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Abstract Let Ω be a simply-connected domain in the complex plane, let Ω and let K( z, ζ)       

denote the Bergman kernel function of Ω with respect to ζ. Also, let K

ζ ∈

n (z , ζ) denote the n th degree 

polynomial approximation to K{ z , ζ ), given by the classical Bergman kernel method, and let nπ  

denote the corresponding n th degree Bieberbach polynomial approximation to the conformal map f      

of Ω onto a disc. Finally, let B be any subdomain of Ω. In this paper we investigate the following 

two local errors 

    ,||||,||),(.),(.||
)(

,,
)( 22 BLnBLn fKK πζζ ζ −−

and compare  their rates of convergence with those of the corresponding global errors with respect to  

L2(Ω). Our results show that if ∂B contains a subarc of ∂Ω, then the rates of convergence of the local               

errors are not substantially different from those of the global errors. 
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1 Introduction 

Let Ω be a simply-connected domain of the complex plane C, whose boundary Г is a closed Jor-    

dan curve, and let Ω∈ζ . Then, by the Riemann mapping theorem, there exists a unique conformal        

mapping  of Ω onto a disc )(ζ zfw = }:{ ζrww < , such that 

     . .1)ζ(,0)ζ( '
ζζ == ff

The radius  of this disc is called the conformal radius of Ω with respect to . (To avoid the study of 
uninteresting cases we shall assume throughout this paper that  is not a polynomial function.) 

ζr ζ
)(zfζ

For the inner product 
 

dmzhzghg )()(:),( Ω∫∫= , 
 
 where dm is the 2-dimensional Lebesgue measure, we consider the Hilbert space 
    

ggL :{:)(2 =Ω analytic in . }),(||||, 2
)(2 ∞<=Ω

Ω
ggg L

Let  denote the Bergman kernel function of Ω which has the reproducing property )ζ,z(K

                                     (1.1) )(,))ζ,(.,()ζ( 2 Ω∈∀= LgKgg

(cf. [1], [2], [3], [6] ). Then it is known ( cf. [3, p.34]) that 2
1))ζ,ζ(π(ζ

−= Kr  and that for z Є Ω  

                   )ζ,(
)ζ,ζ(

1)(,
)ζ,ζ(
)ζ,()(

ζζ
,
ζ tK

k
zf

k
zkzf

z

t∫ === dt.   (1.2) 

Next let , be the sequence of orthonormal polynomials for the    
inner product (. , .), ie. 

0γ...,γ)( >+= n
n

nn zzQ

lkk dmzQzQ ,1 δ)()( =∫∫ Ω . 

Since Ω is a Jordan region, it is known ( cf. [3, p.17] ) that { }∞0nQ  forms a complete orthonormal            
system for L2(Ω) and, from the reproducing property (1.1), it follows that (with respect to this sys-            
tem) the Fourier coefficients of  are given by )ζ,(.K nQn ,)ζ( = 0,1.....Thus, for the partial sums 

                                            )()ζ(:)ζ,(
0

zQQzK jj

n

j
n ∑

=

=      (1.3) 

we have 
∞→→−=Ω

Ω
nKKKE Lnn as,0||)ζ,(.)ζ,(.||:),( )(2   (1.4) 

 

From the least squares property of the Fourier sections, we also have that 
 

                              nnLnn ppKKE ∏∈∀−≤Ω
Ω

,||),(.||),( )(2ζ    (1.5) 

where  denotes the collection of all polynomials having degree at most n . n∏

In the classical Bergman kernel method (BKM) for numerically computing the conformal map-             
ping  we replace K by Kζf n-1 in the formulas (1.2) and obtain the polynomial approximations 
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                 dttK
K

z
K

zK
z n

z

t
n

n
n

n
n )ζ,(

)ζ,ζ(
1:)(πand

)ζ,ζ(
)ζ,(

)(π 1ζ
11

1'
−=

−−

− ∫== ,           (1.6) 

to  and  respectively. The polynomials ,
ζf ,f ζ nπ are the Bieberbach polynomials for Ω, and it is easily          

seen from (1.4) that they satisfy 
 

                            (1.7) ∞→→−=Ω
Ω

nff Lnn as,0||π||:),(ε )(
''

ζ
'
ζ 2

and 
 

 ( ,0||π||:),ε )(ζζ 2 →−=Ω
ΩLnn ff  ∞→nas     (1.8) 

 
Roughly speaking, the rates of convergence in (1.4), (1.7) and (1.8) are governed by the smooth-               

ness properties of the boundary  or, equivalently, by the nature and location of the singularities of                   
in C \ Ω. For example, if T is an analytic Jordan curve, then these rates are geometric, ie. 

