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Abstract
Deep learning (DL), which involves powerful black box
predictors, has achieved a remarkable performance in
medical image analysis, such as segmentation and clas-
sification for diagnosis. However, in spite of these suc-
cesses, these methods focus exclusively on improving
the accuracy of point predictions without assessing the
quality of their outputs. Knowing how much confi-
dence there is in a prediction is essential for gaining
clinicians’ trust in the technology. In this article, we
propose an uncertainty estimation framework, called
MC-DropWeights, to approximate Bayesian inference in
DL by imposing a Bernoulli distribution on the incom-
ing or outgoing weights of the model, including neu-
rones. We demonstrate that by decomposing predic-
tive probabilities into two main types of uncertainty,
aleatoric and epistemic, using the Bayesian Residual
U-Net (BRUNet) in image segmentation. Approximation
methods in Bayesian DL suffer from the “mode col-
lapse” phenomenon in variational inference. To address
this problem, we propose a model which Ensembles of
Monte-Carlo DropWeights by varying the DropWeights
rate. In segmentation, we introduce a predictive uncer-
tainty estimator, which takes the mean of the standard
deviations of the class probabilities associated with every

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.
© 2020 The Authors. Computational Intelligence published by Wiley Periodicals LLC.

Computational Intelligence. 2020;1–34. wileyonlinelibrary.com/journal/coin 1

https://orcid.org/0000-0001-5456-2197
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fcoin.12411&domain=pdf&date_stamp=2020-10-22


2 GHOSHAL et al.

class. However, in classification, we need an alterna-
tive approach since the predictive probabilities from a
forward pass through the model does not capture uncer-
tainty. The entropy of the predictive distribution is a
measure of uncertainty, but its exponential depends on
sample size. The plug-in estimate in mutual information
is subject to sampling bias. We propose Jackknife resam-
pling, to correct for sample bias, which improves esti-
mating uncertainty quality in image classification. We
demonstrate that our deep ensemble MC-DropWeights
method, using the bias-corrected estimator produces an
equally good or better result in both quantified uncer-
tainty estimation and quality of uncertainty estimates
than approximate Bayesian neural networks in practice.
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1 INTRODUCTION

Recently, deep learning (DL), which has achieved state-of-the-art performance across applied
sciences (biology, physics, chemistry), engineering (autonomous driving), and advancing med-
ical diagnostics such as lung disease classification and metastasis detection for breast cancer
and magnetic resonance imaging (MRI), PET/CT imaging.1 In applications of computer-based
medical systems, an erroneous decision, especially in life-threatening situations, can have fatal
consequences.

Uncertainty is the most common and unavoidable feature of DL tasks. DL models produce
a point estimate, which is often incorrectly interpreted as a probability of model confidence.
In reality, it is a normalized network output for a given class relative to the other classes.
This cannot explain the model’s overall confidence and leads to generalization issues, such as
over-confidence in their predictions and unpredictable behavior on out-of-distribution (OOD)
samples. For example, DL-based diagnosis of MRI images of brain tumours needs a way to express
the uncertainty of an image in the same way as a doctor may express ambiguity and ask for experts
help for further inspection and correction.

Therefore, it is not sufficient to depend on the classification or regression score alone from
DL models. In order to address this problem, the deep neural networks need to provide uncer-
tainty estimation as an additional insight to point prediction to improve the reliability in the
decision-making process.

Estimating uncertainty in deep neural networks is a challenging and yet unsolved problem.
Bayesian neural networks (BNNs) learn a distribution over each of the network’s weight
parameters2 and are currently considered state-of-the-art for estimating predictive uncer-
tainty. There are many methods proposed for quantifying uncertainty or confidence estimates
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approximated by Markov chain Monte Carlo (MCMC), variational inference (VI) including deep
ensembles.3

In medical image segmentation such as cell detection or localization to be meaningful, toler-
ance must typically be much tighter (eg, >50% overlap with the actual bounding box). Based on
the input medical image, a network can be certain with high or less confident about its decision,
indicated by the predictive posterior distribution. However, predictive uncertainty in DL results
from two separate forms of uncertainty:4,5

1. Model uncertainty or epistemic uncertainty (EU) accounts for uncertainty in the model
parameters due to the lack of training data. EU associated with the model reduces as the
training data size increases.

2. Data uncertainty or aleatoric uncertainty (AU) accounts for noise inherent in the observations
due to class overlap, label noise, homoscedastic and heteroscedastic noise, which cannot be
reduced even if more data were to be collected unless it is possible to observe all explanatory
variables with increased precision.

We would like to note that, in our conference paper,6 we proposed to quantify uncertainty
of segmentation in DL by decomposing predictive uncertainty into the correct interpretation of
AU and EU and provided additional insights into the corresponding medical image segmenta-
tion with point prediction. However, we need an alternative approach in classification, since the
predictive probabilities from a forward pass through the model does not capture uncertainty. In
this article, we introduce deep ensembles of Monte-Carlo DropWeights to address the “mode col-
lapse” phenomenon in VI as well as propose a method to estimate bias-corrected uncertainty
leveraging Jackknife resampling method to improve estimating uncertainty in classification in
DL. We also propose metrics to quantify the uncertainty estimates and quality of estimated uncer-
tainty. We show that our method produces as good if not better results than the recently proposed
approximate BNNs technique.

Our objective is not to achieve the state-of-the-art performance in DL, but rather to define a
framework for estimating uncertainty in DL and evaluate the usefulness of predictive uncertainty
for segmentation and classification to avoid overconfident, incorrect predictions during decision
making in computer-based medical systems.

2 RELATED RESEARCH

An artificial neural network is a parameterized function. DL systems are neural network models
with architectural and algorithmic innovations (eg, many convolution layers, activation func-
tions, better initialization and learning rates, Dropout, batch normalization). However, DL is
generally very data-hungry, computationally intensive to train and deploy, poor at represent-
ing uncertainty, easily fooled by adversarial situations, uninterpretable (black-box), lacking in
transparency, and lacks trust in the model outcome.

Nevertheless, DL provides a framework for a powerful class of flexible, rich nonlinear mod-
els for classification and prediction, for scalable learning using stochastic approximations. DL
models are most commonly trained with maximum likelihood estimate (MLE) or maximum a
posterior (MAP) procedures, which only yields point estimates of the parameters with fixed, deter-
ministic values. However, this is unable to provide a notion of uncertainty in the parameters,
inherent stochastic noise and model specification. In reality, a model can provide overconfident
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predictions or incorrect classifications with a high confidence, especially when a model is trained
on data outside the distribution or adversarial situations. It is essential to know how confident
our model is for each prediction and what a model does not know in DL systems, especially when
making vital decisions in medical applications. Uncertainty in regression and classification tasks
is important to improve the reliability and safety of computer-based medical systems.

The Bayesian framework provides a natural and principled way of modeling uncertainty
via probability density over outcomes, which is resistant to overfitting.7,8 There are a variety of
approximations5,7–10 that have been developed, including Laplace approximation, MCMC meth-
ods, stochastic gradient MCMC variants such as Langevin dynamics, Hamiltonian methods,
including multiplicative normalizing flows, stochastic batch normalization, maximum softmax
probability, heteroscedastic classifier, and learned confidence estimates, including deep ensem-
bles to adapt neural networks to BNN. The most common approach is to replace the weight
parameters of deterministic network with a prior distribution (often a Gaussian) on its weights
and, instead of optimizing the network weights directly, averaging it over all possible weights
(referred to as marginalization). Although these models are simple to formulate and offer stability
against over-fitting, the inference is computationally intractable due to the huge computational
costs, size, and nonlinearity.

Therefore, many studies have been conducted to approximate the posterior using VI.3 All
models assume independence between the individual weights. Variational Dropout11 and VI11

methods do not scale because they are dependent on the choice of the family of fully factorized
approximate distributions and rarely rich enough to contain the exact posterior. In 2011, Graves12

proposed a model using sampling methods to estimate a factorized posterior or a biased estimator.
Blundell et al introduced Bayes By Backprop (BBP), a stochastic gradient VI algorithm to estimate
uncertainty from deep Q-networks.2

The optimization is performed efficiently by using the generalized reparametrization trick
to obtain an unbiased estimate with respect to the variational parameters. Another approach to
VI is probabilistic backpropagation (PBP), which can also estimate factorized posterior based on
expectation propagation.13

An alternative to Bayesian inference14 ensembles of deep networks (a.k.a. the frequentist
approach) to estimate predictive uncertainty based on the sample difference due to different
initialization and noise in the stochastic gradients. Although this technique requires minimal
hyperparameter tuning, it has to maintain several independent models and execute forward
passes through all of them to calculate the variance of their output prediction to make the infer-
ence. Unlike Bayesian methods, ensembles approach are effectively sensitivity analysis of model
and can not quantify uncertainty.

