Big Data Analytics as a mediator in Lean, Agile, Resilient, and Green (LARG) practices effects on sustainable supply chains

Rakesh D. Raut

National Institute of Industrial Engineering (NITIE), Vihar Lake, NITIE, Powai, Mumbai, Maharashtra, India. Pin- 400087 Email: <u>rakeshraut09@gmail.com</u> ; <u>rraut@nitie.ac.in</u>

Sachin Kumar Mangla (Corresponding Author)

Plymouth Business School, University of Plymouth, PL4 8AA, United Kingdom Email:- <u>sachinmangl@gmail.com</u> ; <u>sachin.kumar@plymouth.ac.uk</u>

Vaibhav S. Narwane

K. J. Somaiya College of Engineering Vidyanagar, Vidya Vihar East, Ghatkopar East, Mumbai, Maharashtra 400077 Email: <u>vsnarwane@gmail.com</u>

Manoj Dora

Brunel Business School Brunel University London, United Kingdom Email: <u>manoj.dora@brunel.ac.uk</u>

Mengqi Liu (Corresponding Author)

Business School, Hunan University, Changsha/China Email: liumengqi76@163.com ; 1069679071@qq.com

Abstract

The effect of big data on the lean, agile, resilient, and green (LARG) supply chain has not been explored much in the literature. This study investigates the role of 'Big Data Analytics' (BDA) as a mediator between 'sustainable supply chain business performance' and key factors, namely, lean practices, social practices, environmental practices, organisational practices, supply chain practices, financial practices, and total quality management. A sample of 297 responses from thirty-seven Indian manufacturing firms was collected. The paper is beneficial for managers and practitioners to understand supply chain analytics, and it addresses challenges in the management of LARG practices to contribute to a sustainable supply chain.

Keywords- Big Data Analytics; Manufacturing Firms; Supply Chain and Logistics Management; LARG; Business Performance and Innovation; Sustainability.

1.0 Introduction

Big Data Analytics (BDA), which redefined the field of operations management, has been termed a "game-changer" (Wamba and Akter, 2015). The five major fields of BDA applications are additive manufacturing, predictive analysis, material science, autonomous vehicles, and borderless supply chains (Fawcett and Waller, 2014). BDA in the supply chain (SC) can increase the return on investment (ROI) by 15-20% (Perrey et al., 2013), improve competitiveness (Wamba et al., 2015), mitigate risk (Bi et al., 2016), and boost visibility (McAfee et al., 2012). BDA has the potential to change SC performance radically through process design, supplier integration, and customer integration (Gunasekaran et al., 2016). Through data-driven SC, organisations can gain competitive advantages (Schoenherr and Speier-Pero, 2015) and handle market turbulence effectively (Gunasekaran et al., 2018).

The sustainability aspect of the supply chain has social, economic, and environmental elements (Carter and Liane Easton, 2011). LARG practices assist sustainable SC through lean practices (Chun Wu, 2003; Dora et al., 2016), SC agility (Baramichai et al., 2007), SC resilience (Cabral et al., 2012), and green practices (Srivastava, 2007). LARG SC assists in lowering production lead-time and transportation time, improving integration level, and achieving effective information exchange (Alqudah et al., 2020). Lean SC interconnects the interdependent partners for the elimination of all waste through techniques such as value chain analysis (Taylor and Pettit, 2009; Dey et al., 2019). SC resilience is the reactive capability to shock or disruption (Blackhurst et al., 2011). Manufacturing firms in developing economies, such as Indonesia, Malaysia, and India, have already started the implementation of LARG practices (Rao, 2005; Digalwar et al., 2020). With India becoming an important manufacturing hub, effective implementation of LARG SC has turned out to be an important benchmarking tool (Chavez et al., 2020; Wong et al., 2018).

BDA supports SC sustainability by strengthening capabilities and minimising uncertainties and risks (Wu et al., 2017). BD capabilities help with regular operations and processes, reduction in lead and cycle times, focused factory, and mass customisation (Mišić and Perakis, 2020). BD processing enhances SCs' agility (Giannakis and Louis, 2016) and resilience (Papadopoulos et al., 2017). With BD, an implementation of the green supply chain with better data quality control and integrated data acquisition is possible (Zhao et al., 2016). BD provides plenty of opportunities in SC in terms of supplier performance measurement (Addo-Tenkorang and Helo, 2016), SC analytics (Arunachalam et al., 2018), SC agility (Fosso Wamba et al., 2018), SC sustainability (Hazen et al., 2016; Papadopoulos et al., 2017), and SC innovation (Tan et al., 2015). However, manufacturing firms need to understand BDA in SC from the context of organisational performance and LARG is not entirely clear and needs more investigation (Gunasekaran et al., 2017).

Firms need to use sustainable practices due to public pressure, the concerns of the customer, and government regulations (Lee and Zhang, 2019). Bhanot et al. (2017) argued that sustainable manufacturing is the most significant element of sustainable SC. BDA capabilities can help manufacturing firms to achieve social dimensions (Wadmann and Hoeyer, 2018) and economic benefits (Papadopoulos et al., 2017), while minimizing the environmental impacts (Hazen et al., 2016). BDA can also integrate the data resources in the SC to minimize pollutant emissions and

energy consumption (Song et al., 2018). Past studies on BDA for carbon emissions (Doolun et al., 2018; Song and Wang, 2015a), agile SC (Gunasekaran et al., 2018), SC flexibility (Dubey et al., 2018a), and resilient SC (Suifan et al., 2019) show a positive effect of data analytics on LARG. However, these studies discuss the lean, agile, resilient, and green aspects separately. With this motivation, this study aims to understand the mediating role of BDA on sustainable SC by considering LARG practices.

The paper focuses on the linkage between BDA and Sustainable SC Business Performance from a LARG perspective. Firstly, critical factors that affect BDA adoption in the sustainable SC in the context of a developing country were finalized through a literature survey. The literature on 'big data analytics,' 'lean, agile, resilient and green', and 'supply chain management' were studied. Seven factors, namely, total quality management and lean, social, environmental, supply chain, financial, and organisational practices, were identified from the literature and validated following an expert's input. Factor analysis was carried out on the collected data to determine the regression weights and significance of constructs. Identified constructs of BDA adoption for sustainable SC were analysed using the structural equation modelling (SEM) approach. SEM assesses observable and unobservable constructs of BDA implementation through empirical analysis. The focus of the study is to understand whether BDA acts as a mediator to influence the business performance of a sustainable supply chain when considering LARG aspects. Thus, this study explores the impact of BDA on the supply chain performance of Indian manufacturers with the effective implementation of sustainable and LARG practices.

The rest of the paper is organised as follows: Section 2 presents a literature survey on LARG SC, BDA and SC, BDA adoption in SC practices, and BDA for sustainable SC. Then, Section 3 provides the proposed model and hypothesis. Next, Section 4 presents the research methodology, and the empirical results are presented in Section 5. Section 6 summarises the analysis and discussion, and this is followed by the conclusion in Section 7.

2.0 Literature Survey

This section is divided into four sub-sections: i) LARG SC, ii) BDA and SC, iii) BDA for sustainable SC, and iv) research gaps.

2.1 LARG (Lean, Agile, Resilient and Green) Supply Chain

The 'lean' paradigm refers to 'a series of activities or solutions to eliminate waste, reduce nonvalue-added operations, and improve the value added (Dora et al., 2014; Wu and Wee, 2009 pp. 336). Lean production can be achieved through the 'just in time' (Chun Wu, 2003) and 'zero inventory' (Lyu et al., 2020) strategy. 'Agile' means to respond to rapidly changing demands in variety and volume (Larson and Chang, 2016). According to Baramichai et al. (2007), agility in the SC allows business partners to react to a changing market, with end-to-end information visibility, customised services, and customised products. Unlike the 'lean' paradigm, the 'resilient' paradigm responds to unexpected disturbances to achieve a competitive advantage (Cabral et al., 2012; Dora et al., 2015). Even though the resilient SC may not be the lowest-cost SC, it is equipped for disruptive shocks. The 'green' SC refers to an integrated mindset in SC from the environmental perspective, with green material selection and sourcing, green design, green manufacturing, green delivery, green consumption, and green end-of-life product management (Srivastava, 2007). The LARG SC needs to consider all four paradigms. Table 1 shows divergences and synergies of the same (Carvalho et al., 2011).

S. N.	SC Att	tribute	Lean	Agile	Resilent	Green
1	Capacity Surplus	s	\rightarrow	\uparrow	\uparrow	\downarrow
2	Replenish ment Frequency	Divergences	\uparrow	\uparrow	\uparrow	\downarrow
3	Inventory Level	D	\rightarrow	\downarrow	\uparrow	\downarrow
4	Lead Time (Productio n)		\downarrow	\downarrow	\downarrow	\downarrow
5	Lead Time (Transport ation)	gies	\rightarrow	\rightarrow	\downarrow	\downarrow
6	Level of Integration	Synergies	\uparrow	\uparrow	\uparrow	\uparrow
7	Frequency of Informatio n		\uparrow	\uparrow	\uparrow	\longleftrightarrow

Table 1: Divergences and Synergies of LARG SC (adopted from Carvalho et al., 2011)

Notations -

-Increase -Decrease -Without Consequence

Table 1 shows the synergies and divergences between elements of the LARG paradigm within SC attributes. The synergies are related to i) reduction of lead time in transportation, ii) reduction of lead time in production, iii) increase in level of integration, and iv) increase in frequency of information. However, frequency of information is without consequence in the green paradigm. Thus, LARG paradigms supplement one another. SC attributes, such as capacity surplus, replenishment frequency, and inventory level, affect the resilient paradigm in a positive way but the green paradigm in a negative way. These three attributes pull in opposite directions in the lean and agile paradigm. Thus, enterprises must establish relationships between different paradigms for SC to be efficient, streamlined, and sustainable.

2.2 BDA and Supply Chain

BDA capabilities can assist with SC functions, such as procurement, warehousing, manufacturing, demand management, transportation/logistics, and general SC (Govindan et al., 2018). The current literature shows other research articles in manufacturing and transportation/logistics (Inamdar et al., 2020). Critical activities in SC manufacturing are production planning and control (PPC), product research and development (product R & D), maintenance and diagnosis, and quality

management. BDA adoption in PPC is attracting interest from many researchers, and BDA tools and techniques in this area are relatively mature (Zhong et al., 2015). The BDA approach was used to predict online market sale performance (Li et al., 2016). Wang and Zhang (2016) proposed the BDA framework to forecast the cycle time for a semiconductor manufacturer. In addition, BDA can be used for the maintenance and manufacturing of complex products (Zhang et al., 2017), intelligent manufacturing (Zhong et al., 2017a, 2017b), and RFID-facilitated production data (Zhong et al., 2016). Quality management is another area in manufacturing in which BDA is extensively used (Wang et al., 2016; Zhang et al., 2017). Despite the usage of BDA in maintenance and diagnosis in its initial stage, research in the use of BDA in servitization (Opresnik and Taisch, 2015) and workers' behaviour (Guo et al., 2016) is attracting attention. Kumar et al. (2016a) proposed BD to diagnose faults in cloud manufacturing using the MapReduce framework. In two different studies in the Indian context, Narwane et al. (2020) emphasized the positive impact of cloud computing and the Internet of Things (IoT) on firm performance. BDA is in its nascent stage for product R & D. Tan et al. (2015) proposed a BDA framework based on the deduction graph to enhance the capabilities of SC innovation.

Logistic planning, intelligent transport systems, and in-transit inventory management can all benefit from the adoption of BDA. Some of the studies on BDA-based intelligent transport systems include the prediction of traffic flow (Li et al., 2015), smart transportation (Wang et al., 2016), real-time safety monitoring of expressway traffic (Shi and Abdel-Aty, 2015), and efficient path planning for vehicles (Zhang et al., 2016). BDA research in logistics planning is basically focused on optimisation and simulation. Lee (2017) proposed the BDA optimisation model for anticipatory shipping by using a genetic algorithm. Zhao et al. (2016) proposed an optimisation model using BDA for the green SC. Mehmood et al. (2017) used the Markovian approach to explore the effect of BDA on transportation, whereas Shan and Zhu (2015) used GPS big data for the same.

The BDA application in SC procurement is primarily seen in three areas, namely, supplier selection, obtaining improvements in risk, and cost optimisation (Huang and Handfield, 2015). The study measures the benefits of ERP to the SC maturity model using the BDA approach. Choi et al. (2016) proposed a fuzzy reasoning map based on BD to prioritise the procurement of IT services. BDA application in SC warehousing is mostly used in three areas, namely, order picking (Li et al., 2016), storage assignment (Tsai and Huang, 2015), and inventory control (Hofmann, 2017). Tsai and Huang (2015) investigated consumer moving behaviour and purchasing using a data mining approach. Hofmann (2017) studied the impact of the three V's of BD, namely, variety, volume, and velocity, on SC decisions using the bullwhip effect. It must be noted that BDA applications in demand management are not discussed much in the literature (Nguyen et al., 2018). BDA capabilities are used in demand shaping with lower prices for customers and an efficient market in terms of energy (Ho and Shih, 2014). Data sensing and data forecasting is another area of demand management that is receiving the attention of researchers (Li et al., 2016).

BDA adoption in SC practices in different countries is as shown in Table 2. Various authors have proposed only the conceptual framework of BDA in SC as follows: BDA capability for SC (Arunachalam et al., 2018), BD with IoT – value-adding (Addo-Tenkorang and Helo, 2016), BDA for collaborative SC (Fawcett and Waller, 2014), BDA for the design and operation of SC (Waller and Fawcett, 2013a), and a maturity model of BDA in SC and logistics (Wang et al., 2016). These

studies discussed various significant factors of BDA for SC, as listed in Table 2. Hazen et al. (2016), Waller and Fawcett (2013b), Fosso Wamba et al. (2018), and Zhong et al. (2016) have conducted conceptual studies of the usage of BD in SC. Sustainability aspects were prominently discussed in these articles, which used exploratory analysis tools to understand BDA adoption for SC in various countries. As listed in Table 2, these studies were carried out in developed countries like the USA, China, and France, as well as in developing and underdeveloped countries like India and Nepal. This shows that all types of economies are keen to adopt BDA. However, it must be noted that the challenges faced in these countries differ, as their levels of technological advancement are different. Very few authors, such as Zhong et al. (2015) and Zhao et al. (2016), used the case study approach. Also, a hybrid approach in methodology (Dev et al., 2018), cause-and-effect relationships amongst the critical factors of SC (Wu et al., 2017), and cross-country surveys (Dubey et al., 2019b) were rarely discussed in the literature.

