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A Novel Sigmoid-Function-Based Adaptive
Weighted Particle Swarm Optimizer
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Abstract—In this paper, a novel particle swarm optimization
(PSO) algorithm is put forward where a sigmoid-function-
based weighting strategy is developed to adaptively adjust the
acceleration coefficients. The newly proposed adaptive weighting
strategy takes into account both the distances from the particle to
the global best position and from the particle to its personal best
position, thereby having the distinguishing feature of enhancing
the convergence rate. Inspired by the activation function of neural
networks, the new strategy is employed to update the acceleration
coefficients by using the sigmoid function. The search capability
of the developed adaptive weighting PSO (AWPSO) algorithm
is comprehensively evaluated via eight well-known benchmark
functions including both the unimodal and multimodal cases.
Experiment results demonstrate that the designed AWPSO algo-
rithm substantially improves the convergence rate of the particle
swarm optimizer and also outperforms some currently popular
PSO algorithms.

Index Terms—Evolutionary computation, particle swarm op-
timization, acceleration coefficients, adaptive weighting, conver-
gence rate.

I. INTRODUCTION

Optimization problem has long been a fundamental research
topic attracting an ever-increasing interest from a variety of
communities owing to its clear application potential in almost
all real-world systems including engineering systems, large-
scaled complex networks, healthcare management systems
and so on [1]–[4]. During the past decade, a great number
of heuristic algorithms have been introduced with aim to
effectively and efficiently solve the optimization problems (es-
pecially the NP-complete problems). In this regard, a famous
heuristic approach, known as the particle swarm optimization
(PSO) algorithm, has been successfully implemented in var-
ious practical applications in dealing with the optimization
problems [5]. In a PSO algorithm, as motivated by the swarm
intelligence and social behaviors (e.g., birds flocking), all
the particles are randomly initialized and then encouraged to
explore the problem space thoroughly based on the individual
experience and the interaction with other particles [6], [7].
During the evolution process, the historically personal best po-
sition (pbest) of each particle as well as the historically global
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best position (gbest) discovered by the entire swarm are two
important positions, based on which the particles are motivated
to seek the optimal solution. According to [5], [8], the PSO
algorithm has exhibited more competitive performance than
many popular evolutionary computation approaches because of
its easy implementation, fast convergence and comprehensive
ability of converging to a satisfactory solution.

It is well known that, as a control parameter, the balance
between global and local searches throughout the searching
process plays a vital role in successfully finding the optimal
solution [9], [10]. The inertia weight as well as acceleration
coefficients, which serve as another two control parameters,
are vitally important in the velocity updating model of the PSO
algorithm and have been extensively investigated in recent
years for better accuracy and faster convergence [9], [11],
[12]. Up to now, some PSO variants have been focused on
the modification of the aforementioned three control parame-
ters. In [6], [7], a linear-decreasing-inertia-weight-based PSO
(PSO-LDIW) algorithm has been proposed where the inertia
weight is updated in a time-varying manner. For the purpose
of efficiently controlling the local and global searches, the
time-varying-acceleration-coefficient-based PSO (PSO-TVAC)
algorithm has been introduced in [11]. In addition to the
adaptation of the control parameters, topological structures
have been introduced in some PSO algorithms with the hope
to alleviate premature convergence, see e.g. [1], [3], [4],
[13], [14]. In particular, time-delay terms have been taken
into account through the velocity updating process due to
their utilization of historical information during the evolution
process which results in a better accuracy than the standard
PSO algorithm, see e.g. [1], [3].

Although some popular PSO algorithms have exhibited
competitive performance on searching the global optimum and
increasing the possibility of avoiding the local optima, the
enhancement of the search performance of PSO algorithms
is often at the expense of sacrificing the convergence rate,
which is certainly undesirable [15], [16]. As such, it is of
practical significance to develop a new PSO algorithm that
is capable of finding the globally optimal solution yet with
a satisfactory convergence rate through adaptively updating
the control parameters. Note that the inertia weight and ac-
celeration coefficients only change along with time in most of
the existing PSO algorithms. In this case, a seemingly natural
idea is to make full use of the distances from each individual
particle to its pbest and gbest at each iteration, and adaptively
update the control parameters according to the outputs of a
certain sigmoid function with the calculated distances as the
inputs. In comparison with the time-varying parameter strategy
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(see e.g. [6], [7], [11]), the sigmoid-function-based updating
strategy possesses the following advantages: 1) the control
parameters are adaptively chosen which could help guarantee
the population diversity; and 2) the particles are motivated
to move towards the pbest and gbest as fast as necessary
which could help improve the convergence rate. It should be
mentioned that the particles slow down once they get close to
the pbest and gbest.