Γ ,ζf

[ ] 1),(suplim
1
<Ω

∞→

n
n

n
KE  

(and similarly for and , while for piecewise analytic boundaries these rates are typically 
of the form 1 / n

)Ω,(ε ,
ζfn ))Ω,(ε ζfn

γ, for some constant  0 (cf. [3], [4], [9], [10]). >γ
 
The purpose of this paper is to investigate local rates of convergence in the BKM. To be more      

precise, let B be any (arbitrarily small) subdomain of Ω and consider the norm 

                             [ ] 2
12

)(
||:|||| 2 dmgg BBL

∫∫= .     (1.9) 

Then our goal is to investigate the rates of convergence of the following two errors : 
 
        

)(2||)ζ,(.)ζ,(.||:),( BLnn KKBKE −=  ,                             (1.10) 

 

)(
''

ζ
'
ζ 2||π||:),(ε BLnn fBf −= . 

If the closure B  is contained in Ω, then it is indeed possible for the local errors (l.l0)-(1.11) to tend to           
zero geometrically faster than the corresponding global errors with respect to L2(Ω) (see Example 1                    
in Section 3 ). If, however, the boundary B∂ of B contains a subarc of Г (and Г satisfies certain     
smoothness conditions), then we shall show that the rates of convergence of the local errors are not 
"substantially" different from those of the corresponding global errors. This fact is somewhat               
surprising, because it implies that the BKM errors in small subregions of Ω that are near to the singu                
larities of are "essentially" the same as those in small subregions that are far from these singulari-                     
ties. This behaviour is, however, consistent with the second author's principle of contamination in                      
best approximation (cf. [8]). 

ζf

 
2 Statements of Results 
           Our results will be established by assuming that the boundary curve Г satisfiesertain smooth-                              
ness conditions. In particular, we shall assume that Γ  belongs to a class C (p, ). This class is defined            
as follows (cf. [10,p.5]). 

α
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Definition 2.1    A rectifiable Jordan curve γ  is said to belong to the class , where p is a      

positive integer and 0 < α < 1 , if  has a parametrization  z = z(s) , where s is arc length, and the      

function z(s) is p times continuously differentiable with Lip α. 

)α,( pC

γ

∈)()( sz p

Our principal result is as follows. 

 

Theorem 2.1 With the notations of Section 1, suppose that Г 1α0,0),α,1( ≤<≥+∈ ppC . If 

any domain such that its boundary Ω⊂B B∂  contains a subarc of  Г, then 

                                 ∞=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
∑
∞

=

2

)Ω(

)(

0 2

2

||)ζ,(.)ζ,(.||

||)ζ,(.)ζ,(.||

Ln

BLn

n KK

KK
.     (2.1) 

 
An immediate consequence of Theorem 2.1 is the following. 

 
Corollary 2.1 Let Г and  be as in Theorem 2.1 . Then, given , there exists a subse-         
quence  such that 

Ω⊂B 0ε >
N⊂Λ

Λ∈−≥− + nKK
n

cKK LnBLn ,||)ζ,(.)ζ,(.||||)ζ,(.)ζ,(.|| )Ω(ε2/1)( 22         (2.2) 

where c is a positive constant. 

The following two results are also relatively simple consequences of Theorem 2.1 and its proof. 

 
Theorem 2.2  Suppose that  )α,1( +∈Γ pC with 2/1α >+p  and let Ω⊂B  be as in Theorem 2.1.        Then, 
given 0ε , there exists a subsequence > N⊂Λ  such that 
 

                              Λ∈−≥−
Ω+ nf

n
cf LnBLn ,||π||||π|| )(

''
ζε2/1)(

''
ζ 22 ,                 (2.3) 

where c is a positive constant. 
 
Theorem 2.3 Suppose that Г is an analytic Jordan curve and let Ω⊂B . be as in Theorem 2.1. Then         

there exists a subsequence  and a positive constant c such that N⊂Λ

Λ∈−≥−
Ω

nKKcKK LnBLn ,||)ζ,(.)ζ,(.||||)ζ,.()ζ,(.|| )()( 22 ,   (2.4) 

 
and 
 

                  .    (2.5) Λ∈−≥−
Ω

nfcf LnBLn ,||π||||π|| )(
''

ζ)(
''

22ζ

 
We expect that the corresponding errors for the mapping function  satisfy similar results but,             

so far, we have not been able to prove this. 

