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1. Introduction

The thermal conductivity, λ, of solids is a subject of longstanding
experimental and theoretical interest. It has taken on increased
importance in recent years, for example, in the field of microelec-
tronics where heat “management” and distribution are key
design factors.[1] The pressure P and temperature T dependence
of λ are important in many fields, including geology and tribol-
ogy. In the latter case, contact pressures in lubricated gears can

be several GPa and the efficiency of heat
conduction from the contact zone is deter-
mined by the pressure and temperature
dependence of λ of the liquid lubricant
and confining walls, both of which can
be at high pressures and temperature.
Pressure and temperature also affect the
viscosity of the lubricant and through the
effective friction coefficient, the fuel-con-
sumption efficiency of the engine.
Therefore the thermal conductivity of the sys-
tem components has an indirect but major
effect on the fuel-consumption efficiency
of the engine.

The thermal conductivity, of all the
transport coefficients of single-component
systems, shows the least change in magni-
tude on going from liquid to the solid
phase. The thermal conductivity of a liquid
and solid can be computed using the
Green–Kubo (GK) method incorporated in
molecular dynamics (MD) simulation.[2,3]

The time-correlation function of the heat flux is computed and
integrated with time, the plateau value of which is proportional
to the thermal conductivity. The Lennard–Jones (LJ) potential
which is a reasonably good model for argon has been used
frequently. In two recent publications,[4,5] it was shown that the
GK time-correlation function method can be reformulated in
the form of a probability distribution function (PDF) of its single
trajectory components (STC), each starting from a different time
step (“time origin”) in the simulation. This new expression when
implemented in MD revealed that for fluids a substantial number
of these individual trajectories contribute a negative amount to the
total thermal conductivity. The contribution from positive values
outweigh those of the negative type giving a positive thermal con-
ductivity, which is necessary to comply with thermodynamic
requirements. This also is the case for the corresponding expres-
sions for the shear and bulk viscosities, and the self-diffusion coef-
ficient. This feature is masked in the usual GK implementation
which involves the integration of a time origin-averaged correla-
tion function, which decays monotonically with time. A number
of statistical mechanical aspects of the PDFs for four liquid state
transport coefficients (including λ) were examined in those two
previous publications.[4,5]

This work focuses on the thermal conductivity of solids and
explores if solids obey the STC trends previously identified
for fluids, and if there are any features which distinguish the
fluid from the solid state in this respect. In addition, some
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Aspects of the thermal conductivity, λ, of a Lennard–Jones (LJ) solid along
an isotherm and the sublimation line are studied using equilibrium molecular
dynamics (MD) simulations. A reformulation of the Green–Kubo time correlation
function expression for λ in the form of a probability distribution function (PDF)
of single trajectory contributions (STC) exhibits the same characteristic statistical
trends as found previously for liquids, even at high pressures and low tem-
peratures. The analysis reveals that for short periods of time the thermal con-
ductivity can be negative. This feature is evident along the sublimation line isobar
and a low-temperature isotherm going to high densities. Along the isobar and
isotherm lines, λ is to a good approximation a power law in temperature and
density, respectively. This behavior is used in a more general thermodynamics-
based analysis description of the state point dependence of the thermal con-
ductivity. The heat flux autocorrelation function increasingly develops a damped
oscillatory appearance as pressure increases or temperature decreases, consis-
tent with the phonon formulation of thermal conductivity.
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aspects of the pressure and temperature dependence of the ther-
mal conductivity of the LJ solid phase using MD, are compared
with experimental thermal conductivity data of solid argon and
previous MD simulations. This preliminary investigation builds
on pioneering MD studies of LJ solid thermal conductivity as a
function of pressure and density in refs. [6–11]. At the temper-
atures of concern here, energy waves associated with the lattice
dynamics or phonons can be important in the thermal transport,
which favors an atomistic model similar to MD rather than a con-
tinuum approach.[6,8–11] The focus of interest here is, λðP,TÞ,
and to express and interpret the P and T dependencies within
the framework of classical thermodynamic relations developed
in the literature many decades ago, see for example those given
in refs. [12,13]. It is timely to take another look at these treat-
ments as a number of the quantities which are difficult to obtain
experimentally can now be computed directly by MD simulation.
Therefore these equations can be more fully evaluated and hence
exploited better than was possible decades ago.

In Section 2, the theory and LJ MD results relating to formal
aspects of the PDF route to the thermal conductivity of solids
are discussed. In Section 3, the MD study is extended to consider
the effects of pressure at constant temperature. Section 4 covers
the dependence of the thermal conductivity on temperature
along the sublimation (P ≃ 0) line. Comparisons with the
temperature dependence of the thermal conductivity of solid
argon which can be represented by the LJ potential are made.
A summary of the conclusions of this work is made in Section 5.

2. PDF Route to the Thermal Conductivity

In this section, some fundamental statistical mechanical aspects
underpinning the thermal conductivity based on a PDF descrip-
tion are discussed. The new emphasis here is its application
to the solid phase, whereas previous applications of this theory
were confined to liquids.[4,5]

2.1. Theory and MD Results

Refs. [4,5] discuss the background to the STC methodology and
here we will concentrate on its application to the thermal conduc-
tivity. The GK method for calculating the thermal conductivity
of an equilibrium system involves the heat flux vector, Jq,

[2,14]

Jq ¼
1
V

�XN
i¼1

�
eivi �

1
2

XN
j 6¼i

ðr ij · vijÞ
r ij
rij

ϕ
0 ðr ijÞ
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where N is the number of molecules in volume V (i.e., the
volume of the simulation cell here). The relative velocity
between molecules i and j is vij ¼ vi � vj where vi is the velocity
of particle i, and r ij is the pair separation vector between the two
molecules. The first derivative of the pair potential, ϕðrÞ, with
respect to r is denoted by ϕ

0
. Also

ei ¼
1
2
miv2i þ

1
2

X
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is the total energy of a molecule i in the fluid. The thermal
conductivity, λ, by GK is,[14,15]

λGKðtÞ ¼
V

3kBT2

Z
t

0
hJqð0Þ · JqðxÞidx

CT ðtÞ ¼
V

3kBT2 hJqð0Þ ⋅ JqðtÞi, λGK ¼ lim
t!∞

λGKðtÞ
(3)

where kB is Boltzmann’s constant, and where “x” is a dummy
variable in this and the subsequent equations. The angular
brackets, h : : : i represent an average over time origins, and
CT ðtÞ is the heat flux time autocorrelation function (TACF).
The quantity, λGKðtÞ is known as the time-dependent thermal
conductivity, whose limit at long times is the thermal conduc-
tivity. In practice, for any given simulation length, there is a
limit on how large the upper limit of time (t) can be before
statistical noise dominates and there is no benefit in carrying
out the integration of CT to longer time. Despite many
publications having been written on this problem,[16–18] it still
is an unavoidable feature of the implementation of the GK
method which limits the precision of the final value for the
transport coefficient. The STC expression for the thermal
conductivity, λST is

