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Abstract

In this paper the most general class of (2x2) - matrices is determined, which 

permit a Wiener-Hopf factorisation by the procedure of Rawlins and Williams [1]. 

According to this procedure, the factorisation problem is reduced to a matrix 

Hilbert problem on a half-line, where the matrix involved in the Hilbert problem 

is required to have zero diagonal elements. 
 

Introduction

In the work of Rawlins and Williams [1] a Wiener-Hopf factorisation of the 

matrix 

                         ,    (1) ⎟
⎠
⎞⎜

⎝
⎛

−=α )K(H)K(G)K(H
)K(F)K(G)K(F)(~A

was carried out.  In the expression (1) F, G, and H are analytic functions 

(except possibly at K = 0) of the variable K = 2
1

)k( 22 α−  , where α is a complex 

variable and k a constant with positive real and imaginary parts.  The branch 

of the square root is chosen such that K = k at α = 0, with the branch cuts      

C and C'  lying along the half-l ines α  = k + δ ,  and α  = -k-  δ ,  δ  ≥  0,  

respectively.  It was shown in [1] that provided F, G and H do not have any 

zeros in the cut α-plane and G(K) = - G(-K) then the matrix (1) could be 

factorised in the form 

~
)(L)(

~
U)(~A

1 αα=α −   , 

where  and )(~U α )(~L α  are non—singular matrices whose elements are analytic 

for  Im(α )  >  -  Im(k) ,  and  Im(α )  <  Im(k) ,  respec t ive ly .  
 
The crux of the technique of factorisation depended on being able to assume 

 to be analytic everywhere except along the branch cut C through )(~U α

α = -k whilst  to be analytic everywhere except along the branch cut C' )(~L α

through = k, and then to show that α

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α

α
=α

−
α

+
−

0)(h
)(G0

)(
~
A)(

~
A 1   ,    (2) 

where g(α) ,  h(α)  are specific functions,  and where the suffices ± denote 

values evaluated on the upper side and lower side of the branch cut               

C :  α  = -  k -  δ ,  δ  ≥  0.  
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Professor  J .  Boersma in his  referee report  of  [1] ,  asked the quest ion as  to  

whether (1) is  the most general  matrix,  with the same branch cuts,  for which 

the  matr ix  product  )(
~
A)(

~
A 1 α

−
α

+
−  takes  the  form (2) .   He conjectured that  i t  

would not  be.   In this note we confirm his conjecture,  and give the most 

general form of the class of (2x2)-matrices which produce zeros in the diagonal 

for  the  Hi lber t  problem.  
 

We shal l  show that  the  most  genera l  form is :  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

αα−−ααα

αα−+ααα
=α

−

−

)(F)k()(F){(a)(a

)(F)k()(F){(a)(a
)(~A

2
22

12121

2
22

11111

2
1

2
1

 ,   (3)  

with a11(α)a12(α)F2(α) ≠ 0 in the cut plane, where a11 (α) ,a21(α) are analytic 

functions in the cut plane, (with branch cuts C and C'), and F1(a) and F2(α)

are analytic in the entire α-plane except possibly along the branch cut C'. If further 

)(~A)(~A α−=α  then F1(α) =E1(α), F2(α) =E2(α) where E1(α) and E2(α)are analytic in the 

ent i re  a -plane .  

Der ivat ion  of  the  genera l  form (3)

Consider  the  mat r ix  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
αα
αα

=α
)(a)(a
)(a)(a

)(~A
2221

1211   ,  

where a1 1(α), a1 2(α), a2 1(α),a2 2(α) are supposed to be analytic functions in 

the cut α-plane, and det  ≠  0 in the cut a-plane. )(~A α

Then 

⎟
⎠
⎞⎜

⎝
⎛

−
−−

=−
−

+ −+−+−+−+
−+−+−++

1221112221222221
1211111221122211 aaaaaaaa

aaaaaaaa
)(α~detA

1(αα1
~A)(α~A

, (4) 

whe re  de t  I n  o rde r  t ha t  ( 4 )  shou ld  have  t he  .0)aaaa()(~A 21122211 ≠−=α −−−−
−

form (2) ,  i ,e ,  zeros  on  the  diagonal ,  we  requi re  
,aaaaand,aaaa 1221112221122211

−+−+−+−+ ==  

o r ,  ignor ing  the  t r iv ia l  s i tua t ion  where  ±
11a  ≡  0 ,  and/or  ±

21a (α )  ≡  0  ,  

     0
a
a

a
a

21

22

11

12 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

     (5)  

0
a
a

a
a

11

12

21

22 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

,     (6)  

where  a2 1 (α )  ≠  0 ,  and  a1 1 (α )  ≠  0  on  C .  
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Adding and subtracting (5) and (6) gives 

cα,0
a
a

a
a

a
a

a
a

21

22

11

12

21

22

11

12 ∈=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−+

   (7) 

cα.0
a
a

a
a

a
a

a
a

21

22

11

12

21

22

11

12 ∈=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−+

    (8) 

