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Nanowire Stretching by Non-Equilibrium
Molecular Dynamics
D. M. Heyes,* D. Dini,* E. R. Smith,* and A. C. Bra�nka*
Non-equilibrium Molecular Dynamics (NEMD) simulations of a stretched
Lennard-Jones (LJ) model single crystal nanowire with square cross-section
are carried out. The microstructural and mechanical properties are examined
as a function of strain and strain rate. The instantaneous Poisson’s ratio and
Young’s modulus are shown to be strongly time (strain) dependent from the
start of the pulling process. The structural transformation as a result of
straining initially involves the (100) layers moving further apart and then
slipping at ca. 45o when the shear slip stress along that direction is about
1% of the shear modulus, which is typical of plastic deformation of noble
gas solid crystals, and in accordance with Schmid’s law.
1. Introduction

The elastic properties of crystalline and polycrystalline
materials have been the subject of practical interest over many
centuries, and this field was placed on a firm theoretical footing
by Navier, Cauchy, and Poisson.[1] The strength and failure
mechanisms of solids under applied stress are important
aspects of this topic. In recent years the remit of this field has
broadened to include metallic nanowires which are used in
miniaturized electronic and micro-machine (MEMS) devices[2]

The mechanical and electrical properties of a given nanowire
determine its suitability for particular applications. Large
surface-to-volume ratios and other scale effects can cause the
mechanical response to straining of materials of nano
scale dimensions to be quite different to that exhibited by
the same material with the same shape but of macroscopic size.
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Under certain conditions, a wire a single
atom thick can be produced at the final
stage of the pulling process of a thin
metallic wire.[3] The difference in behavior
is, in part, because macroscopic wires are
polycrystalline and deformation takes
place predominantly by grain sliding at
their boundaries. The inhomogeneity of
the local structure leads to a heteroge-
neous stress and strain distribution in the
wire.[4] In contrast, nanowires are, in the
main, composed of single crystals, so that
deformation mechanism under stress is
not available to them. Another difference
is that the strain rates can be many orders
of magnitude larger in MEMS devices
than those on the macroscopic scale, in
part because the natural frequency scales
as � m�1=2 where m is the mass of the device element. The
conditions experienced by the device therefore overlap to a
much greater extent with atomic scale structural and dynamical
characteristics.

The key mechanical properties of macroscopic wires under
tension are Poisson’s ratio, v,[5] and Young’s modulus, E.
Poisson’s ratio is particularly informative as it is a direct and
visible indicator of the nature of the deformation of the wire on
stretching. Poisson’s ratio has even been used to characterize the
stretching deformation behavior of a single molecule, such as
DNA.[6] It is usually derived from strain rates that are
infinitesimal on a molecular scale. For a wire made of
structurally isotropic material and of square cross-section,
Poisson’s ratio (PR) is the ratio of the transverse strain, ϵxx or
ϵ33 in response to a strain, ϵzz, along the length of the wire,

ν ¼ � ϵxx
ϵzz

¼ � ϵyy
ϵzz

; ð1Þ

where z is the pulling direction, and x and y are the transverse
directions. Classical elasticity theory applied to infinitesimal
linear strain gives,

ν ¼ 3K/2� G
3K þG

; ð2Þ

where G is the shear modulus and K is the bulk modulus, both
measured in the limit of zero frequency. On a macroscopic
timescale the elastic constants can be taken to be their
isothermal equilibrium values. Young’s modulus, E, is the
constant in a generalization of Hooke’s law for longitudinal
deformation[7]
by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

https://doi.org/10.1002/pssb.201600861
http://creativecommons.org/licenses/by/4.0/
http://www.pss-b.com


www.advancedsciencenews.com www.pss-b.com
E¼ σzz=ϵzz ¼ �Pzzϵzz; ð3Þ

where σzz is the wire axial or longitudinal stress and Pzz is the
corresponding pressure tensor element (note the sign differ-
ence). The classical theory of elasticity gives,[8]

E ¼ 9G
3þG=K

: ð4Þ

The classical linear strain theory gives the bounds,
�1 < ν < 0:5, which goes from infinite shear modulus to
rubbery solids. Although, for auxetic foams departures from
Eq. (2) have been observed in experimental studies.[9,10]

As a complement to experiment, nanowiremechanical properties
can be conveniently explored using Nonequilibrium Molecular
Dynamics (NEMD) simulations, which give a full atomistic level
description of the system. This methodology can be employed to
explore the dependence of the response as a function of external
conditions such as temperature and strain rate. Here, classical
dynamics and a pairwise additive pair potential function, ϕ rð Þ, as a
function of the separation, r, between the atoms, are used. A number
of NEMD calculations of nanowires have been carried out using
model metal force fields which have a many-body component, for
example the embedded atom model (EAM). Wire stretching and
nano-weldingNEMDsimulationshavebeencarriedoutonanumber
of model metals, including copper[11–13] nickel[14–16] silver,[17]

gold,[18,16] and Au-Co and Pt-Co alloy nanowires.[19,20] Also NEMD
simulations have been carried out on β�SiC.[21] These previous
studies have focussed on the breaking mechanism of the wire on
stretching through to the “necking” stage just before the wire breaks.
Inthesecalculationsthemodelwirewasattachedtotwocrosspiecesat
the two ends that are pulled apart, to model a real apparatus.
Substantial concerted restructuring of thewire througha sequence of
potential energy minima was observed during the pulling process.