λST ðtÞ ¼
�

V
3kBT2 Jqð0Þ ⋅

Z
t

0
JqðxÞ

�
dx ¼ hλuðtÞi

λu ¼
V

3kBT2 Jqð0Þ ⋅
Z

t

0
JqðxÞdx

λST ðtÞ ¼
Z

∞

�∞
dλuðtÞ λuðtÞPðλuðtÞÞ, λST ¼ lim

t!∞
λuðtÞ

(4)

The thermal conductivity STC is denoted by λu. Each λu may
be considered to constitute a single collective dynamical “event”
in the heat transmission process. In the last line of Equation (4),
the quantity, P, is the PDF of λu, which note is implicitly a
function of t. The PDF of λu for long times has a significant
negative λu region. The first moment of P also defined in the
last line of Equation (4) is the thermal conductivity, which
must be positive as there must be a net production of heat
arising from the imposition of a temperature gradient in an
experimental system or nonequilibrium molecular dynamics
(NEMD).[4]

The STC decomposition analysis throws light on the distribu-
tion of dynamical events that combine to yield the thermal conduc-
tivity. It also enables, in principle, PDF analytic tools to be
exploited in the context of transport coefficients. Its computation
adds little computational time to the simulation as the STC are
already calculated as an intermediate step in the GK procedure.

Ref. [5] discusses the possible PDF definitions which are rele-
vant to the STC quantity. The PDF, PðxÞ, in Equation (4) is for the
case in which the quantity, x, is in real units (i.e., which here is
LJ, principally), where �∞ < x < ∞, and PðxÞ is normalized to
unity in this complete argument range. As PðxÞ is asymmetric on
the negative and positive sides, it is also convenient to define the
PDFs, P�ðxÞ for the negative argument range, �∞ < x < 0 and
PþðxÞ for 0 < x < ∞. The PDF on each side is normalized sep-
arately so that the two integrals are unity. The standard deviation
of the two PDFs, σ� and σþ are defined through, σ2� ¼
∫ 0
�∞x

2P�ðxÞ dx and σ2þ ¼ ∫ ∞
0 x

2PþðxÞ dx. It was also found,[5]

that a further simplification can usefully be made, in which
the argument of the PDF is normalized by the appropriate
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standard deviation. This new PDF definition, Ps,�, is defined
through the following relationships

Ps,�

�
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�
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�
¼ σþPþðxÞ

(5)

It was found in ref. [5] that within statistics and for not too
small a value of t that, Ps,�ð�x=σ�Þ ¼ Ps,þðx=σþÞ ≡ P0ðyÞ for
x > 0 and where y ¼ �x=σ� or x=σþ, as appropriate. The non-
dimensionalized PDFs, Ps,� and Ps,þ are therefore observed to be
symmetric on the negative and positive argument sides.

The LJ pair potential, ϕLJðrÞ ¼ 4ϵ½ðσ=rÞ12 � ðσ=rÞ6�, where r is
the center-to-center separation of the two particles, was used in
the MD simulations. The simulated quantities are mostly
reported in units of ϵ and σ, and the mass of the molecule,
m. The MD time step was, Δt ¼ 0.004=

ffiffiffiffi
T

p
, and the interaction

truncation distance, rc, was 3.5 (see ref. [3]). The number of
particles in the simulation cell, N, was typically 1372. Some of
the computed quantities reported here are expressed in real units
using the usual LJ potential parameters for argon, with conver-
sion factors between reduced and real units for the relevant
quantities in this study given in Table 1. The parameters used
for argon were, ϵ=kB ¼ 119.8 K and σ ¼ 0.3405 nm.

The computations were conducted typically for 6� 105 to
1 million time steps. Most of the simulations carried out were
for the solid state at low temperatures below the triple-point tem-
perature. For comparison, some results for fluid-state points are
reported, notably at the reduced number density, ρ ¼ 0.8442 and
T ¼ 0.722, which is close to the triple point. This state point was
first introduced by Levesque, Verlet and coworkers,[19,20] and has
been used as a standard or reference state point in many simu-
lation studies since. Simulations were carried out mainly using
constant temperature or NVT dynamics where N, V, and T are
the number of particles, volume, and temperature, respectively.
The Nosé–Hoover thermostat[21,22] with a time constant of 3 LJ
time units was employed.

2.2. MD Simulations

Figure 1a shows the LJ phase diagram on a ρ� T plane. The solid
region of interest is in the bottom right-hand side of the diagram.
The isotherm and isobar (sublimation) lines investigated here are
highlighted in the diagram. The solid region of the LJ phase
diagram focused on in this study is shown in Figure 1b, plotted
on a T � ρ plane, which is a typical form of presentation for such
investigations. The melting line above the triple-point tempera-
ture ≃ 0.69 shown in the figure is taken from various MD and
Monte Carlo simulation sources.[23–27] The experimental argon
melting line data,[28] shown in the figure (see the figure caption
for further details) agrees within their mutual statistical uncer-
tainties with the LJ data, giving support for the adequacy of
the LJ potential in representing argon, at least in the present con-
text. It is worth noting that the sublimation line (the solid–vapor
coexistence boundary below the triple-point temperature) is not
an extrapolation of the melting line to lower temperatures (which
is also shown in the figure) but takes a different course on the ρ,T
surface. There is, in fact, an increase in the coexisting density of
the solid phase with decreasing temperature below the triple-point
temperature,[29,30] rather that a decrease as would be predicted by
extrapolating the melting line data to 0 K. A recent accurate ana-
lytic expression for the sublimation line,[31] is also shown in the
figure as a solid black line. This is compared with points used
in these simulations for the sublimation line based on the P ¼ 0
approximate condition. The two sets of values agree very well. The
sublimation line is to a very good aproximation a P ¼ 0 isobar.