In 2016, Gal3 showed that neural networks with arbitrary depth and nonlinearities, trained
with Dropout, a well-known regularization technique,15 applied before every weight layer,
approximate Bayesian inference in deep Gaussian processes (marginalized over its covariance
function parameters). Uncertainty estimates is obtained by training a network with Dropout and
then taking Monte Carlo (MC) samples of the prediction using Dropout on at test time. The
amount of noise in the input data is considered to be constant. This method captures variance of
network parameters and commonly known as MC-Dropout.

It has been noted that MC-Dropout provides measures of risk, but not uncertainty.16 More
recently, very deep convolutional architectures have been proposed (eg, residual networks,
etc.), with more than a hundred layers that have no Dropout layer to avoid accuracy degra-
dation. Lewandowski17 showed that batch normalization was a way of incorporating weight
uncertainty in deep kernel learning, which corresponds to VI on the neural network weights.



GHOSHAL et al. 5

Training a deep network using a batch normalization formulation of propagating uncertainty in
deep kernel learning is equivalent to approximate VI in Bayesian models, which can estimate
meaningful model uncertainty without any change in the overall model structure or the training
procedure.

In BNNs, predictive uncertainty can be decomposed into two types of uncertainties character-
ized as EU, which is also known as model uncertainty, and AU, which depends on the inherent
noise in the observations.5,18

3 METHODOLOGY

Recently, Gal3 proved that neural network trained with Dropout is an approximate Bayesian
model. During test time, Dropout is turned on to keep the Bernoulli distribution over the network
weights, whereas each forward pass through the trained neural network with Dropout generates
a Monte Carlo sample from the posterior distribution. The mean of these samples can be inter-
preted as the prediction and the model uncertainty can be estimated by computing the variance
on multiple predictions.

In this section, following Gal,3 we briefly show that a neural network with DropWeights
applied on fully connected layers for regularizing neural network to prevent over-fitting is
mathematically equivalent to an approximation to the probabilistic deep Gaussian process. We
then approximate Bayesian modeling via VI with a specific variational distribution to obtain
uncertainties in DL.

3.1 DropWeights in neural network

Convolutional neural networks (CNNs) in DL have shown outstanding performances in biomed-
ical image processing. However, CNNs are prone to over-fitting when trained with small datasets.
A number of techniques have been developed for regularizing neural networks, such as adding
an l2 penalty on the network, Bayesian methods,8 weight elimination and early stopping of
training.19 In deep neural networks, co-adaptation means that some neurons are highly depen-
dent on others which significantly impacts the model performance. Overfitting can be reduced
by using Dropout15 and DropConnects,20 to prevent complex co-adaptations on the train-
ing data. Network pruning by dropping connections has been widely studied to compress a
pre-trained, fully connected neural network models. It can also reduce the network complexity
and over-fitting.21,22 BNNs is used to mitigate overfitting and can be trained with small datasets.7,8

The number of neurons in a human brain stays constant throughout its life, but synapse con-
nectivity changes dramatically over time.23 Using this fact, we have developed a technique called
“DropWeights” which randomly drops connections, that is, incoming or outgoing weights are
set to zeros, including drop neurones. DropWeights can be considered as the combination of
generalized version of Dropout and DropConnects, and this comprises of the method used for
regularizing deep neural networks. DropWeights is a kind of ensemble and approximates the out-
put by a moment matched Gaussian, and it produces even more possible models, since there are
almost always more connections than units. Figure 1 illustrates the DropWeights strategy. This
DropWeights method converts a dense, fully connected neural network to dynamically sparse
representations on the weights during training and test time, when DropWeights are turned on
References 24 and 25.
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F I G U R E 1 A graphical illustration of DropWeights strategy [Color figure can be viewed at
wileyonlinelibrary.com]

We consider DropWeights applied to a single fully connected layer of deep neural network
Ki− 1 dimensional input X = {x1, x2 … xN}, ith layer of neural network Ki units would output a Ki
dimensional activation vectors ai = 𝜎(Wix) where W i is the Ki− 1xKi weight parameters including
biases and 𝜎(.) is the nonlinear activation function.

When DropWeights is applied to the outputs of a full-connected layer, different neurons allo-
cate different drop probabilities to enable the model to dynamically adjust the drop probability of
the weight, eventually leading more sparse features of network model extraction.25

The feed-forward operation of neural networks with DropWeights can be described as:

𝜌
(l)
ij = pdrop(y(l−1)

j ) (1)

M(1)
ij ∼ Bernoulli(𝜌(l)ij ) (2)

W̃ (l)
ij = W̃ (l)

ij ⊙ (M(l)
ij > 𝜌

(l)
ij ) (3)

zl
i =

n∑
j=1

W̃ (l)
ij y(l−1)

j + b(l)
i (4)

y(l) = f (zl). (5)

For a DropWeights layer, the output activations can be written as:

∑
M

f ((M ⊙ W)x) ≈ f

(∑
M
(M ⊙ W)x

)
, (6)

where M is a binary mask encoding the connection information drawn independently from a
Bernoulli distribution with probability p, W (l)

ij is for the connection weight between the j neuron

http://wileyonlinelibrary.com
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in the l− 1 layer and the i neuron in the l layer; 𝜌(l)ij is for the drop probability of the weight asso-
ciated with the weight W (l)

ij being set to 0; pdrop(.) is for the calculation function of weight drop
probability. Hadamard product ⊙ denotes the element-wise product of matrices. Input of the acti-
vation function is a weighted sum of Bernoulli variables and can be approximated by a Gaussian
distribution. During test time, we drew samples of z(l+ 1)and fed the samples into the activation
function f . This represents the mixture model interpretation of DropWeights, where the output
is a total of 2M different network architectures possible, each with weight p(M). Each of these
correspond to some of the connections being present and some being dropped. DropWeights is
functionally equivalent to an ensemble rather than a single model. The output value of the sparsity
formula is in the range [0, 1.0].

3.2 Bayesian neural networks

Neural networks can be successfully applied to tasks such as regression or classification when
viewed as probabilistic models. In this section, we briefly introduce the BNNs,7,8 which provides
a probabilistic interpretation of DL models and a principled method for modeling uncertainty.
The idea behind Bayesian modeling is to extend the standard Neural Networks by placing
a prior probability distribution (often a Gaussian) over the weight parameters when making
predictions.2 However, due to a large number of parameters for neural networks, such models
are computationally intractable. Gal et al showed that neural networks with Dropout is equiva-
lent to approximating VI in the deep Gaussian process, marginalized over its covariance function
parameters.3 This approach addresses the issues with overconfidence and providing quantifi-
cation of predictive uncertainty. This is because the uncertainty in weight space captured by
the posterior is incorporated into the predictive uncertainty, giving us a way DL model to say
“I Don’t Know.”

Given dataset D(X , Y ), where X = {x1, x2 … xN} and the corresponding labels Y =
{y1, y2 … yN} where X ∈Rd be a d-dimensional input vector and Y ∈ {1 … C} with yi ∈ {1 … C},
given C class label, a set of independent and identically distributed (i.i.d.) training samples
size N{xi, yi} for i= 1 to N, the task is to find a function f : X →Y using weights of neural net
parameters w as close as possible to the original function that has generated the outputs Y .