Other NEMD simulations of model solid wires under tension
have been carried out using periodic boundary conditions in the
axial direction,[22,23] and a comprehensive review of the nucleation
of plastic deformation in nanowires is given in Ref. [24].

The stretching of liquids by NEMD has been carried out
previously.[25–27] Techniques that are designed to exploit the flow
behaviorof theliquidstatewereemployedinthosecases,whichwould
not be applicable for the present solid systems. The objective of the
present study is to characterize the initial stages of the responseof the
solid nanowire to stretching, which could eventually lead to the
improved design of mechanical elements in small devices. Inter alia
the applicability and relevance of classical elasticity theory to
nanowires is explored. The Lennard-Jones (LJ) potential, ϕ rð Þ, was
used to represent the interaction between the atoms,

ϕ rð Þ ¼ 4ϵ σ=rð Þ 12 � σ=rð Þ6
h i

; ð5Þ

where ϵ and σ are the characteristic energy of interaction and
diameter, respectively. The separation between the centers of two
of the atoms is r. This is a simple generic atom or molecule pair
function which includes short range repulsion and medium-to-
long range van der Waals attraction. Its use helps to establish
“universal” trends that are not dependent on a specific metal
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interaction law. Despite its simplicity the LJ potential has been
used to model metals by molecular simulation in the past, and
there are LJ ϵ and σ parameters for metals in the literature.[28]

The LJ potential has been used to model metals in molecular
simulation many times (see Refs. [29–32]). This work concen-
trates on details of the NEMD computer method developed for
this project, and in revealing the microstructural processes
responsible for the elastic-to-plastic deformation in terms of the
classical parameters of material deformation under strain.

The interest is in discovering the extent to which plastic (i.e.,
non-recoverable) deformation in a truly nanosized single crystal
resembles that of more macroscopically sized single crystals for
which the major source is motion of dislocations through the
crystal lattice. This takes place parallel to the highly packed
crystal planes of the original lattice, which are known as “slip
planes”. The dislocations transport the strain through the crystal
by a concerted action of local atom exchanges with low activation
energy. The initiating or yield shear stress, τc, acting along the
slip plane depends on the relative orientation of the crystal lattice
relative to the pulling direction, and it is the pulling tensile
stress, σc resolved along the slip direction on the slip plane that
must exceed a certain value to initiate plastic deformation, which
is quantified by Schmid’s law. This states that,

τc ¼ σccosϕcosλ; ð6Þ

where ϕ is the angle between the normal to the slip plane and the
directionof initiating tensile stress (zhere), and λ is the anglebetween
the slip direction and z.[33–35] The largest value of cos ϕcosλ (the
“Schmid factor”) for a cubic crystal is 0.5, where both angles are 45o.
The extent of slip and increase in lengthof a single crystal depends on
the magnitude of the loading stress, the crystallographic structure,
and the number of active slip planes in the shear stress direction.
When a single crystal is deformed freely in uniaxial tension without
boundary constraint, the gliding planes retain their original
orientation. Whereas, with boundary constraints (the case modeled
in this study) the planes rotate toward the tensile axis to facilitate
slidingandretaintheconnectedintegrityof thecrystal. Inaddition, the
lattice can rotate in the slip plane by a process known as dislocation
“twinning”, giving the extended crystal specimen a “twisted”
appearance when viewed from the side or along the axial direction.

In Section 2, aspects of elastic moduli of bulk crystals are
covered. In Section 3 the NEMD simulation methodology for
wire stretching is described, and in Section 4 the simulation
results of model wire stretching are presented and discussed.
Conclusions are presented in Section 5.
2. Elastic Constants Theory and Simulations
for Bulk Systems

In this section a comparison is made between the elastic moduli
and viscoelastic behavior of model liquids and solids. The
stretching of liquid filaments is a widespread activity in industry,
for example, in polymer melt processing, and it is of interest for
future work to make a comparison between the two. Also it
provides a context in which to introduce the formulas used to
calculate the infinite frequency elastic moduli of the solid state,
which are of immediate importance for the present work.
017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 1. Comparison of the shear stress autocorrelation functions
defined in Eq. (16) at the coexisting densities of the LJ liquid and solid
phases. The state points are coexisting on the melting line at T ¼ 1:00,[40]

andN ¼ 2048. The liquid density is 0:9157 and the solid density is 1:0030.
Constant total energy or NVE dynamics were used.
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A number of mechanical quantities of use in characterising a
nonequilibrium or finite strain (strain rate) process can be
obtained directly from equilibrium state molecular simula-
tions. The elastic properties of fluids[36] in the infinite
frequency and low strain rate limit are so-called “static
properties” as they can be calculated from equilibrium
structural features at the level of the pair radial distribution
function, g rð Þ. For an equilibrium (i.e., unstrained) liquid with a
spherically symmetric g rð Þ, the infinite frequency shear rigidity
modulus, G1 is defined as[37,38]

G1 ¼ ρkBT þ 2πρ2

15

Z 1

0
g rð Þr3 4ϕ0 þ rϕ00ð Þdr; ð7Þ

where kB is Boltzmann’s constant, and ϕ0 � dϕ=dr and

ϕ00 � d2ϕ=dr2. The first term on the right hand side of Eq. (7)
is the kinetic part and the second term is the interaction or
configurational part. Similarly for the infinite frequency
compressional modulus, K1, is[38]