 Table 2: BDA Adoption in SC Practices

Sr.	Publication	Country	Type of model/	Type of firm and Sample size	Factors discussed
No.			Approach		
1.	Arunachalam	United	Conceptual model	NA	BDA capability framework for SC
	et al. (2018)	Kingdom			Intra- and inter-organizational data, visualization and analytics
		(UK)			capabilities (descriptive, diagnostic, predictive, and prescriptive), data
					generation, data integration, data management, and data-driven culture
2.	Addo-	Finland	Conceptual model	NA	The framework of BD with IoT – value-adding
	Tenkorang and				BD in SC and operations, variety, volume, veracity, velocity, and
	Helo (2016)				value-adding
3.	Chavez et al.	China	Conceptual model,	Manufacturing firms (n=337)	Data-driven SC, delivery, flexibility, cost, quality, customer
	(2017)		SEM		satisfaction
4.	Chen et al.	USA	TOE framework,	Online survey of managers and	Organisational readiness, technological compatibility, expected
	(2015)		Factor analysis,	executives of multiple firms	benefits, competitive pressure, business growth, asset productivity,
			SEM	(N=161)	environmental dynamism, top management support
5.	Dev et al.	India	Integration of	SC Operations Reference	BDA architecture for SC key performance indicators (KPI)
	(2018)		Fuzzy ANP,	(SCOR) model with three	Performance of SC, order size, forecasting error, lead time, service
			simulation, and	suppliers, one manufacturer, two	level, review period, average demand
			TOPSIS	distributors, and four retailers	Average inventory level and time, average cycle time, average fill rate
6.	Dubey et al.	India	Conceptual model,	Manufacturer of auto components	BDA framework for SC agility
	(2018a)		exploratory	(n=173), senior manager	Factors considered: BDA capabilities, competitive advantage,
			analysis, PLS-		organisational flexibility, industry dynamics, size of the organisation,
			SEM		and organisation age
7.	Dubey et al.	India	Conceptual model,	Manufacturer of auto components	BD predictive analysis framework
	(2018b)		exploratory	(n=190)	Factors considered: Resource complementarity, organisational
			analysis, PLS-		compatibility, collaborative performance, interdependency, and
			SEM		temporal orientation
8.	Dubey et al.	India	Conceptual model,	Manufacturing organisations,	BDA framework for SC resilience
	(2019a)		empirical analysis,	senior-level SC managers (n=	Factors considered: BDA capabilities, organisational flexibility, SC
			PLS-SEM	213)	resilience, competitive advantage, competitive intensity, industry
					dynamics, and size of the organisation
9.	Dubey et al.	A survey	PLS-SEM	Different organisations:	BDA framework based on humanitarian supply chain
	(2019b)	in 29	approach	international NGOs, civil,	Factors considered: control orientation, flexible orientation,
		different		military, government agencies,	collaborative performance, swift trust
		countries		and service providers (n=373)	
10.	Fawcett and	USA	Conceptual model	NA	Correlational decision-making, prediction through profiling, virtual
	Waller (2014)				integration, collaborative SC

11.	Gunasekaran et al. (2017)	India	Regression analysis	e-commerce, consulting and manufacturing (n=205)	BDA framework for predictive analysis Factors considered: supply chain performance, organisational performance, BDA assimilation, BDA routinization, BDPA acceptance, connectivity, top management commitment, and
12.	Hazen et al. (2014)	USA	Correlation analysis	Statistical Process Control (SPC), Quality tools (n=400)	information sharing Data quality – timeliness, completeness, accuracy, and consistency SC performance, knowledge resource, strategic decision, SC capabilities, SC processing needs and rescoping
13.	Hazen et al. (2016)	USA	Conceptual model	NA	SC sustainability, TBL, technological infrastructure, aggregate resources, the effect of external environment on organisational processes and structure, the organisation's adaptation to changes, cost economics, relationship with supplier and customer, strategic management, human aspects
14. Je	Jeble et al. (2018)	India	Partial least squares (PLS)- Structural equation modelling (SEM)	Managers of Auto manufacturing firms, (n=215)	Model-based on contingency theory and resource-based view, tangible resources, management skills, technical skills, organisational learning, data-driven approach, BD predictive capability, supply base complexity, social performance, environmental performance, economic performance
15.	Papadopoulos et al. (2017)	Nepal	Content analysis, exploratory factor analysis (EFA), confirmatory factor analysis (CFA)	Unstructured data 36,422 items from tweets, news, etc. and structured data from managers involved in Nepal earthquake disaster relief (n=2015).	The framework of disaster resilience in SC for sustainability Unstructured data within SC networks, swift trust, information sharing, public and private partnership, SC resilience, critical infrastructure resilience, resources resilience, and community resilience
16.	Schoenherr and Speier-Pero (2015)	USA	Conceptual model, Empirical analysis	Online survey of SC professionals, ANOVA (n=212)	The framework of SC predictive analysis Barriers - data related, security and privacy concerns, government policy, organisational, employee-related, integration issues, time constraint Data scientist skill sets - data management, enterprise business process, analytical tools, modelling tools, and decision-making
17.	Tan et al. (2015)	China	Conceptual model, Case study	Deduction graph, Glass manufacturer, two managers and one CEO (N=1, n=3)	Proposed an analytic infrastructure model, SC innovation capability Factors considered - internal skills, present competence sets, required competence sets, competence network, optimal decision
18.	Waller and Fawcett (2013a)	USA	Conceptual model	NA	Proposed a 2 x 2 model of explanation and prediction Design and operation of SC - transportation modes, design of the warehouse, demand forecast, supplier selection, and supplier evaluation

					Firm capability - information sharing, knowledge management, and collaboration
19.	Waller and Fawcett (2013b)	USA	Conceptual model	NA	The expertise of SC data scientists: awareness, understanding, knowledge Types of data (consumer, location, sales, inventory, and time), Types of user (manufacturer, carrier, and retailer), Types of application (inventory management, human resources, forecasting, and transportation management) Multidisciplinary nature of the predictive analysis
20.	Fosso Wamba et al. (2018)	France	Conceptual model	NA	BDA in SC and operations, demand forecast in uncertainties, collaboration with partners in SC network, product quality, SC agility, SC adaptability, SC alignment, SC robustness, SC resilience
21.	Wang et al. (2016)	USA	Conceptual model	NA	Maturity model of BDA in SC and logistics considering five levels of capabilities as process-based, functional, agile, collaborative, and sustainable
22.	Wu et al. (2017)	Taiwan	Fuzzy- DEMATEL, Grey- DEMATEL	LED industry, Sample from CEOs, professors, managers, etc.	SC uncertainties, SC risk, sustainability indicators - organisation related, capacities, controllability, cost, products, reputation, and operation
23.	Zhao et al. (2016)	China	Mathematical model, Case study	Sanitary product supply chain	Green SC network, inherent risk, CO ₂ emissions, CH ₄ emissions, total cost The constraint of material balance, capacity, decision variables
24.	Zhong et al. (2015)	China	Case Study implementation	Manufacturing shop floors with WSN and RFID (N=4)	BD framework for logistic trajectory, RFID - Cuboids, RFID- supported logistic data, enhancement of information granularity, reduction of dataset volume, evaluation of logistics machine and operator
25.	Zhong et al. (2016)	China	Conceptual study	NA	Methods of data collection, data transmission, data storage, BD processing technologies, decision-making model, BD applications, and BD interpretation
26.	Arya et al. (2017)	India	Conceptual model	Army spare parts	SC-agility, forecasting, visibility, risk, compliance, and collaboration, Visualization, prognostics, diagnostics, optimization (route and warehouse)
27.	Wu et al. (2019)	USA	Empirical Analysis	Publicly traded firms (N=2000), Correlation Analysis	Analysed patent data and survey data, analytics skills, firm characteristics, productivity, firm practices, innovation

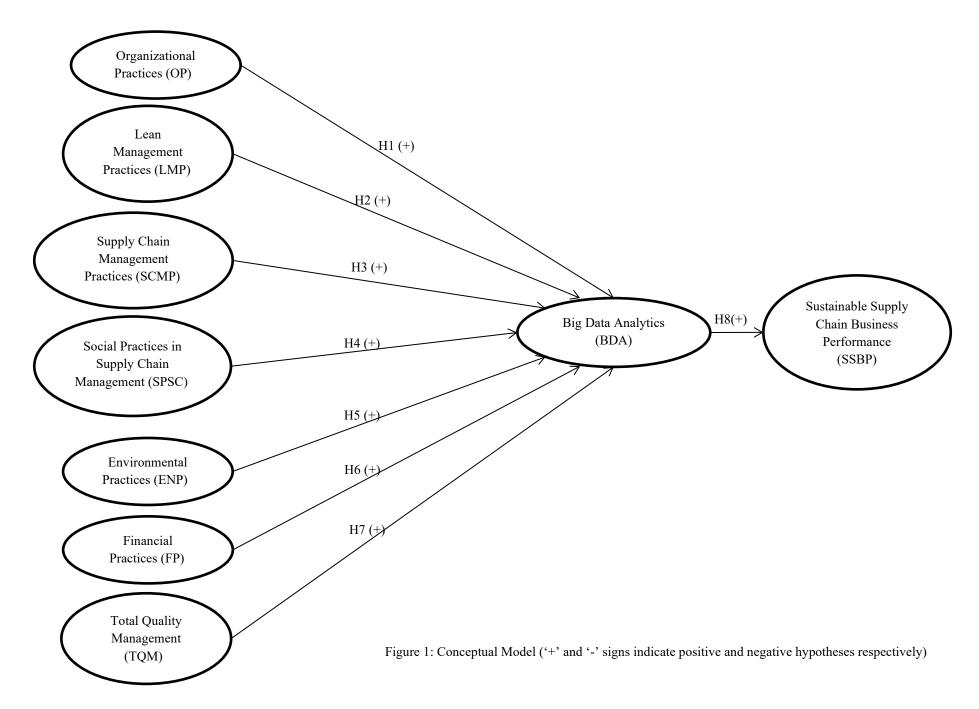
N- No. of manufacturing firms; n- Sample size.

2.3 BDA for Sustainable Supply Chain

BDA positively influences all three aspects of sustainability (economic, environmental, and social) (Raut et al., 2019). Past studies in BDA for SC show improvements in competitiveness, productivity, and efficiency (Song et al., 2018; Wamba et al., 2015). Song and Wang (2015a) analysed carbon emissions and found that economic growth and the effect of energy intensity were significant factors influencing the same. Knowledge trade impacts environmental sustainability through progress in technology (Song et al. 2019). In a BDA study carried out for the Malaysian automotive SC, Doolun et al. (2018) found a reduction in CO₂ emissions, effective decisionmaking, supplier collaboration, and a reduction in the total cost of SC. Meanwhile, a BDA-centred humanitarian SC shows a positive effect on swift trust, flexibility, collaboration, and control (Dubey et al., 2019b). BDA also assists agile SC with operational flexibility and business performance for the determined objectives of an organisation (Gunasekaran et al., 2018). In addition, BDA can assist the government in a sustainable society with effective strategies toward resource management (Song et al., 2015b). However, BDA for sustainable SC faces challenges, particularly in developing and underdeveloped economies such as India and Bangladesh. Moktadir et al. (2019) studied barriers to BDA in the fields of manufacturing and SC. Their study classified barriers into four different categories, namely, i) expertise and investment-related barriers, such as research facilities, IT personnel, funding, and cost; ii) technology-related barriers, such as lack of interest, infrastructure, and availability; iii) data-related barriers, such as privacy, performance, quality, complexity in data integration, and scalability; and iv) organizational-related barriers, such as lack of policy, time constraints, training, and mind-set.

2.4 Research Gaps

Through the literature survey and synthesis, the authors found that developed countries, such as the UK, the USA, and China, have started BDA adoption in SC (Arunachalam et al., 2018; Chavez et al., 2017; Hazen et al., 2014). Developing countries are not far behind, and various studies, such as the works of Dubey et al. (2018a) and Jeble et al. (2018), show that issues of BDA adoption in SC are different in developed and developing countries. Extant studies have mainly focused on LARG SC, BDA for SC (Nguyen et al., 2018; Hazen et al., 2016), and BDA for sustainable SC (Moktadir et al., 2019; Dubey et al., 2019b). However, research papers very rarely discuss BDA adoption for LARG SC. Hence, this study tries to bridge this gap by investigating the effect of lean management, social practices, financial practices, environmental practices, etc. on BDA.


Manufacturing firms that have already implemented LARG practices in SC can further enhance sustainable business performance through BDA. Current research shows the positive effects of BDA on sustainable performance (Raut et al., 2019), SC agility (Dubey et al., 2018a), SC KPI (Dev et al., 2018), and sustainable SC (Papadopoulos et al., 2017). However, the BDA effect on sustainable SC that have implemented LARG practices is rarely investigated. Raut et al. (2019) investigated the mediating role of BDA on sustainable business performance for Indian manufacturing firms. However, the study considered only the lean and green parameters of LARG practices and did not consider the effects of the agile and resilient parameters. The prime concern

of Indian manufacturers is to build an agile SC to respond to unexpected and sudden market changes. This study overcomes the shortcoming of Raut et al. (2019) by investigating the effect of LARG practices on BDA. Thus, it investigates the mediating role of BDA on sustainable SC business performance. It must be noted that understanding the effect of BDA adoption will assist manufacturing firms in the effective implementation of sustainable practices in SC.

In this paper, empirical analysis is used to understand the impact of BDA adoption on the sustainable SC performance of Indian manufacturing firms. Structural equation modelling (SEM) assesses unobservable and observable constructs of BDA. The proposed study considers only linear relationships through SEM. However, non-linear relations using tools like artificial neural networks can be considered in future studies. Other limitations of the study are given in section 7.

3.0 Conceptual framework and proposed hypothesis

Based on the above synthesis of the literature survey, Figure 1 shows a proposed conceptual framework. It consists of 9 factors: Organizational Practices (OP), Lean Management Practices (LMP), Supply Chain Management Practices (SCMP), Social Practices in Supply Chain (SPSC), Environmental Practices (ENP), Financial Practices (FP), Total Quality Management (TQM), Big Data Analytics (BDA), and Sustainable supply chain business performance (SSBP). BDA is a mediator amongst SSBP and the other seven factors that is OP, LMP, SCMP, SPSC, ENP, FP, and TQM. To finalize these shortlisted factors, the Delphi method was used (Skulmoski et al., 2007). A preliminary questionnaire with these nine factors was given to thirteen experts and qualitative feedback was collected. The Delphi expert panel approved all the factors. As per the technical specifications of identified factors, logical grouping was performed. A pilot study was carried out in ten manufacturing firms to confirm the grouping. A five-point Likert scale was used to collect 112 responses. After the pilot study, the 67 sub-factors were reduced to 59. Table 1 gives the finalized sub-factors along with factors of BDA for Sustainable SC Business Performance. These factors must be considered together to have a holistic understanding of LARG and BDA on a sustainable SC performance.

Table 3: Constructs and hypotheses

Нуро.	Factor	Description	Sub-factors (Items)	Reference
No.				
H1	Organisational	The start of the path to achieving long-term goals is an organisational	OP 1: Top management support	Dubey et al.
	Practices (OP)	practice. BDA here becomes a factor while building a strategy that	OP 2: Training and education	(2018a),
		increases the overall performance of the firm. The strategy helps in improving the efficiency of the operations, such as inventory and sales	OP 3: Organization vision and strategy	Gunasekaran et al. (2017), Jabbour et
		optimisation: analysis of each strategy helps in the decision-making	OP 4: Communication between workers and	al. (2013)
		process. The training and education of personnel in any enterprise – i.e.,	management	al. (2015)
		both BDA and manufacturing SC – enhance the value of the use of BDA	OP 5: Employee empowerment	
		in manufacturing SC. This could apply to all types of training for all kinds	OP 6: Organization culture	
		of people in the chain, including the employees, suppliers and customers.	OP 7: Organization maturity	
H2	Lean	Organisations should focus on lean practices. Minimizing waste can be	LMP 1: Understanding of lean	Fullerton et al.
	Management	achieved through lean practices. With techniques such as Just in Time	LMP 2: Lean waste	(2014)
	Practices	(JIT) and cellular manufacturing, the manufacturing firms can benefit.	LMP 3: Value-added SC	
	(LMP)	BDA helps in developing a lean management model of internal processes	LMP 4: JIT, Pull system	
		that can help in making a standardised process and minimise waste. BDA	LMP 5: Lead time	
		increases the efficiency in processes; it also helps in achieving technical	LMP 6: Cellular manufacturing	
		and organisational flexibility and can identify inefficiencies in the	LMP 7: Mass customisation	
		organisation.	LMP 8: Standardization in work and operation	
H3	Supply Chain	Manufacturing data has to be shared with the suppliers in order to get the	SCMP 1: Supplier relationship	Dubey et al.
	Management	required material available in the market, which will lead to a sustainable	SCMP 2: SC competitiveness	(2019b), Tsao
	Practices	business strategy. BDA helps in selecting optimal suppliers and vendors	SCMP 3: SC Resilience	(2017), de Sousa
	(SCMP)	and helps in increasing firms' negotiation power. Improved integration with suppliers leads to better decision-making, reduction in waste and a	SCMP 4: ISO 14000 Certification of Supplier	Jabbour (2015), Goldbeck et al.
		high level of performance. BDA capabilities can enhance the supply	SCMP 5: SC Risk Management	(2020), Dahlmann
		chain performance also reduces SC risk. Supplier selection can be	SCMP 6: Vendor selection	and Roehrich
		achieved more effectively as the involvement of suppliers is most	SCMP 7: Supplier collaboration and integration	(2019)
		important.		
H4	Social Practices	Government policies need to help in promoting advanced manufacturing	SPSC 1: Stakeholder related	Jeble et al. (2018),
	in Supply Chain	and SC. The government plays a substantial role in research and the	SPSC 2: Involvement of NGOs and Local Bodies	Orazalin (2020)
	(SPSC)	development of new manufacturing technologies, and with proper legal	SPSC 3: Legal Issues	
		support, these ideas and firms' crucial data can be protected and future	SPSC 4: Governmental Regulation	
		misuse prevented. Local bodies and NGOs can play a significant role in		