Using the fact that ( ) 2
1

222
1

22 kk α−±=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
α−

±

 we can rewrite (8) in the form 

( ) ( ) C,0
21a
22a

11a
12a2

1
22k

21a
22a

11a
12a2

1
22k ∈α=

−

−α−−

+

−α−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
  (9) 

Now provided ( )α11a  and  are non-zero in the cut plane and satisfy the ( )α21a

conditions 

( ) ,k0
a
a

a
a 22

21

22

11

12
⎥⎦
⎤

⎢⎣
⎡ α−=+

μ
 as ,10,k <μ≤±→α                                     

( ) ,k0
a
a

a
a 2

1v22

21

22

11

12
⎥
⎦

⎤
⎢
⎣

⎡
α−=−

−
 as ,10,k <υ≤±→α  

then the most general solution of (7) and (9) which has no pole singularity at                    

k±=α  and no other singularities in the cut plane except a branch cut along                       

C' is given by (Muskhelishivili  [2]) 

)(F2
a
a

a
a

1
21

22

11

12 α=+       (10) 

and 

2
1

)ak)((F2
a
a

a
a 22

2
21

22

11

12 −
−α=−      (11) 

respectively, where  and )(F1 α )(F2 α  are analytic in the entire plane except 

possibly along the branch cut C'.   Adding and subtracting (10) and (11) gives 

,})k)((F)(F){(a)(a 2
122

211112
−

α−α+αα=α  

.})k)((F)(F){(a)(a 2
122

212122
−

α−α−αα=α  

If )(~A)a(~A  then  and α−= )(F1 α )(F2 α  are analytic in the entire complex plane, 

as the following analysis will show. 
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If )(~A)(~A α−=α  then )(a)(a ijij α−=α ,  i , j  = 1,2, and in an exactly analogous     

way one obtains similar equations to (7) and (9) on carrying out evaluations on 

the branch cut C':  

,'C,0
a
a

a
a

a
a

a
a

21

22

11

12

21

22

11

12 ∈α=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−+

     (7')  

,'C,0
a
a

a
a

)k(
a
a

a
a

)k(
21

22

11

1222

21

22

11

1222 2
1

2
1

∈α=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−α−−⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−α−

−+

  (9')  

where now ± corresponds to the lower and upper side of C',  respectively.     

Adding (7) to (7') and (9) to (9')  gives 

,'CUC,0
a
a

a
a

a
a

a
a

21

22

11

12

21

22

11

12 ∈α=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−+

   (7") 

.'CUC,0
a
a

a
a)k(

a
a

a
a)k(

21

22

11

1222

21

22

11

1222 2
1

2
1

∈α=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−α−−⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−α−

−+

  (9") 

Thus the most general solution of (7") and (9") which has no pole singularity at 

k±=α  and no other singularities in the cut −α plane is given by: 

,})k()(E)(E{)(a)(a 2
122

211112
−

α−α+αα=α  

,})k()(E)(E{)(a)(a 2
122

212122
−

α−α−αα=α  

where  and  are analytic in the entire )(E1 α )(E2 α −α plane. 

If in particular we let ,0)(E,)K(H)(a,)K(F)(a 12111 =α=α=α  and ),K(  KG)(E2 =α

(the condition )K(G)K(G −−=  ensures that KG(K) is an entire function) we obtain 
the special form considered in [1] .  

 

 

 

 

 

 



5 

 

Following the procedure outlined in Rawlins and Williams [1] a particular 

factorisation of the matrix (3),  which will  be useful in applications, is           

given by  where 1)0()0( ])(~L[)c(~U)(~A
−α=α

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ααα+−αα

ααα+αα
=α

~ )](W/[)](W[)k()](W/[)](W[

)](W[)](W[)k()](W[)](W[
)(U

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2121

2121)0(   ,  

)(W1 α  and  are solutions of the standard Hilbert problems on the half-    )(W2 α

line C: 

[ ,)](h)(g[n)](nW[)](nW 21 αα=α−α −+ lll

,)](h/)(g[nki 2
1

ααα+ l)](nW)k[()](nW)k[( 2
1

2
1

22 =αα+−αα+ −+ ll  
Where 

,)(21a/)(11a)(~Adet/))(12a)(11a)(11a)(12a()(g α−α+=α−α−α+−α−α+=α  

.)(11a/)(21a)(~Adet/))(22a)(22a)(22a)(21a()(h α−α+=α−α−α+−α−α+=α  

 
The set of solutions for )(W),(W 21 αα  is further restricted by the requirement that 

the factor matrix ~ )(L )0( α  is non-singular at k−=α  and its elements should be 

analytic in the region Im( α ) < Im(k).  It  is interesting to note that the 

functions )(F,)(F 21 αα  have dropped out completely.  This means that for all  

matrices of the form (3) the factorisation problem reduces to the same Hilbert 

problem! 

 
The author is indebted to Professor J.  Boersma of the Technical University, 

Eindhoven, for the final observation of this paper and for pointing out that 

the  funct ions   can have  the  branch cut  '  a lso  for  h i s  great  )(F),(F 21 αα C

care in reading through the manuscript and making constructive suggestions for 

improvements and amendments. 
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