K1 ¼ 5
3
ρkBT þ 2πρ2

9

Z 1

0
g rð Þr3 rϕ00 � 2ϕ0ð Þdr: ð8Þ

These expressions can be reexpressed in a form that is
suitable for implementation in simulation. Equations (7) and (8)
are then,

G1 ¼ ρkBT þ 1
15V

�X
i<j

4rijϕ
0
ij þ r2ijϕ

00
ij

� ��
; ð9Þ

where V is the volume containing N molecules, rij is the
pair separation between molecules i and j, ϕ0ij � dϕ rð Þ=drð Þr¼rij

and ϕ00ij � d2ϕ rð Þ=dr2� �
r¼rij

. Also, h. . .i denotes a simulation

average, which is a time average for Molecular Dynamics
(MD) simulation. Equation (9) is the Born term.[39] Similarly
for K1,

K1 ¼ 5
3
ρkBT þ 1

9V

�X
i<j

r2ijϕ
00
ij � 2rijϕ

0
ij

� ��
: ð10Þ

Alternatively, for the LJ potential,[40] these elastic moduli can
be written in terms of the average repulsive and attractive
components of the potential energy of the system expressed as
an energy per molecule,

G1 ¼ ρkBT þ ρ

5
36ur þ 6uað Þ; ð11Þ

and

K1 ¼ 5
3
ρkBT þ ρ 20ur þ 6uað Þ; ð12Þ

where ur ¼ Ur=N and ua¼ Ua=N, and Ur is the r�12 part of the
potential energy of theNmolecules, andUa is the same quantity
for the attractive, r�6 part of the potential energy.[40]
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Let Pxy be the shear (or an off-diagonal) component of the
pressure tensor, which is calculated at each time step in the
simulation using,

Pxy ¼ 1
V

XN
i

mivxivyi � 1
2

XN
i

XN
j6¼i

rxijrxij
dr

dϕij rð Þ
dr

0
@

1
A; ð13Þ

where mi is the mass of molecule i, vxi and vyi are the x- and
y-components of its velocity, respectively, and rxij is the
x-component of the separation between molecules i and j.
The mechanical definition of the zero-frequency shear modulus,
G0 is,

G0¼ �Pxy=γ; ð14Þ

where �Pxy � hPxyi is the time average (inMD) of Pxy, in response
to an applied shear strain, γ. Also from statistical mechanics[41,39]

G0 ¼ G1 � V
kBT

h Pxy � �Pxy
� �2i; ð15Þ

which is a combination of a nonfluctuating (Born) term,G1 and
a fluctuating term. For an equilibrium fluid, h�Pxyi ¼ 0, G0 ¼ 0
which provides the definition of G1 in terms of the shear stress
fluctuations from Eq. (15), and for a solid G1 > G0 > 0. The
elastic constants of the FCC Lennard-Jones solid have been
computed numerically.[42–44]

The differences between the viscoelastic features of a liquid
and solid bulk system are compared in Figure 1, which shows the
shear stress relaxation function, Cs tð Þ for a bulk equilibrium
017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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system, in the linear response or infinitesimal shear strain limit.
The time-dependent function, Cs tð Þ, was calculated (and is the
same as) the shear stress time correlation function,

Cs tð Þ ¼ V
kBT

hPxy 0ð ÞPxy tð Þi; ð16Þ

which can be proved from Green-Kubo theory,[45,46] Figure 1
compares Cs tð Þ for liquid and solid coexisting states along the
melting line, noting that Cs 0ð Þ � G1 for the liquid.[47] The
melting line was chosen as the temperature and pressure are
the same for the two co-existing phases, and only the densities
are slightly different. This provides two closely related coexisit-
ing thermodynamic states, but with different symmetry. The
simulations were carried out using the leapfrog form of the
particle update Verlet algorithm to generate the evolution of
the system through time and space.[46] The reported results are
in LJ reduced units (i.e., ϵ for energy, σ for distance and the mass
of the molecule, m). The LJ interaction was truncated at
r ¼ 2:5.[46] The fluctuations in the shear stress are larger in the
liquid than the solid for the closely related state points. The
figure also shows that the time scales for decay of the shear stress
fluctuations to zero are quite similar.

The zero frequency isothermal bulk modulus, K0 is a
thermodynamic property defined as, K0 ¼ ρ @P=@ρð ÞT , where ρ
is the mean particle number density. The values of K0 from
equilibrium simulations at the state point, T ¼ 1:0 and ρ ¼ 1:1
was 87:91 in LJ reduced units of ϵσ�3. An NEMD simulation
using Lees-Edwards periodic boundary conditions,[48] at a fixed
shear strain of γ ¼ 0:02 was carried out to determine G0 at this
state point, giving a value of 53.72. Using G0 for G and K0 for K
in Eq. (2) for v and Eq. (4) for E gives ν ¼ 0:246 and E ¼ 133:8.
The value for ν ¼ 0:25 obtained agrees with that expected from
materials whose atoms interact via central potentials which are
isotropically distributed in space or obey the Cauchy relations. To
an extent this aspect of the present work follows on from that of
Ho et al.[49] who investigated negative Poisson’s ratio in bulk
cubic materials along its principal directions.