To summarize, the objective of our paper is to propose an
adaptive weighting PSO (AWPSO) algorithm with a sigmoid-
function-based parameter selection scheme. The main contri-
butions are outlined as follows: 1) a novel sigmoid-function-
based AWPSO algorithm is proposed where an adaptive
weighting strategy is designed to adaptively adjust the control
parameters at each iteration; and 2) the acceleration coef-
ficients are adaptively controlled according to the distances
from the particle to its pbest and gbest, thereby facilitating a
relatively fast exploitation of the problem space.

The rest of this paper is organized below. The standard
PSO algorithm and some popular PSO variants are studied in
Section II. Section III describes the proposed adaptive weight-
ing strategy and the AWPSO algorithm. Benchmark functions,
test PSO algorithms, parameter setting, experiment results and
discussions are illustrated in Section IV. Conclusions and
future directions are presented in Section V.

II. PSO ALGORITHMS

A. Basic PSO Algorithm

The PSO algorithm is a well-known population-based evolu-
tionary computation method where each individual represents
a candidate solution and a group of individuals refers to a
swarm [5], [17]. For a N -dimensional optimization problem,
the velocity of the ith particle is represented by a vector,
i.e. vi = (vi1, vi2, · · · , viN ). Similarly, the position vector of
the ith particle is indicated by xi = (xi1, xi2, · · · , xiN ). The
velocity and position updating equations of particle i are given
as follows:

vi(k + 1) = w × vi(k) + c1 × r1 × (pi(k)− xi(k))

+ c2 × r2 × (pg(k)− xi(k))

xi(k + 1) = xi(k) + vi(k + 1)

(1)

where k indicates the iteration number; w denotes the inertia
weight; pi represents the pbest of particle i; pg is the gbest
found by the entire swarm; c1 is a constant value which
is the cognitive acceleration coefficient, and c2 is the social
acceleration coefficient which is a constant value. r1 and r2
are two separate random numbers belonging to [0, 1]. It is
worth mentioning that the position of the particle is limited to
a specific range m which is the domain of the optimization
problem.

B. Popular PSO Variants

A large number of researchers have devoted their effort to
improving the search ability of the particle swarm optimizer.
For example, the PSO-LDIW algorithm concentrates on the
selection of the inertia weight [6], [7], where the updating

equation of the inertia weight w at the kth iteration is given
as follows:

w = w1 − (w1 − w2)×
k

maxiter
(2)

where maxiter represents the maximum iteration number, and
w1 and w2 indicate the maximum and minimum inertia weight,
respectively.

In a PSO algorithm, the inertia weight is normally utilized
to balance the global search and the local search, where a
larger value of the inertia weight contributes to a better global
exploration, and a smaller value encourages a more thorough
local exploitation [7]. The PSO-LDIW algorithm has satis-
factory performance in many applications. However, for the
PSO-LDIW algorithm, once the inertia weight decreases, the
search ability of the swarm would be affected and new search
areas cannot be explored [18]. Notably, similar to the inertia
weight, acceleration coefficients have also attracted particular
research interest for enhancing the search capability of the
PSO algorithm. For example, in the PSO-TVAC algorithm
[11], the cognitive acceleration coefficient c1 is set to be
linearly decreased and the social acceleration coefficient c2 is
set to be linearly increased. Moreover, the PSO algorithm with
the constriction factor (PSO-CK) has been proposed in [19]
where the constriction factor has been introduced to ensure
the convergence of the PSO algorithm.

Apart from modifying the control parameters, some re-
searchers have focused on designing different topological
structures. With the newly proposed topological structures,
the variant PSO algorithms may possess better population
diversity or convergence than the standard PSO algorithm. In
[13], an adaptive PSO (APSO) algorithm has been proposed
with the introduction of an evolutionary factor to distinguish
four evolutionary states and, with this learning strategy, the
control parameters have been adaptively adjusted for the PSO
algorithm. In [14], a switching PSO (SPSO) algorithm has
been put forward to improve the convergence rate by updating
the acceleration coefficients based on the switching of different
evolutionary states. Recently, a competitive swarm optimizer
(CSO) has been designed in [15] for large-scaled optimization
problems where a pairwise competition mechanism is de-
signed. With this pairwise competition mechanism, the particle
that loses the competition adjusts the position according to
the winner particle. More recently, time-delays have been
employed in the PSO algorithms which change the system
dynamics with the purpose of getting rid of local optima, see
e.g., [1], [3]. Moreover, the time-delay terms consist of the
historical information of the population evolution and the time-
delayed PSO algorithms are then likely to have better accuracy
than the classic PSO algorithm.