Figure 2 shows the PDF, PðλuÞ, for liquid and solid-state
points. The STC quantity, λu, is in LJ units. The PDFs on the
negative and negative STC sides are shown. In both cases, the
negative side is larger for jλuj close to zero, but decays more
rapidly than the positive-side PDF for larger argument values
(i.e., there is a cross-over). Figure 3 presents these data where
the λu are normalized by the standard deviation, calculated sepa-
rately for each side. Therefore, there are two standard deviations
of relevance in the Ps,� description. The thermal conductivity
PDF, Ps,�ðλu=σ�Þ, defined in Equation (5) for the liquid and
solid-state points are shown in Figure 3. In Figure 3a,b, the argu-
ments of the PDFs are λu=σ� and jλu=σ�j, respectively. The fig-
ure shows that the PDFs expressed in this way are statistically the
same for the liquid and solid states. In ref. [5], it was shown that
these reduced quantity PDFs can be represented well by a sum of
exponentials (three were found sufficient), which for the thermal
conductivity can be written using the following formula

P�ðjλuðtÞj=σ�Þ ¼
X3
i¼1

ai expð�bijλuðtÞj=σ�Þ (6)

where ai and bi are constants fitted to the simulation data. The
constants are, a1 ¼ 0.92726, a2 ¼ 1.45707, and a3 ¼ 0.50139,
and b1 ¼ 2.57893, b2 ¼ 27.86215, and b3 ¼ 0.87189.

Figure 4 shows the time-dependent thermal conductivity, λðtÞ,
obtained by the GK formula of Equation (3) and the STC proce-
dure of Equation (4), for the liquid and solid states in Figure 4a,b,
respectively. The separate negative and positive-side contribu-
tions of the SCT method are presented. One notable feature
of Figure 4a is that the positive and negative contributions to

Table 1. Units and conversion factors, where v is the volume per molecule.
To convert a quantity in LJ units into SI units for argon, multiply by the
term in the third column.

Quantities LJ units Conversion factor units

r σ 0.3405 nm

t σðm=ϵÞ1=2 2.1564 ps

T ϵ=kB 119.8 K

ρ σ�3 0.5951 g cm�3

v σ3 23.774 cm3mol�1

u ϵ 0.996066 kJ mol�1

P ϵσ�3 0.041898 GPa

λ σ�2ðϵ=mÞ1=2 1.87972� 10�2 Wm�1 K�1
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the thermal conductivity increase continuously with time without
reaching a plateau, even though the combined value reaches
a limiting plateau value at comparatively short times. The STC
and GK results are statistically indistinguishable, as they
should be, as they are both constructed from exactly the same
numerically acquired quantities. The same trends were noted
in ref. [5] for the shear viscosity. The qualitative difference in
behavior of the component and total value of the time-dependent
STC was attributed in ref. [5] to random fluctuations in the STC
(“viscuit”) which increase with t. The same trends are evident in
λuðtÞ. Statistically, these fluctuations have equal probability of
occurring for the negative and positive-side PDFs, and for

(a)

(b)

Figure 2. The thermal conductivity, λu PDF in LJ units. The PDF on the
negative side (“PDF-”) and on the positive side (“PDFþ”) are shown.
Frame (a) is for the liquid-state point, ρ ¼ 0.8442 and T ¼ 0.722 with
t ¼ 2.5. Frame (b) is for the solid-state point, ρ ¼ 1.1 and T ¼ 0.8 with
t ¼ 2.2.

(a)

(b)

Figure 1. Frame (a), the LJ phase diagram in LJ units. The region of inter-
est for this study is the bottom left-hand corner part of the solid phase. The
sublimation line (red) and high-pressure line (orange) are principally
investigated in this study. The vapor-phase region is denoted by “V”.
The magenta and green horizontal lines mark out the boundary between
different regions. The sublimation (solid–vapor coexistence region) is
below the green line. Frame (b), the solid part of the phase diagram of
the LJ system and argon which is of relevance to this work, given in LJ
reduced units. The melting line above the triple-point temperature
(≃0.69) derived from molecular simulation.[23–27] using the LJ potential
is shown (open circles). The lower temperature sublimation line
(“SUBL.”) was mapped out by MD simulations carried out here. The den-
sity for a given T is determined when P ¼ 0 in the MD simulation (shown
as filled-in circles). Experimental data for argon,[28] (solid squares) where
ρ ¼ 4=a3 and the lattice parameter, aðTÞ ¼ Aþ BT þ CT2, where in LJ
units A, B and C¼ 1.666109, �0.09506882, and 0.01187766. This line
obtained in ref. [28] is also shown on the figure as a blue solid line with
positive slope. From ref. [31], an analytic fit to the sublimation
line is, ρ ¼ 1.09151� 0.14081T � 0.04152T2 þ 0.01828T3 � 0.18547T4

þ0.31686T5 � 0.24139T6, which is also shown on the figure as a solid black
line with negative slope.
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practical purposes, their effects (almost) cancel out in the total
transport coefficient. The data in Figure 4a is plotted as a func-
tion of

ffiffi
t

p
. The negative and positive PDF side contributions to

the thermal conductivity are linear with
ffiffi
t

p
in the long time limit.

This is the expected dependence for stochastic processes,[16–18]

which therefore supports this hypothesis on the origin of the con-
tinual growth in the negative and positive STC contributions. The
problem of establishing a long-time plateau value with increasing
correlation time due to random fluctuations at long time is also
manifested in the GK and its formally equivalent transformation,
the Einstein–Kubo–Helfand (EKH) method.[32–35] Whichever

formulation is used to compute the transport coefficient, one
cannot escape the need to accommodate the long-time growth
in statistical uncertainty. It should not be concluded, however,
that the PDFs are entirely noise. At short times, of order, the
correlation time of the dynamical processes leading to the trans-
port coefficient, the negative and positive sides of the PDF, PðλuÞ
have a different functional form and do not cancel out. This
difference contains the information needed to determine the
thermal conductivity.

Figure 5 shows the PDF ratios, R ¼ Pþ=P� plotted on
a log scale for the solid, where the abscissa is jλuðtÞj.
The lnðRÞ data are linear with jλuj (for not too large values)

Figure 3. The thermal conductivity PDF, Ps,�ðλu=σ�Þ defined in
Equation (5) for the liquid and solid-state points of Figure 2. Frame (a)
is the PDFs as a function of λu=σ� and the PDF in frame (b) is a function
of jλu=σ�j. The liquid-state point is ρ ¼ 0.8442 and T ¼ 0.722. The
solid-state point is ρ ¼ 1.1 and T ¼ 0.8. Other parameters are given on
the figure.