For the regression problem of predicting a continuous output ŷ given an input x̂ and train-
ing dataset D(X , Y ), a neural network can be used to model a probability distribution over ŷ,
for example, by placing a normal distribution over ŷ and using the network to predict its mean
and variance. Similarly for classification, a neural network can be used to predict a categorical
distribution over the possible classes. Learning the network parameters w using the maximum
likelihood estimation (MLE) criterion:

wMLE = argmaxwp(D|w) = argmaxw log p(D|w), (7)

can lead to severe overfitting.
By Bayes’ theorem, multiplying the likelihood with a prior distribution p(w) is proportional to

the posterior distribution p(w|D) ∝ p(D|w)p(w). Maximizing p(D|w)p(w) gives the MAP estimate
of w:

wMAP = argmaxw log p(w|D) = argmaxw

⎡⎢⎢⎢⎣log p(D|w)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Likelihood

+ log p(w)
⏟⏞⏟⏞⏟

Prior

⎤⎥⎥⎥⎦ . (8)
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The optimization objectives in MAP are the same as for MLE plus a regularization term from
the log prior. However, both MLE and MAP provide point estimates of parameters.

In BNNs, we treat the weights in a neural network as random variables instead of fixed
parameters, and performing posterior inference on these weights. Assuming, we place a prior dis-
tribution p(w) over the weights and bias of the network, the marginal likelihood p(X , Y ), and a
likelihood function p(y|x, w), this results posterior distribution:

p(w|D) =
p(D|W)p(W)

p(D)
=

∏N
i=1 p(yi|xi,w)p(w)

p(X ,Y )
, (9)

given the data p(w|X , Y ). The predictive distribution of an unknown label ŷ for a new input x̂ by
marginalizing the parameters:

p(ŷ|x̂,X ,Y ) = ∫ p(ŷ|x̂,w)p(w|X ,Y )dw. (10)

This is equivalent to averaging predictions from an ensemble of neural networks weighted by
the posterior distribution p(w|X , Y ) and all the model parameters w. Unfortunately, an analytical
solution for the posterior distribution p(w|X , Y ) in neural networks is intractable.

VI11,26 converts the integration the task of computing a posterior into an optimization
problem. Our objective is to use VI11,26 to approximate the posterior distribution on the weights
by a tractable variational distribution q𝜃(w) indexed by a variational parameter 𝜃.

3.3 Variational inference

The underlying idea in VI is to approximate the (intractable) posterior distribution with (tractable)
variational distribution on the weights q(w|𝜃) into an optimization (minimization or maximiza-
tion) problem, parametrized on 𝜃 that minimizes the Kullback-Leibler (KL) divergence between
variational posterior q and the true posterior: KL(q(w|𝜃)||p(w|Y ,X)). Minimizing the KL diver-
gence is equivalent to maximizing the evidence lower bound (ELBO) which also contains the
integral with respect to the distribution over latent variables. Now we take the approach of
maximizing a lower bound to the model evidence logp(X , Y ) by applying Jensen’s inequality to
the KL divergence between the approximating distribution and the true posterior, to obtain the
log-ELBO:

ELBO ≡ log p(Y |X) ≥ log p(Y |X) − KL(q(w|𝜃)||p(w|Y ,X)). (11)

The KL divergence between variational distribution q(w|𝜃) and the posterior p(w|Y , X) is
defined as:

KL(q(w|𝜃)||p(w|Y ,X)) = ∫ q(w|𝜃) log
q(w|𝜃)

p(w|Y ,X)
≥ 0. (12)

The ELBO of the RHS of the inequality in Equation (10) can be rearranged:

log p(Y |X)) ≥ ELBOς = ∫ q(w|𝜃) log
p(Y ,w|X)

q(w|𝜃) . (13)
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The loss function used to train the BNN corresponds to the negative ELBO.27 It is simple to
evaluate as opposed to the exact one. We use the variational distribution q(𝜔) instead of p(w|X , Y ).
This variational distribution is chosen close to p(. |X , Y ), as it minimizes the Kullback Leibler
divergence between the approximate posterior an the prior over w:

LVI ∶= q(w|𝜃) log p(Y |X ,w)dw
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Log Likelihood

− ∫ q(w|𝜃) log
q(w|𝜃)
p(w)

dw
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

KL divergence

= Eq(w|𝜃)[log p(Y |X ,w)] − DKL(q(w|𝜃)||p(w)). (14)

Hence, the ELBO can be decomposed into two terms: Log-likelihood and KL divergence.

1. Maximizes the likelihood of the training data, which measures how well we fitted the data
close to the prior—preventing the model over-fitting. We can approximate first term by
Monte Carlo integration with the modeling assumption that p(w)= p(w|X) to get an unbiased
estimate.

2. The second term is KL divergence of the prior w.r.t., the approximated posterior which pre-
vents the variational posterior from becoming very different from the prior. The model prior
w.r.t. for the approximated true distribution p(𝜔) by q(w|𝜃) cannot be computed exactly for a
nonlinear neural network, that is: still LVI is intractable.

Instead of the posterior distribution, we only need a likelihood to compute the ELBO which
produces both a good fit (likelihood term), but is also regularized according to how differ-
ent variational distribution is from true distribution (KL term) by maximizing ELBO with
respect to 𝜃.

3.4 Deep neural network with DropWeights as Bayesian neural
network approximation

We have to define a variational distribution on weight parameters and to develop the objec-
tive of maximization on the log ELBO. In neural networks, like Dropout,10 we can consider
approximating distribution is DropWeights. This means weights are drawn from the BNN with
DropWeights, Wi = Mi ⊙ Zi = Mi ⊙ diag([zi,j]

Ki
j=1), where w = {Wi}L

i=1 and Mi is the matrix of vari-
ational parameters, that is: weight matrix multiplied by a diagonal matrix formed by binary
random vector Zi, whose elements are distributed as: M(1)

ij ∼ Bernoulli(𝜌(l)ij ) for i= 1, … , L and
j= 1, … , Ki− 1.

In VI, performing DropWeights can be interpreted as sampling weights from the variational
distribution q𝜃(w), where 𝜃 is the optimized variational parameter, interpreted as trained weights
of the neural network. This is equivalent the mixture distribution:

q(w|𝜃) = (1 − pdrop)N(w; 𝜃, 𝜎2I) + pdropN(w; 0, 𝜎2I), (15)

where 𝜌drop is the probability of individual weight being set to 0, variational parameters are
denoted by 𝜃 and let𝜎 → 0. Assuming a prior on w of the form N(0, 𝜎2

w). The approximate posterior
takes the form of a mixture of deltas.
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We can now reparametrize11 the integral of the first term in Equation (13) as a sum over all
samples so that it only depends on the Bernoulli distribution instead of weights w directly. We
estimate the expected value of the variational predictive distribution with Monte Carlo sampling
over T sets of weights ŵt from the variational (DropWeights) distribution as:

Eq(w|𝜃)[log p(Y |X ,w)] =
N∑

i=1
∫ q(w|𝜃) log p(Y |X ,w)dw ≈ 1

T

T∑
t=1

log p(yt|xt, ŵt). (16)

Note that ŵt is a random variable from the Bernoulli distribution, which is identical to
applying DropWeights to the network.

Next, we have to approximate the second term of the ELBO in Equation (13), the KL diver-
gence between the variational distribution and the prior over w, where p(w) is a multivariate
normal distribution. Thus, following Gal at al,3 we can derive this approximation and the objective
function can be expressed as:

ELBO ≈ Ldrop(m) = log p(y|x,w) − 𝜆

2
||m||22; (17)

Note that, maximizing this ELBO is identical to the loss function used in a standard neural
network with L2 weight regularization. Therefore, training a neural network with DropWeights
has the same effect as minimizing the KL term in Equation (13).

In summary, the core idea of a BNN is neural networks with DropWeights VI and Gaussian
prior weights is Bayesian. By re-parametrizing the approximate variational distribution Q(w|v) on
the Bernoulli distribution instead of weights w. Thus the loss is:

LDropWeights =
1
D

batch∑
b=1

(Lossb) + 𝜆

layer∑
l=1

(Weightl)2. (18)

The DropWeights layers are kept active during inference, to keep Bernoulli distribution over
weights. We inferred using Equation (10) that, after multiple forward passes to approximate the
posterior distribution of class probabilities from the trained network with DropWeights, the pre-
dictive distribution of an unknown label ŷ for a new input x̂ by marginalizing the parameters
is:

p(ŷ|x̂,X ,Y ) ≈ P(ŷ|x̂,w)P(w|X ,Y )dw ≈ 1
T

T∑
t=1

p(ŷ|x̂, ŵt). (19)

Intuitively, the mean of the predictive posterior corresponds to the point estimates, and the
width of the predictive posterior reflects the reliability of the predictions. We call this approach
MC-DropWeights which is a generalization over the previous work referred to as MC-Dropout.3
A summary of these steps is provided in Algorithm 1.