In the past few years, the traditional PSO algorithms have
been improved in combination with the usage of some popular
evolutionary computation approaches such as the differential
evolution (DE) algorithm [20], [21] and the genetic algorithm
(GA) [22], [23]. In particular, a switching local evolutionary
PSO algorithm has been proposed in [21] by employing the
DE algorithm to improve the search ability of the particles and
increase the possibility of escaping from the local optima. A
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hybrid PSO-GA algorithm has been proposed in [23] where the
genetic operators (e.g. crossover and mutation) are exploited
to balance the global and local searching through the entire
search space, and therefore ensure the satisfactory search
ability of the particles.

III. A NOVEL AWPSO ALGORITHM

In a PSO algorithm, the acceleration coefficients are used
to motivate the particles to move to the pbest and gbest. The
distances from the position of each particle to its pbest and
gbest are dominantly important in determining the movement
of the particles. On the other hand, the adaptation of the
control parameters is a significant factor in seeking the op-
timal solution with convincing efficiency and accuracy [11],
[18]. Therefore, to control the PSO algorithm in an effective
way, in this paper, we endeavor to propose a novel adaptive
weighting mechanism with which the acceleration coefficients
are adaptively adjusted as the iteration goes.

A. Adaptive Weighting Strategy

In the classic PSO algorithm, the velocity of an individual
particle gets accelerated according to the distances from the
particle to its pbest and gbest. As such, the selection of
appropriate acceleration coefficients is of vital importance for
finding the globally optimal solution through the problem
space. In this case, it makes both theoretical and practical sense
to adaptively update the acceleration coefficients iteration by
iteration based on the aforementioned distances to efficiently
improve the searching capability of the PSO algorithm.

In the literature, several popular updating strategies for
acceleration coefficients have been proposed during the past
decade with satisfactory performance [11] while avoiding
premature convergence. Another PSO variant with a linearly
decreasing strategy has been developed in [24] to update
acceleration coefficients. However, these PSO variants only
adjust the acceleration coefficients in a time-varying manner
without taking the information of the population evolution into
account.

It is clear that all the individuals are encouraged to explore
the entire search space as much as possible in the early
stage of the evolution process. Then, in the later stage of the
optimization process, the individuals are motivated to converge
to the global optimum and find the optimization solution as
fast as possible. As can be seen in Eq. (1), the velocity of
the particle updates is dependent on the distances from the
particles to their own pbest and the gbest. In this case, it is
reasonable to adjust the acceleration coefficient according to
the distances from each individual particle to its pbest as well
as the gbest.

Taking above all the mentioned concerns into considera-
tion, an adaptive weighting strategy is proposed to adaptively
control the acceleration coefficients. The main motivation is
to accelerate the particles to find the optimal solution as fast
as possible and thus enhances the convergence rate. Different
from the time-varying updating strategy, the acceleration co-
efficients are altered according to the distance of the particle
towards its gbest and pbest. If the particle is far away from its

pbest and gbest, a relatively large acceleration coefficient is
employed to accelerate the particle. However, the value of the
acceleration coefficient is limited in an appropriate range to
avoid premature convergence, which means that the velocity
should be bounded to guarantee the searching capability of the
algorithm.

Motivated by above discussions, we believe that an adaptive
weighting updating function is appropriate to describe the rela-
tionship between the acceleration coefficient and the distances
(from the particle to its pbest and gbest). In other words, the
updates of the former acceleration coefficients should be adap-
tive to the latter distances, thereby fully justifying the velocity
of the particle movements towards the global optimum. From
a mathematical viewpoint, the proposed adaptive weighting
updating rule can be described as follows:

cgpi(k) = F (gpi(k))

cggi(k) = F (ggi(k))
(3)

where the function F (·) represents the adaptive weighting
updating function to be discussed later; and gpi(k) and ggi(k)
are defined by

gpi(k) = pi(k)− xi(k)

ggi(k) = pg(k)− xi(k),
(4)

which denote the distances from the particle i to its pbest and
gbest at the kth iteration, respectively.