(a)

(b)

Figure 4. The time-dependent thermal conductivity, λðtÞ, from the STC
route of Equation (4) compared with the GK formula of Equation (3)
for the liquid and solid states in frames (a) and (b). The two frames show
the separate negative and positive side contributions of the SCT method.
Note the different functions of time on the abscissa on the two frames.
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with the slope decreasing as t increases. The linearity of
the data and dependence on t suggests the analytic form,
PþðλuðtÞ=P�ð�jλuðtÞjÞ ¼ BðtÞ expðAðtÞjλuðtÞtjÞ, where AðtÞ and
BðtÞ are time-dependent constants. A simple approximate model
derived in ref. [5] predicted that

AðtÞ ¼ σþðtÞ � σ�ðtÞ
σþðtÞσ�ðtÞ

, BðtÞ ¼ σ�ðtÞ
σþðtÞ

(7)

It was shown in Figure 11 of ref. [5] that σþðtÞ and σ�ðtÞ
converge with increasing t. The trends in R seen in Figure 5 were
also noted in ref. [5] for the shear viscosity and thermal conduc-
tivity of the liquid phase.

To summarize this section, the analysis of the MD data
for solid LJ systems reveals that qualitatively and for certain
properties (e.g., the Ps,�) quantitatively, the same behavior is
exhibited in both the liquid and solid states for the thermal con-
ductivity and its STC decomposition. The constancy of Ps,�
across the fluid and solid-phase diagrams is a useful simplifi-
cation, but this does not mean we can dispense with simula-
tions to evaluate the thermal conductivity at any specific state
point, as the STC standard deviations σ� and σþ still need to
be computed by MD at that state point to give the value of
the thermal conductivity. Note also that the STC or “viscuit”
is not a trivial quantity similar to the mean of a system property
over a time t, but contains information about individual prop-
erty correlations over time (the STC involves the product of two
heat fluxes at different times).

The present investigation is extended to consider the density
and pressure dependence of the thermal conductivity. The MD
results and theoretical analysis are presented in the next section.

3. Pressure Dependence of the Thermal
Conductivity

Table 1 presents the conversion factors between LJ reduced
and SI units for the properties computed in this study.
Table 2 gives the thermal conductivity computed by MD for some
representative regions of the fluid (including liquid) and solid-
phase diagrams. State point E which was studied in ref. [6] is
far into the solid phase at a very high density (ρ ¼ 1.414). The
value for λ obtained here is in agreement with the value obtained
in that work, within the mutual statistical uncertainties. State
point E simulations were conducted with N ¼ 256 particles,
as in the previous work, and a further simulation was carried
out with N ¼ 1372, which showed a significantly lower value
of the thermal conductivity. Although it has been found that
the MD λ have a very weak N-dependence,[8] down to a molar
volume, Vm, value of 22 μm3 mol�1, the E state point has a much
smaller Vm of 17 μm3 mol�1 than those for which the previous
N-dependent analysis was made. It is not surprising that for this
state point there is a noticeable N-dependence in the value of the
transport coefficient. As discussed earlier, the main difficulty can
be in assigning the plateau value in the GK integrand which can
be difficult to identify within a certain range of possible values.
Table 3 lists thermodynamic quantities and λ as a function of
density and pressure, given in LJ reduced units. The contribution
of the repulsive and attractive parts of the LJ potential to the total
energy per particle, u, from the simulation are also given in
Table 3 for future reference.

Figure 6 shows the radial distribution function, gðrÞ, of the LJ
solid at three densities along the T ¼ 0.578 isotherm (70 K for
argon). The pair separation is scaled by ρ1=3 to account for the
homogeneous part of the change in gðrÞ due to density, which
enables density-induced structural changes to be more readily
identified. The peaks become sharper with increasing density
(pressure). At the highest density on the figure, ρ ¼ 1.5 addi-
tional peaks appear for �rρ1=3 > 2.5, which are not present
for lower densities (pressures). These new features indicate a

Figure 5. The ratios, R ¼ PþðjλuðtÞÞ=P�ð�jλuðtÞÞ plotted on a log scale as
a function of jλuðtÞj, where the solid-state point is defined by T ¼ 0.8 and
ρ ¼ 1.1. Data for different integraton times, t, are shown, with the values
of t from top to bottom: 0.0390, 0.0823, 0.1256, 0.1690, 0.2123, 0.3206,
0.4289, 0.8621, and 2.1618.

Table 2. The transport coefficients for five of the state points considered in
this study. States A–C are in the equilibrium fluid part of the LJ phase
diagram. Key: Vm is the molar volume. State points A–D used N¼ 864
particles in the simulation cell. The quantities are given in LJ units,
except for the final three columns.

Key State T ρ λ T Vm λ

Units LJ LJ LJ K 10�6 m3mol�1 Wm�1 K�1

A Fluid 2.0 0.5000 2.80(1) 239.6 47.55 0.0526(3)

B Fluid 1.0 0.8000 6.38(1) 119.8 29.72 0.120(2)

C Fluid 0.722 0.8442 6.91(1) 86.5 32.93 0.130(3)

D Solid 0.8 1.1000 21.6(3) 95.8 21.61 0.406(5)

E Solid 0.55 1.414 352(75)a) 65.9 16.8 6.6(1.0)

E Solid 0.55 1.414 333(10)b) 65.9 16.8 6.3(2)

E Solid 0.55 1.414 267(5)c) 65.9 16.8 5.0(1)

a)For state point, E: ref. [6], where N¼ 256; b)This work, with N¼ 256; c)This work,
with N¼ 1372.
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subtle structural change in the long range order of the lattice at
high (�GPa) pressures, which may have an influence on the pho-
non spectrum.

Figure 7a presents the pressure dependence of the density
at constant temperature. Two literature formulas can be fitted
to the MD data very well. These are the Tait,[36,37]

Table 3. Calculated properties along the T¼ 0.578 isotherm in the solid
phase. The thermal conductivity was calculated using the GK method
formula given in Equation (3). The quantities, ur , ua, and u are the
r�12, r�6 and total contributions to the average potential energy per
particle, respectively. P is the total pressure. The numbers in brackets
for λ are the uncertainties in the final digits. The quantities are given in
LJ units.