3.5 Uncertainty decomposition: Estimating uncertainty
in DropWeights deep neural nets

There are two major sources of uncertainty in DL model:5,18
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1. AU or data uncertainty accounts for inherent stochasticity in the data, due to class over-
lap, label noise, homoscedastic and heteroscedastic noise, which leads predictions with high
uncertainty. AU cannot be reduced even if more data were to be collected, unless it is possible
to observe all explanatory variables with greater precision. We can define AU as: information
required—information available.

2. EU, also known as, model uncertainty, is a consequence of insufficient learning of model
parameters, due to a finite set of training data, which leads to broad posteriors. It is impossible
to determine a model’s parameters exactly with limited observations. This uncertainty mea-
surement captures “what the model does not know.” EU associated with the model reduces as
the training data size increases. We can compute EU as: information available—information
expressed.

Kendall and Gal18 derived a unified Bayesian DL framework for both classification and regres-
sion on pixel-based semantic segmentation, by decomposing uncertainty into AU—modeled by
placing a distribution over the output of the model—and EU. It does this by placing a prior
distribution over the model’s parameters. The last layer in the network has extra nodes before
activation, consisting of mean and variance of logits. Disentangling these two sources of uncer-
tainty can be useful for risk sensitive learning, rejecting OOD samples, and balancing exploration
and exploitation in a reinforcement learning settings. The predictive uncertainty (ie: variational
predictive distribution) for classification with either softmax (multiclass) or sigmoid (binary)
likelihood p(ŷ|x̂,w) = activation function(f w(x̂)) in the model can be approximated by:4

Varq�̂�(ŷ|x̂)(ŷ) = Eq�̂�(ŷ|x̂){ŷ⊗2} − (Eq𝜃 (ŷ|x̂)ŷ)⊗2

= ∫Ω
[diag{Ep(ŷ|x̂,𝜔)(ŷ)} − Ep(ŷ|x̂,𝜔)(ŷ)⊗2]q�̂�(𝜔)d𝜔

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
aleatoric

+ ∫Ω
{Ep(ŷ|x̂,𝜔)(ŷ) − Eq�̂� (ŷ|x̂)(ŷ)}⊗2q�̂�(𝜔)d𝜔

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
epistemic

Aleatoric uncertainty estimator: 1
T

T∑
t=1

diag(�̂�2
t ) and

Epistemic uncertainty estimator: 1
T

T∑
t=1

(�̂�t − 𝜇)⊗2

where 𝜇 =
T∑

i=1

�̂�t

T
. (20)

During training, the variance estimate is sampled and added to the probability logits, which
are used to calculate the training loss in the network.

There are two important points to note here. First, for confidence in prediction, it is impor-
tant to marginalize over the learned posterior, exact or otherwise, so that appropriate uncertainty
about parameters is propagated into the prediction. This marginalization is mostly ignored in DL,
where point estimates of the parameters are used for prediction. Second, the computation of the
posterior predictive distribution is used for aggregating parameter uncertainty. This is particularly
challenging for classification, where a model’s confidence in its prediction is not readily available.

In Bayesian classification, the predictive probability of ŷ for given x̂ belongs to yi ∈ {1 … C}
class level and each feature is weighed differently to determine output of the neural
network p(𝜔) = 𝜔{f 𝜔(x̂)} where 𝜔 is random, propagated through the network function with all
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parameters weights of all layers {1 … L} and 𝜔 activation function. The predictive uncertainty is
Eq�̂� (ŷ|x̂){ŷ⊗2} − Eq�̂� (ŷ|x̂)(ŷ)⊗2. The expectation E[diag{p(𝜔)} − p(𝜔)⊗2] over q�̂�(𝜔) denotes the AU,
which captures inherent randomness of an output ŷ. The EU, E[p(𝜔) − E{p(𝜔)}]⊗2, originates
from the variability of 𝜔 input dataset.

During training, the variance estimate is sampled and added to the probability logits, which
are used to calculate the training loss in the network.4 In the above approach for estimating
uncertainty, there are mainly two limitations:

1. Equation (1) captures the variance of class probabilities associated with the predicted class c
from sample T sets. Which essentially quantifies the uncertainty of the variability in the speci-
fication of the probability distribution of the linear predictor function instead of the predictive
probabilities in the outcome class of the model.4

2. The network produces two outputs, prediction probability logits and a variance estimate. The
above method requires extra parameters at the last hidden layer and often causes unstable
parameter updates in a training phase.

To address the above limitations, we introduce a predictive uncertainty estimator, which
averages the standard deviations of the class probabilities associated with every class based on
DropWeights regularization, reinterpreted as VI.

The estimate of the vector of Softmax probabilities can be denoted: �̂�c =
1
T

∑T
t=1 p(ŷ =

c|x̂, �̂�t); c ∈ {1, … ,C}

Aleatoric uncertainity: 1
T

T∑
t=1

diag(ŷt) − ŷ⊗2
t (21)

Epistemic uncertainity: 1
C

C∑
i=1

√√√√ 1
T

T∑
t=1

[p(ŷt = c|x̂, �̂�t) − �̂�c]2 (22)

where ŷt = y(�̂�t) = Softmax{f �̂�t (x̂)}. (23)

In practice, the predictive probability is estimated as follows:

I Repeat the stochastic forward pass T times through the neural networks with Dropweights.
II For each stochastic forward pass, a different network is making predictions because Drop-

Weights randomly switched off units.
III As a result, each stochastic forward pass returns different vectors of class predictions, which

is equivalent to stochastic VI drawing new independent prediction (see eq. (6.3), p. 109 and
Prop. 4, p. 149 in Reference 3).

IV Finally, average the predictions to get the final prediction as an uncertainty estimator
associated with the sample in prediction exercise.

The above method reduces the required hyperparameters and improves computation. It
considers the model uncertainty associated with every class prediction.

3.6 Bayesian deep ensembles of DropWeights

It has long been observed that ensembles perform model combination to obtain a more
powerful model. This improves predictive performance when the true model does not lie within
the hypothesis class.28
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The current state-of-the-art BNNs learn a distribution overweight for estimating predictive
uncertainty. However, they suffer from the “mode in collapse” problem in deep CNNs when deal-
ing with complex high-dimensional image data such as medical images (X-Rays, PET/CT, SPECT,
MRI, Ultrasound, EEG, ECG etc). To estimate uncertainty in DL, the quality of Bayesian posterior
distribution depends on prior specification and posterior approximation. This translates weight
uncertainty into predictive uncertainty. Therefore, DL models can be easily fooled by adversar-
ial examples such as small perturbations in the input images, which results in overconfident
predictions in VI.

We proposed a novel technique “Bayesian deep ensembles of DropWeights” for estimat-
ing uncertainty in DL that yields high-quality predictive uncertainty estimates and outper-
forms existing methods (eg, MC-Dropout and our MC-DropWeights). We present the first
approach (to the best of our knowledge) a stochastic ensemble of MC-DropWeights models
characterized by a different set of drop weights probabilities, for estimating uncertainty in
Bayesian DL.

Considering the ensemble as a mixture model, where each model is the connection informa-
tion, that is, the binary mask drawn from a Bernoulli distribution and the model’s DropWeights
rate between 0 and 1. We can estimate the model uncertainty by training several models and
calculating the variance of their output prediction by approximately marginalizing over model
parameters using MC-DropWeights sampling as:

q(y|x) = Eq(w)[logp(y|x,w)] ≈ 1
M

1
N

M∑
m=0.0

N∑
i=1

logp(y|x,w(i)); (24)

This can be seen as drawing from an infinite ensemble of networks with N number of for-
ward passes, M number of network models with DropWeights rate between 0 and 1 to estimate
uncertainty.

3.7 Estimating uncertainty in classification

In segmentation, we introduced a predictive uncertainty estimator, which averages the standard
deviations of the class probabilities associated with every class. However, we need an alterna-
tive approach, since the predictive probabilities from a forward pass through the model does not
capture uncertainty in classification.