The elastic properties of bulk liquids and solids are to a large
extent quite well understood. The situation is less clear for single
crystal nanowires of nanometer dimensions, aspects of which
are explored in the next two sections.
3. Nanowire Simulation Methodology

The NEMD simulations mimicked the pulling of a nanowire
composed of a face-centered cubic (FCC) single crystal of square
cross-section with the long axis along the [100] direction. The
system was forced increasingly away from the thermodynamic
and mechanical equilibrium state toward failure. The model
nanowire had periodic boundary conditions applied in the axial
direction, and was free to relax in the directions orthogonal to the
pulling direction as there were no periodic boundaries in those
directions.

The simulation cell had the dimensions, S� S� nzS, in the x,
y, and z directions, respectively. For most of the simulations
there were 1728 molecules in the simulation cell, which was
made from two cubes (i.e., nz ¼ 2) of 864molecules combined in
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the z direction. There were 24 xy layers of atoms in the z-
direction. A simulation was also carried out with nz ¼ 3 and 2592
LJ atoms in the simulation cell. The simulation strategy leading
up to nanowire failure was carried out in three stages.

The first stage (I) of the simulation was to allow the bulk
system to come to equilibrium. The second stage (II) was to
remove the periodic boundary conditions in the x and y
directions. This was accompanied by a randomisation of the
molecule velocities every 30 time steps, to help damp out the
effects of the transition in physical state between the stage I to II
conditions. This procedure created a nanowire of square cross-
section and effectively of infinite length, as the system was still
periodic in the z direction. The wire was allowed to come to
equilibrium during this stage. In both stages I and II the model
system was not stretched. In the third stage (III) the model wire
was stretched by increasing the periodicity length in the
z-direction. The stage III configuration is illustrated schemati-
cally in Figure 2.

The initial periodicity length, Sz 0ð Þ ¼ nzS, was increased
linearly with time, t, through intermediate values, Sz tð Þ,

Sz tð Þ ¼ Sz 0ð Þ þ _ϵzztSz 0ð Þ ð17Þ

to a final value of Sz;m ¼ Sz 0ð Þ 1þ ϵzz;m
� �

to mimic real
experimental conditions. The z-strain at time, t, was
ϵzz tð Þ ¼ Sz tð Þ � Sz 0ð Þð Þ=Sz 0ð Þ. The typical strain rate was
6:3� 10�4 reduced units which corresponds to � 108 s�1 for
solid argon, which is many orders of magnitude greater than is
typical of macroscopic fiber stretching experiments. The bottom
boundary of the periodic cell was fixed at, z ¼ 0, while the upper
boundary was gradually increased by a small incre
ment each time step until a maximum extension,
ϵzz;m ¼ Sz tmð Þ � Sz 0ð Þð Þ=Sz 0ð Þ was achieved, and where tm is
the maximum time of the stage III segment. This procedure was
implemented to mimic as closely as possible the stretching of a
real wire. The atom coordinates in the z-direction were not
uniformly scaled, which would have been unrealistic. Density
and other system property inhomogeneities should be allowed to
evolve naturally without interference from the stretching
mechanism. The implemented mechanism of stretching
followed closely the experimental procedure, in which the wire
is clamped at two points and pulled apart from there.

The system’s temperature in stages I and II was controlled
with the Nos�e-Hoover thermostat,[50–52] with a time constant of
three reduced units. During the stage III stretch of typically 75
reduced time units the systemwas not thermostatted but allowed
to reach a time-dependent temperature in response to the
stretching process, which would be a natural feature of the
pulling process in the real world. Stages I–III were repeated Ns

times to improve the statistics of the calculated properties. After
each stage III, the molecule positions and velocities saved at the
end of the previous stage I phase were recovered as the starting
point of the next stage I time period (of ca. 25 reduced time
units), which was used to create a new starting state independent
of the previous one for the stretching event. Therefore successive
wire equilibration and stretching events commenced from
statistically independent starting states. The number of such
independent stretching trajectories, Ns, was typically � 200. The
density was 1.0 and the temperature was equal to 0.1 to ensure
017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 2. Schematic diagram of the NEMD simulation cell with long axis
and periodic boundary conditions along the z-direction in stage III of
the wire treatment process. Stretching of the equilibrated wire along the
z-direction is made by moving the top boundary upwards, but as indicated
because of the periodic boundary conditions in the z-direction the tension
developed will induce a pulling action of the cell atoms at the bottom
boundary (hence the arrow pointing downwards).

Figure 3. The radial distribution function of the bulk LJ FCC solid for the
state point T ¼ 0:1 and ρ ¼ 1:0 obtained by equilibrium molecular
dynamics.

www.advancedsciencenews.com www.pss-b.com
the starting system was in the crystalline part of the phase
diagram.[53]

The time step at the target temperature of 0.1 was 0.016 LJ
reduced units. A typical simulation consisted of 5000 time steps
in stage I, 25 000 time steps in stage II and 10 000 time steps in
stage III. The velocities were randomized by reassigning them
from uniformly distributed random numbers and then scaling
them to the target temperature. A Maxwell-Boltzmann
distribution of velocities was achieved after about 100 time
steps.