N ρ ur ua u P λ

864 0.949325 6.41580 �13.7467 �7.33090 �1.1899 10.7(3)

864 0.974325 6.91363 �14.3900 �7.47637 �0.5347 12.4(3)

1372 0.974325 6.91450 �14.3904 �7.47594 �0.5318 11.6(3)

864 0.999325 7.45899 �15.0567 �7.59771 0.2991 14.8(8)

864 1.01250 7.76654 �15.4175 �7.65091 0.8181 15.3(5)

1372 1.01250 7.76746 �15.4179 �7.65044 0.8212 17(1)

864 1.02500 8.07080 �15.7652 �7.69438 1.3628 17(1)

864 1.04933 8.70009 �16.4579 �7.75779 2.5827 22(1)

864 1.10000 10.1735 �17.9657 �7.79226 5.8731 31(1)

1372 1.10000 10.1743 �17.9661 �7.79177 5.8764 28(1)

864 1.14933 11.8332 �19.5143 �7.68111 10.207 46(2)

864 1.20000 13.7891 �21.1882 �7.39919 16.028 67(2)

1372 1.20000 13.7898 �21.1885 �7.39869 16.031 66(2)

864 1.24933 15.9562 �22.8966 �6.94035 23.248 94(2)

864 1.30000 18.4753 �24.7266 �6.25123 32.532 132(3)

1372 1.30000 18.4760 �24.7267 �6.25073 32.536 125(3)

864 1.34933 21.2345 �26.5844 �5.34994 43.645 162(3)

864 1,40000 24.4079 �28.5745 �4.16657 57.483 232(4)

864 1.44933 27.8510 �30.5812 �2.73021 73.652 349(5)

864 1.50000 31.7788 �32.7206 �0.94183 93.38 365(10)

Figure 6. Radial distribution functon, gðrÞ, as a function of density
for the LJ FCC solid. The values of the density in LJ units are given on
the figure.

(a)

(b)

Figure 7. The pressure dependence of the density and thermal conductiv-
ity at constant temperature. Frame (a) shows the MD values on a lin–lin
scale. The Tait and Bair analytic formulas obtained by least square
fitting the MD data are also given in the figure. The fit parameters
(Bair, Equation (9)) for ρð0Þ, AB and BB are 1.00507, 0.0388216, and
0.0227467, respectively, and (Tait, Equation (8)) ρð0Þ, AT and BT are
0.493306, 0.215634, and 10.3882, respectively. The fit procedure empha-
sizes the high-pressure region, hence the values of ρð0Þ obtained. Frame
(b) is ln λ as a function of P, where the fits to Equation (9) and (8) give, for
ρð0Þ,AB and BB are 2.691714, 0.0870804, and 0.0338614, and ρð0Þ,AT and
BT are 0.645126, 1.159850, and 5.455939.
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ρðPÞ ¼ ρð0Þ þ AT lnð1þ BTPÞ (8)

and Bair,[37]

ρðPÞ ¼ ρð0Þ
�
1þ ABP
1þ BBP

�
(9)

formulas. The parameters, ρð0Þ,AT and BT , and AB and BB
are given in the figure caption. Figure 7b shows that these
expressions can also be used to fit ln λðρÞ quite well. It is intui-
tively reasonable that the thermal conductivity will follow
the pressure dependence of the isothermal compressibility,
κT ¼ ð ∂ ln ρ= ∂PÞT , which is the slope of the curve in Figure 7a.

It is generally the case that the density dependence of λ or any
other transport coefficient is not easy to measure in experiment,
in contrast to what can be achieved in MD simulation where den-
sity is the natural input parameter. The pressure is usually the
independent variable in tribology and geology, and other fields
where the effects of large loads are of importance. Figure 8a
presents the density dependence of ln λ along the T ¼ 0.578 iso-
therm, and Figure 8b shows ln λ as a function of ln ρ. Both plots
are statistically close to being linear in both ρ and ln λ, and the
regression constants are given in the figure caption. There is no
systematic difference between the thermal conductivity values
obtained with N ¼ 864 and 1372 even at the highest densities
considered. Interpretation of these trends is aided using the
following thermodynamic relationship,[12]

�
∂ ln λ
∂P

�
T
¼

�
∂ ln ρ
∂P

�
T

�
∂ ln λ
∂ ln ρ

�
T

¼ κT

�
∂ ln λ
∂ ln ρ

�
T
¼ κTg

g ¼
�
∂ ln λ
∂ ln ρ

�
T

(10)

Experimental measurements of the parameter, g, defined in
Equation (10), give values typically between 6–10 for crystals,
and the value obtained by linear regression in Figure 8b is
8.1� 0.1, which is in the middle of this range. This indicates
that for this temperature and wide density range, λ ≃ Aρ8, where
A is a constant valid up to a pressure of ≃4GPa for argon. This
simple density dependence was also discovered by Tretiakov
and Scandolo,[7] who carried out similar simulations using an
exponential-6 (E6) potential for solids at higher temperatures,
and obtained an exponent of 6. This is consistent with the present
data, as the LJ potential is steeper at short range than E6. There is
evidence that the E6 potential is a better representation of argon
for pressures in excess of�1 GPa.[7,38,39] On the basis of the pres-
ent results, combined with those of Tretiakov and Scandolo, it is
clear that the simple density scaling of the thermal conductivity
covers a wide range of the solid-phase diagram and is relatively
independent of the potential form (for argon at least).

The pressure dependence of the thermal conductivity there-
fore from Equation (10) is seen to track well that of the isothermal
compressibility. A comparison of Figure 8a,b indicates that ln λ is
quite linear when plotted against both ρ and ln ρ, with the latter
performing slightly better in this respect. An important conclu-
sion is that within the simulation statistics, g is independent
of ρ and therefore P, along the isotherm which could be exploited

in further analytical analysis. In contrast, for hard spheres, g is a
strong function of P in the solid phase.[40]

Various attempts have been made to predict the value of the
parameter, g, by approximate model treatments. For example,[12]

a simple lattice approximation for the thermal conductivity is,
λ ≃

ffiffiffi
2

p
νCvr�1, where Cv is the isochoric heat capacity per unit

volume, ν, is a characteristic average lattice vibrational frequency,
and r is the nearest-neighbor distance in the lattice. For an
FCC (face-centered cubic) lattice, r ¼ 21=6=ρ1=3, and as Cv per
molecule changes by only a few percent along the isotherm
(at T ¼ 0.578, it only increases from 2.71 to 2.95 between the

(a)

(b)

Figure 8. The density dependence of the thermal conductivity at a
constant temperature of T ¼ 0.578. Frames (a) and (b) are lin–log and
log–log plots, respectively. The linear regression fits to the data are:
Frame (a) �4.03 (intercept) and 6.771 (slope) and frame (b) 2.709
(intercept) and 8.115 (slope).
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densities ρ ¼ 0.949 and 1.52), the following approximation can
be derived using this approximate formula for the thermal
conductivity