B. Selection of Adaptive Weighting Updating Function

Intuitively, the adaptive weighting updating function should
have the following two properties: 1) the updating function
is monotonically increasing; and 2) the updating function is
bounded. The first property is mainly due to the characteristics
of the acceleration coefficients. It is well known that the
acceleration coefficients are the weighting terms which pull the
particles to the pbest and gbest. A particle which is far away
from its pbest and gbest requires a fast movement towards
its pbest and gbest. Therefore, a monotonically increasing
function is required. The second property is justified by
the fact that the search space of a constrained optimization
problem is normally bounded. Once a particle is close to
its pbest and gbest, the movement should be slowed down
to avoid missing its pbest and the gbest. Consequently, the
acceleration coefficients should be bounded for the control of
the velocity of the particle.

In search of adequate updating functions that are both mono-
tonically increasing and uniformly bounded, the activation
functions employed in neural networks appear to be ideal
candidates. There are some popular activation functions for the
neural networks such as step functions and sigmoid functions,
among which we decide to select the sigmoid function as
the adaptive weighting updating function for three reasons:
1) the sigmoid function is monotonic and bounded; 2) the
curve of the sigmoid function is S-shaped and this would avoid
undesirable abrupt changes of the control parameters; and 3)
the sigmoid function is smooth and differentiable, thereby
reflecting the adaptive/dynamic nature of the weight updating
iteration by iteration.
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According to the above discussion, in this paper, a sigmoid
function is employed to adjust the acceleration coefficients as
follows:

F (D) =
b

1 + e−a×(D−c)
+ d (5)

where e is the natural logarithm base; a denotes the steepness
of the curve which is a constant value; b represents the peak
value of the curve; c represents the abscissa value of the central
point of the curve; d is a positive constant value; and D is
the input of the function which is determined by Eq. (4).
Specifically, D is the distance between the particle and its
pbest for the cognitive acceleration coefficient. For the social
acceleration coefficient, D indicates the distance between the
particle and the gbest.

Remark 1: In Eq. (5), it is of vital importance to choose
appropriate values of the four parameters (a, b, c and d). Note
that a is the parameter which denotes the steepness of the
curve. It seems a natural idea to adjust the value of a according
to the search range of each individual optimization problem.
In our work, we set a = 0.000035 · m where m indicates
the search range of the optimization problem. According to
the characteristics of the sigmoid function and experimental
experience, b, c, d are set to be 0.5, 0, and 1.5, respectively.

To conclude, the three major advantages of the proposed
sigmoid-function-based adaptive weighting strategy are sum-
marized as follows:

1) the acceleration coefficients are adaptively controlled
within reasonable bounds, and the adaptive weighting
strategy ensures the efficiency of the velocity updating
process;

2) the adaptive weighting updating function, chosen as the
sigmoid function, is utilized to reflect the monotonic
yet relatively smooth changes of the acceleration coeffi-
cients, where a larger distance will lead to a larger value
of acceleration coefficient; and

3) the particles are motivated to seek the optimal solution as
fast as necessary, thereby improving both the accuracy
and the convergence.

C. Framework of the AWPSO Algorithm

An AWPSO algorithm is developed in this paper where
the velocity updating equation obeys an adaptive weighting
strategy. During the population evolution process, the velocity
and position of the ith particle are updated on the basis of the
following equations:

vi(k + 1) = w × vi(k) + cgpi(k)× r1 × gpi(k)

+ cggi(k)× r2 × ggi(k)

xi(k + 1) = xi(k) + vi(k + 1)

(6)

where w is the inertia weight; gpi(k) and ggi(k) represent
the distances from the particle i to its pbest and gbest at
the kth iteration, respectively; cgpi(k) denotes the acceleration
constant determined by gpi(k), and cggi(k) indicates the
acceleration constant determined by ggi(k).

The flowchart of the introduced AWPSO algorithm is de-
picted in Fig. 1.