ζf
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3 Examples 

3.1   Consider the case where Ω = { z : |z | < 1 } and Ωζ∈  is different than zero. Then 

....,1.0.,1)( =
+

= nznzQ n
n π

 

and hence 

           ,Ω,ζ,
)ζ1(

1.
π
1)ζ()1(.

π
1)ζ,(

2
0

∈
−

=+= ∑
∞

=

z
z

zjzK j

j

   (3.1) 

 

2

11

0
1 )ζ1(

1)ζ()1()ζ(.
π
1)ζ()1(.

π
1)ζ,(

z
znznzjzK

nn
j

n

j
n −

++−
=+=

+−

=
− ∑ .   (3.2) 

Also 

,
ζ1
ζ|ζ|1()( 2

ζ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

−=
zzf  

so that the mapping function  has a simple pole at the point  ζf ζ/1=z  but is otherwise analytic in the    
extended plane. 

Equations (3.1) and (3.2) imply that 

{ } ,1ζ.
)ζ1(

)ζ(.
π
1)ζ,()ζ,( 21 ++−

−
=− − nzn

z
zzKzK

n

n   

and from this it follows that 
( ) ( ) ( ) .ζζ.,ζ.,

1

2 Ω1
suplim =− −∞→

n

Lnn KK  

It also follows that if B:={ }1r: <<zz , then 

( ) ( ) ( ) .ζζ.,ζ.,
1

21
suplim rKK n

BLnn =− −∞→  

This illustrates the fact that if Ω⊂B , then the local error (1.10) can tend to zero geometrically faster           
than the global error with respect to L2(Ω). 
  
 Let z1, z2 denote, respectively, the two boundary points nearest and furthest away from the   
singularity of  at z = l/ ζ , ie. zζf 1 :=eiα  and z2 :=- eiα, where  α:= arg . Then, ζ

( )
{ } ),(:1ζ.

ζ1

ζ.
π
1)ζ,()ζ,( 12111 zennzKzK n

n

n =++−
−

=− −  

( )
{ } ),(:1.

1

)(.1),(),( 22211 zennzKzK n

nn

n =++
+

−
=− − ζ

ζ

ζ
π

ζζ  

and hence 

.
ζ1
ζ1

)(
)(

2

2

1lim
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+

=∞→ ze
ze

n  

This supports (in a pointwise sense ) t remark made at the end of Section 1 concerning the BKM 
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errors in small subregions close to and far away from the singularities of . ζf
 3.2 Let Ω be bounded by 211 Γ∪Γ=Γ , where Г1 and Г2 are respectively the half circle 

 
{ }0,1::1 =≤=+==Γ xziyxz  

and the half ellipse 
 

{ },0,14/:: 22
1 =>=++==Γ xyxiyxz  

and set  = 0. ζ
In this case (l, 1) and the mapping function fC∈Γ 0 has a branch point singularity at each of          

the points z1=i and z2 = -i where the two curves Г1 and Г2 meet, in the sense that 
 

,2,1,as),log()(~)()( 2
00 =→−−− jzzzzzzzfzf jjjj  

 
 (cf. [7, p.651]).  
  
 Let B1 and B2 denote the two subdomains of Ω, whose boundaries ∂B1 and ∂B are as follows:               
(i) ∂B1 consists of the subarc 
 

,12/π7θ2/π,θ ≤≤= iez  
of Г1 and the two straight lines that join the point 0.5i respectively to the boundary points i and     

. (ii) ∂B)12/π7(ie 2 consists of the subarc 
 

,12/π13θπ,θ ≤≤= iez  
of Г1 and the two straight lines that join the point -0.5 respectively to the boundary points -1 and       

. (Observe that ∂B)12/π13(ie 1 contains the point z1=i, where f0 has a branch point singularity, while               
∂B2 does not involve any singular points of f0.) 
 In Table 1 we have listed (for various values of n) estimates of the errors 

   ,2,1,π:),(ε,π:)Ω,(ε
)(

'
00

)Ω(
00

22
=−′=′′−′=′ jfBfff

jBL
njn

L
nn  

and also of the ratios 

).,(ε/),(ε:2,1),Ω,(ε/),(ε: 2010
)2,1

00
)( BfBfrjfBfr nnnnjn

j
n

′′==′′=  
Table 2 contains the corresponding estimates for the mapping function f0, ie. 