�
∂ ln λ
∂P

�
T
≃ κT

��
∂ ln ν
∂ ln ρ

�
T
þ 1
3

�
(11)

where

γ ≃
�
∂ ln ν
∂ ln ρ

�
T

(12)

is the Grüneisen parameter which is a measure of the anhar-
monic contribution to dynamical properties. The frequency,
ν, can be approximated by ν ¼ ωE=2π, where ωE is the
Einstein frequency, which within a cell lattice or Lindemann
approximation,[41–44] is given by

mω2
E ¼ Nnn

3

�
2
r
ϕ

0 þ ϕ
00
�

(13)

where m is the mass of the particle, and Nnn is the number of
nearest neighbors for a molecule (i.e., 12 here for an FCC lattice),
and ϕ

0
and ϕ

00
are the first and second derivatives of the potential

with respect to r (here, the nearest neighbor distance). This
approximation using Equation (12) and (13) leads to

γ ≃
1
6

�
2ϕ

0 � 2rϕ
00 � r2ϕ

000

2ϕ
0 þ rϕ

00

�
(14)

There is an even simpler formula in the literature which only
retains the highest order derivative in the numerator and denom-
inator of Equation (14),[45] i.e., γ ¼ �rϕ

000
=6ϕ

00
. Equation (14)

gives a value of ≃1 between ρ ¼ 0.9� 1.5, and the simplified
version of Ramani and Ghodgaonkar,[45] decays monotonically
from 4.3 to 2.6 in the same density range, rather than the
expected value ≃8 obtained directly from the MD data.
Therefore, approximate lattice expressions for the Grüneisen
parameter and hence g give values which are quite sensitive
to the truncations and approximations used in their derivation.
Despite this drawback, it is undeniable that from the MD results,
ln λ and ln ρ are to a good approximation linearly related over a
significant pressure range, which is equivalent to the thermal
conductivity being proportional to a high power of ρ up to vary
large pressures.

Figure 9a presents the density dependence of the normalized
TACF, defined in Equation (3) of five state points along the
T ¼ 0.578 isotherm of the LJ solid. The figure shows that with
increasing density this function progressively becomes more
oscillatory, which indicates that a collective excitation (“phonon”)
mechanism of heat transfer becomes more important in that
limit. Figure 9b shows the standard deviation normalized
PDFs defined in Equation (5) for four of the state points repre-
sented on Figure 9a. The absolute value of λu is used to show both
sides of the PDF on the figure which facilitates their comparison.
The figure demonstrates that within simulation statistics the
negative and positive sides are symmetric and the same for
these four state points. This is consistent with Figure 3 and

the fluid-state behavior found in ref. [5]. Therefore, the PDFs
in reduced form are independent of pressure and statistically
the same as for a liquid composed of the same types of
particle.

Temperature is the other intensive thermodynamic variable of
much importance in experimental situations. The next section
considers the temperature dependence of λ, along the sublima-
tion or P ≃ 0 line.

(a)

(b)

Figure 9. Frame (a), the normalized TACF defined in Equation (3) for four
state points along the T ¼ 0.578 isotherm of the LJ solid. The densities, ρ,
are given in the figure. Frame (b) gives the corresponding Ps,� for STC
averaging times: (i) t ¼ 2.63, (ii) t ¼ 10.5, (iii) t ¼ 9.9, and (iv) t ¼ 9.2
for (on the figure), ρ ¼ 0.999, 1.0125, 1.200, and 1.500, respectively.
The absolute value of λu is plotted, and both negative and positive sides
of each PDF are shown and seen to be coincident within the simulation
statistics.
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4. Temperature Dependence of the Thermal
Conductivity

In this section, the temperature dependence of the thermal
conductivity along the sublimation line is considered. Again λ
is calculated by MD using the GK and STC methods. The tem-
perature range of the solid is below the triple-point temperature.
The triple-point parameters of the LJ system are, T ¼ 0.695ð1Þ,
P ¼ 0.001ð1Þ, and for the liquid phase, ρ ¼ 0.845ð1Þ, and the
density of the coexisting solid is 0.961(1).[31,46,47] The vapor–solid
or sublimation line has been the focus of a number of molecular
simulation investigations.[31,38,48–50]

A number of experimental measurements of the temperature
dependence of the thermal conductivity of solid argon along
this line have been made.[51,52] The TðρÞ boundary has a discon-
tinuity in slope at the triple-point temperature.[29,30] This line was
computed here by carrying out simulations in which the density
was adjusted iteratively to give an average total pressure of zero
at a given temperature. A crystal cannot be thermodynamically
stable at negative pressure and one can assume the pressure
of the vapor in this temperature range is relatively small so that
the P ¼ 0 isobar is a good approximation to the sublimation line.
These densities and the corresponding thermal conductivities
obtained by MD are listed in Table 4.

The thermal conductivity in crystalline van der Waals solids
has a strong temperature dependence. At low temperatures
below about 10 K, it increases as �T3 due to the heat capacity

dependence predicted within the Einstein and Debye models,
an effect which cannot be captured by classical MD. The thermal
conductivity peaks at about T ¼ 5K. Above about this tempera-
ture, the thermal conductivity decreases with increasing T, and is
affected by phonon–phonon scattering due to the effects of
anharmonicity. The scattering mean free path has �1=T depen-
dence. This effect is most pronounced in the vicinity of the
low temperature peak in λðTÞ. The phonon-description of the
thermal conductivity of noble gas solids based on a pair potential
description has been demonstrated to give good agreement with
experimental data.[53]

Figure 10a shows the temperature dependence of the thermal
conductivity along the sublimation line calculated in this study.
The MD simulation data from different sources are also shown
in the figure. They agree very well with those performed in this
study. A transition between phonon-dominated and molecular
diffusive mechanisms of energy transfer occurs as temperature
decreases between the low and high-temperature limits, respec-
tively.[9] Figure 10a confirms a scaling of the �1=Tb form where
the exponent b is�1.5 which is the same value as that obtained in
ref. [9] (see the figure caption for further details), giving some
support for the phonon–phonon scattering mechanism and the
damped oscillatory behavior of CT ðtÞ evident in Figure 9a. The
simulation data tends to be slightly lower than the experimental
λ data of ref. [52]. This is a difficult quantity to measure experi-
mentally and some systematic differences between different sam-
ples used in that study are evident in the figures of that work. This
discrepancy could originate in the experimental values, but this
would need to be verified by new measurements. Nevertheless,
the three simulation studies whose λ values are given on
Figure 10a are, within the statistical uncertainties, in agreement.