Start

Initialize the parameters of the AWPSO algorithm

Evaluate the fitness of each individual particle

Calculate the inertia weight according to Eq. (2) 

Update the acceleration coefficients according to 

Eq. (3), (5) 

Calculate the distances from each particle to its 

own pbest and the gbest according to Eq. (4) 

Update the velocity and position of all the particles 

according to Eq. (6) 

If k reaches the

 maximum iteration

k = k + 1

End

No

Yes

update pbest and gbest

Fig. 1. Flowchart of the AWPSO algorithm

IV. EXPERIMENT RESULTS AND DISCUSSIONS

In our paper, the AWPSO algorithm is compared with some
popular variant PSO algorithms on a series of widely-used
optimization benchmark functions consisting of both unimodal
and multimodal cases for performance evaluation. In addition,
the convergence performance of the adaptive weighting up-
dating function is demonstrated with visible results. For all
the benchmark functions, the swarm size is set to be 30 and
the dimension of the problem space is set to be 30. In this
simulation, each experiment has been repeated for 50 times
independently, and the maximum iteration number is set to be
5000. It is worth pointing out that the Euclidean distance is
chosen as the distance metric in this paper.

A. Benchmark Functions

It should be noticed that all the selected benchmark func-
tions have been widely used in the evolutionary computing
community [1], [3], [25]. The Sphere function f1(x) is a
typical unimodal function. The Rosenbrock function f2(x)
is called as the Rosenbrock’s banana function which is a
popular benchmark function. The Rastrigin function f3(x), the
Penalized 1 function f5(x) and the Penalized 2 function f8(x)
are classical multimodal problems consisting of many local op-
tima, which are difficult to find the globally optimal solution.
The Schwefel 2.22 function f4(x) and the Step function f6(x)
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Fig. 2. Optimization performance for Sphere function f1(x)

are also frequently used benchmark functions for optimization.
The Schwefel function f7(x) is a typical benchmark function
with lots of local minima. The configurations of the benchmark
functions are presented in Table I. The search range represents
the range of the search space. Additionally, the threshold is
a problem-based parameter which is utilized as a stopping
criterion of the algorithm.

B. Experiment Results

In our paper, four currently popular PSO algorithms (includ-
ing the basic PSO algorithm [5], the PSO-LDIW algorithm [6],
the PSO-CK algorithm [19], and the SDPSO algorithm [3])
are selected for performance evaluation via eight widely-used
benchmark functions.

Experiment results are displayed in Figs. 2-9 where the
vertical coordinate indicates the mean fitness value in the
logarithmic form, and the horizontal coordinate indicates the
iteration number. From the figures, we can see that the AW-
PSO algorithm exhibits competitive performance on most of
the benchmark functions. Although the PSO-LDIW algorithm
obtains better mean fitness value than the AWPSO algorithm
on most of the benchmark functions, the superiority is not
obvious. Furthermore, it is apparent that the AWPSO algorithm
converges faster than most of the benchmark functions with
satisfactory mean fitness value.

In this paper, the diversity of the swarm at the kth iteration
is calculated as follows [26]:

S(k) =
1

M

M∑
i=1

√√√√ N∑
j=1

(xij(k)− x̄j(k))
2 (7)

where M is the swarm size, N is the dimensionality of the
optimization problem, xij denotes the ith particle at the jth di-
mension, x̄j(k) is the average value of the jth dimension over
all particles at the kth iteration, i.e. x̄j(k) =

1
M

∑M
i=1 xij(k).

The population diversity of the classic PSO algorithm and
our proposed AWPSO algorithm are shown in Figs. 10-17,
where the vertical coordinate represents the diversity measure
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Fig. 3. Optimization performance for Rosenbrock function f2(x)
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Fig. 4. Optimization performance for Rastrigin function f3(x)
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TABLE I
CONFIGURATION OF BENCHMARK FUNCTIONS

Function Number Function Name Problem Dimension Search Range Minimum Threshold
f1(x) Sphere 30 [−100, 100] 0 0.1
f2(x) Rosenbrock 30 [−30, 30] 0 100
f3(x) Rastrigin 30 [−5.12, 5.12] 0 50
f4(x) Schwefel 2.22 30 [−10, 10] 0 0.1
f5(x) Penalized 1 30 [−50, 50] 0 0.1
f6(x) Step 30 [−100, 100] 0 0.1
f7(x) Schwefel 30 [−500, 500] 0 0.1
f8(x) Penalized 2 30 [−50, 50] 0 0.1

TABLE II
ALGORITHM EVALUATION ON EIGHT BENCHMARK FUNCTIONS

PSO PSO-LDIW PSO-CK SDPSO AWPSO
f1(x) Minimum 1.75× 103 2.03× 10−33 8.13× 10−87 4.11× 10−3 5.25× 10−45