Entropy is the basic principle of information theory proposed by Shannon.29,30 It depends
on sample size and typically exhibits substantial bias. The model output in classification is
a conditional probability distribution P(y|x) over a discrete set of outcomes Y . We can use
the entropy of the predictive distribution as an uncertainty measure. Recently, Smith and
Depeweg5,31used predictive entropy to decompose uncertainty into its epistemic and aleatoric
components.

We have analyzed two approaches to estimate uncertainty within classification: tractable
view of the mutual information (MI)30,32 and bias-corrected MI.33 The MI between the pre-
diction y and the posterior over the model parameters w captures a different measure of
uncertainty.

MI is well-known in information theory and quantifies the divergence between the joint prob-
ability density function (PDF) p(x, y) and the product p(x)⊙ p(y) of the independent PDFs, which
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captures the information overlap between quantities. The approximate predictive posterior’s
entropy is given by:

H(y1, … yn|x1, … xn) = H(qy1,… yn|x1,… xn) = Ha(y1, … yn|x1, … xn) + He(y1, … yn|x1, … xn),
(25)

where H(.) is the differential entropy of a probability distribution and the expected value (E)
qy|x =Eq(w)[p(y1, … yn|x1, … xn, w)]. This value H(y1, … yn|x1, … xn) represents the total uncer-
tainty in the model prediction.

The average uncertainty in Bayesian deep neural network predictions can be computed as:

Ha(y1, … yn|x1, … xn) = Eq(w|𝜃)[H(y1, … yn|x1, … xn,w)]. (26)

Thus, the above equation is a measurement of the model’s AU.
Information gain (I) about the model parameters, that is: information shared by multiple

variables in DL can be expressed by the relationship:

N∑
i=1

I(y1, … yn;𝜔|x1, … xn,D) = H(y1, … yn|x1, … xn) − Eq(w|𝜃)[H(y1, … yn|x1, … xn,w)]. (27)

The above equation (25) maximizes the MI between predictions and model posterior. Intu-
itively, it quantifies the “amount of information” obtained about model parameters by observing
the model predictions for a given sample. Thus, the MI between model label y and model param-
eters w is a measurement of the model’s EU. The first term is the entropy of the model prediction,
which is high when the model’s prediction is uncertain. The second term is an expectation of the
entropy of the model prediction over the approximate posterior around the model parameters.
This is low when the model captures the expected uncertainty in the predictions for each weight
configurations drawn from approximate posteriors.34

The above equation double counts MI between data points and overestimates the true MI.35

Estimation of entropy from the finite set of data suffers from a severe downward bias when the
data is under-sampled. Even small biases can result in significant inaccuracies when estimating
epistemic entropy.36

3.7.1 Estimating bias-corrected epistemic uncertainty

Consider class probabilities p(yxi = c|xi, 𝜔t,D) with 𝜔t ∼ q(𝜔|D) with W = (𝜔t)T
t=1, a set of i.i.d.

samples, drawn from q(𝜔|,D). The below procedure computes the Monte Carlo estimate of the
posterior predictive distribution, its entropy and MI:

N∑
i=1

IMC(yi;𝜔|xi,D) = H(p̂(yi|xi,D)) − 1|W | ∑
𝜔∈W

H(p(yi | xi, 𝜔,D)) , (28)

where

p̂(yi|xi,D) = 1|W | ∑
𝜔∈W

p(yi|xi, 𝜔,D) . (29)
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The first term in the MC estimate of the MI is called as the plug-in estimator of the
entropy:

Ĥ = H(p̂) = −
∑

c
p̂c log p̂c, (30)

where p̂c =
1
T

∑
tptc are the maximum likelihood estimates of each probability p̂c. It has long

been known that the plug-in estimator underestimates the true entropy and plug-in estimate is
biased.37,38

A classic method for bias correction is the Jackknife resampling method.39 In order
to alleviate the bias problem, we propose Jackknife estimator to estimate EU to improve
entropy-based estimation model. Unlike MC-Dropout, it does not assume constant vari-
ance. If D(X , Y ) is the observed random sample, the ith Jackknife sample, xi is the subset
of the sample that is a “leaves-one-out” observation xi : x(i) = (x1, … xi− 1, xi+ 1 … xn). For

sample size N, the Jackknife standard error �̂� is defined as:
√

(N−1)
N

∑N
i=1 (�̂�i − �̂�(⊙))2,

where �̂�(⊙) is the empirical average of the Jackknife replicates: 1
N

∑N
i=1 �̂�(i). Here,

the Jackknife estimator is an unbiased estimator of the variance of the sample
mean.

The Jackknife correction of a plug-in estimator H(⋅) is computed as:39

1. Given a sample (pi)N
i=1 with pi discrete distribution on multiclass classification 1 … C

2. for each i= 1 … N
compute the leave-one-out estimator: p̂−i

c = 1
N−1

∑
j≠ipjk

compute the Jackknife estimator of entropy: Ĥ−i = H(p̂−i)
3. then compute the bias-corrected entropy estimator Ĥjk = NĤ + (N−1)

N

∑N
t=1 Ĥ(−i), where

Ĥ(−i) is the observed entropy based on a sub-sample in which the ith individual is
removed.

We leveraged the following relation:

𝜇−i =
1

N − 1
∑
j≠i

xj =
N

N − 1
𝜇 − 1

N − 1
xi = 𝜇 + 𝜇 − xi

N − 1
,

while resolving the ith data point out of the sample mean 𝜇 = 1
N

∑
ixi and recompute the mean

𝜇−i. This makes it possible to quickly compute leave-one-out estimators of discrete probability
distribution.

The above method was simple to implement and computationally cheaper than the
other re-sampling methods such as Bootstrap. It derives an estimate of the finite sample
bias from the leave-one-out estimators of the entropy and reduces bias considerably down
to O(n−2).39

The bias-corrected EU (BCEU) estimation model explains regions of ambigu-
ous data space that are hard to classify as data distribution due noise in the
inputs or the fact that the model was trained with different domain data. Conse-
quently, these inputs should be assigned a higher AU. As a result, we can expect a
high model uncertainty in these regions. A summary of these steps is provided in
Algorithm 2.
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4 ESTIMATING UNCERTAINTY IN MEDICAL IMAGE
SEGMENTATION

In this section, we demonstrate that the uncertainty estimates obtained from
DropWeights using the Bayesian residual U-Net (BRUNet) provide an additional
insight for clinicians on the tasks of semantic segmentation with help from deep
learners.

4.1 Bayesian residual U-Net

In semantic segmentation, to get a better result, it is crucial to use low-level details while
retaining high-level semantic information.23,24 We used deep BRUNet architecture that takes
advantage of strengths from both deep residual learning40 and U-Net architecture.41 Both the
U-Net and residual network have a simple structure and faster training speed, but U-Net’s
accuracy of the experimental results, due to its lack of depth, is insufficient and the residual
network effectively addresses the problem of degeneration of deep CNN. Therefore, we have
combined the strengths of two networks effectively in our artificial neural network to imple-
ment with Monte Carlo Dropout layers, as shown in the Appendix below, to estimate model
uncertainty.

We have designed BRUNet using convolution layer, an activation layer, pooling layer, and fully
connected layer with a combination of max-pooling and batch normalization. Dropout is applied
to the network as an approximation to the Gaussian process (GP) and to cast as approximate
Bayesian inference, as shown in Figure 2.

DL models require to be initialized with the right weights to avoid vanishing/exploding
gradients problem. “He” initialization25 draws samples from a truncated normal distribution
centered on 0 with stddev = sqrt(2 / fan-in) where fan-in is the number of input units in the
weights, to asymptotically preserve variance of activations in the forward pass and variance of
gradients in the backward pass. The exponential linear unit (ELU) is a recently introduced acti-
vation function in DL. It computes the function f (x)= x if x ≥ 0 (identity function) and f (x) =
𝛼 ⋅ (ex − 1), 𝛼 is a positive constant number, if x <0. ELU tends to converge mean activations
closer to zero also causes faster learning, convergence and produce more accurate results. The
last layer in the fully connected network holds the scores for each class from sigmoid the unction
of the patch.

