with theory of mind. Together, these 

studies show that both the perception and experience of emotions is not necessarily confined to the 

six basic emotions as has been used within research. It could be the case that the facial expressions 

corresponding to the six basic emotions are the easiest to identify, or have the best correspondence 

between emotional experience and facial expression, although this is a question for future research 

to assess. Although the emotion categories used throughout the research within this thesis may not 

have captured a wider range of potential emotional experiences, the results can be used as a basis 

for the effects observed and can be applied to previous (and likely future) work using these six 

emotion categories. Perhaps future work could perform similar investigations, using emotion 

categories with more subtle distinctions. 

This raises a further conceptual issue, which is the relationship between the ability to experience an 

emotion and the ability to process the facial expression corresponding to that emotion. Research has 

shown that the affective state of an individual provides top-down guidance on visual perception (e.g. 

Barrett & Bar, 2009). In the domain of facial expression recognition, mood-congruency effects have 

been found, such that participants who had been primed with a positive mood better recognised 

facial expressions of happiness than those in a negative mood, who better recognised facial 

expressions of sadness (Schmid & Mast, 2010). A further example of this relationship comes from 

individuals with alexithymia, a sub-clinical trait characterised by the difficulty to recognise internal 

emotional states. Individuals who score high on measures of alexithymia perform more poorly at 

theory of mind tasks (Moriguchi et al., 2006) and facial expression recognition tasks (Cook et al., 

2013). This further demonstrates the relationship between the experience of an emotion and the 

ability to recognise emotions in others. This trait, and the mood of the participant, was not 

controlled for within the research within this thesis. Of course, the factors that affect emotion 

recognition that we measured did not constitute an exhaustive list, however this is one issue that is 

worth discussing as it may have had implications for the role of conceptual information on facial 
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expression processing. Perhaps future research could examine whether levels of alexithymia affect 

the role of emotion concepts on the perception of facial expressions. As previously suggested, 

measuring the similarity of emotion concepts within-subject may provide a more accurate measure 

of the influence of concepts on facial expression processing, especially given the potential variability 

introduced by this trait. 

To conclude, the research within this thesis further examined several factors that can affect the 

processing of facial expressions of emotion. The research into the effect of age on emotion 

recognition further clarified the role of several cognitive factors that may account for the 

behaviourally observed age differences in emotion recognition. Furthermore, this research 

demonstrated that age differences in neural response to facial expressions (within regions in which 

the response declines with age) may occur independently from the recognition of the emotion. The 

research into the role of emotion concepts and stimulus-based cues highlighted the relative 

influence of these cues on two behavioural tasks and neural representations. In particular, the 

research demonstrated the role of top-down conceptual knowledge of emotions on visual 

perception. Together, these studies pave the way for future research to apply a predictive coding 

framework to the investigation of age differences in emotion recognition. 
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9 Appendix A – Supplementary tables for Chapter 2 
 

Table A1: F ratios, p-values, and effect sizes for each covariate within the ANCOVA model for the 

recognition of all emotions 

Covariate Angry    Disgusted   Fearful   

 F p ηp
2  F p ηp

2 F p ηp
2 

MR .693 .407 .008  .505 .479 .006 11.433 .001 .115 

DS 2.320 .131 .026  .004 .948 <.001 2.229 .139 .025 

GFMT 5.032 .027 .054  1.786 .185 .020 6.652 .012 .070 

VS 1.416 .237 .016  .933 .337 .010 .136 .713 .002 

CS .043 .836 <.001  .181 .671 .002 .676 .413 .008 

MR = Matrix Reasoning; DS = Digit Span; GFMT = Glasgow Face Matching Test; VA = Visual Acuity; CS 

= Contrast Sensitivity. 

 

Table A1 (continued) 

Covariate Happy   Sad   Surprised   

 F p ηp
2 F p ηp

2 F p ηp
2 

MR 4.803 .031 .052 .435 .511 .005 1.067 .305 .012 

DS 3.564 .062 .039 2.406 .124 .027 .094 .759 .001 

GFMT 4.276 .042 .046 .706 .403 .008 .394 .532 .004 

VS .003 .956 <.001 1.185 .279 .013 .045 .832 .001 

CS 1.377 .244 .015 .213 .645 .002 .079 .780 .001 

MR = Matrix Reasoning; DS = Digit Span; GFMT = Glasgow Face Matching Test; VA = Visual Acuity; CS 

= Contrast Sensitivity. 
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10 Appendix B – Supplementary tables for Chapter 3 

Table B1: The correlation between activation and three behavioural measures (recognition accuracy, 

offline reaction time, and online reaction time) within regions showing significant age effects, for 

each expression.  

Contrast 
Hemis
phere 

Region 
MNI Coordinates 

Correlation 
with 
expression 
recognition 
(n=30) 

Correlation 
with RT for 
expression 
(offline) 
(n=23) 

Correlation 
with RT 
(online) 
(n=30) 