		the acceptance of LARG and BDA by the masses. Organizations must form regulatory norms to promote the BDA and LARG practices.		
Н5	Environmental Practices (ENP)	In this competitive ecosystem, environmental practices lead to gaining a competitive advantage over others. Environmental practices refer to eco-	ENP 1: Balancing environmental and social benefits	Hazen et al. (2016), Zhao et al.
		design, waste management, cellular manufacturing, and reduction in	ENP 2: Recycling efficiency	(2016), Fang et al.
		energy usage. BDA ensures better environmental practices and enables	ENP 3: Environmental cost	(2020), Li et al.
		them to gain economic values. Thus BDA and LARG can transform	ENP 4: Eco-packaging	(2019a), Wang et
		practices more effectively with eco packaging, reduction in carbon	ENP 5: Carbon Emission	al. (2020), Chang
		footprints, and recycling	ENP 6: Standardization	et al. (2019)
H6	Financial	Manufacturing firms aim to achieve an economic balance between their	FP 1: Initial Capital	Hazen et al. (2016)
	Practices (FP)	assets and liabilities and thus end up investing much money. Long-term	FP 2: Training Funds	
		financial support helps the firm to protect itself from credit shocks in the	FP 3: Financial Advantages/ Benefits	
		chain during a depression. Even though organizations are ready for	FP 4: Cost of Technological Advancement	
		investment, change over time is a major concern for the top management.	FP 5: Changeover cost/time	
		BDA helps the manufacturing firm to use financial resources and use the	FP 6: Return of Investment	
		right technology efficiently. However, return on investment (ROI) must be		
		calculated carefully.		
H7	Total Quality	Data, if they are to be used effectively in manufacturing firms, need to	TQM 1: Quality Systems	Zhang et al.
	Management	have the proper quality of information, being both thorough and orderly.	TQM 2: Human Resource Management	(2020), Lartey et
	(TQM)	Industry practices such as TQM require such high standards of quality to	TQM 3: Operational Performance	al. (2020)
		be maintained, and this is what decides the competitive stature of the	TQM 4: Customer satisfaction	
		organisation. HRM plays an essential role in TQM. The integration of	TQM 5: Supplier management	
		BDA in the system would affect information quality and business value to		
		give meaningful insights into SC operations.		
H8	Sustainable	Sustainable business performances are measured in terms of the four	SSBP 1: Cost	Dev et al. (2018),
	Supply Chain	ground terms. It then becomes the firms' societal responsibility to do this	SSBP 2: Quality of Service	Cabral et al.
	Business	to help maintain a sustainable system. BDA empowers the organisations	SSBP 3: Time	(2012), Li et al.
	Performance	to gain control over operational costs and aims to reduce them (better	SSBP 4: Service Level	(2019b),
	(SSBP)	flexibility, improved product quality, lesser lead time); it enables the firms	SSBP 5: Responsiveness	Centobelli et al.
		to build a brand image and create a fad in the market. BDA helps with	SSBP 6: Agility	(2020)
		avoiding environmental accidents by monitoring chemical usage and	SSBP 7: Collaboration	
		waste disposal. BDA surely enables us to acquire a good share in the		
		competitive market.	SSBP 8: Firm performance	

Sub-factors for BDA Adoption (8): BDA1: Big Volume, BDA2: Big Velocity, BDA3: Big Variety, BDA4: Big Veracity, BDA5: Big Value, BDA6: Investment and Infrastructure, BDA7: Connectivity and Co-ordination, BDA8: Modularity and Compatibility (Raut et al., 2019; Wamba et al., 2017; Choi et al., 2018).

4.0 Research Methodology

Figure 2 shows the adopted research methodology.

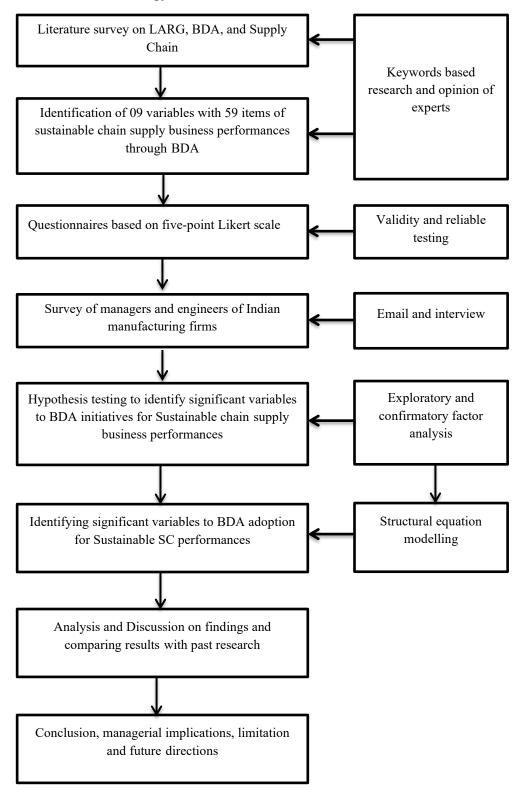


Figure 2: Research Methodology

Initially, a literature survey was conducted on LARG, BDA, and SC. Based on inputs from experts and a pilot study, 9 variables with 59 items for sustainable SC business performance through BDA were finalized. The survey of managers and engineers was carried out followed by factorial analysis.

An exploratory and confirmatory factor analysis approach was used to test the hypothesis. Factorial analysis has a long history in market research. Exploratory factor analysis (EFA) helps when there are no prior assumptions about the factor structure (Marsh et al., 2014). EFA uses a five-step protocol as follows (Steger, 2006; Henson and Roberts, 2006; Williams et al., 2010): suitability of data, factor extraction method, criteria for factor extraction, rotational method selection, and interpretation. Further, according to Bryant and Yarnold (1995), the researcher must have a robust theory underlying the proposed measurement model prior to data analysis. In confirmatory factor analysis (CFA), the hypothesized model is used to estimate a matrix of population covariance, which needs to be compared with the matrix of observed covariance (Hemmelgarn et al., 1995; Schreiber et al., 2006; Strauss and Smith, 2009). Accepted constructs, observed variable patterns, and latent constructs in CFA are further used for SEM analysis (Chan et al., 2007). SEM enhances the analysis and provides added flexibility (Blanthorne et al., 2006). SEM is a statistical technique that was used initially for marketing theory (Bagozzi, 1980). Later, it became popular in studies of social sciences and behavioural studies for theory testing (MacCallum and Austin, 2000). SEM incorporates dependent variables, latent constructs, and independent variables to analyse the multivariate data. In this paper, the following goodness-of-fit indices were considered: normed fit index (NFI), goodness-of-fit index (GFI), root mean square error of approximation (RMSEA), and comparative fit index (CFI). Further, in this study, the analysis of moment structures (AMOS) program was selected, as it can read SPSS files and gives excellent quality path diagrams. Thus, this study uses the EFA-CFA-SEM approach for data analysis. The sample characteristics and details for data collection are provided in the following section.

4.1 Sample Characteristics

The survey was targeted at individuals in SC operations, who were asked to respond to issues related to manufacturing. Indian manufacturers who had already adopted or were in the process of adopting LARG practices were selected for the survey, and managers and engineers from these firms who dealt with SC operations were selected for sample collection. Annexure-I shows the questionnaire used for the survey. Initially, thirty-seven such manufacturing firms were selected. Data was collected during a three-month period through personal interactions and Google sheets. After one month, a gentle reminder was sent to non-responding firms. After two months, a telephonic request was made to the individual participants. Qualitative research often faces practical challenges in data collection. Some of the major challenges faced in this research were gaining access to the manufacturing firms and key participants, incorporating online technologies, data confidentiality, and time constraints. However, with persistence, out of a total of 354 responses received, 297 were found to be valid. Sample characteristics are as shown in Table 4: manufacturers with more than 250 employees formed the largest proportion of responses (116, 39.06%). In terms of organisation turnover, the highest responses were from firms with a turnover of 15-30 million dollars (130, 43.77%). The highest responses in terms

of experience were from respondents with 5-10 years' experience (172, 57.91%) and, in terms of education, were from undergraduates (188, 63.30%).

	Categories	Frequency	Percentage (%)
Gender	Male	208	70.03
	Female	89	29.97
	Total	297	100 %
Educational	Undergraduate (B.E./BTech)	188	63.30
qualification	Postgraduate (M.E./MTech)	102	34.34
	PhD.	07	2.36
	Total	297	100 %
Total years of	Less than five years	46	15.49
experience	Five to ten years	172	57.91
	More than ten years	79	26.60
	Total	297	100 %
No. of employees in	Less than 150	74	24.92
organisation	150-250	107	36.02
	More than 250	116	39.06
	Total	297	100 %
Organisation turnover	Less than 15	48	16.16
(in million US dollars)	15-30	130	43.77
	30-40	95	31.99
	More than 40	24	8.08
	Total	297	100 %

Table 4: Sample characteristics

5.0 Results

5.1 EFA

In this study, the Sustainable SC Business Performance of manufacturing firms through BDA adoption was measured using a survey-based method. Nine constructs were measured through a quantitative and qualitative approach. A two-phase approach was used to measure items of eleven constructs. In phase 1, the construct and the item dimension were defined, along with the validity and reliability of undefined indicators. In phase 2, a questionnaire based on a fivepoint Likert scale was developed in order to understand the effect of BDA adoption. In the final survey, the authors received 297 valid responses from managers and engineers who were involved with their firms' SC operations. To test the appropriateness of data, a Bartlett's test and a Kaiser-Meyer-Olkin (KMO) test were carried out. The results show that the KMO value was 0.851, which was satisfactory, as it was greater than 0.6. In the Bartlett's test, significance (p-value) for a 95% confidence level must be less than 0.05; the p-value for the present study was 0.000. In this study, principal component analysis (PCA) was the extraction method, while the rotation method used was varimax (with Kaiser Normalization). The rotated component matrix (converged in six iterations) is shown in Annexure-II. All variables had observed high loadings, i.e., greater than 0.5. The highest loading was observed for 'ENP5' with a value of 0.941; the lowest loading was for 'LMP7', with a value of 0.503. Except for 'LMP7' and 'OP1' (0.567), all variables had loadings greater than 0.6, and no cross-loading was observed. Thus, the results of EFA are satisfactory for further CFA analysis.

5.2 CFA

CFA was performed on seven constructs of BDA adoption and one construct of Sustainable SC Business Performance. All of these eight constructs were allowed to correlate freely with each other. The construct 'Sustainable SC Business Performance' had eight items. Only two constructs, namely 'BDA adoption' and 'Lean management practices', had eight items; all other constructs had fewer than eight items. CFA results show a chi-square test to the degree of freedom ratio 1.922 (<3.0), and CFI 0.916 (>0.90). RMSEA is 0.056, which is not <0.05. However, 0.05-0.10 is the moderate range of RMSEA, while GFI (0.942) is not higher than 0.95; nonetheless, it is within the permissible limit, and thus RMSEA and GFI are acceptable. Thus, it can be concluded that for the collected dataset, the goodness-of-fit statistics have acceptable values.

CFA model estimates are shown in Annexure-III. Loadings between factors and measured variables were greater than 0.5, except for LMP7 (mass customisation), with a value of 0.362, and SPSC2 (Involvement of NGOs and local bodies), with a value of 0.471. Thus, the acceptable level of convergent validity is shown by the loading of indicators in distinct constructs (Barki and Hartwick, 2001). It must be noted that measurement model loadings were mostly greater than 0.6, except for a few loadings, as follows: Understanding of lean (LMP1 with a value of 0.511); Top management support (OP1 with a value of 0.537); Organization vision and strategy (OP3 with a value of 0.567); Communication between workers and management (OP4 with a value of 0.600); Organizational culture (OP6 with a value of 0.574); and Involvement of NGOs and local bodies (SPSC2 with a value of 0.574). This shows acceptable convergent validity. The CFA path diagram is shown in Annexure-IV, which was drawn using AMOS software.

5.3 SEM

SEM was carried out in two phases: i) validating the latent constructs and ii) judging the fitting model based on the structural model (Jenatabadi, 2015). SEM examines non-causal and causal relationships amongst the variables. It indicates relevant precedence where bi-directional arrows in the CFA model must be replaced with single-headed arrows. The developed path diagram is shown in Figure 3. Annexure-V shows estimates for the structural model. The SEM results show a chi-square test in which the degree of freedom ratio is 1.969 (<3.0), and CFI is 0.912 (>0.90). RMSEA is 0.051, which is not <0.05, though 0.05-0.10 is the moderate range of RMSEA, and GFI (0.933) is not higher than 0.95. However, it is within the permissible limit, and thus RMSEA and GFI are acceptable. Thus, the authors can conclude that for the collected dataset, the goodness of fit statistics have acceptable values.

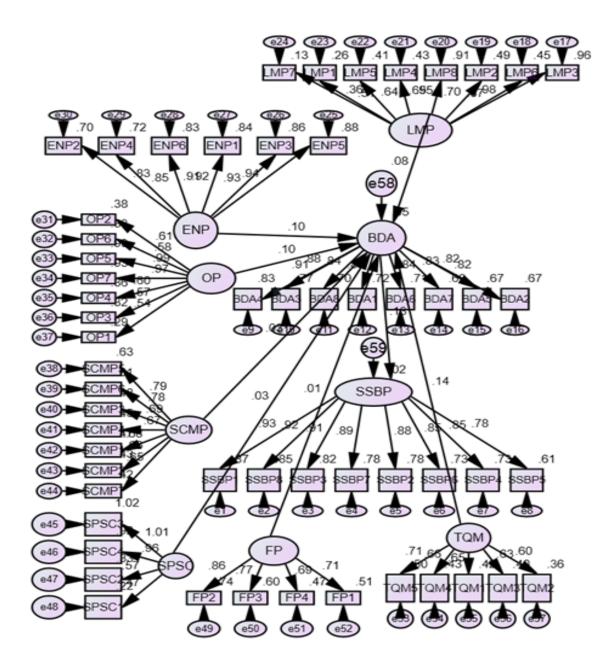


Figure 3: SEM Path Diagram

Based on the SEM analysis, all eight hypotheses based on positive relationships between BDA adoption and Organizational Practices (OP, 0.096), Lean Management Practices (LMP, 0.083), Supply Chain Management Practices (SCMP, 0.031), Social Practices in SC (SPSC, 0.028), Environmental Practices (ENP, 0.097), Financial Practices (FP, 0.006), Total Quality Management (TQM, 0.141), and Sustainable Supply Chain Business Performance (SSBP, 0.129) are supported.

5.4 Robustness Check

In order to check the robustness of the moderating effect of BDA, regression analysis was conducted (Lo et al., 2018). The structural model is built in AMOS. The descriptive analysis of the structural model shows sufficiently high values of Cronbach Alpha (Please refer to

Annexure-VI). The reliability value of six variables SSBP (0.9634), ENP (0.961), BDA (0.9537), LMP (0.9046), OP (0.9046), and SCMP (0.8732) were higher than 0.85 which is considered as "excellent" (Bonett and Wright, 2015). However, the Cronbach Alpha values for SPSC (0.8497) and FP (0.8429) were close to 0.85, whereas for TQM (0.7852) was "acceptable" as it is higher than 0.65 (Bonett and Wright, 2015). Table 5 gives details of correlation analysis, which gives significant correlations at 95 % (2-tailed) and 99 % (2-tailed).

556 37 [*] .7358 112 .067						
37* .7358 112 .067						
112 .067						
	.7971					
	1					
079 .140	* .285**	.7473				
.282*	* .136*	.425**	.7488			
085 .152**	* .126*	.263**	.257**	.7854		
028	.015	016	032	057	.7585	
.028	.020	001	.062	026	011	.8337
t at the 0.05	level (2-taile	ed).				
int at the 0.01	level (2-tai	led).				
	091 .282* 085 .152* 014 028 04 .028 t at the 0.05	091 .282** .136* 085 .152** .126* 014 028 .015 04 .028 .020 t at the 0.05 level (2-tailed)	091 .282** .136* .425** 085 .152** .126* .263** 014 028 .015 016	091 .282** .136* .425** .7488 085 .152** .126* .263** .257** 014 028 .015 016 032 04 .028 .020 001 .062 t at the 0.05 level (2-tailed). . . .	091 $.282^{**}$ $.136^{*}$ $.425^{**}$ $.7488$ 085 $.152^{**}$ $.126^{*}$ $.263^{**}$ $.257^{**}$ $.7854$ 014 028 $.015$ 016 032 057 $.04$ $.028$ $.020$ 001 $.062$ 026 t at the 0.05 level (2-tailed).	091 .282** .136* .425** .7488 085 .152** .126* .263** .257** .7854 014 028 .015 016 032 057 .7585 .04 .028 .020 001 .062 026 011 t at the 0.05 level (2-tailed). .