,2,1,π:),(ε,π:)Ω,(ε
)(00)Ω(00 22 =−=−= jfBfff

jBLnjnLnn  

).,(ε/),(ε:,2,1),Ω,(ε/),(ε: 2010
}2,1{

00
)( BfBfrjfBfr nnnnjn

j
n ==′=  

All these estimates were computed by using the Fortran conformal mapping package BKMPACK of        
Warby [11]. 

As might be expected the results of the two tables show that the local errors  and           

, for the subregion B

),(ε 20 Bfn
′

),(ε 20 Bfn 2, are smaller than the errors ),(ε 10 Bfn
′  and  for the subre-                     

gion B
),(ε 10 Bfn

1. whose boundary contains the singular point z1= i. However, the numerical results also show
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n )Ω,(ε 0
′fn  ),(ε 10 Bfn

′ ),(ε 20 Bfn
′ { }1

nr  { }2
nr  { }2,1

nr  

5 7.7(-2) 1.6(-2) 7.2(-4) .209 .009 22.2 
6 5.7(-2) 1.6(-2) 8.8(-3) .287 .154 1.86 
7 3.6(-2) 9.1(-3) 6.7(-4) .252 .019 13.5 
8 2.7(-2) 8.6(-3) 4.1(-3) .324 .153 2.12 
9 2.0(-2) 5.7(-3) 7.3(-4) .292 .037 7.84 
10 1.3(-2) 4.8(-3) 2.0(-3) .361 .150 2.41 
11 1.2(-2) 3.9(-3) 8.2(-4) .333 .070 4.74 
12 7.5(-3) 2.9(-3) 8.9(-4) .382 .120 3.20 
13 7.4(-3) 2.8(-3) 7.3(-4) .374 .099 3.78 
14 5.0(-3) 1.9(-3) 3.0(-4) .384 .060 6.41 
15 4.8(-3) 1.9(-3) 5.6(-4) .409 .116 3.51 

 
Table 1 

 
n ),f( 0n Ωε  )B,f( 10nε )B,f( 20nε

{ }1
nr  { }2

nr  { }2,1
nr  

5 1.5(-2) 2.8(-3) 1.2(-4) .182 .008 24.1 
6 9.7(-2) 2.6(-3) 1.5(-3) .265 .151 1.76 
7 5.5(-3) 1.2(-3) 1.6(-4) .217 .029 7.41 
8 3.5(-3) 1.0(-3) 4.8(-4) .294 .138 2.13 
9 2.4(-3) 6.0(-4) 8.8(-5) .248 .036 6.80 
10 1.4(-3) 4.4(-4) 2.0(-4) .324 .146 2.22 
11 1.2(-3) 3.4(-4) 8.3(-4) .283 .069 4.11 
12 6.4(-4) 2.1(-4) 7.3(-5) .335 .114 2.93 
13 6.4(-4) 2.1(-4) 6.0(-5) .322 .093 3.47 
14 3.9(-4) 1.3(-4) 2.1(-5) .324 .053 6.09 
15 3.5(-4) 1.3(-4) 4.0(-5) .360 .113 3.20 

 
Table 2
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that the rates of decrease of  and are not substantially different than those of  
 and They are, therefore, consistent with the results of our theorems. 

),(ε 1
'

0 Bfn ),(ε 1Bfon

),(ε 2
'

0 Bfn ),(ε 2Bfon

 
4 Proofs 
  
 To establish Theorems 2.1, 2.2 and 2.3 we shall make use of several lemmas. The first two of 
these are due to Suetin [10]. 
 
Lemma 4.1 ([10, p.20]) Suppose ГЄC (p+1,α),p≥0, 0< α ≤1. Then the orthonormal poly-              
nomials Qn of Section 1 satisfy 

                        Γ∈⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+

+
= + z

n
nzznzQ p

n
n ,logO1)][(){(

π
1)( '

αφφ               (4.1) 

where  is the conformal mapping of )(φ zw = { }1:Ω\ >wwontoC  normalized by ∞=∞)(φ  

. 0)(and | >∞φ
 
Lemma 4.2 ( [10, p.38 ] )  Let A be a simply-connected domain bounded by a Jordan curve 

 . Then for every polynomial 10),,1(C ≤α<α∈γ nnP ∏∈  we have 

                                         ∫ ∫∫+≤
γ

,)()1()( 22 dmzPncdzzP
A nn                          (4.2) 

where the constant c depends only on γ. 
 