Mean 2.72× 103 2.00× 102 6.00× 102 1.2816 4.00× 102

Std. Dev. 1.44× 103 1.41× 103 2.40× 103 1.9592 1.98× 103

Ratio 0% 98% 94% 22% 96%
f2(x) Minimum 2.70× 105 2.49× 10−2 1.51× 10−4 7.77× 101 3.95× 10−2

Mean 4.66× 105 1.28× 104 5.54× 103 2.29× 103 5.90× 103

Std. Dev. 1.07× 105 3.15× 104 2.16× 104 1.27× 104 2.15× 104

Ratio 0% 74% 88% 4% 68%
f3(x) Minimum 1.68× 102 1.19× 101 4.88× 101 2.97× 101 2.39× 101

Mean 2.00× 102 4.64× 101 9.46× 101 6.47× 101 5.70× 101

Std. Dev. 1.75× 101 2.31× 101 2.59× 101 2.42× 101 2.27× 101

Ratio 0% 62% 2% 36% 42%
f4(x) Minimum 1.89× 101 6.32× 10−22 1.73× 10−26 1.13× 10−2 1.98× 10−16

Mean 3.96× 101 2.62× 101 1.06× 101 8.6727 2.32× 101

Std. Dev. 1.47× 101 1.82× 101 1.02× 101 1.41× 101 1.63× 101

Ratio 0% 10% 36% 4% 12%
f5(x) Minimum 1.81× 101 1.57× 10−32 1.57× 10−32 1.08× 10−4 1.57× 10−32

Mean 9.23× 101 8.29× 10−3 2.77× 10−1 2.38× 10−1 2.70× 10−2

Std. Dev. 1.47× 102 2.84× 10−2 4.44× 10−1 3.37× 10−1 4.59× 10−2

Ratio 0% 92% 46% 54% 74%
f6(x) Minimum 1.62× 103 0.0000 0.0000 0.0000 0.0000

Mean 3.17× 103 2.00× 10−2 1.01× 103 4.7400 4.00× 10−2

Std. Dev. 2.40× 103 1.41× 10−1 3.03× 103 4.4758 1.98× 10−1

Ratio 0% 98% 14% 14% 96%
f7(x) Minimum 4.78× 103 1.90× 103 3.22× 103 3.21× 103 1.54× 103

Mean 6.60× 103 3.64× 103 4.90× 103 5.06× 103 3.70× 103

Std. Dev. 1.03× 103 1.55× 103 8.85× 102 1.30× 103 2.23× 103

Ratio 0% 0% 0% 0% 0%
f8(x) Minimum 2.84× 104 4.18× 10−32 1.35× 10−32 2.21× 10−2 1.35× 10−32

Mean 1.35× 105 2.42× 10−3 2.02× 10−1 5.49× 10−1 3.07× 10−3

Std. Dev. 6.90× 104 7.12× 10−3 6.19× 10−1 4.56× 10−1 8.59× 10−3

Ratio 0% 100% 84% 10% 100%

of the swarm and the horizontal coordinate indicates the
number of iteration. It can be seen that both the classic PSO
algorithm and the AWPSO algorithm have large values of
population diversity at the early stage of the optimization
process. The population diversity of the classic PSO algo-
rithm and the AWPSO algorithm decreases as the iteration
number increases. It is worth mentioning that a small value
of population diversity implies that the population converges
to a certain region of the search space. We can see that the
population diversity of the AWPSO algorithm is smaller than
that of the classic PSO algorithm at the later stage of the
optimization process, which indicates that the convergence of
the AWPSO algorithm is better than the classic PSO algorithm.
To summarize, our proposed AWPSO algorithm can maintain
the population diversity by adaptively adjusting the control
parameters through the optimization process.