 Table 5: Correlation Table

Figure 4 shows the structural mediation model, and the results of the mediation effect are tabulated in Table 6. There is one Partial mediation found for TQM and full mediation for ENP. Moreover, there is no mediation effect found on other variables. Annexure-VII gives the details of regression weights, direct and indirect effects.

Figure 4: Structural Mediation Model

Relationship	Direct Effect	Indirect Effect	Result
$TQM \rightarrow BDA \rightarrow SSBP$	*.392 (.001)	*.015 (.074)	Partial Mediation
$LMP \rightarrow BDA \rightarrow SSBP$	093 (.153)	.010 (.113)	
$SPSC \rightarrow BDA \rightarrow SSBP$	*.129 (.064)	.005 (.258)	
$SCMP \rightarrow BDA \rightarrow SSBP$.016 (.830)	.003 (.578)	
$ENP \longrightarrow BDA \longrightarrow SSBP$	015 (.700)	*.008 (.071)	Full Mediation
$OP \longrightarrow BDA \longrightarrow SSBP$	002 (.981)	.002 (.645)	
$FP \longrightarrow BDA \longrightarrow SSBP$	066 (.408)	.002 (.572)	

Table 6: Results of Mediation Effect

*Significant at $\alpha < 0.10$ (2-tailed test)

P- Values are shown in parentheses.

The mediation model explains the casual effect of antecedent on the dependent variable (Hair et al., 2011). Three types of mediation effects are i) No Mediation indicating no indirect effect, ii) Partial Mediation indicating both indirect and direct effect, and iii) Full Mediation indicating only indirect effect (Lowry and Gaskin, 2014). From Table 6, out of seven hypotheses, two are supported. In these two hypotheses, one is fully mediated, and the other is partially mediated. The variable Environmental Practices (ENP) fully mediate Sustainable supply chain business performance (SSBP) whereas total Quality Management (TQM) partially mediates the relationship. The remaining five variables do not show any mediation effect. The result indicates that the proposed model only focuses on environmental practices and total quality, whereas organizational practices, lean management, SC management, social practices, and financial practices remain neglected. However, these factors must be considered for BDA adoption in Indian organizations.

6.0 Discussion

In this paper, the BDA role for Sustainable SC Business Performance is analysed through the SEM approach. Table 7 shows the path analysis results, which supports all eight hypotheses. Significant factors in order of standardised estimate values are Total Quality Management (TQM), Sustainable supply chain business performance (SSBP), Environmental Practices (ENP), Organizational Practices (OP), Lean Management Practices (LMP), Supply Chain Management Practices (SCMP), Social Practices in SC (SPSC), and Financial Practices (FP). The obtained results were compared with the past literature and are shown under the 'in contrast with' and 'in agreement with' columns in Table 7.

The study finds that "Total Quality Management (TQM: 0.141)" is the most significant factor; this agrees with Chavez et al. (2017) and Dubey et al. (2016). Chavez et al. (2017) surveyed Chinese manufacturing firms and concluded that producing high performance, reliability, and consistently high-quality products to meet customer needs was most significant in data-driven manufacturing SC. Similarly, the study by Dubey et al. (2016) emphasised TQM techniques, TQM tools, customer satisfaction, supplier quality, quality standards, and quality management for the successful implementation of BDA for manufacturing. Hence, Indian manufacturers must focus on TQM systems with current resources and must train employees to meet customer demands. With the support of top management, BDA can play an essential role in refining the complete system.

The study by Dubey et al. (2019a) of Indian manufacturing organisations concluded that BDA capabilities help organisations to make the SC resilient and gain competitive advantage. Dev et al. (2018) used an integrated fuzzy ANP-TOPSIS approach to understand BDA-based SC performance ability. The study shows that BDA provides a practical approach to a crucial performance index of SC under the dynamic situation. In this study, the hypothesis based on SC business performance (SSBP: 0.129) resulted in the second highest level of significance. Supply chain analytics can help manufacturing firms to achieve long-time goals along with better firm performance. However, achieving operational and technical performance with excellent initial investments is a significant concern in developing and underdeveloped countries.

The study supports the hypothesis on "Environmental Practices (ENP: 0.097)", which is in line with Jeble et al. (2018). Their study was conducted on Indian auto manufacturing firms and emphasised the reduction of air emissions, the use of waste water recycling, and the prevention of solid waste and toxic material. This shows that environmental performance is positively associated with business performance. The hypothesis on "Organizational Practices (OP: 0.096)" is ranked as per the standard estimate value. It agrees with Chen et al. (2015), who proposed a dynamic capability theory to establish the positive effect of organisational factors on BDA. However, the study carried out by Dubey et al. (2018b) in Indian auto component manufacturers does not show a positive correlation between BDA and organisational capabilities. The hypothesis on "Lean Management Practices (LMP: 0.083)" is ranked fifth and agrees with studies carried by Gunasekaran et al. (2017) and Dubey et al. (2016) on Indian manufacturers. The other three hypotheses supported are shown in Table 7.

The findings of this study agree with the current literature; however, some results differ from those reported in earlier studies. This could be because of the difference in i) sector and economy, ii) internal, external, technical, and non-technical factors towards BDA adoption, and iii) type of methodology in past studies. However, the findings will help decision makers to understand significant factors for the implementation of BDA for Sustainable SC Business Performance.

Sr. No.	Regression Relation	Standardised Estimate	Significance level	Supported (Y/N)	In agreement with	In contrast with	Remark
1	H1: Organizational Practices (OP) positively influence <i>BDA adoption</i>	0.096	4	Yes	Chen et al. (2015), Mikalef et al. (2019)	Dubey et al. (2018b)	
2	H2: Lean Management Practices (LMP) positively influence <i>BDA adoption</i>	0.083	5	Yes	Gunasekaran et al. (2017), Dubey et al. (2016)		
3	H3: Supply Chain Management Practices (SCMP) positively influence <i>BDA adoption</i>	0.031	6	Yes	Gunasekaran et al. (2018), Yu et al. (2018)		
4	H4: Social Practices in SC (SPSC) positively influence <i>BDA adoption</i>	0.028	7	Yes	Jeble et al. (2018)		
5	H5: Environmental Practices (ENP) positively influence <i>BDA adoption</i>	0.097	3	Yes	Jeble et al. (2018)		
6	H6: Financial Practices (FP) positively influence <i>BDA adoption</i>	0.006	8	Yes	Jeble et al. (2018)	Dubey et al. (2018a), Yu et al. (2018)	While supported, it has the lowest value
7	H7: Total Quality Management (TQM) positively influence <i>BDA adoption</i>	0.141	1	Yes	Chavez et al. (2017), Dubey et al. (2016)		Most significant factor, which emphasizes the importance of TQM
8	H8: Big data analytics (BDA) adoption positively influences <i>Sustainable supply chain business</i> <i>performance (SSBP)</i>	0.129	2	Yes	Dubey et al. (2019a)		Second most significant factor, which proves the mediation role of BDA

Table 7: Comparison of path analysis results with past literature

6.1 Theoretical contributions

The theoretical contributions of the study are as follows:

- The previous studies have analysed LARG SC and BDA for sustainable SC separately. This study is one of the first to validate linkages and correlations and to explore the integration between these perceptions holistically.
- This study provides tangible evidence that supports the mediating role of BDA for Sustainable SC Business Performance by considering seven factors, namely, total quality management, supply chain practices, financial practices, lean practices, organizational practices, social practices, and environmental practices.
- Manufacturers of developing countries need a theoretical framework to develop BDA for manufacturing SC in the context of LARG and sustainability. The study adds value to the current research and literature by providing an understanding of BDA for sustainable SC to improve the business performance of manufacturing firms through the proposed framework.

In summary, sustainable SC needs a BDA revolution, and this study provides researchers and academicians with an in-depth understanding of the mediating role of BDA by using a case of Indian manufacturing firms. Further, it paves the way for future research exploring the mediating role of BDA to achieve firm performance.

6.2 Managerial contributions

The significant managerial contributions of the study are as follows:

- Firstly, this study provides insights to the consultants and managers who involved in digitization initiatives in the context of LARG SCs. To implement the new technologies, support from the firm's top management is essential. Top executives and CEOs must aim at long-term benefits. The intervention of policymakers and top management is vital for a BDA adoption. Policymakers can use the findings of the study to formulate strategic policies.
- Secondly, the list of factors and sub-factors can assist supply chain managers as well as production engineers to understand the overall implications of BDA. Decision-makers can scrutinize the significant factors of BDA adoption and the LARG paradigm. The study reveals that total quality management and environmental practices are most crucial for BDA adoption. Thus, organisations must ensure quality management, whereas sustainable practices need to be deliberated through regulation and laws by policymakers.
- Thirdly, the current competitive environment requires manufacturing firms to adopt BDA practices. The proposed framework can help with the successful adoption of BDA for Sustainable SC Business Performance for industrialists of emerging economies like India. Manufacturing firms can improve their profitability with BDA and LARG capabilities. Firm growth can be hindered by not adopting this technology.

A service provider needs to ensure a timely and reliable service to improve SC performance with LARG and sustainable practices. The study assists industrial managers with BDA adoption through practical, sustainable practices, and training. The role of training and education becomes crucial to overcome resistance to change and develop trust (DeJong et al., 2020).

7.0 Conclusion

Past research highlights the importance of BDA for sustainable SC and BDA for firm performance separately; our paper integrates both in order to understand its impact on the overall business performance of the organisation. In manufacturing firms, sustainable practices are extremely important. It is indispensable to have a conceptual model in order to investigate the effect of BDA on Sustainable SC Business Performance, particularly for developing countries. To address this problem, the authors conceptualised BDA adoption for sustainable SC of manufacturing firms from India.

In the proposed framework, the authors identified seven factors affecting intentions to adopt BDA. To validate the conceptual model, a survey was conducted among manufacturing firms in India. Developing economies like India need BDA adoption for the effective implementation of sustainable practices in manufacturing SC. This study will guide manufacturers in identifying the critical factors that affect BDA adoption in sustainable SC. Various stakeholders in SC can understand the particular nature of sub-factors in order to adopt BDA. The study can help governing bodies to develop an effective policy for BDA in manufacturing firms.

The following limitations of the study are acknowledged: i) collection of data was through structured questions; ii) the factor Financial Practices (FP) was identified with a very low regression weight; and iii) as the study was conducted on Indian manufacturing firms, its findings cannot be generalized beyond this context. The future scope of the paper will be as follows: i) quantitative data through questionnaires may be heterogeneous for further studies; and qualitative data collected through structured and semi-structured interviews could be used; ii) the sample size of data could be increased with different geographical locations, and data samples in other developing economies could also be used; and iii) hybrid SEM-ANN could be incorporated to handle the non-linear relationships and improve the predictive accuracy. Further studies could be conducted to understand the mediating role of BDA for project performance and supply chain-4.0. Furthermore, whether digitalisation through Industry 4.0 improves SC performance can be investigated. In addition, the role of artificial intelligence, the circular economy, and BDA could be explored to minimize risk in the supply chain.

Reference

- Addo-Tenkorang, R., & Helo, P. T. (2016). Big data applications in operations/supply-chain management: A literature review. *Computers & Industrial Engineering*, *101*, 528-543.
- Akter, S., Wamba, S. F., Gunasekaran, A., Dubey, R., & Childe, S. J. (2016). How to improve firm performance using big data analytics capability and business strategy alignment? *International Journal of Production Economics*, 182, 113-131.
- Alqudah, S., Shrouf, H., Suifan, T., & Alhyari, S. (2020). A Moderated Mediation Model of Lean, Agile, Resilient, and Green Paradigms in the Supply Chain. *Int. J Sup. Chain. Mgt. Vol*, 9(4), 1.
- Arunachalam, D., Kumar, N., & Kawalek, J. P. (2018). Understanding big data analytics capabilities in supply chain management: Unravelling the issues, challenges and implications for practice. *Transportation Research Part E: Logistics and Transportation Review*, 114, 416-436.
- Arya, V., Sharma, P., Singh, A., & De Silva, P. T. M. (2017). An exploratory study on supply chain analytics applied to spare parts supply chain. *Benchmarking: An International Journal*.
- Bagozzi, R. P. (1980). Causal models in marketing. Hoboken, NJ: Wiley.
- Baramichai, M., Zimmers Jr, E. W., & Marangos, C. A. (2007). Agile supply chain transformation matrix: An integrated tool for creating an agile enterprise. Supply Chain Management: An International Journal, 12(5), 334-348.

- Barki, H., & Hartwick, J. (2001). Interpersonal conflict and its management in information system development. *Mis Quarterly*, 195-228.
- Bhanot, N., Rao, P. V., & Deshmukh, S. G. (2017). An integrated approach for analysing the enablers and barriers of sustainable manufacturing, *Journal of Cleaner Production*, 142, 4412-4439.
- Bi, W., Cai, M., Liu, M., & Li, G. (2016). A big data clustering algorithm for mitigating the risk of customer churn. *IEEE Transactions on Industrial Informatics*, 12(3), 1270-1281.
- Blackhurst, J., Dunn, K. S., & Craighead, C. W. (2011). An empirically derived framework of global supply resiliency. *Journal of Business Logistics*, 32(4), 374-391.
- Blanthorne, C., Jones-Farmer, L. A., & Almer, E. D. (2006). Why you should consider SEM: a guide to getting started. *Advances in accounting behavioral research*, 9(1), 179-207.
- Bonett, D. G., & Wright, T. A. (2015). Cronbach's alpha reliability: Interval estimation, hypothesis testing, and sample size planning. *Journal of Organizational Behavior*, *36*(1), 3-15.
- Bryant, F. B., & Yarnold, P. R. (1995). Principal-components analysis and exploratory and confirmatory factor analysis. In L. G. Grimm & P. R. Yarnold (Eds.), *Reading and understanding multivariate statistics* (p. 99–136). American Psychological Association.
- Cabral, I., Grilo, A., & Cruz-Machado, V. (2012). A decision-making model for lean, agile, resilient and green supply chain management. *International Journal of Production Research*, *50*(17), 4830-4845.
- Carter, C. R., & Liane Easton, P. (2011). Sustainable supply chain management: evolution and future directions. *International Journal of Physical Distribution & Logistics Management*, 41(1), 46-62.
- Carvalho, H., Duarte, S., & Cruz Machado, V. (2011). Lean, agile, resilient and green: Divergencies and synergies. *International Journal of Lean Six Sigma*, 2(2), 151-179.
- Centobelli, P., Cerchione, R., & Ertz, M. (2020). Managing supply chain resilience to pursue business and environmental strategies. *Business Strategy and the Environment*, 29(3), 1215-1246.
- Chan, F., Lee, G. K., Lee, E. J., Kubota, C., & Allen, C. A. (2007). Structural equation modeling in rehabilitation counseling research. *Rehabilitation Counseling Bulletin*, *51*(1), 44-57.
- Chang, H. H., Tsai, S. H., & Huang, C. C. (2019). Sustainable development: The effects of environmental policy disclosure in advertising. *Business Strategy and the Environment*, 28(8), 1497-1506.
- Chavez, R., Yu, W., Sadiq Jajja, M. S., Lecuna, A., & Fynes, B (2020). Can entrepreneurial orientation improve sustainable development through leveraging internal lean practices?. *Business Strategy and the Environment*.
- Chavez, R., Yu, W., Jacobs, M. A., & Feng, M. (2017). Data-driven supply chains, manufacturing capability and customer satisfaction. *Production Planning & Control*, 28(11-12), 906-918.
- Chen, D. Q., Preston, D. S., & Swink, M. (2015). How the use of big data analytics affects value creation in supply chain management. *Journal of Management Information Systems*, 32(4), 4-39
- Choi, Y., Lee, H., & Irani, Z. (2018). Big data-driven fuzzy cognitive map for prioritising IT service procurement in the public sector. *Annals of Operations Research*, 270(1-2), 75-104.
- Chun Wu, Y. (2003). Lean manufacturing: A perspective of lean suppliers. *International Journal of Operations & Production Management*, 23(11), 1349-1376.
- Cornelius, P. B., Gokpinar, B., & Sting, F. J. (2020). Sparking Manufacturing Innovation: How Temporary Interplant Assignments Increase Employee Idea Values. *Management Science*.
- Dahlmann, F., & Roehrich, J. K. (2019). Sustainable supply chain management and partner engagement to manage climate change information. *Business Strategy and the Environment*, *28*(8), 1632-1647.
- de Sousa Jabbour, A. B. L. (2015). Understanding the genesis of green supply chain management: Lessons from leading Brazilian companies. *Journal of Cleaner Production*, 87, 385-390.
- De Jong, B., Gillespie, N., Williamson, I., & Gill, C. (2020). Trust Consensus Within Culturally Diverse Teams: A Multistudy Investigation. *Journal of Management*, 0149206320943658.
- Dev, N. K., Shankar, R., Gupta, R., & Dong, J. (2018). Multi-criteria evaluation of real-time key performance indicators of supply chain with consideration of big data architecture. *Computers & Industrial Engineering*, 128, 1076-1087.
- Dey, P. K., Malesios, C., De, D., Chowdhury, S., & Abdelaziz, F. B. (2019). Could lean practices and process innovation enhance supply chain sustainability of small and medium-sized enterprises?. *Business Strategy* and the Environment, 28(4), 582-598.