The entire network is still in the form of a U-shaped structure, which involves down-
sampling first, followed by upsampling, the down-sampled features are merged with the
corresponding up-sampled features. Finally, the result is obtained through the fully con-
nected layer. The intuition behind this is that extracting low-level features to the corre-
spondingly high levels creates a path for information propagation between low and high
levels in a much easier way. This not only facilitates backward propagation during train-
ing but also compensates low level finer details to high-level semantic features in dense
prediction task. The contraction and expansion layers are convolutions and deconvolu-
tion layers. Hence the image is recreated with segmented masks, like the image input
size.

The performance of our model is evaluated on the mean average precision at different
intersection over union (IoU) thresholds and dice similarity coefficient (DSC).42
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F I G U R E 2 Bayesian residual U-Net (BRUNet) architecture [Color figure can be viewed at
wileyonlinelibrary.com]

1. IoU, also known as the Jaccard index, is an evaluation metric for pixel-level image segmenta-
tion. The IoU is the percent overlap between the area of ground truth and the predicted area.
The higher IOU to a certain threshold, the more accurate is the prediction.

2. The DSC is the most widely used measure of the reproducibility as a validation of manual
annotation where clinicians repeatedly annotated the same image and the pair-wise spatial
overlap accuracy of automated probabilistic segmentation of images. It ranges between 0 and
1.

3. Model accuracy is used to judge the performance of the model and is similar to a loss function.
The loss function is set to 1—dice coefficient loss between the predicted and true labels as
follows:

 = 1 −
2
∑

ytrueŷpred∑
ytrue +

∑
ŷpred

. (31)

We evaluated the validation accuracy after every epoch and saved the model with the best
prediction accuracy (lowest loss) on the validation set.43,44

4.2 Dataset

We have used the dataset provided in the Kaggle Data Science Bowl Challenge 201845 to demon-
strate the merit of our proposed method. It consists of microscopy images of a large number of

http://wileyonlinelibrary.com
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segmented nuclei images.46 The images were acquired under a variety of conditions and vary in
the cell type, magnification, and imaging modality (brightfield vs fluorescence). In CNN archi-
tecture, it is necessary to convert all images to the same size. All images were cropped to a
square-center region and resized to 128 × 128 pixels, so that they were standardized and uni-
form. This ensured the aspect ratio avoided distortion, to speed up the process. There are 670 train
samples and around 4000 test samples.

4.3 BRUNet parameters details

All models are trained and evaluated using Keras with Tensorflow backend. We used the fol-
lowing hyper-parameters. All Nuclei images were resized to the same dimension 128 × 128 × 3.
The BRUNet was trained by stochastic gradient descent (SGD), with weights initialized using the
“He” activation. The SGD optimizer with the Dropout rate of 0.10, 0.20, 0.25, 0.50, 0.75, and 0.95
and early stopping rule with 25 epoch patience was applied, with a batch size of 16. The total
parameters of the network were 4,452,097. The binary-cross entropy function was used as a loss
function to calculate the validation loss of various models for comparison. The VI with Dropout
variational distribution was used. The number of realized sets T used in Monte Carlo integration
was 10.

4.4 Experimental results

In the previous sections, we have discussed modeling different aspects of predictive uncertainty
and presented measures of quantifying it. This section evaluates our method when applied to the
problem of discovering nuclei in divergent microscopy data images. This application is receiving
much attention from the DL community45,47–49.

4.4.1 Network performance

We have observed high accuracy in the case of isolated Cells when compared with overlapping
cells, as shown in Figures 3 and 4. The highest areas of AU occurred on class boundaries and EU
increases for complex pixels.

Using a simple CNN, the nuclei were spotted with model accuracy of 91% for stage 1 train
results with mean IoU score of 62%. Using the BRUNet model described above, we obtain a mean
accuracy of 96.55% with mean IoU of 83%.

4.4.2 Distribution of uncertainty estimates

The distribution of AU appears to be multimodal, with peaks close to 0.13, as shown in
Figure 5. The incorrect classifications greatly contribute to the multimodality due to irreducible
homoscedastic and heteroscedastic noise in data.

The distribution of EU appears to be normal. The incorrect predictions are centered around a
higher uncertainty, whereas far more of the correctly predicted classes are concentrated around
a low uncertainty value, as shown in Figure 6.
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F I G U R E 3 The segmentation was performed by the model on images such as those shown above with
overlapping cells with uncertainty [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 4 The segmentation was performed by the model on the image with isolated cells with
uncertainty [Color figure can be viewed at wileyonlinelibrary.com]

4.4.3 Correlation between aleatoric uncertainty and epistemic
uncertainty with predictive probabilities

To study the correlation between model uncertainty and data uncertainty, we measured the esti-
mated conditional expectations of the EU and AU given ranges of the predictive probabilities,
respectively.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 5 Distribution of
estimated aleatoric uncertainty [Color
figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 6
Distribution of estimated
epistemic uncertainty [Color
figure can be viewed at
wileyonlinelibrary.com]

As expected, uncertainty decreases as the predictive probabilities increase, as shown in
Figure 7. A blue point corresponds to a prediction with a low value of uncertainty. A red point
corresponds to observation with a high value of uncertainty. It confirms that for the higher uncer-
tainty predominately due to incorrect classifications, most of the points are concentrated around
the area of maximum entropy.

This correlation between AU and EU with predictive probabilities indicates that the approxi-
mated uncertainty estimates indeed contain valuable information in incorrect cases.

4.4.4 The effect of varying stochastic feed forwards

In practice, MC DropWeights is equivalent to performing T stochastic forward passes through
the BRUNet and averaging the results. We have observed from Figure 8 that the AU decreases
with the increase in the number of stochastic forward pass (T), whereas the rate of change
of range for the EU not much significant with increases in the number of stochastic
feed forwards.

4.4.5 The contribution of uncertainty in predictive probabilities

The uncertainty adds complementary information to the conventional network output—for the
correctly classified cases the model uncertainty is low, however, for the incorrectly classified

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 7 The joint distribution of between aleatoric uncertainty epistemic uncertainty vs prediction (2D
kernel density estimate) [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 8 Bivariate density plot for aleatoric and epistemic uncertainties against fixed dropout with
varied stochastic feed forward of the model. A, T = 3. B, T = 5. C, T = 10. D, T = 15. E, T = 20. F, T = 20 [Color
figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 9 Segmentation predictions and uncertainty maps [Color figure can be viewed at
wileyonlinelibrary.com]

images, the standard deviation of the predictive probabilities most likely class seems to be higher.
When the prediction disagrees with the ground truth, the uncertainty identified the region missed
by prediction as highlighted in Figure 9.

The model is generally highly certain or provides higher confidence in its prediction in the
cases, where it predicted the correct class. Uncertainty information means the model can be easily
interpreted, compared to the case with no uncertainty information in Microscopy cell images of
nuclei segmentation.

5 ESTIMATING UNCERTAINTY IN MULTICLASS
DISEASE DETECTION

In this section, we demonstrate that the uncertainty estimates obtained from Bayesian deep
ensembles of DropWeights using the BCEU provides additional insight for clinicians on the tasks
of disease detection with help from deep learners.

5.1 Dataset: Multimodality magnetic resonance imaging brain
tumor images

MRI is one of the commonly used medical imaging tools, which provides informative data for
diseases such as brain tumour diagnosis. The interpretation of medical images, including diag-
nosing the tumours from the MRI images which are an integral part of medical diagnosis, requires
an experienced radiologist, a human whose skills are scarce and who is susceptible mistakes.
We can use of artificial intelligence (AI), the development of DL techniques and simple features
from the images, such as intensity, contours, and shapes as means of computer-based assisting

http://wileyonlinelibrary.com
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F I G U R E 10 A, Types of brain tumors used. (a) Astrocytoma, (b) Glioblastoma multiforme,
(c) Oligodendroglioma, (d) Healthy tissue, and (e) Unknown Tumor. B, Image planes of a brain MRI.
(a) Axial plane, (b) Sagittal plane, and (c) Coronal plane

(classification and prediction) in medical diagnostic imaging. Here, DL-based solutions for
detecting disease have been proposed with quantifying uncertainty in a decision, for example,
image-based (aleatoric) and model (epistemic) uncertainties.

In order to validate the effectiveness of our framework, we performed experiments on brain
MRI scan images of three brain tumour types (Astrocytoma, Glioblastoma, Oligodendroglioma)
with additional two categories (Healthy brain MRI and Unidentified tumour), as shown in
Figure 10.

