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Abstract

In this paper the most general class of (2x2) - matrices is determined, which
permit a Wiener-Hopf factorisation by the procedure of Rawlins and Williams [1].
According to this procedure, the factorisation problem is reduced to a matrix
Hilbert problem on a half-line, where the matrix involved in the Hilbert problem

is required to have zero diagonal elements.

Introduction
In the work of Rawlins and Williams [1] a Wiener-Hopf factorisation of the
matrix

2= (Hd) -caona) 0
was carried out. In the expression (1) F, G, and H are analytic functions
(except possibly at K = 0) of the variable K = (k> —ocz)% , where a is a complex
variable and k a constant with positive real and imaginary parts. The branch
of the square root is chosen such that K = k at a = 0, with the branch cuts
C and C' lying along the half-lines a =k + 9§, and a = -k- 9, 8 2 0,
respectively. It was shown in [1] that provided F, G and H do not have any
zeros in the cut a-plane and G(K) = - G(-K) then the matrix (1) could be

factorised in the form

A(a)=U(@) L (a) ,
where U(ar) and L(a) are non—singular matrices whose elements are analytic
for Im(a) > - Im(k), and Im(a) < Im(k), respectively.

The crux of the technique of factorisation depended on being able to assume

U(a) to be analytic everywhere except along the branch cut C through

o = -k whilst L(a) to be analytic everywhere except along the branch cut C'
through o=k, and then to show that

A@a =) O 2)
o )= ,

~t o~ h(a) 0

where g(a), h(a) are specific functions, and where the suffices + denote
values evaluated on the upper side and lower side of the branch cut

C:a=-k-06,02=>0.



Professor J. Boersma in his referee report of [1], asked the question as to

whether (1) is the most general matrix, with the same branch cuts, for which

the matrix product A(oc)A_l(o,) takes the form (2). He conjectured that it
~+ ~

would not be. In this note we confirm his conjecture, and give the most
general form of the class of (2x2)-matrices which produce zeros in the diagonal

for the Hilbert problem.

We shall show that the most general form is:
a;(a) a;(a){F(a) + (kz_az)ﬁFz(a)

Ala) = 1 ;
a3 () ay(@){F(a) - (& -a’) EF(a)

(3)

with a;j(a)a;p(a)Fa(a) # 0 in the cut plane, where a;; () ,a;(a) are analytic
functions in the cut plane, (with branch cuts C and C'), and F;(a) and F»(a)
are analytic in the entire a-plane except possibly along the branch cut C'. If further

A(a) = A(-a) then Fi(a)=E(a), F2(a)=Ez(a) where E (o) and Ex(ov)are analytic in the

entire a-plane.

Derivation of the general form (3)

Consider the matrix

é(OL):(EIH(OL) alz(a)j ’
a, (o) a,,(a)
where a;i;(a), aja(a), az1(a),a22(a) are supposed to be analytic functions in

the cut a-plane, and det A(a) # 0 in the cut a-plane.

Then
+

_ 1 fam ot oa +
Al (a) A 1 (o= —— (2“ 222 ~ :J,z :2_1 :42 :u aa*“ aan ) ,(4)
- detA (a) 21 “» 2 ‘2 2 ‘1 21 12

where det A_(a)=(ar1a22 — aj2a21) # 0.In order that (4) should have the
form (2), i,e, zeros on the diagonal, we require

+ - + - + - + -

ajjaz = ajpa , and apap =aj ap,

or, ignoring the trivial situation where ali1 = 0, and/or a-2—"1(oc) =0,
+ p—
[&J _(aﬁ] -0 (5)
ay as
+ —
[aﬁj _[&j -0 (6)
as) ap

where as;(a) # 0, and a;;(a) # 0 on C .