- Digalwar, A., Raut, R. D., Yadav, V. S., Narkhede, B., Gardas, B. B., & Gotmare, A. (2020). Evaluation of critical constructs for measurement of sustainable supply chain practices in lean-agile firms of Indian origin: A hybrid ISM-ANP approach. *Business Strategy and the Environment*, 29(3), 1575-1596.
- Doolun, I. S., Ponnambalam, S. G., Subramanian, N., & Kanagaraj, G. (2018). Data driven hybrid evolutionary analytical approach for multi objective location allocation decisions: Automotive green supply chain empirical evidence. *Computers & Operations Research*, 98, 265-283.
- Dora, M., Kumar, M., & Gellynck, X. (2016). Determinants and barriers to lean implementation in foodprocessing SMEs-a multiple case analysis. *Production Planning & Control*, 27(1), 1-23.
- Dora, M., Van Goubergen, D., Kumar, M., Molnar, A., & Gellynck, X. (2014). Application of lean practices in small and medium-sized food enterprises. *British Food Journal*.
- Dora, M., & Gellynck, X. (2015). Lean Six Sigma implementation in a food processing SME: a case study. *Quality* and Reliability Engineering International, 31(7), 1151-1159.
- Dubey, R., Gunasekaran, A., Childe, S. J., Wamba, S. F., & Papadopoulos, T. (2016). The impact of big data on world-class sustainable manufacturing. *The International Journal of Advanced Manufacturing Technology*, 84(1-4), 631-645.
- Dubey, R., Gunasekaran, A., & Childe, S. J. (2018a). Big data analytics capability in supply chain agility: The moderating effect of organizational flexibility. *Management Decision*.
- Dubey, R., Gunasekaran, A., Childe, S. J., Luo, Z., Wamba, S. F., Roubaud, D., & Foropon, C. (2018b). Examining the role of big data and predictive analytics on collaborative performance in context to sustainable consumption and production behaviour. *Journal of Cleaner Production*, 196, 1508-1521.
- Dubey, R., Gunasekaran, A., Childe, S. J., Fosso Wamba, S., Roubaud, D., & Foropon, C. (2019a). Empirical investigation of data analytics capability and organizational flexibility as complements to supply chain resilience. *International Journal of Production Research*, 1-19.
- Dubey, R., Gunasekaran, A., Childe, S. J., Roubaud, D., Wamba, S. F., Giannakis, M., & Foropon, C. (2019b). Big data analytics and organizational culture as complements to swift trust and collaborative performance in the humanitarian supply chain. *International Journal of Production Economics*, 210, 120-136.
- Fang, Y., Yu, Y., Shi, Y., & Liu, J. (2020). The effect of carbon tariffs on global emission control: A global supply chain model. *Transportation Research Part E: Logistics and Transportation Review*, 133, 101818.
- Fawcett, S. E., & Waller, M. A. (2014). Supply chain game changers—mega, nano, and virtual trends—and forces that impede supply chain design (ie, building a winning team). *Journal of Business Logistics*, 35(3), 157-164.
- Fosso Wamba, S., Gunasekaran, A., Papadopoulos, T., & Ngai, E. (2018). Big data analytics in logistics and supply chain management. *International Journal of Logistics Management, 29*(2), 478-484.
- Fullerton, R. R., Kennedy, F. A., & Widener, S. K. (2014). Lean manufacturing and firm performance: The incremental contribution of lean management accounting practices. *Journal of Operations Management*, 32(7-8), 414-428.
- Giannakis, M., & Louis, M., 2016. A multi-agent based system with big data processing for enhanced supply chain agility. *Journal of Enterprise Information Management*, 29(5), 706-727.
- Goldbeck, N., Angeloudis, P., & Ochieng, W. (2020). Optimal supply chain resilience with consideration of failure propagation and repair logistics. *Transportation Research Part E: Logistics and Transportation Review*, 133, 101830.
- Govindan, K., Cheng, T. C. E., Mishra, N., & Shukla, N. (2018). Big data analytics and application for logistics and supply chain management. *Transportation Research Part E: Logistics and Transportation Review*, *114*, 343-349.
- Gunasekaran, A., Kumar Tiwari, M., Dubey, R., & Wamba, S. F. (2016). Big data and predictive analytics applications in supply chain management. *Computers and Industrial Engineering*, 101(C), 525-527.
- Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B., & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. *Journal of Business Research*, *70*, 308-317.
- Gunasekaran, A., Yusuf, Y. Y., Adeleye, E. O., & Papadopoulos, T. (2018). Agile manufacturing practices: The role of big data and business analytics with multiple case studies. *International Journal of Production Research*, 56(1-2), 385-397.

- Guo, S. Y., Ding, L. Y., Luo, H. B., & Jiang, X. Y. (2016). A Big-Data-based platform of workers' behavior: Observations from the field. *Accident Analysis & Prevention*, *93*, 299-309.
- Hazen, B. T., Boone, C. A., Ezell, J. D., & Jones-Farmer, L. A. (2014). Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications. *International Journal of Production Economics*, 154, 72-80.
- Hazen, B. T., Skipper, J. B., Ezell, J. D., & Boone, C. A. (2016). Big Data and predictive analytics for supply chain sustainability: A theory-driven research agenda. *Computers & Industrial Engineering*, 101, 592-598.
- Hemmelgarn, A. L., James, L. R., Ladd, R. T., & Mitchell, T. R. (1995). Testing for cross-situational-consistency: A confirmatory factor analytic approach. *Journal of Management*, 21(1), 121-139.
- Henson, R. K., & Roberts, J. K. (2006). Use of exploratory factor analysis in published research: Common errors and some comment on improved practice. *Educational and Psychological Measurement*, 66(3), 393-416.
- Ho, C. L., & Shih, H. W. (2014). Applying data ming to develop a warning system of procurement in construction. *International Journal of Future Computer and Communication*, 3(3), 168.
- Hofmann, E. (2017). Big data and supply chain decisions: The impact of volume, variety and velocity properties on the bullwhip effect. *International Journal of Production Research*, *55*(17), 5108-5126.
- Huang, Y. Y., & Handfield, R. B. (2015). Measuring the benefits of ERP on supply management maturity model: a "big data" method. *International Journal of Operations & Production Management*, 35(1), 2-25.
- Inamdar, Z.Z., Raut, R.D., Narwane, V.S., Gardas, B. B., Narkhede, B.E, and Sagnak, M. (2020), A systematic literature review with bibliometric analysis of big data analytics adoption from period 2014 to 2018. *Journal of Enterprise Information Management*.
- Jabbour, C. J. C., de Sousa Jabbour, A. B. L., Govindan, K., Teixeira, A. A., & de Souza Freitas, W. R. (2013). Environmental management and operational performance in automotive companies in Brazil: the role of human resource management and lean manufacturing. *Journal of Cleaner Production*, 47, 129-140.
- Jeble, S., Dubey, R., Childe, S. J., Papadopoulos, T., Roubaud, D., & Prakash, A. (2018). Impact of big data and predictive analytics capability on supply chain sustainability. *The International Journal of Logistics Management*, 29(2), 513-538.
- Jenatabadi, H. S. (2015). A tutorial for analyzing structural equation modelling. arXiv preprint arXiv:1504.03430.
- Kaffash, S., Nguyen, A. T., & Zhu, J. (2020). Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis. *International Journal of Production Economics*, 107868.
- Kumar, A., Shankar, R., Choudhary, A., & Thakur, L. S. (2016a). A big data MapReduce framework for fault diagnosis in cloud-based manufacturing. *International Journal of Production Research*, 54(23), 7060-7073.
- Larson, D., & Chang, V. (2016). A review and future direction of agile, business intelligence, analytics and data science. *International Journal of Information Management*, 36(5), 700-710.
- Lartey, T., Yirenkyi, D. O., Adomako, S., Danso, A., Amankwah-Amoah, J., & Alam, A. (2020). Going green, going clean: Lean-green sustainability strategy and firm growth. *Business Strategy and the Environment*, 29(1), 118-139.
- Lee, C. K. H. (2017). A GA-based optimisation model for big data analytics supporting anticipatory shipping in Retail 4.0. *International Journal of Production Research*, *55*(2), 593-605.
- Lee, H. L., & Zhang, H. (2019). Introduction to the Special Issue on Innovations and Sustainability. *Production* and Operations Management, 28(12), 2929-2929.
- Li, L., Su, X., Wang, Y., Lin, Y., Li, Z., & Li, Y. (2015). Robust causal dependence mining in big data network and its application to traffic flow predictions. *Transportation Research Part C: Emerging Technologies*, 58, 292-307.
- Li, B., Ch'ng, E., Chong, A. Y. L., & Bao, H. (2016). Predicting online e-marketplace sales performances: A big data approach. *Computers & Industrial Engineering*, 101, 565-571.
- Li, G., Li, L., Choi, T. M., & Sethi, S. P. (2019a). Green supply chain management in Chinese firms: Innovative measures and the moderating role of quick response technology. *Journal of Operations Management*.
- Li, G., Li, L., & Sun, J. (2019b). Pricing and service effort strategy in a dual-channel supply chain with showrooming effect. *Transportation Research Part E: Logistics and Transportation Review*, *126*, 32-48.
- Lo, C. K., Tang, C. S., Zhou, Y., Yeung, A. C., & Fan, D. (2018). Environmental incidents and the market value of firms: An empirical investigation in the Chinese context. *Manufacturing & Service Operations Management*, 20(3), 422-439.

- Lyu, Z., Lin, P., Guo, D., & Huang, G. Q. (2020). Towards Zero-Warehousing Smart Manufacturing from Zero-Inventory Just-In-Time production. *Robotics and Computer-Integrated Manufacturing*, 64, 101932.
- MacCallum, R. C., & Austin, J. T. (2000). Applications of structural equation modeling in psychological research. Annual Review of Psychology, 51(1), 201-226.
- Marsh, H. W., Morin, A. J., Parker, P. D., & Kaur, G. (2014). Exploratory structural equation modeling: An integration of the best features of exploratory and confirmatory factor analysis. *Annual review of clinical* psychology, 10, 85-110.
- McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big data: The management revolution. *Harvard Business Review*, *90*(10), 60-68.
- Mehmood, R., Meriton, R., Graham, G., Hennelly, P., & Kumar, M. (2017). Exploring the influence of big data on city transport operations: A Markovian approach. *International Journal of Operations & Production Management*, 37(1), 75-104.
- Mikalef, P., Boura, M., Lekakos, G., & Krogstie, J. (2019). Big data analytics capabilities and innovation: the mediating role of dynamic capabilities and moderating effect of the environment. *British Journal of Management*, 30(2), 272-298.
- Mišić, V. V., & Perakis, G. (2020). Data analytics in operations management: A review. *Manufacturing & Service Operations Management*, 22(1), 158-169.
- Moktadir, M. A., Ali, S. M., Paul, S. K., & Shukla, N. (2019). Barriers to big data analytics in manufacturing supply chains: A case study from Bangladesh. *Computers & Industrial Engineering*, *128*, 1063-1075.
- Narwane, V. S., Raut, R. D., Mangla, S. K., Gardas, B. B., Narkhede, B. E., Awasthi, A., and Priyadarshinee, P. (2020). Mediating role of cloud of things in improving performance of small and medium enterprises in the Indian context. *Annals of Operations Research*, 1-30.
- Nguyen, T., Li, Z. H. O. U., Spiegler, V., Ieromonachou, P., & Lin, Y. (2018). Big data analytics in supply chain management: A state-of-the-art literature review. *Computers & Operations Research*, *98*, 254-264.
- Opresnik, D., & Taisch, M. (2015). The value of big data in servitization. *International Journal of Production Economics*, 165, 174-184.
- Orazalin, N. (2020). Do board sustainability committees contribute to corporate environmental and social performance? The mediating role of corporate social responsibility strategy. *Business Strategy and the Environment*, 29(1), 140-153.
- Papadopoulos, T., Gunasekaran, A., Dubey, R., Altay, N., Childe, S. J., & Fosso-Wamba, S. (2017). The role of Big Data in explaining disaster resilience in supply chains for sustainability. *Journal of Cleaner Production*, 142, 1108-1118.
- Perrey, J., Spillecke, D., & Umblijs, A. (2013). Smart analytics: How marketing drives short-term and long-term growth. *McKinsey Quarterly*, 00425-3.
- Rao, P. (2005). The greening of suppliers—in the South East Asian context. *Journal of Cleaner Production*, 13(9), 935-945.
- Raut, R. D., Mangla, S. K., Narwane, V. S., Gardas, B. B., Priyadarshinee, P., & Narkhede, B. E. (2019). Linking big data analytics and operational sustainability practices for sustainable business management. *Journal of Cleaner Production, 224*, 10-24.
- Schoenherr, T., & Speier-Pero, C. (2015). Data science, predictive analytics, and big data in supply chain management: Current state and future potential. *Journal of Business Logistics*, 36(1), 120-132.
- Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A., & King, J. (2006). Reporting structural equation modeling and confirmatory factor analysis results: A review. *Journal of Educational Research*, 99(6), 323-338.
- Seuring, S., & Müller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. *Journal of Cleaner Production*, 16(15), 1699-1710.
- Shan, Z., & Zhu, Q. (2015). Camera location for real-time traffic state estimation in urban road network using big GPS data. *Neurocomputing*, *169*, 134-143.
- Shi, Q., & Abdel-Aty, M. (2015). Big data applications in real-time traffic operation and safety monitoring and improvement on urban expressways. *Transportation Research Part C: Emerging Technologies*, 58, 380-394.
- Skulmoski, G. J., Hartman, F. T., & Krahn, J. (2007) The Delphi method for graduate research. Journal of Information Technology Education: Research, 6 (1), 1-21.