Also in stage III the angular momentum of the wire around
the axis was set to zero to prevent the wire from spinning around
the z-axis, which it will because of the residual velocities and that
bulk MD does not conserve angular momentum. This is
unwanted for statistical mechanical reasons and also on a more
practical level would have made the calculation of the lateral
strains and Poisson’s Ratio problematic. First the angular
velocity ω, around the z-direction and through the center of mass
was calculated from,

ω ¼
PN

i r i � viPN
i r i � r i

ð18Þ

where r i is the xy plane projection of the coordinates of atom i
relative to the center of mass, and vi is the component of the
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velocity in the xy-plane of particle i. The correction to the
individual x and y coordinate velocities was,

vx;i ! vx;i � ry; iω;

vy;i ! vy;i þ rx;iω
ð19Þ
4. Nanowire Modeling Results

The atomic-scale structure of the model nanowire at various
stages in the pulling process implemented by NEMD is
presented in this section. At the temperature used, T ¼ 0:1,
the wire is stable, and under a slight tension (at this temperature
the original bulk system is under a negative pressure of �6:9 LJ
reduced units). The radial distribution function of the bulk LJ
solid with FCC crystalline form for the equilibrium state point
T ¼ 0:1 and ρ ¼ 1:0 is presented in Figure 3, which shows the
thermally broadened peaks characteristic of an FCC crystal.

The reason why having a stage II in the simulation procedure
is necessary is illustrated in Figure 4, which shows the pressure
component, Pzz as a function of time in stage III obtained
from the Method of Planes (MOP) method for four xy-planes
equally spaced in the z-direction. The simulation was carried out
with a stage II of zero time duration, which means that the stage
III data were accumulated immediately after the periodic
boundary conditions in the x-and y-directions were removed. To
obviate any masking by the stretching process itself, the strain
rate and maximum strain over the 80 reduced times step
stage III segment were given insignificantly small values of
_ϵzz ¼ 1:3� 10�10 and ϵzz;m¼ 10�8. Oscillations in the axial
component of the pressure tensor across various xy planes along
the wire are seen to be in phase and long-lived (rather like a
017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 5. Sideways view of the wire in the xz plane (blue) and yz plane
(red, rightmost column). The strain rate is 0:00063, themaximum strain is
0.1. The initial state point is ρ ¼ 1:0 and T ¼ 0:1.

www.advancedsciencenews.com www.pss-b.com
struck bell vibrating). This may be attributed to a damped
oscillatory relaxation of the model nanowire cross-sectional area
as a result of the “deletion” of the “boundary” pair interactions
when the periodic boundary conditions were taken away. This
phenomenon may share similar physics to that responsible for
quench echoes in glasses and proteins, which describes the
recovery of a system to an abrupt temperature change.[54–56]

Figure 5 shows xz-plane projections of the wire structure at
z-strain values, ϵzz of 0.0, 0.025, 0.050, 0.075, and 0.1 (the
maximum value). The strain rate used was _ϵzz ¼ 0:00063. The
ϵzz;m ¼ 0:1 or final time step yz-projection is also shown (in red
on-line) at the far right hand side of the figure. The x and y
lengths are compressed to enable six frames to be shown on a
single figure. The layers initially stay more or less parallel and
just move uniformly further apart during the pulling process.
Then close to ϵzz ¼ 0:1 the layers can be seen to no longer lie in
the xy-plane but are reorientated to a certain extent toward the
z-direction. There is also evidence of a “twist” in the wire in the
two rightmost snapshots, which exhibit ordered and apparently
disordered regions that “spiral” around the column. Note the
absence of particles in the bottom of the frame at ϵzz ¼ 0:075,
which are visible in the top layer because of the periodic
boundary conditions in the z-direction; they could be drawn at
the bottom of the frame as well as the system is periodic in that
direction.

One might expect the uncontrolled failure of the wire to
appear when the nearest neighbor distance exceeds the point of
inflection distance of the LJ potential. This critical strain might
be viewed as being the maximum stress and recoverable strain
that can be sustained before permanent deformation and
yielding takes place. The nearest neighbor distance, rnn, at the
ρ ¼ 1:0 density is 21=6, and the strain ϵzz required for rnn to equal
Figure 4. The MOP pressure tensor component of the nanowire, Pzz as a
function of time, calculated across four equally spaced xy-planes at the
initial state point, T ¼ 0:1 and ρ ¼ 1:0. These pressure profiles were
obtained directly after the periodic boundary conditions were removed in
the x- and y-directions (i.e., there was no equilibration stage II in this
simulation).
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the point of inflection of the potential at rnn ¼ 26=7ð Þ1=6 is 0.23
(from rnn ¼ 1:122

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵzz

p
) which is much larger than is found

necessary here for plastic deformation. This is because slip plane
gliding is in fact the plastic deformation mechanism that occurs
in single crystals, as discussed in the Introduction. Also as
revealed in Figure 6 the slipping planes of atoms reorientate
toward the tensile axis to facilitate sliding, and the lattice rotates
giving it a “twisted” appearance, as predicted in the litera-
ture.[57,58] Figure 6 gives an example of the sideways view of the
wire looking along the y and x directions, from the same system
as in Figure 5. The scale is the same in all cartesian directions.
The structural distortion takes the form of a pattern which shows
the importance of the 45o planes to the xy plane.