Following the macroscopic thermodynamic treatment given
in ref. [12], assuming again that λ is a state function, using
standard thermodynamic relations[12]

�
∂ ln λ
∂T

�
P
¼

�
∂ ln λ
∂T

�
ρ

þ
�
∂ ln λ
∂ ln ρ

�
T

�
∂ ln ρ
∂T

�
P

¼
�
∂ ln λ
∂T

�
ρ

� αðTÞ
�
∂ ln λ
∂ ln ρ

�
T

¼
�
∂ ln λ
∂T

�
ρ

� αðTÞg

≃ const:� αðTÞg

(15)

where α ¼ �ð ∂ ln ρ= ∂TÞP in Equation (15) is the isobaric expan-
sivity (it is almost always a positive quantity). As discovered
earlier, it is a good approximation to take g to be a constant, inde-
pendent of ρ (at least along an isotherm). Figure 10b is a plot of
ln ρ against T, which is seen to be nearly linear in T for small T,
indicating in that temperature range, α ≃ A expð�BTÞ where A
and B are positive constants (given in the figure caption). The plot
of ln ρ against lnT (not shown) is even more curved downward
for large T than Figure 10b. It is tempting to take ð ∂ ln λ= ∂TÞρ to
be a constant as has been done in the literature.[12] Although a
reasonable assumption, as isochoric quantities tend to be less
temperature dependent than isobaric ones, this proposal would
require further practical investigation to confirm to what extent
this is the case.

Table 4. Calculated properties along the P ≃ 0 isobar or sublimation line
in the solid phase (apart from the last three rows). The thermal
conductivity was calculated using the GK method formula given in
Equation (3). The numbers in brackets for λ are the uncertainties in
assigning the thermal conductivity from the plateau value, in the last
digits. The quantities are given in LJ units. Key: all data is for N¼ 1372.

T ρ ur ua u P λ

0.07513 1.0814 8.4786 �16.9815 �8.5029 0.029 261(11)

0.08347 1.0802 8.4622 �16.9519 �8.4897 0.031 210(10)

0.10017 1.0772 8.4117 �16.8744 �8.4627 0.019 137(5)

0.10434 1.0766 8.4037 �16.8597 �8.4559 �0.0002 144(2)

0.12521 1.0738 8.3701 �16.7925 �8.4224 0.022 121(5)

0.14608 1.0705 8.3224 �16.7104 �8.3881 0.016 104(5)

0.16695 1.0672 8.2755 �16.6289 �8.3534 0.012 93(2)

0.18781 1.0644 8.2439 �16.5632 �8.3192 0.039 70(1)

0.20868 1.0602 8.1731 �16.4556 �8.2825 �0.011 63(1)

0.229550 1.0574 8.1431 �16.3909 �8.2478 0.021 54(1)

0.250417 1.0530 8.0692 �16.2790 �8.2097 �0.033 47.5(5)

0.333890 1.0380 7.8578 �15.9160 �8.0582 �0.070 31.7(5)

0.500800 1.0077 7.4829 �15.2149 �7.7320 0.002 16.1(4)

0.584307 0.9926 7.3239 �14.8824 �7.55858 0.113 14.9(5)

0.25042 1.0792 8.8227 �17.0688 �8.2460 1.51456 65(1)a)

0.55000 1.4140 25.2919 �29.0344 �3.7425 61.715 333(10)b)

0.55000 1.4140 25.2976 �29.1262 �3.8286 61.491 267(5)

a)N¼ 864; b)N¼ 256.
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Table 4 shows that for the temperature range covered and
P ≃ 0, the density decreases with increasing temperature which
indicates a positive isobaric expansivity over the entire tempera-
ture range studied. A positive α requires a positive Grüneisen

parameter, γ, as α ¼ γρCv=κT ,
[54] and the three remaining quan-

tities are all positive. This is ensured in the approximate formula
in Equation (14) because ϕ

000
<< 0 at the nearest-neighbor

distance. The third derivative term outweighs the contributions
from the first and second derivative terms in that formula using
the LJ potential.

Figure 11a shows the isobaric dependence of ln λ against lnT ,
which complements the lin–lin plot of Figure 10a. The power law
decay in T of λ is evident in Figure 11a.

(a)

(b)

Figure 11. Frame (a), is the dependence of ln λ on ln T along the P ¼ 0
isobar. The linear regression constants are, intercept 1.94(7) and slope,
�1.37(3). This figure complements Figure 10a in which the data are shown
as a lin–lin plot. Frame (b) is the dependence of ln λ on ln ρ along the
P ¼ 0 isobar. The linear regression constants are, intercept 1.3(3) and
slope, 49(5). The fit was between 0.05–0.07 on the abscissa.

(a)

(b)

Figure 10. Frame (a), temperature dependence of the thermal conductiv-
ity along the sublimation line. “EXPT.” refers to experimental data from
ref. [52]. Three sets of MD data are shown on the figure, where “TW”
is MD data from this work in Table 4, “MK” is MD data from ref. [11]
and “KLYK” is MD data from ref. [9]. The solid line is a fit to the MD data
with the functional form, λ ≃ A=Tb, where A ¼ 118ð14Þ and b ¼ 1.46ð6Þ in
LJ reduced units, with the statistical uncertainties given in brackets. Frame
(b), the temperature dependence of the P ¼ 0 sublimation isobar. The
black line is a linear regression fit of the MD data up to a temperature
of T ¼ 0.2 in LJ reduced units, where the intercept and slopes are
0.0884(3) and �0.140(3), respectively. The red line is an analytic fit to
sublimation line data from ref. [31].
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An alternative approach is to follow the spirit of Equation (10)
and use
�
∂ ln λ
∂T

�
P
¼

�
∂ ln ρ
∂T

�
P

�
∂ ln λ
∂ ln ρ

�
P

¼ �αðTÞ
�
∂ ln λ
∂ ln ρ

�
P
¼ �αTh

h ¼
�
∂ ln λ
∂ ln ρ

�
P

(16)

As with g, the quantity h is not easy to access in experiment but
can be evaluated in MD in a more routine way. Figure 11b shows
the isobaric dependence of ln λ against ln ρ. The isobaric temper-
ature dependence in Figure 11a is almost linear in a narrow
ln ρ range 0.05–0.07, which reflects the expansivity behavior in
Figure 10b. Clearly, the density dependence of λ along the P ¼ 0
isobar is more complicated than its temperature dependence.
This dependence may ultimately provide a link between the
isotherm and isobar trends in the thermal conductivity.