- Song, M. L., & Zhou, Y. X. (2015a). Analysis of carbon emissions and their influence factors based on data from Anhui of China. *Computational Economics*, 46(3), 359-374.
- Song, M., Cen, L., Zheng, Z., Fisher, R., Liang, X., Wang, Y., & Huisingh, D. (2015b). Improving natural resource management and human health to ensure sustainable societal development based upon insights gained from working within 'Big Data Environments'. *Journal of Cleaner Production*, 94(1), 1-4.
- Song, M. L., Fisher, R., Wang, J. L., & Cui, L. B. (2018). Environmental performance evaluation with big data: Theories and methods. *Annals of Operations Research*, 270(1-2), 459-472.
- Song, M. L., Cao, S. P., & Wang, S. H. (2019). The impact of knowledge trade on sustainable development and environment-biased technical progress. *Technological Forecasting and Social Change*, 144, 512-523.
- Srivastava, S. K. (2007). Green supply-chain management: A state-of-the-art literature review. *International Journal of Management Reviews*, 9(1), 53-80.
- Steger, M. F. (2006). An illustration of issues in factor extraction and identification of dimensionality in psychological assessment data. *Journal of personality Assessment*, 86(3), 263-272.
- Strauss, M. E., & Smith, G. T. (2009). Construct validity: Advances in theory and methodology. *Annual review* of clinical psychology, 5, 1-25.
- Suifan, T., Alazab, M., & Alhyari, S. (2019). Trade-off among lean, agile, resilient and green paradigms: An empirical study on pharmaceutical industry in jordan using a TOPSIS-entropy method. *International Journal of Advanced Operations Management*, 11(1-2), 69-101.
- Tan, K. H., Zhan, Y., Ji, G., Ye, F., & Chang, C. (2015). Harvesting big data to enhance supply chain innovation capabilities: An analytic infrastructure based on deduction graph. *International Journal of Production Economics*, 165, 223-233.
- Taylor, D., & Pettit, S. (2009). A consideration of the relevance of lean supply chain concepts for humanitarian aid provision. *International Journal of Services Technology and Management*, 12(4), 430-444.
- Tsai, C. Y., & Huang, S. H. (2015). A data mining approach to optimise shelf space allocation in consideration of customer purchase and moving behaviours. *International Journal of Production Research*, 53(3), 850-866.
- Tsao, Y. C. (2017). Managing default risk under trade credit: Who should implement Big-Data analytics in supply chains?. *Transportation Research Part E: Logistics and Transportation Review*, *106*, 276-293.
- Wadmann, S., & Hoeyer, K. (2018). Dangers of the digital fit: Rethinking seamlessness and social sustainability in data-intensive healthcare. *Big Data & Society*, 5(1), 2053951717752964.
- Waller, M. A., & Fawcett, S. E. (2013a). Click here for a data scientist: Big data, predictive analytics, and theory development in the era of a maker movement supply chain. *Journal of Business Logistics*, *34*(4), 249-252.
- Waller, M. A., & Fawcett, S. E. (2013b). Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. *Journal of Business Logistics*, *34*(2), 77-84.
- Wamba, S. F., & Akter, S. (2015, June). Big data analytics for supply chain management: A literature review and research agenda. In Workshop on Enterprise and Organizational Modeling and Simulation (pp. 61-72). Springer, Cham.
- Wamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How 'big data'can make big impact: Findings from a systematic review and a longitudinal case study. *International Journal of Production Economics*, 165, 234-246.
- Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J. F., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. *Journal of Business Research*, 70, 356-365.
- Wang, M., Wu, J., Kafa, N., & Klibi, W. (2020). Carbon emission-compliance green location-inventory problem with demand and carbon price uncertainties. *Transportation Research Part E: Logistics and Transportation Review*, 142, 102038.
- Wang, J., & Zhang, J. (2016). Big data analytics for forecasting cycle time in semiconductor wafer fabrication system. *International Journal of Production Research*, 54(23), 7231-7244.
- Wang, C., Li, X., Zhou, X., Wang, A., & Nedjah, N. (2016). Soft computing in big data intelligent transportation systems. *Applied Soft Computing*, 38, 1099-1108.
- Williams, B., Onsman, A., & Brown, T. (2010). Exploratory factor analysis: A five-step guide for novices. Australasian Journal of Paramedicine, 8(3).
- Wee, H. M., & Wu, S. (2009). Lean supply chain and its effect on product cost and quality: A case study on Ford Motor Company. Supply Chain Management: An International Journal, 14(5), 335-341.

- Wong, C. W., Wong, C. Y., & Boon-itt, S. (2018). How does sustainable development of supply chains make firms lean, green and profitable? A resource orchestration perspective. *Business Strategy and the Environment*, 27(3), 375-388.
- Wu, K. J., Liao, C. J., Tseng, M. L., Lim, M. K., Hu, J., & Tan, K. (2017). Toward sustainability: Using big data to explore the decisive attributes of supply chain risks and uncertainties. *Journal of Cleaner Production*, 142, 663-676.
- Wu, L., Hitt, L., & Lou, B. (2019). Data Analytics, Innovation, and Firm Productivity. Management Science.
- Yu, W., Chavez, R., Jacobs, M. A., & Feng, M. (2018). Data-driven supply chain capabilities and performance: A resource-based view. *Transportation Research Part E: Logistics and Transportation Review*, 114, 371-385.
- Zhang, Q., Zaccour, G., Zhang, J., & Tang, W. (2020). Strategic pricing under quality signaling and imitation behaviors in supply chains. *Transportation Research Part E: Logistics and Transportation Review*, 142, 102072.
- Zhang, J., Meng, W., Liu, Q., Jiang, H., Feng, Y., & Wang, G. (2016). Efficient vehicles path planning algorithm based on taxi GPS big data. *Optik*, 127(5), 2579-2585.
- Zhang, Y., Ren, S., Liu, Y., & Si, S. (2017). A big data analytics architecture for cleaner manufacturing and maintenance processes of complex products. *Journal of Cleaner Production*, 142, 626-641.
- Zhao, X., Yeung, K., Huang, Q., & Song, X. (2015). Improving the predictability of business failure of supply chain finance clients by using external big dataset. *Industrial Management & Data Systems*, 115(9), 1683-1703.
- Zhao, R., Liu, Y., Zhang, N., & Huang, T. (2017). An optimization model for green supply chain management by using a big data analytic approach. *Journal of Cleaner Production*, *142*, 1085-1097.
- Zhong, R. Y., Huang, G. Q., Lan, S., Dai, Q. Y., Chen, X., & Zhang, T. (2015). A big data approach for logistics trajectory discovery from RFID-enabled production data. *International Journal of Production Economics*, 165, 260-272.
- Zhong, R. Y., Lan, S., Xu, C., Dai, Q., & Huang, G. Q. (2016). Visualization of RFID-enabled shopfloor logistics Big Data in Cloud Manufacturing. *The International Journal of Advanced Manufacturing Technology*, 84(1-4), 5-16.
- Zhong, R. Y., Xu, C., Chen, C., & Huang, G. Q. (2017a). Big Data analytics for physical internet-based intelligent manufacturing shop floors. *International Journal of Production Research*, 55(9), 2610-2621.
- Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017b). Intelligent manufacturing in the context of industry 4.0: a review. *Engineering*, *3*(5), 616-630.

Annexure-I: Questionnaire

Instructions: All the questions are rated on a 1-5 scale. A value of 5 indicates a high degree of agreement (strongly agree), 4 represents agreement with the statement (agree), 3 represents neutrality, 2 represents a degree of disagreement (disagree), and 1 indicates a very high degree of disagreement (strongly disagree).

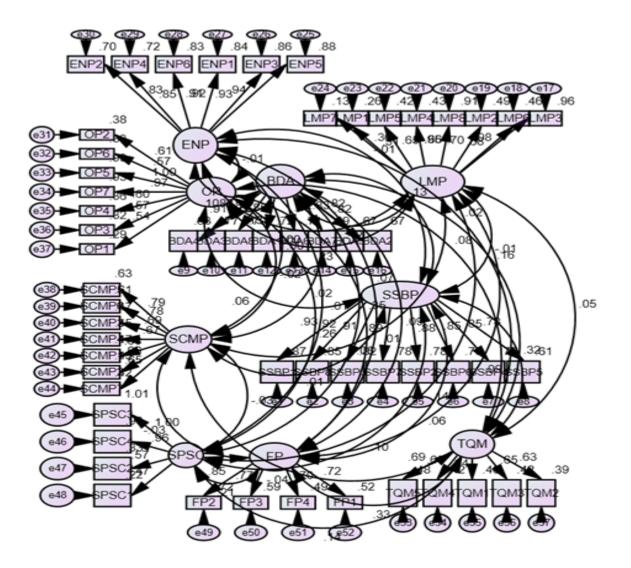
	"Strongly Disag	ree" = 1;	Here the indicators are "Disagree" = 2; "Neutral" = 3; "Agree" = 4; "Strongly	y Agi	ee"	= 5.		
Sr.	Variable	Item	Description	Scale				
No.	v al lable	Item Description	Description	1	2	3	4	5
		OP1	Our top management is committed towards LARG practices and BDA.					
		OP2	Training and education is must for BDA.					
1	Organisational Practices (OP)	OP3	Organization has well-defined vision and strategy policy					
		OP4	Our employees actively participate in policy making.					
		OP5	Company leadership is aware of importance of deciding roles of individual.					