Figure 7 shows the xy-projections of the atoms in four of the
layers within the 36 (increasing numerically from bottom to top
in the periodic cell) at the end of the stretching process, when
γ ¼ ϵzz;m ¼ 0:1 and for _ϵzz ¼ 0:00032. This simulation used
nz ¼ 3, so the simulation cell dimensions were 1� 1� 3. The
layers are quite close to the boundary near the bottom of the
repeated simulation cell. The figure shows that the layers retain
much of their original initial crystalline structure, but they show
evidence of dislocations consisting of three closely spaced layers
out of the plane of the image, which runs vertically through the
xy layers of the wire near the repeat unit boundary.

The instantaneous strain was calculated by taking the
average distance between the x-coordinates of the left and right
boundary atoms for each layer, or, hsxi and then using,
ϵxx ¼ hsx tð Þi � sx 0ð Þð Þ=sx 0ð Þ, where sx 0ð Þ is the corresponding
quantity at the beginning of stage III. The overall strains
orthogonal to the pulling direction, ϵxx and ϵyy as a function of
ϵzz were taken as the average of those of each of the layers.
This procedure removes any systematic errors which may be
introduced by instantaneous variations in the wire thickness
along its length at t ¼ 0. The layer-averaged lateral strains, ϵxx
and ϵyy and their average are shown as a function of the
longitudinal strain, ϵzz in Figure 8 for _ϵzz ¼ 0:00063 and
_ϵzz ¼ 0:00032, using the average response of 200 statistically
independent stage III segment trajectories. The figure shows
017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 6. Sideways view of the wire in the xz plane (blue) and yz plane
(red, rightmost column). In contrast to Figure 5, the coordinate
projections on the xz and yz planes are drawn to scale. The strain rate
is 0:00063 and the tensile strain is 0.1. The initial state point is ρ ¼ 1:0 and
T ¼ 0:1.
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that the wire becomes narrower as it is pulled, as the lateral
strains are negative. The ϵxx and ϵyy are also statistically
indistinguishable, at least up to a strain of ca. 0.08. Then there is
a sharp increase in the magnitude of the strain which
corresponds to the point where the layers start to reorient
noticeably toward the pulling direction. The wire becomes
thinner for that reason. There is some statistical variation
between the behavior of the x and y direction in this strain
region, which reflects a breakdown of the original structure. Data
Figure 7. A downwards view of the atom positions of selected xy plane
layers of the wire. The frames shown are at the end of the stretching
process (i.e., when the ϵzz ¼ 0:1). This simulation uses nz ¼ 3, so the
simulation cell dimensions are 1� 1� 3. There are 36 layers in the unit
cell of the wire, with the layer numbers indicated on the figure panels.
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for the average lateral strain from a simulation carried out with
half the strain rate is also shown on the figure, which indicates
that there is no statistical difference between the two responses.
This suggest that the response is quasistatic for the strain rate
regime considered here. The sharp increase in the lateral strain
after about ϵzz ’ 0:08 is because the wire becomes thinner as a
result of the reorientation to an extent in the z direction. The
reason the layer reorientation takes place is presumably because
this is a means by which it can retain its connectedness at high
levels of extension.

As the x and y strains are equivalent by symmetry, the
Poisson’s ratio is conveniently defined here as,

ν ¼ � 1
2

ϵxx þ ϵyy
ϵzz

	 

: ð20Þ

The strain dependent Poisson’s ratio derived from the data in
Figure 8 is shown in Figure 9. It starts off with a value of ca. 0.20
and increases to ν ’ 0:29 at ϵzz ’ 0:02 before decreasing to a
value of ca. 0.23 at ϵzz ’ 0:07. From ϵzz ’ 0:08 to 0.10 the PR
increases sharply which corresponds to a more rapid rate of
increase of the axial strain as already pointed out. The PRmay be
a useful order parameter to describe the nonequilibrium
potential energy landscape of the wire, as may be seen in this
figure. Figure 8 also shows that Poisson’s ratio is statistically
independent of strain rate in the range considered, strongly
suggesting, again, that the system is in the quasistatic limit, at
least in the early stages of the stretching process.

The instantaneous diagonal elements of the pressure tensor
were computed by the Method of Planes route.[59,60] The Pzz

component was obtained at the boundary (i.e., z ¼ 0 or z ¼ Sz
Figure 8. The layer averaged strain for ϵxx (“x” on the figure), ϵyy (“y” on the
figure) and the average of the ϵxx and ϵyy (“(xþ y)/2” on figure) strains, in
responsetoanapplied longitudinal strain rate, _ϵzz ¼ 0:00063andmaximum
longitudinal strain of ϵzz;m ¼ 0:1. The data denoted by “[xþ y]/2” on
the figure is the average of the ϵxx and ϵyy for the applied conditions,
_ϵzz ¼ 0:00032 and ϵzz;m ¼ 0:1.