The MRI images, which include Astrocytoma, Glioblastoma, Oligodendroglioma, and uniden-
tified tumours, were obtained from the Repository of Molecular Brain Neoplasia Data (REM-
BRANDT) from Cancer Imaging Archive.50 This dataset has 65 427 MRI images in DICOM
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Data source Tumor type No. of Images

REMBRANDT Astrocytoma 21 307

REMBRANDT Glioblastoma 17 983

REMBRANDT Oligodendroglioma 12 460

REMBRANDT Unidentified 13 677

MIRIAD Healthy brain 30 688

BRAINS Healthy brain 556

Total — 96 115

T A B L E 1 The brain
MRI dataset

format (the standard format of MRI images) categorized according to the 100 patient IDs.
The images were converted into as standard image formats like JPEG and categorized accord-
ing to the tumour types with the help of clinical metadata. The MRI images of healthy
brain images were obtained from the Brain Images of Normal Subjects (BRAINS) Image Bank
repository of University of Edinburgh51 and from Minimal Interval Resonance Imaging in
Alzheimer’s Disease (MIRIAD), a dataset used in a research related to Alzheimer’s disease
(AD).52 The MIRIAD dataset contains MRI images of healthy brain ad AD group. A sin-
gle pickle file was created with these images along with their labels for quick access and
computation.53 The complete dataset with the number of images in each category are listed
in Table 1.

This dataset contains 3064 MRI images of 233 patients, containing 708 meningiomas, 1426
gliomas, and 930 pituitary tumors diagnosed with one of the aforementioned three brain tumor
types. The most important property of this dataset is that it includes both the brain images and
the segmented tumors.

The classes in our dataset are not balanced. Class imbalance is one of the most common prob-
lems in real-world classification task. We have splitted the dataset to training (80%) and testing
(20%) before sampling so data points will not be shared among training and test dataset. We took
same number of samples from all classes to create a balanced dataset to train our models. We
compared the performances between the two types of datasets, balanced, which contains 20% per
class of brain tumor types and imbalanced, which have data distribution based on the abundance
of classes of brain tumors in the image dataset: 22%, 19%, 13%, 32%, 14%.

5.2 Experiments

All models were trained and evaluated using Keras with Tensorflow backend. Each image
had three colour channels. The images are resized to 64 × 64 pixels for faster feature
extraction.

Our objective was to define a framework for measuring uncertainty in DL models and evalu-
ate its usefulness. It was not, however, to achieve the state-of-the-art performance in DL, so for
the DNN architecture, we used a generic building block containing the following model struc-
ture: Conv-Relu-BatchNorm-MaxPool-Conv-Relu-BatchNorm-MaxPool-Dense-Relu-[Dropout
or DropWeights]- Dense-Relu-[Dropout or DropWeights]-Dense-Softmax, with 32 convolution
kernels, 3 × 3 kernel size, 2 × 2 pooling, dense layer with 64 units, 32 units, and drop rate prob-
abilities ranging from 0.1 to 1.0, increasing by 0.05 to obtain models for uncertainty. One of the
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most practical and more robust optimizers is Adam. Essentially Adam optimization algorithm is
an extension to SGD and computes individual adaptive learning rates for different parameters. It
combines the advantages of two SGD extensions—root mean square propagation (RMSProp) and
adaptive gradient algorithm (AdaGrad). We trained the network to minimize the cross-entropy
loss using ADAM optimizer, which had an initial learning rate of 0.0001. The batch size was set
to 32 and training was performed for a maximum of 100 epochs. We evaluated the validation
accuracy after every epoch and saved the model with the best prediction accuracy on the
validation set.

5.3 Results and discussion

In this section, we propose uncertainty estimation performance metrics in classification that
incorporates the ground truth label, model prediction, and uncertainty threshold. We analyzed
how the model uncertainty can be useful for ranking the model predictions, by referring uncer-
tain MRI images of brain tumours. This will improve the overall model performance and improve
clinical diagnosis.

We also compared the uncertainty-based classification performance obtained through our
proposed method, using the state-of-the-art method, MC-Dropout, on balanced and imbal-
anced datasets, which showed considerable improvement in prediction accuracy and quality of
uncertainty estimation.

5.3.1 Uncertainty estimation performance metrics in classification

There is no ground truth for uncertainty threshold or tolerance for evaluation of estimated uncer-
tainty in DL. We leveraged the estimated uncertainty to enhance classification performance
metrics.54 We first computed the accuracy map using the ground truth labels, model predic-
tions, and confidence map, by normalizing uncertainty threshold values to develop the evaluation
matrix.

Like in real-world referral situations, any medical diagnostic DL algorithm should
be able to flag the least confident images that require more investigation by medical
experts. Although the model does not necessarily require to be wholly certain for cor-
rectly predicting cases, for incorrect predictions, it is expected that the estimated uncertainty
will be high.

The evaluation matrix itself is not an estimated uncertainty performance measure. How-
ever, based on that, we can measure uncertainty accuracy (UA) using diagnostic screening
tests (sensitivity, specificity, positive (PPV) and negative (NPV) predictive values) as shown in
Figure 11.

5.3.2 Detecting infected patients with confidence

Importantly, EU as quantified by bias-corrected MI adds complementary information to the DL
output. We observed with high probabilities, an image that is diseased are confined to lower EUs
indicating in Figure 12A. In contrast, for healthy images, the uncertainty variation as seen on the
scatter plot has a wider spread.
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F I G U R E 11 Overview to evaluate the uncertainty quality metrics in classification task in disease detection
[Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 12 A, The scatter plot between predictions and uncertainty. It shows data with inherent noises
might cause prediction errors. B, Illustrating the distributions of model uncertainty values are plotted separately
for correct and incorrect predictions [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 13 Comparison of using the Bayesian deep learning models with different uncertainty thresholds
when applied to an imbalanced dataset result of multiclass classification of an MRI image dataset [Color figure
can be viewed at wileyonlinelibrary.com]

In Figure 12B, we see the distribution of bias-corrected uncertainty values, grouped by correct
and incorrect predictions for test images. Given a prediction is correct, there is a strong likeli-
hood that the prediction uncertainty is also low. As a result, our model can confidently identify
incorrectly classified images.

5.3.3 Uncertainty-based classification performance comparison

As an application to the proposed uncertainty measures, we have evaluated the uncertainty
estimation performance of Bayesian deep ensembles of MC-DropWeights with the Ensembles
MC-Dropout, MC-Dropout, and MC-DropWeights using MI and bias-corrected uncertainty esti-
mator (BCEU). Our experimental results (Figures 13 and 14) show, that BCEU using the ensemble
MC-DropWeights model yields an improved prediction accuracy with the appropriate level of
estimated uncertainty.

http://wileyonlinelibrary.com
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F I G U R E 14 Comparison of using the Bayesian deep learning models with different uncertainty thresholds
when applied to a balanced dataset result of multiclass classification of an MRI image dataset [Color figure can
be viewed at wileyonlinelibrary.com]

6 UNCERTAINTY QUALITY MATRICES

We have evaluated the quality of uncertainty estimates using five statistical matrices: Predictive
log-likelihood (PLL), continuous ranked probability score (CRPS), negative log predictive density
(NLPD), brier score (BS), and root mean squared error (RMSE).

The PLL and CRPS can be defined for test image (xi, yi), where F is cumulative distribution
function (CDF) of the prediction and �̂�j is the parameter from posterior distribution of T stochastic
feed-forward as below:

1. NLPD: NLPD takes the negative logarithm of the posterior class probabilities for classification
and of the predictive density for regression. This loss penalizes both over and under-confident
predictions but in general favours conservative models, that is models that tend to be
under-confident rather than over-confident.