Note: Please Mark $\sqrt{}$ *on your choice.*

4 0P0 new ideas. 1 1 1 0P7 Organization leadership is aware of importance of deciding roles of individual. 1 1 1 LMP1 Organization adopts lean practices effectively. 1 1 1 LMP1 Organization adopts lean practices effectively. 1 1 1 LMP2 Organization adopts lean practices, there is reduction in lead time 1 1 1 LMP3 With lean, organization as successfully implemented JIT and pull system 1 1 1 1 LMP5 Due to lean practices, there is reduction in lead time 1<				Our lower and middle level management to support			
4 OP7 Organization leadership is aware of importance of deciding roles of individual. 2 UMP1 Organization adopts lean practices effectively. Importance of individual. 2 Lean LMP1 Organization follows principle to minimise seven wastes Importance of individual. 2 Management Practices (LMP3 With lean, organization and evelop value-added SC LMP4 Organization has successfully implemented JT and pull system 2 LMP3 Due to lean practices, there is reduction in lead time Importance of individual indina indindividual indindindindia indivi			OP6	• • • • • • • • • • • • • • • • • • • •			
4 Lean LMP1 Organization adopts lean practices effectively. 1 2 LMP1 Organization adopts lean practices effectively. 1 1 3 LMP3 With lean, organization can develop value-added SC 1 1 1 LMP3 With lean, organization nas successfully implemented JIT and pull system 1 1 2 Practices (LMP) LMP5 Due to lean practices, there is reduction in lead time 1 1 1 LMP5 Due to lean practices, there is reduction in work and operation. 1 1 1 1 3 Supply Chain Management. SCMP1 Use or regulation in work on ad operation. 1			0.07				
2 Lean Management Practices (LMP) LMP3 With lean, organization can develop value-added SC 1 2 Management Practices (LMP) LMP3 With lean, organization can develop value-added SC 1 3 LMP4 Organization has successfully implemented JIT and pull system 1 1 3 LMP5 Due to lean practices, there is reduction in lead time 1 1 1 LMP5 Due to lean practices, thelp in standardization in work and operation. 1 1 3 Supply Chain Management SCMP1 LARG practices help in standardization in work and operation. 1 1 3 Supply Chain Management SCMP2 LARG practices and BDA. 1 1 5 SCMP1 SCMP3 With BDA and LARG practices miligates SC risk. 1 1 1 4 in Supply Chain (SPSC) SCMP5 LARG practices and BDA helps in suplier collaboration and integration. 1 1 1 5 Social Practices (SCMP1 SPSC1 Our stakeholders are aware of LARG practices. 1 1 6 Practices (EPP) <			OP/				
2 Laan Management Practices (LMP) With lean, organization can develop value-added SC LMP4 Implemented JT and pull system 2 Management Practices (LMP) LMP3 With lean, organization is successfully implemented JT and pull system 1 LMP5 Due to lean practices, there is reduction in lead time Implemented Practices 1 LMP5 Due to lean practices, there is reduction in work and operation. Implemented Practices 3 Supply Chain Management Practices (SCMP) SCMP2 LARG practices improve SC competitiveness. Implemented Practices 5 ScMP3 With BDA and LARG practices and BDA. SCMP3 SCMP4 Implemented Practices Implemented SCMP4 Implemented Practices Implemented Practices Implemented Practices Implemented SCMP6 Implemented Practices and BDA helps in supplier Implemented Practices Implemented Practices Implemented SCMP6 Implemented Practices and BDA helps in supplier Implemented Practices Implemented P							
2 Lcan Management Practices (LMP) LMP3 With lean, organization can develop value-added SC 2 Practices (LMP) Capanization has successfully implemented ITT and pull system 2 Practices (LMP) LMP5 Due to lean practices, there is reduction in lead time 3 LMP6 Cellular manufacturing/ Group Technology minimizes material movement. 3 Supply Chain Management SCMP1 Lean practices help in standardization in work and operation. 3 Supply Chain Management SCMP1 SCMP1 With IbDA and LARG practices and BDA. 3 SCMP1 SCMP2 Care practices for compatible for mass curves of LARG practices and BDA. 3 SCMP1 SCMP1 With BDA and LARG practices builds resilient SC. 4 SCMP1 SCMP2 Care practices and BDA helps in supplier collaboration and integration. 5 Social Practices (SCMP) SPSC1 Our subacholders are aware of LARG practices. 4 in Supply Chain (SPSC) SPSC3 Regulatory norms helped our company to promote LARG pract			LMP2				
2 Lean Practices (LMP) LMP4 Organization has successfully implemented JIT and pull system 2 Management Practices (LMP) LMP5 Due to lean practices, there is reduction in lead time 1 LMP6 Cellular manufacturing/ Group Technology minimizes material movement. Implemented JIT and pull system 3 Supply Chain LMP7 Our organization is compatible for mass customisation. Implemented JIT 3 Management Practices (SCMP) SCMP2 LARG practices and BDA. Implemented JIT 5 ScMP4 Our supplier in decision making about issues of LARG practices builds resilient SC. Implemented JIT 4 ScMP4 Our supplier is green partner of organization and has ISO certification. Implemented JIT 5 Scial Practices in Supply Chain (SPSC) SCMP6 Organization has policy for vendor selection. Implemented JIT 5 Environmental Practices (ENP) SPSC1 Our state And central government support adoption of LARG practices Implemented JIT 6 Financial Practices (FP) ENP4 Eco packaging is easy with assistance of BDA. Implemented JIT 6 Financial Practices (FP) FP1 O							
2 Management Practices (LMP) LMP5 Due to lean practices, there is reduction in lead time							
2 Management Practices (LMP) LMP5 Due to lean practices, there is reduction in lead time Imagement 2 LMP7 Cellular manufacturing/ Group Technology minimizes material movement. Imagement 3 LMP8 Lean practices help in standardization in work and operation. Imagement 3 Supply Chain Management Practices (SCMP) SCMP1 We involve our supplier in decision making about issues of LARG practices and BDA. 3 SCMP3 SCMP2 LARG practices improve SC competitiveness. 5 SCMP3 SCMP4 Our supplier is green partner of organization and has ISO certification. 4 Social Practices in Supply Chain (SPSC) SCMP5 LARG practice and BDA helps in supplier collaboration and integration. 5 Social Practices in Supply Chain (SPSC) SPSC1 Our stakeholders are aware of LARG practices. 6 Financial Practices (ENP) SPSC3 Regulatory norms helped our company to promote LARG practices. 6 Financial Practices (FP) ENP1 Econefits. 6 Financial Practices (FP) FP4 Cost of technological advancement must be calculated. 6 Financial Practices (FP) FP4		Lean	LMP4	C			
Practices (LMP) LMP6 Cellular manufacturing/ Group Technology minimizes material movement. LMP7 Our organization is compatible for mass customisation. Important for an experiment of the process of the protes of the protes of the process of the protes of the process of	2	Management	I MD5				
6 Financial Practices (ENP) material movement. Comparization is compatible for mass customisation. 3 Supply Chain Management Practices (SCMP) SCMP2 LARG practices help in standardization in work and operation. SCMP3 With BDA and LARG practices and BDA. 3 SCMP3 With BDA and LARG practices builds resilient SC. SCMP4 Our supplier is green partner of organization and has ISO certification. SCMP3 With BDA and LARG practices builds resilient SC. 4 SCMP4 SCMP4 Our supplier is green partner of organization and has ISO certification. SCMP5 LARG practices mitigates SC risk. 5 ScMP6 Organization has policy for vendor selection. SCMP6 Organization and integration. 4 Social Practices in Supply Chain (SPSC) SPSC1 Our stakeholders are aware of LARG practices. SPSC2 Involvement of NGOs and Local Bodies is must for adoption of LARG and BDA. 5 Environmental Practices (ENP) SPSC3 Regulatory norms helped our company to promote LARG practices. SPSC4 Our state and central government support adoption of LARG practices. 6 Financial Practices (ENP) ENP1 Organization must balance environmental cost. ENP2 ENP4 ENP1 ENP2 Organization is ready to invest initial capital. FP1 Organization is ready to allor for fraining. FP1 Organization is ready to allor for fraining. FP1 Organization is ready to allor funds for training. FP2 Organizati	2						
4 Image: Im		(LMP)	LIVII U				
6 Financial Practices (ENP) Customisation. Customisation. 6 Financial Practices (FP) Cost of EARG practices help in standardization in work and operation. Customisation. 6 Financial Practices (FP) Customisation. Customisation. Customisation. 6 Financial Practices (FP) Cost of Echnological advancement must be calculated. Cost of Echnological advancement must be calculated. Cost of Echnological advancement must be calculated.			LMP7				
4 operation. issues of LARG practices and BDA. 3 SCMP1 We involve our supplier in decision making about issues of LARG practices and BDA. 3 SCMP2 LARG practices improve SC competitiveness. issues of LARG practices builds resilient SC. 3 Management Practices (SCMP) SCMP4 Our supplier is green partner of organization and has ISO certification. 5 SCMP0 SCMP6 LARG practices and BDA helps in supplier collaboration and integration. 4 Social Practices in Supply Chain (SPSC) SPSC1 Our stakcholders are aware of LARG practices. 5 Social Practices in Supply Chain (SPSC) SPSC2 Involvement of NGOs and Local Bodies is must for adoption of LARG and BDA. 5 SPSC4 Our stakcholders are aware of LARG practices. Involvement of NGOs and Local Bodies is must for adoption of LARG practices. 6 Environmental Practices (ENP) SPSC4 Our state and central government support adoption of LARG practices. 6 Financial Practices (ENP) ENP1 Organization must balance environmental and social benefits. 6 Financial Practices (FP) FP4 Cost of technological advancement must be calculated. FP1 Organization is							
3 ScMP1 We involve our supplier in decision making about issues of LARG practices and BDA. 3 SCMP2 LARG practices inprove SC competitiveness. 3 SCMP3 With BDA and LARG practices builds resilient SC. 4 SCMP4 Our supplier is green partner of organization and has ISO certification. 5 SCMP5 SCMP6 Organization has policy for vendor selection. 6 Social Practices in Supply Chain (SPSC) SPSC1 LARG practices and BDA. helps in supplier collaboration and integration. 5 Environmental Practices (ENP) SPSC2 Involvement of NGOs and Local Bodies is must for adoption of LARG and BDA. 6 Financial Practices (ENP) SPSC3 Regulatory norms helped our company to promote LARG practices. 6 Financial Practices (FP) FP1 Organization must balance environmental and social benefits. 6 Financial Practices (FP) FP4 Eco packaging is easy with assistance of BDA. 6 Financial Practices (FP) FP4 Cost of technological advancement must be calculated. 6 Financial Practices (FP) FP4 Cost of technological advancement must be calculated. FP3 With adoption of			LMP8	Lean practices help in standardization in work and			
3 Supply Chain Management Practices (SCMP) SCMP2 LARG practices improve SC competitiveness. 3 SCMP2 LARG practices improve SC competitiveness.							
3 Supply Chain Management Practices (SCMP) SCMP2 LARG practices inprove SC competitiveness. Image: Comparison of the series of the seri			SCMP1				
Supply Chain Management Practices (SCMP) SCMP3 With BDA and LARG practices builds resilient SC. 3 ScMP4 Our supplier is green partner of organization and has ISO certification. Image: Comparization and has ISO certification. 3 SCMP5 LARG practice mitigates SC risk. Image: Comparization has policy for vendor selection. 4 SCMP7 LARG practices and BDA helps in supplier collaboration and integration. Image: Comparization has policy for vendor selection. 4 Social Practices in Supply Chain (SPSC) SPSC1 Our stakeholders are aware of LARG practices. Image: Comparization helps in supplier collaboration of LARG and BDA. 5 Funvironmental Practices (ENP) SPSC3 Regulatory norms helped our company to promote LARG practices. Image: Comparization must balance environmental and social benefits. 5 Environmental Practices (ENP) ENP1 Organization must balance environmental cost. Image: Comparization is ready to invest initial capital. 6 Financial Practices (FP) FP1 Organization is ready to invest initial capital. Image: Comparization is ready to invest initial capital. 6 Financial Practices (FP) FP4 Cost of technological advancement must be calculated. Cost of technological advancement must be calculated. <th></th> <th></th> <th></th> <th></th> <th>$\left \right$</th> <th></th> <th></th>					$\left \right $		
3 Management Practices (SCMP) SCMP4 Our supplier is green partner of organization and has ISO certification. 3 SCMP5 LARG practice mitigates SC risk. SCMP6 Organization has policy for vendor selection. Image: SCMP6 SCMP6 Organization has policy for vendor selection. Image: SCMP6 SCMP6 Our stakeholders are aware of LARG practices. Image: SPSC1 Social Practices SPSC1 Our stakeholders are aware of LARG practices. Image: SPSC2 4 Social Practices SPSC2 Involvement of NGOs and Local Bodies is must for adoption of LARG and BDA. SPSC3 5 SPSC4 Our state and central government support adoption of LARG practices. Image: SPSC3 Our state and central government support adoption of LARG practices. 5 Environmental Practices (ENP) ENP1 Organization must balance environmental and social benefits. Image: SPSC3 6 Financial Practices (ENP) ENP4 Eco packaging is easy with assistance of BDA. Image: SPSC3 6 Financial Practices (FP) FP4 Cost of technological advancement must be calculated. Image: SPSC3 Image: SPSC3 6 Financial Practices (FP) FP4 Cost of technological advancement					$\left - \right $		
3 Practices (SCMP) ISO certification. ISO certification. 3 SCMP5 LARG practice mitigates SC risk. ISO certification. 4 SCMP7 LARG practices and BDA helps in supplier collaboration and integration. ISO certification. 4 Social Practices in Supply Chain (SPSC) SPSC1 Our stakeholders are aware of LARG practices. ISO certification. 5 SpSc2 Involvement of NGOs and Local Bodies is must for adoption of LARG and BDA. ISO certification. 6 Environmental Practices (ENP) SPSC3 Regulatory norms helped our company to promote LARG practices. ISO certification. 6 Financial Practices (ENP) ENP1 ENP1 Organization must balance environmental cost. 6 Financial Practices (FP) FP1 Organization is ready to invest initial capital. ISO corporation is ready to allot funds for training. 6 Financial Practices (FP) FP4 Cost of technological advancement must be calculated. Iso cort firm is major concern for top management. 6 Financial Practices (FP) FP4 Cost of technological advancement must be calculated. Iso core or the corporation is ready to allot funds for training. 6 FP6 Return onInvestment (ROI) must be calculate							
(SCMP) SCMP5 LARG practice mitigates SC risk. Image: Comparison of the section o	3		SCMP4				
6 Financial Practices (FP) SCMP6 Organization has policy for vendor selection. Image: Construction of the second s			SCMP5				
4 Social Practices in Supply Chain (SPSC) SPSC1 Our stakeholders are aware of LARG practices. SPSC2 5 Social Practices in Supply Chain (SPSC) SPSC3 Regulatory norms helped our company to promote LARG practices. SPSC3 5 Environmental Practices (ENP) SPSC4 Our state and central government support adoption of LARG practices. SPSC4 6 Financial Practices (FP) ENP1 Social practices in service of BDA, organization is ready to invest initial capital. SPSC4 6 Financial Practices (FP) FP4 Corganization is ready to invest initial capital. Social capital capital. 6 Financial Practices (FP) FP4 Corganization is ready to invest initial capital. Social capital capital. 6 Financial Practices (FP) FP4 Corganization is ready to allot funds for training. Social capital. 7 FP6 Change over cost/time is major concern for top management. Cost of technological advancement must be calculated. Cost of technological advancement for top management.		(50111)					
4 collaboration and integration. instruction 4 Social Practices in Supply Chain (SPSC) SPSC1 Our stakeholders are aware of LARG practices. instruction 5 SPSC3 Regulatory norms helped our company to promote LARG practices. instruction instruction 5 Environmental Practices (ENP) SPSC4 Our state and central government support adoption of LARG practices. instruction 5 Environmental Practices (ENP) ENP1 Organization must balance environmental and social benefits. instruction 6 Financial Practices (FP) FP1 Organization is ready to invest initial capital. instruction instruction 6 Financial Practices (FP) FP2 Organization is ready to allot funds for training. instruction instruction 6 Financial Practices (FP) FP4 Cost of technological advancement must be calculated. instruction instruction 6 Financial Practices (FP) FP6 Change over cost/time is major concern for top management. instruction instruction 7 Organization follows practices of total anality. Our organization follows practices of total anality. instruction							
4 Social Practices in Supply Chain (SPSC) SPSC2 Involvement of NGOs and Local Bodies is must for adoption of LARG and BDA. 5 SPSC3 Regulatory norms helped our company to promote LARG practices. SPSC4 Our state and central government support adoption of LARG practices. 5 Environmental Practices (ENP) ENP1 Organization must balance environmental and social benefits. Organization must balance environmental cost. 6 Financial Practices (FP) FP1 Organization is ready to invest initial capital. FP2 6 Financial Practices (FP) FP4 Cost of technological advancement must be calculated. Cost of technological advancement must be calculated. ENP4 6 FP5 Change over cost/time is major concern for top management. FP6 Return onlnvestment (ROI) must be calculated carefully.							
4 Social Practices in Supply Chain (SPSC) adoption of LARG and BDA. Image: Chain (SPSC) 5 SPSC3 Regulatory norms helped our company to promote LARG practices. Image: Chain (SPSC) 5 SPSC4 Our state and central government support adoption of LARG practices. Image: Chain (SPSC) 6 Environmental Practices (ENP) ENP1 Organization must balance environmental and social benefits. Image: Chain Comparison of Compa							
4 in Supply Chain (SPSC) SPSC3 Regulatory norms helped our company to promote LARG practices. 5 SPSC4 Our state and central government support adoption of LARG practices. Image: Company to promote 5 Environmental Practices (ENP) ENP1 Organization must balance environmental and social benefits. Image: Company to promote 6 Financial Practices (FP) ENP4 Eco packaging is easy with assistance of BDA. Image: Company to promote 6 Financial Practices (FP) FP1 Organization is ready to allot funds for training. Image: Company to promote 6 Financial Practices (FP) FP4 Cost of technological advancement must be calculated. Image: Company to promote Image: Company to promote 6 Financial Practices (FP) FP4 Cost of technological advancement must be calculated. Image: Company to promote Image: Company to promote 7 FP6 Return onlnvestment (ROI) must be calculated carefully. Image: Company to promote Image: Company to promote			SPSC2				
6 Financial Practices (FP) FP4 Cost of technological advancement must be calculated carefully. Cost of technological advancement for top management. 6 Financial Practices (FP) FP4 Cost of technological advancement for top management. Cost of technological advancement for top management.							
6 Financial Practices (FP) FP4 Cost of technological advancement must be calculated. Cost of technological advancement must be calculated. 6 Financial Practices (FP) FP4 Cost of technological advancement must be calculated. Cost of technological advancement must be calculated. 6 Financial Practices (FP) FP4 Cost of technological advancement must be calculated. Cost of technological advancement must be calculated. 6 FP6 Return onInvestment (ROI) must be calculated carefully. Court of calculated carefully.	4		SPSC3				
6 Financial Practices (FP) FP1 Organization must balance environmental and social benefits. Image: Constraint of the second seco			CDCC4				
5 Environmental Practices (ENP) ENP1 Organization must balance environmental and social benefits. Image: Comparison of the comparison of			5P5C4				
5 Environmental Practices (ENP) ENP1 benefits. Image: Environmental cost. 5 ENP2 BDA improves recycling efficiency. Image: Environmental cost. Image: Environmental cost. 6 ENP4 Eco packaging is easy with assistance of BDA. Image: Environmental cost. Image: Environmental cost. 6 Financial Practices (FP) FP1 Organization is ready to invest initial capital. Image: Environmental cost. 6 Financial Practices (FP) FP2 Organization is ready to invest initial capital. Image: Environmental cost. 6 Financial Practices (FP) FP2 Organization is ready to allot funds for training. Image: Environmental cost. 7 FP3 With adoption of BDA, organization has competitive edge over competitors. Image: Environmental cost. Image: Environmental cost. 7 FP4 Cost of technological advancement must be calculated. Image: Change over cost/time is major concern for top management. Image: Environmental cost. Image: Environmental cost. 7 FP6 Return onInvestment (ROI) must be calculated carefully. Image: Environmental cost. Image: Environmental cost.							
5 Environmental Practices (ENP) ENP3 LARG practice minimizes environmental cost. Image: Cost of the series			ENP1				
5 Practices (ENP) ENP3 LARG practice minimizes environmental cost. 6 ENP4 Eco packaging is easy with assistance of BDA. 6 Financial Practices (FP) FP1 Organization is ready to invest initial capital. 6 Financial Practices (FP) FP4 Cost of technological advancement must be calculated. FP5 Change over cost/time is major concern for top management. FP6 Change over cost/time is major concern for top management. Guarantee is major concern for top management. FP6 Return onInvestment (ROI) must be calculated carefully. Guarantee is major concern for top management.			ENP2	BDA improves recycling efficiency.			
6 Financial Practices (FP) FP4 Eco packaging is easy with assistance of BDA. Image: Seasy with assistance of BDA. 6 Financial Practices (FP) ENP6 LARG practices helps organization in standardization. Image: Seasy with assistance of BDA. 6 Financial Practices (FP) FP1 Organization is ready to invest initial capital. Image: Seasy with assistance of BDA. 6 Financial Practices (FP) FP2 Organization is ready to allot funds for training. Image: Seasy with adoption of BDA, organization has competitive edge over competitors. 6 FP3 With adoption of BDA, organization has competitive edge over competitors. Image: Seasy with adoption of BDA, organization has competitive edge over competitors. 7 FP4 Cost of technological advancement must be calculated. Image: Seasy with adoption of the particle is major concern for top management. 7 FP6 Return onInvestment (ROI) must be calculated carefully. Image: Seasy with adoption follows practices of total quality.	5		ENP3	LARG practice minimizes environmental cost.			
6 ENP6 LARG practices helps organization in standardization. Image: standardization is ready to invest initial capital. 6 Financial Practices (FP) FP2 Organization is ready to allot funds for training. Image: standardization is ready to allot funds for training. 6 Financial Practices (FP) FP3 With adoption of BDA, organization has competitive edge over competitors. Image: standardization is ready to allot funds for training. 6 FP3 Cost of technological advancement must be calculated. Image: standardization. Image: standardization. 7 FP4 Cost of technological advancement must be calculated. Image: standardization. Image: standardization. 8 FP5 Change over cost/time is major concern for top management. Image: standardization. Image: standardization. 9 FP6 Return onInvestment (ROI) must be calculated carefully. Image: standardization. Image: standardization.		Tractices (ENT)					
6 Financial Practices (FP) FP1 Organization is ready to invest initial capital. Image: Constraint of the state of the stat							
6 Financial Practices (FP) FP2 Organization is ready to allot funds for training. 6 FP3 With adoption of BDA, organization has competitive edge over competitors. FP4 Cost of technological advancement must be calculated. FP5 Change over cost/time is major concern for top management. FP6 Return onInvestment (ROI) must be calculated carefully.							
6 Financial Practices (FP) FP3 With adoption of BDA, organization has competitive edge over competitors. 6 FP3 Cost of technological advancement must be calculated. FP4 Cost of technological advancement must be calculated. FP5 Change over cost/time is major concern for top management. FP6 Return onInvestment (ROI) must be calculated carefully.					$\left \right $		
6 Financial Practices (FP) FP3 edge over competitors. Image: Competitors is competitors. 6 FP4 Cost of technological advancement must be calculated. Image: Cost of technological advancement must be calculated. FP5 Change over cost/time is major concern for top management. Image: Cost of technological advancement (ROI) must be calculated carefully. Image: FP6 Return onInvestment (ROI) must be calculated carefully. Image: FP6			FP2		$\left - \right $		
6 Financial Practices (FP) FP4 Cost of technological advancement must be calculated. FP5 Change over cost/time is major concern for top management. Change over cost/time is major concern for top FP6 Return onInvestment (ROI) must be calculated carefully. Court organization follows practices of total quality.			FP3		1		
O Practices (FP) FP4 calculated. FP5 Change over cost/time is major concern for top management. Image: Change over cost/time is major concern for top FP6 Return onInvestment (ROI) must be calculated carefully. Image: Change over cost/time is major concern for top	_	Financial					
FP5 Change over cost/time is major concern for top management. FP6 Return onInvestment (ROI) must be calculated carefully.	6		FP4				
FP6 Return onInvestment (ROI) must be calculated carefully.			ED5				
FPO carefully. Our organization follows practices of total quality. Image: Constraint of the second secon			грэ	management.			
Carefully.			FP6			Ī	
Our organization follows practices of total quality			110				
			TQM1	Our organization follows practices of total quality			
Text De alter TOM2 Human Resource (HR) policies plays critical role in			<u>`</u>				
10tal Quanty 1QM2 organization			TQM2				
/ Management TOM practices improves overall operational	7						
(TQM) TQM3 reformance.		(TQM)	TQM3				
TQM4 Organization considers customer feedback for eco-			TOMA				
l lQM4 design.			1 2114	design.			