017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.pss-b.com


Figure 10. Pressure along the axis in the z-direction and across the yz
plane calculated by the Method of Planes (MOP) method across selected
planes along the wire.[59,60] The Pzz component was computed at the
boundary (i.e., z ¼ 0 or z ¼ Sz) by virtue of the periodic boundary
conditions, and for three other planes, z ¼ Sz=4, z ¼ Sz=2, and z ¼ 3Sz=5,
where _ϵzz ¼ 0:00063 and ϵzz;m ¼ 0:1. The Pxx component of the pressure
tensor was computed from interactions crossing the yz plane passing
through themiddle of the wire. The data labeled ½Pzz� is for the lower strain
rate of, _ϵzz ¼ 0:00032 and ϵzz;m ¼ 0:1.
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by virtue of the periodic boundary conditions), and for three
other planes inside the cell at z ¼ Sz=4, z ¼ Sz=2, and
z ¼ 3Sz=5. The Pxx component of the pressure tensor was
computed from interactions crossing the yz plane passing
through the middle of the wire. These pressure values are shown
as a function of ϵxx tð Þ for _ϵxx ¼ 0:00063 in Figure 10. The
Pxx exxð Þ is seen to be statistically zero as the model wire is
surrounded by a vacuum. The z-component of the pressure
tensor starts off negative (i.e., it is slightly under tension to begin
with). The lateral strain is initially linear with axial strain up to ca.
ϵzz ’ 0:02. Softening is evident for larger axial strains. Up to
ϵxx ’ 0:04 all planes through the wire give statistically the same
value of the pressure, but beyond that point Pzz measured at the
periodic boundary goes more negative more rapidly with axial
strain. This could be viewed as boundary region hardening,
presumably because the straining is applied at the periodic
boundary, and it is in this region where the wire will at least for a
period develop a structure which resists further stretching. The
boundary region undergoes work hardening while the central
region of the wire is still undergoing plastic deformation
softening. It can be seen that for ϵzz > 0:08 the system as a whole
softens, evident in a decrease in the magnitude of Pzz. The top
and bottom layers undergo different localized structural changes
from the rest of the system, resulting in an inhomogeneous
distribution of stress. At this time (or equivalently global
z-strain) the wire stretches to different extents along its length.
The largest negative stresses are at the periodic boundaries (open
square symbols on the figure). This is evident in Figure 5, and
this state is a precursor to much larger structural rearrange-
ments which take place afterwards for global strains correspond-
ing to 0.08 and higher. This is an intermediate metastable stage
which provides the free volume for larger restructuring to take
Figure 9. Poisson’s ratio v for the strain averaged over all layers for ϵxx (“x”
on the figure), ϵyy (“y”), and the average of ϵxx and ϵyy values (“(xþ y)/2”)
(see Eq. (1)) for the applied conditions, _γ ¼ 0:00063 and γm ¼ 0:1. The
data denoted by “[xþ y]/2” on the figure is the average of the ϵxx and ϵyy for
_ϵzz ¼ 0:00032 and ϵzz;m ¼ 0:1.
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place. The nz ¼ 2 and 3 cases had 24 and 36 layers of atoms,
respectively. They both showed the “twist” structure at a global
strain of 0.1, but it took longer to develop fully in the 36 layer
case. At a global z-strain of 0.1 the twist region was more
localized near the periodic boundaries in the nz ¼ 3 case.

Strain hardening prior to material failure is often observed in
metallurgical experiments, and one supposition is that regions
of the crystal are rotated relative to the rest which act as a break
on the slipping of the surrounding crystal, enabling the whole
system to withstand a greater load than the perfect crystal.[34] The
transition from linear to nonlinear tensile pressure which occurs
at ϵzz ’ 0:02 corresponds to a decrease in pressure from the
starting values of about 1.5 reduced units (see Figure 10). If we
assume that ϕ and λ are both 45o, then Schmid’s formula gives a
yield slip shear stress of ’ 1:5=2 ¼ 0:75 reduced units, and as
the shear modulus of the crystal is ca. 54 (see above), then the
ratio of the yield stress to shear modulus is 1.4% which is typical
of the value found experimentally for solid argon.[61,62] This is an
upper limit as the Schmid factor can be smaller than 0.5 (e.g.,
0.3) but the conclusion is not materially altered by changing the
value of the Schmid factor by a physically reasonable amount
(the angles ϕ; λ have not been determined in this study).

Figure 11 shows the corresponding Young’s modulus, E, as a
function of strain computed using the formula in Eq. (3). The
figure shows that E ezzð Þ decreases initially with increasing strain
from a very large initial value, which levels out at values ’ 80 in
017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 12. Snapshots of the system atoms at zz strains 0.07 (left image)
and 0.10 (right image). A three dimensional view of the lattice of atoms
(small black dots) is shown, with atoms colored by a defect
detection or “central symmetry” parameter (CSP), defined according
to, CSPi ¼

PNi
j

Rj �Ri

�� ��=Ni

� �2
, when CSPi > 0:19. The number of

interacting atoms taken around atom i is Ni and Ri is the coordinate of
atom i.
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the strain range 0:02� 0:04. This part of the profile does not
depend on where the plane for the MOP pressure is chosen.
Then above ϵzz ’ 0:04 the value of E at the boundary increases
sharply, while those computed from planes within the periodic
cell start to decrease. It is at the boundary between the periodic
cells where the stretching process is imposed on the system, so
one might expect these region to behave differently when the
system has large strains.

The trends are in close agreement for the two strain rates
considered. This sequence of variable strain behavior is broadly
consistent with the known behavior of strain hardening of FCC
crystals,[34] in which initially there is facile gliding with low
hardening, then increased hardening (here near the periodic
cell’s boundary), which is nearly independent strain rate. This is
followed by significant material weakening, further hardening,
and then ultimate failure over a narrow strain range above
ϵzz ’ 0:1.