Lemma 4.3 Suppose Г Є C (p+1,α), p≥0, 0≤α ≤1, and let Ω⊂B  be as in Theorem 2.1. Then          there 
exists a positive constant τ = τ(B) such that 

...,1,0,0τ
)(2 =>≥ nQ

BLn                (4.3) 

where the Qn are the orthonormal polynomials of Section 1 . 
 
Proof Since ∂B contains a subarc of Г, it is always possible to choose a subarc B∂∩Γ⊂0γ  and        
construct a Jordan domain BA⊂ and such that γγand)α,(:γ 0 ⊂∈∂= iCA . Then from (4.1) it follows                       that 

                                              ,...,1,0),1()()(
0γ

2

γ

2 =+≥≥ ∫∫ nncdzzQdzzQ nn                    (4.4) 

 (recall that Γ⊂= 0γno1)(zφ ). On the other hand, from (4.2) we get 

             .)()1()()1()( 2

γ

22

∫∫∫ ∫∫ +≤+≤
B nA nn dmzQncdmzQncdzzQ                    (4.5) 

Thus combining (4.4) and (4.5) we obtain 

∫∫≤<
B n dmzQ

c
c 20 )(0  

and this gives the desired inequality (4.3).⁯
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Lemma 4.4 With the notations and assumptions of Section 1, there exist positive constants c1 and c2                      
such that 
 ,)ζ,.()ζ,.(π)ζ,.()ζ,.(

)Ω(12)Ω(
''

ζ)Ω(11 222 LnLnLn KKcfKKc −≤−≤− −−                 (4.6) 

for n = 0,1,.... 
 Thus the L2 (Ω) norms of   are equivalent. )ζ,.()ζ,.(andπ 1

'' KKf nn −− −ζ

Proof Recall that  and that  Thus )ζ,()()ζζ,( '
ζ zKzfK = )ζ,()(π)ζζ,( 1

'
1 zKzK nnn −− =

 

)Ω(1

1
)Ω(

''
ζ

2
2 )ζζ,(

)ζ(.,
)ζζ,(
)ζ,.(π

Ln

n
Ln k

k
k
kf

−

−−=−  

 

)ζζ,()ζζ,(

])ζ,.()ζ,.([)ζζ,(])ζζ,()ζζ,([)ζ,.(

1

)Ω(11 2

−

−− −+−
=

n

Lnn

KK

KKKKKK
           (4.7) 

 
 
Since K( ) is finite and positive and Kζζ, n-1( )  as n→∞, the estimates (4.6) will      
follow from (4.7) and the triangle inequality, provided we show that 

ζζ, )ζζ,(k→

 
 .as),)ζ,.()ζ,.((o)ζζ,()ζζ,(

)Ω(11 2 ∞→−=− −− nKKKK
Lnn                       (4.8) 

 
But 
 

2/1
2

)Ω(1
2

1 )()ζ,.()ζ,.(and)ζ()ζζ,()ζζ,( 2 ⎟
⎠

⎞
⎜
⎝

⎛
=−=− ∑∑

∞

=
−

∞

=
−

nk
kLn

nk
kn QKKQKK ζ . 

 
Thus 
 

 2/12

)Ω(1

1 ))ζ((
)ζ,.()ζ,.(

)ζζ,()ζζ,(
2

∑
∞

=−

− =
−
−

nk
k

Ln

n Q
KK

KK
              (4.9) 

 
and this yields (4.8), since the right-hand side of (4.9) clearly tends to zero as n→∞ . □ 
 
Proof of Theorem 2.1 We shall follow closely the argument in Li, Saff and Sha [5].  

 Let 
 

 
2/1

1

2

)Ω(
)ζ()ζ,.()ζ,.(: 2 ⎟
⎠

⎞
⎜
⎝

⎛
=−= ∑

∞

+=nk
kLnn QKKE  

and 

 
n

BLn
n E

KK
r )(2)ζ,.()ζ,.(

:
−

=  

Then 
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 )B(1)( 22 )ζ,.()ζ,.().()ζ(
LnnBLnn KKQQ −−=  

 )B(1)B( 22 )ζ,.()ζ,.()ζ,.()ζ,.(
LnLn KKKK −+−≤ −  

  ,11 −−+= nnnn ErEr
ie. 