The statistical results of the PSO algorithms are illustrated in
Table II. Notably, the minimum, standard deviation and mean
fitness value are utilized to evaluate the searching capability
of the particle swarm optimizers. The success ratio is used to
judge the convergence characteristics, which demonstrates the
PSO algorithms’ capability of getting rid of the local optima.
Notice that all the selected benchmark functions are minimiza-
tion problems. As such, a smaller fitness value indicates a
better solution. In Table II, the proposed AWPSO algorithm
obtains smaller minimum fitness value than the classic PSO
algorithm, the PSO-LDIW algorithm, the SDPSO algorithm
for function f1(x). In addition, the AWPSO algorithm exhibits
better performance than the basic PSO algorithm, the PSO-
CK algorithm and the SDPSO algorithm for function f3(x).
We can see that the minimum fitness value of the AWPSO
algorithm is the smallest comparing with all other PSO algo-
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Fig. 6. Optimization performance for Penalized 1 function f5(x)
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Fig. 7. Optimization performance for Step function f6(x)
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Fig. 8. Optimization performance for Schwefel function f7(x)
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Fig. 9. Optimization performance for Penalized 2 function f8(x)
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Fig. 10. Diversity measure for Sphere function f1(x)
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Fig. 11. Diversity measure for Rosenbrock function f2(x)
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Fig. 12. Diversity measure for Rastrigin function f3(x)
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Fig. 13. Diversity measure for Schwefel 2.22 function f4(x)
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Fig. 14. Diversity measure for Penalized 1 function f5(x)
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Fig. 15. Diversity measure for Step function f6(x)
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Fig. 16. Diversity measure for Schwefel function f7(x)
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Fig. 17. Diversity measure for Penalized 2 function f8(x)
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rithms for functions f5(x) to f8(x). The standard deviation
of the AWPSO algorithm is neither too large nor small which
indicates that the population diversity of AWPSO algorithm
is satisfactory. Moreover, the AWPSO algorithm achieves the
satisfactory results for most of the benchmark functions by
comparing the mean fitness value.

On the other hand, the success ratio is an important criterion
to evaluate the evolutionary algorithms. In Table II, only
the PSO-LDIW algorithm and the AWPSO algorithm achieve
100% success ratio on function f8(x), which indicates the
difficulty of finding the global optimum for the selected
benchmark functions. Note that the success ratio of all the
benchmark algorithms for Rastrigin function f3(x) and the
Schwefel function f7(x) are not satisfactory because these
two functions have a large number of local minima, which are
hard to find the globally optimal solution, and thus results in
a low success ratio. Comparing the success ratio of the PSO
algorithms, the AWPSO algorithm demonstrates competitive
performance on most of the benchmark functions.

Note that the convergence rate is also a significant perfor-
mance indicator. In this paper, the stopping criterion is set as
the algorithm finds the globally optimal solution within the
threshold. In this case, a smaller number of iteration indicates
a better convergence performance of the PSO algorithm. To
avoid random phenomena, we repeat the experiment for 50
times on each benchmark function and calculate the mean
iteration number. The convergence plot of PSO algorithms
is depicted in Fig. 18 where the vertical coordinate denotes
the number of iteration when the algorithm converges, and
the horizontal coordinate represents the number of bench-
mark function. In Fig. 18, we can see that the AWPSO
algorithm outperforms the basic PSO algorithm, the PSO-
LDIW algorithm and the SDPSO algorithm. The PSO-CK
algorithm converges faster than the AWPSO algorithm on
function f1(x), function f2(x), function f4(x) and function
f8(x). Nevertheless, it is worth mentioning that the overall
difference of average convergence rate between the AWPSO
algorithm and the PSO-CK algorithm is not large. Importantly,
the AWPSO algorithm demonstrates higher success ratio than
the PSO-CK algorithm. Therefore, we could arrive at the
conclusion that the proposed AWPSO algorithm demonstrates
competitive performance on the population diversity and the
convergence rate.

V. CONCLUSION

A novel PSO algorithm called the AWPSO algorithm has
been proposed in this paper with the hope to improve the
convergence rate of the traditional particle swarm optimizer. A
sigmoid-function-based adaptive weighting strategy has been
introduced where the acceleration coefficients are adaptively
controlled by employing a sigmoid function based on the dis-
tances from the particle to the global best position and from the
particle to its personal best position. The AWPSO algorithm
has demonstrated competitive performance on the convergence
rate by comparing with four popular PSO algorithms on eight
widely-used optimization benchmark functions including both
unimodal and multimodal cases. In our future research direc-
tions, we aim to 1) improve the AWPSO algorithm in terms
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Fig. 18. Convergence plot of PSO algorithms

of the population diversity and study the movement behaviors
of particles by using the Wilcoxon rank sum test [27], [28];
and 2) apply the AWPSO algorithm to other research fields,
such as system engineering and signal processing [29]–[36].
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