Adding and subtracting (5) and (6) gives

N _
a a a a
( 12 D] _[_Q"+_E) =0, oaec (7)
a;; Ay an Ay
N _
a a a, a
( 2 _ 22} J{iﬁ) = 0. aec (8)
aq a, a;; Ay
+

L 1
Using the fact that (k2 —OLZF =J_r‘k2 —ocz‘z we can rewrite (8) in the form

[(kzazﬁ(al_zwjr{(kuzﬁ(al_zmﬂo,aec ©

arr  az1 ary  az1
Now provided a,(a) and a, (o) are non-zero in the cut plane and satisfy the

conditions

A2 A0 _ (kz_az)-‘} as a—>1k,0< u< 1,
a;; an L

a a V-5
212 %22 _ (kz_az) 2} as a—>xk,0<v<1,
ajp an L

then the most general solution of (7) and (9) which has no pole singularity at
a =1k and no other singularities in the cut plane except a branch cut along

C' is given by (Muskhelishivili [2])

212 132 _F (o 10
1
a11 a1
and
_1
A2 222 _9F, (a)(k* ~a?) 2 (11)
a1 a1

respectively, where Fj(a) and F,(a) are analytic in the entire plane except

possibly along the branch cut C'. Adding and subtracting (10) and (11) gives
_1
a5 (e) = a5 (@) {Fj () +Fy(@)(k” —a) 2}

_1
a2 (@) = a1 (@) {Fy (@) - Fy (@)(k* —a?) 2} .
If A(a)= A(-o) then F (o) and F,(a) are analytic in the entire complex plane,

as the following analysis will show.



If A(a)=A(-a) then aj(a)=a;(-a), 1,j = 1,2, and in an exactly analogous

way one obtains similar equations to (7) and (9) on carrying out evaluations on

the branch cut C":

+ —
(312+azzj _(312+322j — 0. qeC (7"
a1 apg a1 apg
1 + 1 B
[(k2 _a2)2(a£_aﬁﬂ _{(k2 _OLZ)z(aL_aﬁﬂ —0, 0eC', (9"
a1 apg a1 apjg

where now + corresponds to the lower and upper side of C', respectively.

Adding (7) to (7') and (9) to (9') gives

) ]
(mﬁﬁj _[mﬁﬁ] 0 aecUC "
aj;p  ang a1 az

[(kz—az){ai—aiﬂ {(kz—o&){h—@ﬂ =0,aeCUC'". (9"
a Ay a Ay

Thus the most general solution of (7") and (9") which has no pole singularity at

a =1k and no other singularities in the cut a—plane is given by:

_1
ajp (@) = ajj(a) {Ey(a) + Ex(a) (K —a?) 2},

022(0) = 23, (@) {E; (@) - E5(@) (7 ~a?) 2},
where E (o) and E,(a) are analytic in the entire a—plane.
If in particular we let a;(a) = F(K), ap;(a) = H(K), E{(a) =0, and E,(a)=KG(K),
(the condition G(K)=-G(-K) ensures that KG(K) is an entire function) we obtain

the special form considered in [1] .



Following the procedure outlined in Rawlins and Williams [1] a particular

factorisation of the matrix (3), which will be useful in applications, is
given by A () =U® © [L” (@)]7" where

1 1 1 1 1
U0 (q) = [W) (Ot)]f [W) (Ot)]21 (k+ Ot)l2 [W) (Ot)]lz[Wz (Ot)]z1
T IWH@? TWa ()12~ (k+ ) 2 [ W ()] [[Wa ()]
W;(a) and W,(a) are solutions of the standard Hilbert problems on the half-

line C:

[ (nW)(a)]" = [nW ()] = ‘n[g(a)h(a)] ,

[(k + oc)% MW, ()] —[(k + oc)% MWy ()] = ifk+ a|% /ng(a)/h(a)],
Where

goy=@T2 (@aTle) —ay] () aj (a)/det A_ (@)=aT](@/ag] (@),

h(o) =(as] (wWayy (a) — ars (o) ary (a))/det A_ (o) =a5] (a)/a] (o).

The set of solutions for W,(a), W,(a) is further restricted by the requirement that
the factor matrix L(O)(oc) is non-singular at a=-k and its elements should be

analytic in the region Im(a) < Im(k). It is interesting to note that the
functions F (a), F,(a) have dropped out completely. This means that for all

matrices of the form (3) the factorisation problem reduces to the same Hilbert

problem!

The author is indebted to Professor J. Boersma of the Technical University,
Eindhoven, for the final observation of this paper and for pointing out that

the functions F(a), F,(a) can have the branch cut C' also for his great

care in reading through the manuscript and making constructive suggestions for

improvements and amendments.
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