,....2,1,),(max)(||(.))ζ(|| 11)(2 =+≤ −− nrrEEQQ nnnnBLnn    (4.10) 

On the other hand, by Lemma 4.3, we have that 
 

,....,2,1,τ)(τ|)ζ(|||(.))ζ(|| 2/122
1)(2 =−=≥ − nEEQQQ nnnBLnn   (4.11) 

 
for some τ > 0 . Thus, from (4.10) and (4.11), we get 
 
  ),(max.)(τ)( 11

2/122
1 −−− +≤− nnnnnn rrEEEE

   
 and this implies that 

 ,....2,1,),(maxτ 2
1

2

1

12 =≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−
−

− nrr
EE
EE

nn
nn

nn    (4.12) 

Next we note that En decreases to zero as . Hence it follows from ele-
mentary properties of series that 

)as,0( ∞→↓∞→ nEn n

     

 ∞=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−

−
∞

=
∑

nn

nn

n EE
EE

1

1

1
. 

Therefore, from (4.12), we get that max and this implies the desired result ∑
∞

=1n
∞=− ),( 2

1
2

nn rr

∑
∞

=

∞=
0

2 .
n

nr  

Proof of Theorem 2.2 From (4.7) (with Ω replaced by B) and (4.9) we get 
 

)(1
1

)(
,'

ζ 22 ||)ζ,.()ζ,.(||
)ζ,ζ(

1||π|| BLn
n

BLn KK
K

f −
−

−≥−  

 

 |)ζ,ζ()ζ,ζ(|
)ζ,ζ()ζ,ζ(

||)ζ,.(||
1

1

KK
KK

K
n

n

−− −
−

 

 
 

)(11 2||)ζ,.()ζ,.(|| BLnKKc −−≥  

 , 
)Ω(1

2/12
2 2||)ζ,.()ζ,.(||)|)ζ(|(

Lnk
nk

KKQc −

∞

=

−− ∑
 
where c1,c2 are positive constants. Thus, by Corollary 2.1, there exists a subsequence such N⊂Λ
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that 

      Λ∈−⎥
⎦

⎤
⎢
⎣

⎡
−≥− −

∞

=
+ ∑ nKKQc

n
cf Ln

nk
kBLn ,||)ζ,.()ζ,.(||.)|)ζ(|(||π|| )Ω(1

2/12
2ε2/1

3
)(

''
ζ 22 . (4.13) 

Also, from [10, p.35], we have 

 ∑
∞

=
+ =≤

nk
pk n

n
cQ ,....2,1,)|)ζ(|( α

42/12     (4.14) 

We now assume, without loss in generality, that 2/1αε0 −+<< p . Then, from (4.13) and (4.14), 
we have that 

 Λ∈−≥− −+ nKK
n

cf LnBL ,||)ζ,.()ζ,.(||||π|| )Ω(1ε2/1
5

)(
'
ζ

'
ζ 22 .   (4.15) 

Finally, by using Lemma 4.4, we get from this last inequality that (2.3) holds for all .  ⁪ Λ∈n
 
Proof of Theorem 2.3 Let En and rn have the same meanings as in the proof of Theorem 2.1. Since 

Г is an analytic curve, it is well-known that 

 ,
ρ
1suplim /1 =

∞→

n
n

n
E  

for some ρ  > 1 ( cf. [3, p.35 ]). Furthermore, since 

    ,supliminflim /1

1

n
n

nn

n

n
E

E
E

∞→−∞→
≤  

 
there exists a subsequence  such that N0 ⊂Λ

    .1
ρ
1

ρ
1lim

01
0

<≤=
−

∞→
Λ∈ n

n

n
n

E
E  

For this subsequence we have 

    ,

ρ
11

ρ
11

lim

0

0

1

1

0 +

−
=

+
−

−

−

∞→
Λ∈ nn

nn

n
n

EE
EE  

and so from (4.12) we get 

   
∞→
Λ∈

−≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

<
n
n

nn rr
0

).,(maxinflim
1ρ
1ρτ0 2

1
2

0

02  

 
It follows that there exists a subsequence N⊂Λ  such that 
          ,,0 Λ∈≥≥ ncrn  

and this yields the desired result (2.4). The second result (2.5) follows by modifying in an obvious 
manner the proof of Theorem 2.2  ⁮ 
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