NLPD (L) = − 1
N

N∑
i=1

logp(yi = ci|xi), (32)

NLPD infinitely penalizes wrong predictions made with zero uncertainty.

http://wileyonlinelibrary.com


GHOSHAL et al. 29

T A B L E 2 Quality metrics

Metrics
Ensemble
MCDW

Ensemble
MCDO MCDW MCDO

Negative log predictive density (NLPD) 43.62 3.59 123.80 1313.34
Root mean square error (RMSE) 0.55 0.61 0.58 0.60
Predictive log likelihood (PLL) 0.25 0.27 0.27 0.28
Continuous ranked probability score (CRPS) 0.27 0.26 0.26 0.27
Brier score (BS) 0.66 0.71 0.65 0.70

2. RMSE: The RMSE is the standard deviation of the prediction errors. The higher the value, the
greater the uncertainty.

3. PLL: PLL is a widely accepted metric as a marker for the quality of uncertainty, used as the
main uncertainty quality metric in References 9 and 13. It captures how well a model fits the
data. The key property is that PLL makes no assumptions about the form of the predictive
distribution. There is no upper bound of PLL so larger values indicate better model fit. While
PLL is an elegant measure, outliers have a negative effect on the score.

PLL(f𝜔(x), (yi, xi)) = log p(yi|f𝜔(xi)) = log∫ f𝜔(xi, yi)p(𝜔|D)𝜔 (33)

≈ log∫ f𝜔(xi, yi)q𝜃(𝜔)𝜔 ≈ log 1
T

T∑
j=1

p(yi|f�̂�j(xi)). (34)

4. CRPS: CRPS is generally used to estimate respective accuracy of two probabilistic models. It
generalizes mean absolute error for probabilistic estimation. It is a less sensitive measure that
takes the full predicted PDF into account.9

CRPS(f𝜔(xi), (yi, xi)) = ∫
∞

−∞
(F(y) − 1(y ≥ yi))2y. (35)

In order for CRPS to be analytically tractable, we need to assume a Gaussian unimodal pre-
dictive distribution. A prediction with a low variance that is slightly offset from the true
observation receives a higher score from CRPS than PLL. A perfect prediction with no vari-
ance yields a CRPS of 0; for all other cases, the value is greater than 0. CRPS also has no upper
bound.

5. BS: The BS is a score function that measures the accuracy of probabilistic predictions. It
calculates the mean squared difference between a binary label and its associated predicted
probability. Therefore, in multiclass classification, the lower the BS, the better the predictions
are calibrated.14

Our experimental results (Table 2, Figures 13 and 14) show that ensemble MC-DropWeights
results improved prediction accuracy under estimated uncertainty. More importantly, the uncer-
tainty quality metrics show a significant improvement when using ensemble MC-DropWeights.

7 DISCUSSION

Our primary source of knowledge about the world is from our ability to learn from our observa-
tions. So how can a computer learn from data? Most of the work in that area targets well-defined,
classic machine learning problems. Despite exceptional performance, the adoption of DL models
in critical applications where security and safety is a concern, remains limited in part because
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of its inability to interpret data being a black-box. Uncertainty quantification is an important
challenge and one that the DL community needs to think about a lot more. DL based medical diag-
nosis has to express the uncertainty of an image in the same way as a doctor may express ambiguity
and ask for expert advice. The existing approach to measure uncertainty in deep neural networks
is often highly sensitive to hyperparameter choices. Furthermore, using the existing approach,
it is hard to scale it up to higher dimensional digital image datasets and network architectures,
limiting their general applicability in DL.

Here, we evaluate Basyesian neural networks with DropWeights, to measure uncertainty in
cell nuclei segmentation. We also investigated the bias-corrected uncertainty distribution among
the correctly and incorrectly classified brain tumour MRI images. It shows that estimated uncer-
tainty provides an additional insight to a point estimate, which can help us better understand
why our models predict certain inputs as being more aleatoric or epistemic. This can effectively
improve the overall performance of the human-machine combination.

Though neural networks with DropWeights approximate Bayesian inference, to estimate
uncertainty by Monte Carlo (MC) integration over the variational distribution, it is implemented
by simulating the network stochastic forward passes multiple times with DropWeights turned on.
Thus, the inference is theoretically scaled by the number of forward passes. Due to advancement
of computer hardware (GPU and TPU), we can measure the uncertainty in almost real-time.

8 CONCLUSION

In this article, we present an uncertainty estimation framework in DL for medical images , by
decomposing the uncertainty into two categories. We present the first approach (to the best of our
knowledge) of Monte-Carlo DropWeights and BRUNet, to model BNNs as a reliable, VI method,
which accurately estimates the models’ AU and EU. We also approximate the predictive uncer-
tainty associated with every class in a multiclass setting, by calculating the mean of the standard
deviations of the class probabilities. We have demonstrated that medical image segmentation and
classification with uncertainty information provides additional insights into the corresponding
analysis alongside point estimation, which can increase its ability to interpret the data, as well as
improving confidence and so makes models based on DL more applicable in a medical setting. We
address the “mode collapse” phenomenon in VI, by leveraging deep ensembles of Monte-Carlo
DropWeights method. This intuitively captures the two sources of uncertainties and provides
a baseline for the evaluation metrics for predictive uncertainty quantification. In this article,
we introduce a bias-corrected uncertainty estimation function—a tractable approximation mea-
surement of EU using Jackknife Estimator—which shows an improved performance in DL. The
estimated uncertainty of the models is analyzed using probabilistic variants of metrics, such as
negative predictive value (NPV), recall, and estimated uncertainty accuracy (EUA). We also eval-
uate the quality of estimated uncertainty measurement using RMSE, PLL, BS, and CRPS metrics.

Since the single DropWeights model collapses around a subspace of the posterior distribution,
we have assumed that each model member of the ensemble will capture the behavior around a
different local mode. This will require a more detailed theoretical analysis for future research.

The properties in the dataset, such as label correlations and label cardinality, can strongly
affect the uncertainty quantification in predictive probability performance of a Bayesian DL
algorithm in multilabel settings. There is no systematic study on how and why the performance
varies over different data properties; any such study would be useful in deciding multilabel
algorithms and active learning in medical imaging. Future research in this area should hopefully
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include the extension of ideas for dataset shift, to represent better uncertainty estimates and the
effect on the quality of uncertainty across different data modalities and network architecture.
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APPENDIX A. ALGORITHM

Algorithm 1. Training a Bayesian Neural Network with DropWeights

Input: Dataset: D = {(xi, yi)N
i=1}, given C number of classes; Learning rate 𝛽; Number of epoch e;

Dropweights rate p
Initialization: Model weights 𝜃 in neural network by He48

Result: Model with updated weights 𝜃
for i ← 1 to e do

Forward Pass:
# g is Convolutional Neural Network (CNN), with Wg being the CNN filters (and biases)
Extract Features from multilayered CNN: v ← g(x;Wg)
Random sample M mask: Mij ← Bernoulli(p)
# W is a fully connected weight matrix, a is a nonlinear activation function and M is the binary
mask matrix
Compute activations: r = a((M ∗ W)v)
# Softmax function s takes input r and uses parameters Wk to map to a C dimensional output
Compute output: o = r(s;Ws)
Backpropagation:
Differentiate loss L𝜃 wrt to 𝜃

Update softmax layer: Ws = Ws − 𝛽 ∗ LWs

Update Weights in DropWeights Layer: W = W − 𝛽(M ∗ Lw)
Update Weights in hidden Layer: Wg = Wg − 𝛽LWg

end

Algorithm 2. Estimating Bias-Corrected Uncertainty with MC-DropWeights

Input: Dataset: D = {(x̂)}; Model f with optimized parameters 𝜃;
Initialization: Dropweights rate r; Number of Inferences (/stochastic forward pass) T
Result: Mean prediction ŷ ; Uncertainty 𝜎

# Reference3 [Gal, Y. 2016 (eq. (6.3) p.109, Prop. 4 p.149)]
p = {}
for t ← 1 to T do

# Neural network with Dropweights rate r performs stochastic variational inference
# Independently drawn a set of weights vector (ŵt)T

t=1 from q�̂�(w)
p̂t = p ∪ f 𝜃t (x̂t, r)

end
Compute predictive probability: p̂ = 1

T

∑T
t=1 p̂t

Compute prediction: ŷ = argmax(p̂)
for t ← 1 to T do

Compute the leave-one-out estimator: p̂−t
c = 1

T−1

∑
j≠t pjc

Compute the Jackknife estimator of entropy: Ĥ−t = −
∑

c p̂−t
c log(p̂−t

c )

end
Compute the bias-corrected uncertainty: 𝜎 = Ĥ + (T − 1)(Ĥ − 1

T

∑
t Ĥ−t)