		TQM5	Our supplier management helps in information sharing.		
		BDA1	Organization is capable of parallel computing to address voluminous data.		
		BDA2	Real-time assess of data and information has helped organization in better decision making.		
	Big Data	BDA3	System is capable to handle semi-structured and unstructured data.		
8	Big Data Analytics (BDA)	BDA4	Truthfulness and accuracy of data has helped organization.		
	(BDA)	BDA5	Data driven intelligence has made decision making more effective.		
		BDA6	Organization has good infrastructure and facilities.		
		BDA7	Interchange ability of services (cloud, mobile, and analytics) plays key role.		
		BDA8	Analytics personnel are proficient with programming, data management, new tools etc.		
		SSBP1	BDA can reduce environment, supply chain, and responsiveness cost.		
	Grand a track la	SSBP2	BDA improves customer satisfaction.		
	Sustainable	SSBP3	BDA can help in saving the time.		
9	Supply Chain Business	SSBP4	BDA improves organization service level.		
	Performance	SSBP5	With BDA, responsiveness of organization has improved.		
	(SSBP)	SSBP6	BDA improves organization agility.		
		SSBP7	BDA help in customer and supplier collaboration.		
		SSBP8	BDA improves overall firm performance.		

Annexure-II: Rotated Component Matrix


				(Component				
	1	2	3	4	5	6	7	8	9
SSBP1	.931								
SSBP8	.921								
SSBP3	.912								
SSBP7	.900								
SSBP2	.882								
SSBP6	.867								
SSBP4	.862								
SSBP5	.792								
BDA4		.915							
BDA3		.884							
BDA8		.861							
BDA1		.860							
BDA6		.855							
BDA7		.852							
BDA5		.842							
BDA2		.834							
LMP3			.868						
LMP6			.844						
LMP2			.831						
LMP8			.823						
LMP4			.806						
LMP5			.786						

LMP1			.668						
LMP7			.503						
ENP5				.941					
ENP3				.931					
ENP1				.931					
ENP6				.923					
ENP4				.878					
ENP2				.869					
OP2					.839				
OP6					.826				
OP5					.821				
OP7					.803				
OP4					.770				
OP3					.718				
OP1					.567				
SCMP5						.805			
SCMP6						.796			
SCMP3						.756			
SCMP4						.745			
SCMP1						.736			
SCMP2						.731			
SCMP7						.699			
SPSC3							.918		
SPSC4							.900		
SPSC2							.729		
SPSC1							.659		
FP2								.837	
FP3								.813	
FP4								.738	
FP1								.713	
TQM5									.743
TQM4									.731
TQM1									.719
TQM3									.695
TQM2									.639
		ipal Component							
		ax with Kaiser N	ormaliza	ation.					
a. Rotation con	nverged in	6 iterations.							

Annexure-III: Estimates for CFA Model

Item		Construct	Standardized Estimate	Unstandardized Estimate	Standard Error (S.E.)	Critical Ratio (C.R.)
SSBP1	<	SSBP	.931	1.000		
SSBP8	<	SSBP	.919	1.011	.035	28.895
SSBP3	<	SSBP	.907	1.004	.036	27.643
SSBP7	<	SSBP	.885	.959	.037	25.650
SSBP2	<	SSBP	.881	.977	.039	25.319
SSBP6	<	SSBP	.853	.954	.041	23.200
SSBP4	<	SSBP	.852	.956	.041	23.138
SSBP5	<	SSBP	.779	.866	.046	18.833
BDA4	<	BDA	.912	1.000		
BDA3	<	BDA	.879	.972	.041	23.607
BDA8	<	BDA	.839	.925	.044	21.123
BDA1	<	BDA	.849	.957	.044	21.698
BDA6	<	BDA	.843	.936	.044	21.344
BDA7	<	BDA	.833	.922	.044	20.833
BDA5	<	BDA	.819	.932	.046	20.065
BDA2	<	BDA	.818	.933	.047	20.014
LMP3	<	LMP	.978	1.000		
LMP6	<	LMP	.675	.699	.046	15.137
LMP2	<	LMP	.702	.739	.045	16.249
LMP8	<	LMP	.954	.755	.019	40.582
LMP4	<	LMP	.655	.709	.049	14.379
LMP5	<	LMP	.646	.701	.050	14.037
LMP1	<	LMP	.511	.595	.060	9.983
LMP7	<	LMP	.362	.477	.073	6.563
ENP5	<	ENP	.938	1.000		
ENP3	<	ENP	.928	.991	.033	30.501
ENP1	<	ENP	.917	.979	.033	29.285
ENP6	<	ENP	.914	.973	.034	28.853
ENP4	<	ENP	.850	1.079	.046	23.270
ENP2	<	ENP	.834	.935	.042	22.172
OP2	<	OP	.614	1.000		
OP6	<	OP	.574		.107	8.933
OP5	<	OP	.995		.126	13.220
OP7	<	OP	.966	1.386	.106	13.061
OP4	<	ОР	.600		.112	9.253

Item		Construct	Standardized Estimate	Unstandardized Estimate	Standard Error (S.E.)	Critical Ratio (C.R.)
OP3	<	OP	.567	.933	.106	8.840
OP1	<	ОР	.537	.796	.094	8.438
SCMP5	<	SCMP	.792	1.000		
SCMP6	<	SCMP	.782	1.015	.073	13.907
SCMP3	<	SCMP	.689	.920	.077	12.018
SCMP4	<	SCMP	.672	.807	.069	11.683
SCMP1	<	SCMP	.682	.942	.079	11.882
SCMP2	<	SCMP	.657	.888	.078	11.377
SCMP7	<	SCMP	.651	.755	.067	11.259
SPSC3	<	SPSC	1.003	1.000		
SPSC4	<	SPSC	.963	1.071	.024	44.458
SPSC2	<	SPSC	.574	.562	.047	11.863
SPSC1	<	SPSC	.471	.469	.051	9.101
FP2	<	FP	.850	1.000		
FP3	<	FP	.770	.804	.058	13.911
FP4	<	FP	.698	.804	.065	12.449
FP1	<	FP	.720	.842	.065	12.897
TQM5	<	TQM	.691	1.000		
TQM4	<	TQM	.650	1.149	.125	9.158
TQM1	<	TQM	.636	1.070	.119	9.003
TQM3	<	TQM	.649	1.071	.117	9.146
TQM2	<	TQM	.627	1.060	.119	8.898

BDA LMP .083 .080 .057 1.399 BDA OP .096 .165 .101 1.636 BDA SCMP .031 .044 .089 .493 BDA SPSC .028 .023 .048 .480 BDA TQM .141 .218 .102 2.132 SSP BDA .129 .138 .065 2.144 SSBP1 SSBP .931 1.000 .035 28.935 SSBP3 SSBP .931 1.004 .036 27.666 SSBP3 SSBP .907 1.0104 .036 27.713 SSBP4 SSBP .881 .976 .039 25.289 SSBP4 SSBP .778 .865 .046 1.801 BDA4 SSBP .7778 <t< th=""><th>Item</th><th></th><th>Construct</th><th>Standardized Estimate</th><th>Unstandardi zed Estimate</th><th>Standard Error (S.E.)</th><th>Critical Ratio (C.R.)</th><th>P-Value</th></t<>	Item		Construct	Standardized Estimate	Unstandardi zed Estimate	Standard Error (S.E.)	Critical Ratio (C.R.)	P-Value
BDA < OP .096 .165 .101 1.636 . BDA <	BDA	<	ENP	.097	.080	.049	1.636	.102
BDA < SCMP 0.03 0.04 0.89 .493 BDA <	BDA	<	LMP	.083	.080	.057	1.399	.162
BDA SPSC	BDA	<	OP	.096	.165	.101	1.636	.102
BDA \leftarrow FP 06 06 063 095 BDA \leftarrow TQM 141 18 02 2132 SSBP \leftarrow BDA 129 188 065 2144 SSBP1 \leftarrow SSBP 01 035 2.8935 SSBP3 \leftarrow SSBP 01 035 2.8935 SSBP3 \leftarrow SSBP 01 035 2.8935 SSBP4 \leftarrow SSBP 01 035 2.593 SSBP5 \leftarrow SSBP 01 035 2.593 SSBP4 \leftarrow SSBP 01 01 2.319 SSBP5 \leftarrow SSBP 01 01 2.3	BDA	<	SCMP	.031	.044	.089	.493	.622
BDA C TQM .141 218 .102 2.132 SSBP <	BDA	<	SPSC	.028	.023	.048	.480	.631
SSBP < BDA 129 138 665 2.144 SSBP1 <	BDA	<	FP	.006	.006	.063	.095	.924
SSBP < BDA 129 138 665 2.144 SSBP1 <	BDA	<	ТОМ	.141	.218	.102	2.132	.033
SSBP1 < SSBP SSBP SSBP SSBP3 <		<						.032
SSBP8 < SSBP .919 1.011 .0.35 28.935 SSBP3 <		<						
SSBP3 < SSBP .907 1.004 .036 27.686 SSBP7 <						.035	28.935	***
SSBP2 < SSBP		<						***
SSBP6 < SSBP .853 .954 .041 23.187 SSBP4 <	SSBP7	<	SSBP	.886	.959	.037	25.713	***
SSBP4 < SSBP .852 .955 .041 23.119 SSBP5 <	SSBP2	<	SSBP	.881	.976	.039	25.289	***
SSBP5 < SSBP .778 .865 .046 18.801 BDA4 <	SSBP6	<	SSBP	.853	.954	.041	23.187	***
BDA4 < BDA .912 1.000	SSBP4	<	SSBP	.852	.955	.041	23.119	***
BDA3 < BDA .878 .972 .041 23.485 BDA8 <	SSBP5	<	SSBP	.778	.865	.046	18.801	***
BDA8 < BDA .837 .925 .044 21.002 BDA1 <	BDA4	<	BDA	.912	1.000			
BDA1 < BDA .847 .957 .044 21.574 BDA6 <	BDA3	<	BDA	.878	.972	.041	23.485	***
BDA6 < BDA .841 .936 .044 21.230 BDA7 <	BDA8	<	BDA	.837	.925	.044	21.002	***
BDA7 < BDA .832 .922 .044 20.727 BDA5 <	BDA1	<	BDA	.847	.957	.044	21.574	***
BDA5 <	BDA6	<	BDA	.841	.936	.044	21.230	***
BDA2 < BDA .817 .934 .047 19.907 LMP3 <	BDA7	<	BDA	.832	.922	.044	20.727	***
LMP3 <	BDA5	<	BDA	.818	.932	.047	19.957	***
LMP6 <		<	BDA			.047		***
LMP2 <	LMP3	<	LMP	.979	1.000			
LMP2 <	LMP6	<	LMP	.673	.696	.046	15.063	***
LMP4 LMP .653 .705 .049 14.304 LMP5 <		<						***
LMP5 < LMP .643 .698 .050 13.974 LMP1 <	LMP8	<	LMP	.954	.754	.018	40.921	***
LMP1 < LMP .509 .593 .060 9.947 LMP7 <	LMP4	<	LMP	.653	.705	.049	14.304	***
LMP7 < LMP .362 .476 .073 6.562 ENP5 <	LMP5	<	LMP	.643	.698	.050	13.974	***
LMP7 < LMP .362 .476 .073 6.562 ENP5 <	LMP1	<	LMP	.509	.593	.060	9.947	***
ENP5 < ENP .938 1.000								***
	ENP3	<	ENP	.928	.991	.033	30.496	***
LENRI IS LENR I 0171 0701 0331 20280	ENP1	<	ENP	.917		.033	29.289	***

Annexure-V: Estimates	for the structural model
------------------------------	--------------------------

Item		Construct	Standardized Estimate	Unstandardi zed Estimate	Standard Error (S.E.)	Critical Ratio (C.R.)	P-Value
ENP6	<	ENP	.914	.974	.034	28.865	***
ENP4	<	ENP	.850	1.079	.046	23.269	***
ENP2	<	ENP	.834	.935	.042	22.164	***
OP2	<	OP	.615	1.000			
OP6	<	OP	.575	.961	.107	8.946	***
OP5	<	OP	.994	1.669	.126	13.220	***
OP7	<	OP	.967	1.386	.106	13.077	***
OP4	<	OP	.601	1.038	.112	9.266	***
OP3	<	OP	.568	.933	.105	8.844	***
OP1	<	OP	.536	.794	.094	8.426	***
SCMP5	<	SCMP	.791	1.000			
SCMP6	<	SCMP	.782	1.015	.073	13.884	***
SCMP3	<	SCMP	.690	.921	.077	12.023	***
SCMP4	<	SCMP	.673	.808	.069	11.688	***
SCMP1	<	SCMP	.683	.944	.079	11.888	***
SCMP2	<	SCMP	.657	.889	.078	11.374	***
SCMP7	<	SCMP	.650	.755	.067	11.235	***
SPSC3	<	SPSC	1.008	1.000			
SPSC4	<	SPSC	.959	1.061	.025	42.464	***
SPSC2	<	SPSC	.572	.557	.047	11.755	***
SPSC1	<	SPSC	.466	.462	.051	8.996	***
FP2	<	FP	.862	1.000			
FP3	<	FP	.772	.795	.057	13.840	***
FP4	<	FP	.686	.779	.064	12.153	***
FP1	<	FP	.712	.821	.065	12.691	***
TQM5	<	TQM	.708	1.000			
TQM4	<	TQM	.658	1.135	.123	9.246	***
TQM1	<	TQM	.648	1.063	.116	9.137	***
TQM3	<	TQM	.635	1.022	.114	8.994	***
TQM2	<	TQM	.600	.991	.115	8.594	***

*** significant at p<0.001

Annexure -VI: Descriptive Analysis

	AVE	Composite Reliability	R Square	Cronbachs Alpha	Communality	Redundancy
BDA	0.7556	0.9611	0.083	0.9537	0.7556	0.0092
ENP	0.8337	0.9678	0	0.961	0.8337	0
FP	0.7488	0.8795	0	0.8429	0.6488	0
LMP	0.7971	0.9192	0	0.9056	0.5971	0
OP	0.7473	0.8914	0	0.9046	0.5473	0
SCMP	0.7585	0.6618	0	0.8732	0.2585	0
SPSC	0.7854	0.8949	0	0.8497	0.6854	0
SSBP	0.7952	0.9688	0.018	0.9634	0.7952	0.0132
TQM	0.7358	0.8521	0	0.7852	0.5358	0

Annexure-VII: Regression weights, direct and indirect effect

			Estimate	S.E.	C.R.	Р	Label
BDA	<	TQM	.143	.073	1.979	.048	
BDA	<	LMP	.103	.066	1.560	.119	
BDA	<	SPSC	.049	.055	.888	.374	
BDA	<	SCMP	.030	.082	.372	.710	
BDA	<	ENP	.079	.045	1.742	.082	
BDA	<	OP	.021	.074	.281	.779	
BDA	<	FP	.024	.060	.394	.693	
SSBP	<	BDA	.101	.061	1.673	.094	
SSBP	<	TQM	.392	.076	5.140	***	
SSBP	<	LMP	093	.069	-1.354	.176	
SSBP	<	SPSC	.129	.057	2.258	.024	
SSBP	<	SCMP	.016	.085	.188	.851	
SSBP	<	ENP	015	.047	321	.748	
SSBP	<	OP	002	.077	026	.979	
SSBP	<	FP	066	.063	-1.050	.294	

Regression Weights: (Group number 1 - Default model)

Direct Effects - Two Tailed Significance (BC) (Group number 1 - Default model)

	FP	OP	ENP	SCMP	SPSC	LMP	TQM	BDA
BDA	.759	.821	.064	.757	.431	.150	.106	
SSBP	.408	.981	.700	.830	.064	.153	.001	.081

Direct Effects (Group number 1 - Default model)

	FP	OP	ENP	SCMP	SPSC	LMP	TQM	BDA
BDA	.024	.021	.079	.030	.049	.103	.143	.000
SSBP	066	002	015	.016	.129	093	.392	.101

Indirect Effects - Two Tailed Significance (BC) (Group number 1 - Default model)

	FP	OP	ENP	SCMP	SPSC	LMP	TQM	BDA
BDA								
SSBP	.572	.645	.071	.578	.258	.113	.074	

Indirect Effects (Group number 1 - Default model)

	FP	OP	ENP	SCMP	SPSC	LMP	TQM	BDA
BDA	.000	.000	.000	.000	.000	.000	.000	.000
SSBP	.002	.002	.008	.003	.005	.010	.015	.000