X Y Z r p r p r p 

Angry > 
Neutral 

L 
Postcentral 
gyrus 

-42 -25 53 -0.110 0.562 0.327 0.128 0.044 0.818 

L 
Anterior 
cingulate 

-9 26 17 0.209 0.268 -0.062 0.778 0.098 0.607 

L Precuneus -9 -49 65 0.170 0.368 0.025 0.910 -0.101 0.596 

R 
Postcentral 
gyrus 

36 -25 56 0.034 0.859 0.082 0.710 -0.034 0.857 

Fearful > 
Neutral 

L 
Superior 
parietal lobule 

-21 -58 56 -0.277 0.138 0.132 0.548 0.080 0.674 

-21 -73 50 -0.171 0.367 -0.048 0.826 0.056 0.769 

L 
Ventral Dorsal 
Caudate 

-3 -7 -13 0.033 0.864 -0.105 0.634 -0.043 0.821 

L Putamen -24 2 -10 -0.089 0.641 0.054 0.808 -0.003 0.989 

R 
Superior 
parietal lobule 

21 -67 47 -0.172 0.364 -0.126 0.567 -0.081 0.670 

Happy > 
Neutral 

R 
Medial 
precentral gyrus 

12 -22 53 0.037 0.847 0.046 0.835 -0.003 0.986 

R 
Lateral 
precentral gyrus 

30 -22 56 0.077 0.685 -0.065 0.769 0.002 0.992 

L Lingual gyrus -27 -70 8 -0.157 0.408 0.103 0.640 0.011 0.955 

L 
Middle 
cingulate 

-15 -7 44 0.146 0.441 0.300 0.164 0.370 0.044 

R 
Middle frontal 
gyrus 

30 32 26 -0.316 0.089 0.349 0.102 0.257 0.170 

L Precentral gyrus -30 -22 53 0.169 0.371 -0.214 0.328 -0.019 0.919 

L 
Superior 
parietal lobule 

-24 -52 56 -0.136 0.472 0.205 0.348 0.183 0.334 

L 
Middle 
temporal gyrus 

-48 -40 2 -0.095 0.617 0.309 0.151 0.109 0.567 

R 
Middle 
cingulate 

18 8 35 -0.182 0.337 0.353 0.099 0.298 0.110 

L Angular gyrus -42 -55 32 0.114 0.549 0.140 0.524 0.014 0.941 

R 
Medial 
postcentral 
gyrus 

6 -37 62 -0.252 0.179 0.399 0.059 0.251 0.182 
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11 Appendix C – Supplementary tables for Chapter 6 

Table C1: The mean and standard deviation of the correlation coefficients, and the results of the 

Wilcoxon signed tank test, for each model, for each region. 

ROI Model Mean Rho S.D. Z-stat Alpha 
(FDR 
corrected) 

P 

FFA Conceptual 0.226 0.299 3.222 8.82E-03 1.27E-03 

Shape 0.139 0.266 2.619 8.82E-03 

Surface 0.013 0.267 0.353 7.24E-01 

Categorical 0.283 0.284 3.723 1.96E-04 

Perceptual 0.289 0.282 3.769 1.64E-04 

OFA Conceptual 0.239 0.351 3.063 2.19E-03 2.19E-03 

Shape 0.051 0.302 1.002 3.16E-01 

Surface 0.079 0.287 1.454 1.46E-01 

Categorical 0.262 0.293 3.610 3.07E-04 

Perceptual 0.224 0.282 3.314 9.21E-04 

STS Conceptual 0.261 0.272 3.860 6.36E-04 1.13E-04 

Shape 0.074 0.279 1.196 2.32E-01 

Surface 0.117 0.321 1.981 4.76E-02 

Categorical 0.294 0.262 3.962 7.43E-05 

Perceptual 0.278 0.304 3.416 6.36E-04 

MPFC Conceptual 0.206 0.349 2.699 8.51E-03 6.97E-03 

Shape 0.118 0.219 2.631 8.51E-03 

Surface 0.049 0.325 0.820 4.12E-01 

Categorical 0.206 0.302 2.915 3.56E-03 

Perceptual 0.250 0.266 3.632 2.81E-04 

 

Table C2: Mean, standard deviation, and the results of the one-sample t-test for the conceptual, 

shape, and surface models as predictors of the representational structure in each of the 4 regions 

Region Model Mean S.D. Mean R2 Alpha (FDR 
corrected) 

T-test 

FFA Conceptual 0.296 0.307 

0.309 2.296E-05 

t(27) = 5.105, p < .001 

Shape 0.092 0.243 t(27) = 1.994, p = .056 

Surface -0.095 0.257 t(27) = -1.957, p = .061 

OFA Conceptual 0.266 0.375 

 
0.377 8.373E-04 

t(27) = 3.758, p = .001 

Shape 0.017 0.323 t(27) = 0.278, p = .783 

Surface 0.002 0.289 t(27) = 0.027, p = .978 

STS Conceptual 0.310 0.293 

0.350 5.987E-06 

t(27) = 5.607, p < .001 

Shape -0.006 0.289 t(27) = -0.109, p = .914 

Surface 0.021 0.309 t(27) = 0.364, p = .719 

MPFC Conceptual 0.236 0.350 

0.322 1.365E-03 

t(27) = 3.570, p = .001 

Shape 0.076 0.250 t(27) = 1.610, p = .119 

Surface -0.046 0.294 t(27) = -0.834, p = .411 

 



143 
 

Table B3: Results of the pairwise comparisons between the standardised betas for each predictor, for 

each region. 

Region Alpha (FDR corrected) Model comparison T-test 

FFA 0.008 Conceptual-Shape t(27) = 2.878, p = .008 

Conceptual-Surface t(27) = 4.902, p < .001 

Shape-Surface t(27) = 3.075, p = .005 

OFA 0.017 Conceptual-Shape t(27) = 2.535, p = .017 

Conceptual-Surface t(27) = 2.786, p = .010 

Shape-Surface t(27) = 0.192, p = .849 

STS 0.002 Conceptual-Shape t(27) = 4.467, p < .001 

Conceptual-Surface t(27) = 3.455, p = .002 

Shape-Surface t(27) = -0.275, p = .785 

MPFC 0.001 Conceptual-Shape t(27) = 1.690, p = .103 

Conceptual-Surface t(27) = 3.557, p = .001 

Shape-Surface t(27) = 1.724, p = .096 

 