Figure 12 shows a map of the dislocation or “defect” locations
represented by large colored circles superimposed on a three
dimensional view of the lattice of atoms which are shown as
small black dots. The dislocation site is identified using a
measure of the spatial anisotropy of the positions of the
surrounding neighboring using Eq. (10) of Ref. [63], which is
also given in the figure caption. It measures the extent of
breaking from the inversion symmetry of nearby atoms around a
particular atom found for a perfect lattice. Snapshots of the
system atoms at zz strains 0.07 (left image) and 0.10 (right
image) are presented. The defects first form near the top and
bottom of the repeated cell, which is what might be expected
because the cell pulling apart is implemented at the boundary.
The local structural anisotropy there reflects the anisotropic
repositioning in the z-direction of the atoms on the two sides of
the border between the cell and its periodic image. At a larger
strain of ϵzz ¼ 0:10 the dislocation defects have spread, starting
Figure 11. Time or strain-dependent Young’s modulus, E ezzð Þ. Most of
the data plotted is for a strain rate of _ϵzz ¼ 0:00063 and ϵzz;m ¼ 0:1. The
data labeled z ¼ SZ=2½ � is for _ϵzz ¼ 0:00032 and ϵzz;m ¼ 0:1.
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at the lower boundary, in two lines which move through the solid
and eventually populate most of the cell.

During the stretching process the thermodynamic properties
change as a function of strain. Figure 13 shows the strain
Figure 13. Thermodynamic properties as a function of strain (time).
The temperature is given, as is the kinetic energy per particle,
the potential energy per particle and the total energy per particle. The
temperature profiles for _ϵzz ¼ 0:00063 and 0:00032 are given. The
temperature data for _ϵzz ¼ 0:00063 is multiplied by 100 on the figure,
and referred to as, “Temperature� 100”. The corresponding plot for
_ϵzz ¼ 0:00032 is indicated by “[Temperature� 100]”.
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dependence of the nanowire temperature, T, obtained from the
kinetic energy per particle, the potential energy per particle, and
the total energy per particle. The figure shows that the
temperature steadily decreases with increasing strain until the
region of incipient failure (i.e., ϵzz > 0:08), when it increases
sharply. The particles start to get further apart up to that region,
so that for ϵzz < 0:09 a steady decrease in the magnitude of the
potential energy and total energy is observed. There is hardly any
statistical difference between the temperature profiles for
_γ ¼0:00063 and _γ ¼ 0:00032.
5. Conclusions

Non-equilibrium Molecular Dynamics (NEMD) was used to
model the pulling apart of a model nanowire. As with some
previous simulations designed to model specific metals,[22,23] the
system was periodic in the axial direction. Some properties of
infinite and finite periodic systems in the wire geometry can
differ if the period in axial direction is not large enough.[64]

Nevertheless, the advantage of this procedure is that finite size
effects are minimized, and the infinite wire limit could be
estimated by extrapolation of the results for different periodicity
lengths to infinite periodicity length.

In the procedure adopted here, two sample preparation
stages are undergone before inducing tensile stress. The first
involves equilibration of a bulk MD crystal system, where the
unit cell is a right parallelepiped, taking the long axis to be
along the z-direction. Periodic boundary conditions (PBC)
are applied in all three cartesian directions. Then the PBC are
removed in the x-and y-directions, and the newly formed LJ
wire shape is allowed to settle to a new equilibrium state. This
is, for example, to allow the vibrations that are created in the
model wire by removing the PBC to die away. At the end of the
nanowire equilibration phase the angular velocity about the
wire axis is set to zero. Stretching of the equilibrated wire
along the z-direction is subsequently carried out by moving
the top boundary of the (repeated) simulation cell at a
constant velocity along the z-direction. The MD cell remained
periodic in the z-direction, and the system was not
thermostatted in this last stage.

Distortion of the model wire took the form of the (100)
layers orthogonal to the wire axis moving further apart initially.
Plastic deformation took place along glide planes at 45o to the
100 planes, and then in the final stages these planes partly
reorientated toward the pulling direction to form a stack of
displaced sliding layers. This allowed the wire to retain its
connected integrity. The model wire also appears to have
“twisted” about the wire axis (see the two most rightmost frames
in Figures 5 and 6). When the applied strain approached a value
of 0.1 the xy-plane layers had reorientated noticeably. This
caused a decrease in the thickness of the wire, an increase in
layer averaged Poisson’s ratio, and an increase in Young’s
modulus. There is evidence of strain hardening where the
deformation of the wire is introduced at the periodic boundaries.
In general it might be expected that the plastic deformation
and failure mechanism could be sensitive to strain rate and
crystallographic orientation.
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Poisson’s ratio and Young’s modulus continually varied
during the pulling of the model wire. This indicates that the
potential energy landscape of the wire continuously changes
during stretching. Also it might be concluded from this study
that a time dependent (e.g., oscillatory) strain rate could be used
to control the mechanical response and effective elastic
constants as a function of strain.

Although more extensive investigations using different input
parameters are possible, the structural transformations observed
appear to be broadly consistent with those discussed in the single
crystal plastic deformation literature. A more detailed study
would be required to discern any differences, which one might
expect, as a consequence of the large surface-to-volume ratio of
the model nanowires, and perhaps the larger strain rates that are
achievable on the nanoscale.

Future studies could explore the effects of the width and
length of the wire on the plastic deformation mechanism, as it
tends to the bulk system limit. Also, by removing the periodic
boundary condition in the z-direction, and replacing it by a
movable solid constraint, it would be possible to explore further
the origins of the wire “twisting” about the wire axis seen in
Figure 5.
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