The temperature-dependent normalized TACF, CT ðtÞ, defined
in Equation (3) for five temperatures along the P ¼ 0 isobar are
shown in Figure 12a. The figure shows that with decreasing tem-
perature CT ðtÞ develops a more pronounced damped oscillatory
decay appearance. Just as for the analogous isotherm TACF in
Figure 9b which shows the effects of increasing pressure, this
suggests that heat transfer becomes more phonon-like in origin
as the intensive variable becomes more “extreme” (here where
there is a decrease in temperature). Figure 12b shows the stan-
dard deviation normalized PDFs defined in Equation (5) for the
same four state points. The absolute value of λu is used to show
both sides of the PDF and the extent to which they collapse on
a single curve. The figure demonstrates that the negative and
positive sides are symmetric and independent of temperature
for the higher three temperatures. The simulation carried out
at T ¼ 10K produced a PDF, which is symmetric but slightly
systematically lower than the other three. This may be a conse-
quence of the dominance of phonons at very low temperatures.
The phonon collision mean free path length scales as �1=T , so
the small departure from scaling at this temperature may be a
finite size effect.

5. Conclusions

This work is an extension and a new application of the so-called
“viscuit” or “single trajectory” (ST) decomposition of the GK
formulae for obtaining transport coefficients.[4,5] For the last
50 years, the GK procedure has been used in MD computer sim-
ulations as a standard tool to determine the transport coefficients
of liquids. The simulation is broken up into a sequence of tra-
jectories each of which acts as the start of a ST contribution
to the total transport coefficient value. These starting points in
time are referred to as “time origins”. The normal GK practice
is to form an average correlation function from all of these indi-
vidual components and then integrate this with time. The plateau
value of the integral is proportional to the transport coefficient of
interest. In the viscuit approach, each time origin is integrated,
and then the statistics of these individual contributions to the
transport coefficient (here, the thermal conductivity, λ) are

analyzed to provide further insights into the distribution of
dynamical “events” which lead to a specific value of λ. In princi-
ple, the statistical tools of PDF could be taken advantage of to
provide further insights into the molecular origins of the pro-
cesses that lead directly to the transport coefficient. This new
method brings the evaluation of the transport coefficient within
the framework of PDF theory. The ST approach makes use of
information which has not been exploited in past applications
of GK, even though the necessary ST contributions are already
available as a step in the GK computational procedure.

(a)

(b)

Figure 12. Frame (a) presents the normalized TACF, defined in
Equation (3) for five-state points along the P ¼ 0 isobar of the LJ solid.
The temperatures are given in the figure. Frame (b) gives the correspond-
ing Ps,� PDFs for STC averaging times: (i) t ¼ 27.0, (ii) t ¼ 19.1, (iii)
t ¼ 13.7, and (iv) t ¼ 10.5 for T ¼ 10, 20, 40 and 70 K, respectively.
The standard deviation scaled jλuj PDF are plotted for both negative
and positive sides of each PDF.
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The new aspect of the ST treatment is to explore whether the
PDF scaling features for liquids discovered in ref. [5] also apply to
crystalline solids. Simulations of the LJ FCC lattice below the
triple-point temperature carried out in this study reveal that
the universal features in the PDF found for liquids in ref. [5] also
apply to solids. In this case, the thermal conductivity ST PDF
expressed in terms of the standard deviations of the two sides
treated separately is symmetric, and collapse onto those of the
liquid. It is worth noting that many of the ST trajectories contrib-
ute a negative amount to the total value of λ, but the positive con-
tributions outweigh those on the negative side of the PDF,
leading to a total thermal conductivity that is positive. This means
that the thermal conductivity can be expressed in terms of
standard deviations of the ST on the two sides (further details
are given in ref. [5]).

This work shows therefore from the thermal conductivity
viscuit PDF of the LJ solid that for short periods of time the ther-
mal conductivity of the solid is negative. Therefore, especially for
nanoscale atomic solid systems, the thermal conductivity of the
system can be negative, which is an effect that may be important
to consider and could even be exploited in practical applications.
This behavior is present over the range of temperatures and
pressures considered in this study.

Another new feature of this work is an investigation of the
pressure and temperature dependence of the thermal conductiv-
ity, λ, of the LJ solid. These were computed principally along an
isotherm, and an isobar close to the sublimation line on the
phase diagram, respectively. It is shown that along the isotherm,
λ, is to a good approximation proportional to a high power of the
density. The pressure dependence of λ follows a similar analytic
form to that of the pressure dependence of the density. The tem-
perature dependence of λ along the P ¼ 0 isobar is a power law in
T, confirming previous MD investigations. The TACFs increas-
ingly developed a damped oscillatory appearance as pressure
increases or temperature decreases, suggesting an increasing
contribution of phonon heat waves to the heat transmission
mechanism in both of these cases.

In order for the GK integral to reach a plateau requires
the heat flux time correlation functions to be computed for com-
paratively long times (for typically �50–100 reduced LJ time
units) when the pressure is high and/or the temperature is
low. The trends in the pressure and temperature dependence
of the thermal conductivity are interpreted and formulated using
thermodynamic relationships developed in pioneering work on
thermal conductivity of liquids and solids carried out in the 1960s
and 1970s.

The GK and viscuit adaptation explored in this study are based
on Fourier’s linear relationship between the heat flux and an
applied temperature gradient.[55] Shear flow can also induce
an anisotropic heat flux, which has recently been explored using
nonequilibrium MD simulation.[56] There are NEMD methods
using homogeneous synthetic equations of motion which enable
the thermal conductivity in the zero temperature gradient limit to
be computed.[57] The reformulated GKmethod used in this study
is much more useful in the present context, however, as this
method lends itself to showing up the negative contributions
to the thermal conductivity which occur naturally as the system
evolves through time and space.

Future work could investigate the extent to which the intermo-
lecular potential affects the value of the g-parameter (which char-
acterizes the density dependence of the transport coefficient),
in particular its density (pressure) dependence. Also further
details on the similarities and differences between the pressure
and temperature dependences of the thermal conductivity
could be obtained. Is there an equivalence or mapping between
the P and T dependencies of the thermal conductivity? Such
interchangeability is known in other fields, such as the
time-temperature superposition found in the polymer rheology
literature.[58] This would provide greater understanding and
potential applications of the simulation results in practice. In
regard to the isobaric trends, are there differences in qualitative
behavior of the thermal conductivity as a function of temperature
for different pressure values? Similarly, for isothermal state
points to what extent do the trends change as a function of
temperature?

With a wider perspective, recent research on high-speed dis-
location movement and plastic relaxation processes in crystals,[59]

demonstrates the importance of collective motion underpinning
many physical effects. Coupling of these processes with atomistic
treatments of heat waves in crystals would appear to be a natural
extension of this work (i.e., heat conduction in crystals with
defects). Also, similar MD studies of heat conduction in glassy
systems using the same analytical tools would be another possi-
ble direction of this work.
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